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Abstract. In this paper, we propose a meshfree method based on the Gaussian radial basis
function (RBF) to solve both classical and fractional PDEs. The proposed method takes advantage
of the analytical Laplacian of Gaussian functions so as to accommodate the discretization of the
classical and fractional Laplacians in a single framework and avoid the large computational cost for
numerical evaluation of the fractional derivatives. These important merits distinguish our method
from other existing methods for fractional PDEs. Moreover, our method is simple and easy when
handling complex geometries and local refinements, and its computer program implementation re-
mains the same for any dimension d � 1. Extensive numerical experiments are provided to study
the performance of our method in both approximating the Dirichlet Laplace operators and solving
classical and fractional PDE problems. We show that our method has spectral accuracy and can
achieve good approximation even with a small number of points. Compared to the recently proposed
Wendland RBF method, our method exactly incorporates the Dirichlet boundary conditions into the
scheme and is free of the Gibbs phenomenon as observed in the wendland method.
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1. Introduction. In the recent decade, fractional partial di↵erential equations
(PDEs) have found widespread applications in many fields, including turbulence
[8, 18, 17], geophysics [4, 46], biomedicine and biology [35, 27], and quantum me-
chanics [33, 11]. In traditional (integer-order) PDEs, di↵usion describes the transport
process due to Brownian motion and is modeled by the classical Laplacian �. In
contrast, di↵usion in fractional PDEs is described by the fractional Laplacian (��)

↵
2

which underlines the Lévy transport. It was recently found that the Brownian and
Lévy transports might coexist in many complex (e.g., biological and chemical) systems
[4, 46, 27]. Thus mathematical models including both classical and fractional Lapla-
cians could be more proper to describe such a phenomenon. On the other hand, the
classical and fractional Laplacians, one local and the other nonlocal, possess distinct
properties. Consequently, the analytical and numerical frameworks for studying these
two operators are significantly di↵erent. For instance, numerical discretization (e.g.,
finite element methods) for the classical and fractional Laplacians are usually incom-
patible, and separate implementation e↵orts are required to study problems of these
two operators. In this work, we propose a new meshfree pseudospectral method with
the intrinsic merit of solving both classical and fractional PDEs in a unified scheme.

The classical and fractional Laplacians can be defined via the parametric pseudo-
di↵erential operator with symbol |⇠|↵ [32, 41]:
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A1390 JOHN BURKARDT, YIXUAN WU, AND YANZHI ZHANG

(��)
↵
2 u(x) = F

�1
⇥
|⇠|↵F [u]

⇤
for ↵ � 0,(1.1)

where F is the Fourier transform with associated inverse transform F
�1. The defini-

tion (1.1) covers a wide class of operators for di↵erent values of the parameter ↵. In
this work, we are interested in the exponent ↵ 2 (0, 2]. For ↵ = 2, the formulation
(1.1) gives the spectral representation of the classical Laplacian��, while it is referred
to as the fractional Laplacian if ↵ < 2. Probabilistically, the fractional Laplacian rep-
resents the infinitesimal generator of a symmetric ↵-stable Lévy process. It can be
also defined in a hypersingular integral form (also known as the integral fractional
Laplacian) [32, 41, 31]:

(��)
↵
2 u(x) = Cd,↵ P.V.

Z

Rd

u(x)� u(y)

|x� y|d+↵
dy for ↵ 2 (0, 2),(1.2)

for d = 1, 2, or 3, where P.V. stands for the principal value integral, and |x � y|
denotes the Euclidean distance between points x and y. The normalization constant
is given by

Cd,↵ =
2↵�1↵�((↵+ d)/2)
p

⇡d �(1� ↵/2)

with �(·) being the gamma function. Over the entire space Rd, the integral fractional
Laplacian (1.2) is equivalent to the pseudodi↵erential operator (1.1) with ↵ 2 (0, 2)
[31, 41, 32].

The formulation in (1.1) provides a uniform definition of the classical and frac-
tional Laplacians via the parametric symbol |⇠|↵. It suggests that if the entire space
Rd or periodic bounded domains are considered, one can study these two operators
together. For example, the Fourier pseudospectral methods based on (1.1) were in-
troduced in [12, 29] to solve the classical and fractional Schrödinger equations on
a periodic domain. However, if a nonperiodic bounded domain is considered, the
pseudodi↵erential form of the classical and fractional Laplacians loses its advantages
and has challenges in incorporating general boundary conditions. Thus di↵erent rep-
resentations of the classical Laplacian (i.e., � = @xx+@yy+@zz) and fractional Lapla-
cian (i.e., formulation in (1.2)) are adopted, which clearly manifests the di↵erences
between these two operators—one is a local derivative operator, and the other is a non-
local integral operator. In practice, numerical methods (e.g., finite di↵erence/element
methods) for these two operators on domains with nonperiodic boundary conditions
are separately developed and incompatible.

Compared to the classical Laplacian, numerical methods for the fractional Lapla-
cian (1.2) still remain limited. In [10, 13, 14], second-order finite di↵erence methods
were proposed to discretize the integral fractional Laplacian (1.2) for d � 1, and fast
algorithms via the fast Fourier transforms were introduced for their e�cient simula-
tions. Various finite element methods based on di↵erent formulations of the fractional
Laplacian were developed in [2, 1, 6, 3, 9] to solve fractional problems. Recently,
spectral methods were proposed to solve fractional PDEs with the integral fractional
Laplacian in bounded and unbounded domains [47, 44]. These spectral methods could
achieve higher accuracy than finite di↵erence/element methods, but they have limited
usability on irregular domains. So far the existing numerical methods for the classical
Laplacian and their computer implementations cannot be used to solve problems with
the fractional Laplacian due to the distinct features of these two operators.
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MESHFREE METHOD FOR CLASSICAL AND FRACTIONAL PDEs A1391

On the other hand, meshfree methods based on radial basis functions (RBFs) have
been widely applied to solve classical PDEs [24, 19]. Compared to the mesh-based
methods, these methods have more flexibility of domain geometry and can achieve
higher accuracy with less computational cost. The application of RBF-based methods
to solve fractional PDEs and nonlocal problems is still very recent. In [5, 34, 48], the
Galerkin methods using a localized basis of RBFs were proposed to solve nonlocal
di↵usion problems. In [38], RBF-QR methods were proposed to solve the Riemann–
Liouville spatial fractional di↵usion problems. A Kansa RBF method was proposed in
[37] to solve the fractional advection-dispersion equations, where the spatial derivative
was defined via the fractional directional derivatives. Later, RBF collocation methods
were introduced in [45] to solve similar advection-dispersion equations but with Riesz
spatial fractional derivatives. We remark that these RBF methods are for di↵erent
fractional derivatives, and in this work we are interested in the fractional Laplacian.
Recently, a Wendland RBF collocation method was proposed in [40] to solve fractional
problems with the fractional Laplacian (1.1), while a singular boundary method based
on a new definition of the fractional Laplacian was introduced in [7]. Note that all
the above RBF methods developed in the fractional cases cannot be used to solve
classical problems.

In this work, we propose a novel meshfree pseudospectral method based on Gauss-
ian RBFs, which has fundamental di↵erences from other RBF-based methods in
[5, 34, 48, 38, 37, 45, 40]. Inheriting the advantages of RBF methods, our method is
simple and flexible of domain geometry, and its computer implementation remains the
same for any dimension d � 1. Furthermore, it allows easy local refinements. Besides
these advantages, our method has the distinct merits described below.

(i) It solves the classical and fractional PDEs in a unified scheme. To the best of
our knowledge, this is the first numerical method that discretizes the classical
and fractional Laplacians on nonperiodic domains with a single scheme. This
feature distinguishes our method from other existing methods which solve
classical and fractional problems separately.

(ii) It takes great advantage of the Laplacian of the Gaussian RBFs (i.e., the
confluent hypergeometric function) and avoids large computational costs in
approximating the fractional derivative of RBFs, which is one major di↵erence
from those in [38, 37, 45, 40]. The fractional derivatives are usually defined in
integral form with a singular kernel. As pointed out in [37], it is challenging to
balance the accuracy and e�ciency in approximating the fractional derivatives
of RBFs with quadrature rules (e.g., Gauss–Jacobi quadrature rules are used
in [37]).

(iii) It exactly incorporates the boundary conditions into the scheme and is free
of the Runge phenomenon observed in [40]. In contrast to the method in
[40], our method uses the exact boundary conditions and avoids evaluating
the fractional Laplacian of RBFs with numerical quadrature rules. Moreover,
the method in [40] requires a larger computational domain (much bigger than
the actual physical domain), which significantly increases the computational
costs especially for d > 1.

The paper is organized as follows. In section 2, we first outline some important
properties of the Gaussian RBFs and then introduce our numerical method on a
bounded domain with Dirichlet boundary conditions. The performance of our method
in approximating the Laplace operators is studied in section 3. We then apply it to
solve the classical and fractional PDE problems in section 4. Finally, some discussion
and summary appear in section 5.
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2. RBF meshfree method. RBFs are well-known for their advantages in high-
dimensional scattered data approximations and have recently broadened their appli-
cations in many areas, ranging from meteorology and statistics to machine learning.
RBFs are usually real-valued scalar functions defined in the form of '(|x|), where
|x| denotes the Euclidean norm of vector x 2 Rd. This radial form (e.g., r = |x|)
makes their use for high-dimensional reconstruction problems very e�cient and also
allows invariance under orthogonal transforms. Common choices of RBFs usually fall
into two main categories: globally supported functions (e.g., Gaussian RBFs) and
compactly supported functions (e.g., Wendland RBFs). For more discussion of RBFs,
we refer the reader to [24, 19] and references therein. In this work, we will use the
Gaussian RBFs and start with some of their properties in section 2.1.

2.1. Gaussian RBF. Among all RBFs, the Gaussian RBF is a representative
member of the class of infinitely di↵erentiable functions with global support. It is
defined as

'(|x|) = exp(�"2|x|2) for x 2 Rd,

where " 2 R denotes the shape parameter. The shape parameter " plays an important
role in the approximation accuracy with Gaussian RBFs. It is usually chosen to
be a constant, and recently spatial-dependent shape parameters were studied in the
literature [26].

When using RBF-based methods to solve fractional PDEs, the main challenge is
to compute the fractional derivatives of RBFs [37, 40, 38]. Their analytical solutions
are usually unavailable, so numerical approximations are required to evaluate these
fractional derivatives, e.g., the Gauss–Jacobi quadrature rules were used in [37]. Note
that the fractional derivatives are generally defined as an integral with singular kernel
over a large domain. Therefore, using quadrature rules to approximate the fractional
derivatives of RBFs significantly increases the computational costs, especially in high-
dimensional problems. Moreover, it makes the implementation of RBF-based methods
more complicated as special treatments are required around the singularity. These
complications greatly deteriorate the performance of RBF-based methods in practice.
In contrast, our method takes advantage of the properties of the Laplace operators
and Gaussian RBFs so as to avoid numerical evaluations of the fractional derivatives
with quadrature rules, which is one fundamental di↵erence between our method and
those in the literature [37, 40, 38].

To introduce our method, we will first present some important properties of the
Laplace operators and their actions on Gaussian functions in the following lemmas.

Lemma 1 (the Laplacian of Gaussian functions). Let u be a Gaussian function
of the form u(x) = exp(�|x|2) for x 2 Rd. Then the Laplacian of u is analytically
given by [39, 16]

(��)
↵
2 u(x) =

2↵�((d+ ↵)/2)

�(d/2)
1F1

✓
d+ ↵

2
;
d

2
; �|x|2

◆
for x 2 Rd, ↵ � 0,(2.1)

where 1F1 denotes the confluent hypergeometric function.

Lemma 1 holds for any exponent ↵ � 0. It provides the foundation of developing
unified schemes for the classical and fractional Laplacians. In the special case of ↵ =
2m with m 2 N, the result in (2.1) collapses to the classical integer-order derivatives

(��)me�|x|2 . For instance, using the properties of the confluent hypergeometric
function 1F1, we obtain that (2.1) is equivalent to
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Fig. 1. Illustration of function (��)
↵
2 u with u(x) = exp(�x2) for various ↵ � 0.

��e�|x|2 = e�|x|2(2d� 4|x|2) for x 2 Rd

when ↵ = 2, i.e., the classical negative Laplacian of the Gaussian function.
Figure 1 illustrates the result (��)

↵
2 u for various ↵ � 0, where u(x) = e�x2

for
x 2 R. It shows that the function (��)

↵
2 u is “radially” symmetric with respect to

x = 0, confirming that the Laplace operator is rotationally invariant. The rotational
invariance is a crucial property in modeling isotropic anomalous di↵usion in many
applications [13]. Moreover, the solution decays to zero as |x| ! 1—the larger the
exponent ↵, the faster the decay. In the extreme case of ↵ = 0, there is (��)

↵
2 u(x) =

u(x), that is, (��)
↵
2 reduces to the identify operator I, consistent with the definition

(1.1) as ↵ ! 0. Figure 1 additionally shows that the function (��)
↵
2 has larger

oscillations as ↵ increases.
Besides Lemma 1, another important building block of our method is the prop-

erties of the Laplace operators as described below.

Lemma 2 (properties of the Laplace operators). For function u, assume the
Laplacian function U(x) := (��)

↵
2 u(x) exists for x 2 Rd. Then it satisfies the

following properties [41]:

(��)
↵
2

⇥
u(x� x0)

⇤
= U(x� x0) for ↵ � 0,(2.2)

for any point x0 2 Rd, and

(��)
↵
2

⇥
u(x)

⇤
= ||↵U(x) for ↵ � 0,(2.3)

for constant  2 R.
Lemma 2 plays an important role in the design of our meshfree method, which

allows us to find the analytical solution to the Laplacian of Gaussian RBFs with
di↵erent shape parameters and center points. Combining (2.1)–(2.3), we immediately
obtain that for any point x0 2 Rd and shape parameter " 2 R, there is

(��)
↵
2 e�"2|x�x0|2 = cd,↵|"|

↵
1F1

✓
d+ ↵

2
;
d

2
;�"2|x� x0|

2

◆
for ↵ � 0.(2.4)

Here and in the following, we denote the constant cd,↵ = 2↵�((d + ↵)/2)/�(d/2),
to be distinguished from Cd,↵ in (1.2). It shows that over the entire space Rd, the
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classical and fractional Laplacian of Gaussian RBFs can be given in a unified form with
parameter ↵. As we will see in section 2.2, this uniform structure in (2.4) provides
the foundation to design the unified numerical methods for classical and fractional
PDEs.

2.2. RBF discretization schemes. In the following, we will present our mesh-
free method to approximate the Laplace operator (��)

↵
2 and the related Poisson

problems. Its generalization to time-dependent problems is straightforward (see sec-
tion 4.3). As mentioned previously, we will focus on the cases with ↵ 2 (0, 2]. Our
method can be directly applied to discretize the operator (��)2m with m 2 N. Its
generalization to the cases of ↵ > 2 but ↵ 6= 2m requires the pointwise definition of
(��)

↵
2 , such as (1.2) for ↵ 2 (0, 2), which is beyond the scope of this work.

Let ⌦ ⇢ Rd be an open bounded domain. We consider the following Poisson
problem with Dirichlet boundary conditions:

(��)
↵
2 u(x) = f(x) for x 2 ⌦,(2.5)

u(x) = g(x) for x 2 ⌥.(2.6)

where we denote ⌥ = @⌦ for ↵ = 2, or ⌥ = ⌦c = Rd
\⌦ if ↵ < 2. If ↵ = 2,

the problem (2.5)–(2.6) becomes the classical Dirichlet Poisson problem. While ↵ 2

(0, 2), it collapses to the fractional Poisson equation with extended Dirichlet boundary
conditions on ⌦c. So far most studies on the fractional Poisson problem focus on the
homogeneous Dirichlet boundary conditions (i.e., g(x) ⌘ 0 in (2.6)); see [10, 13, 2, 6]
and references therein. Here, we consider more general boundary conditions g(x).
Usually, if nonperiodic boundary conditions are considered, the classical and fractional
Poisson problems are discretized and solved separately. To the best of our knowledge,
this is the first work to solve the classical and fractional Poisson problems in a single
↵-parametric scheme.

Let N and N̄ be two positive integers, and N < N̄ . Denote xi (for 1  i  N̄)
as predefined collocation points on ⌦̄ = ⌦ [ @⌦. For simplicity, we introduce

S⌦ = {xi 2 ⌦ | 1  i  N}, S@⌦ = {xi 2 @⌦ | N + 1  i  N̄}

to represent the set of points in domain ⌦ and on boundary @⌦, respectively, and let
S⌦̄ = S⌦ [ S@⌦. Assume that the function u can be approximated by

u(x) ⇡ bu(x) :=
N̄X

i=1

�i '
"(|x� xi|) for x 2 ⌦̄,(2.7)

where '"(|x � xi|) represents the Gaussian RBF with shape parameter " and center
point xi. For point x /2 ⌦̄, we assume that u satisfies (2.6). Then the coe�cients
�i can be found by applying (2.7) at a set of test points xk 2 S⌦̄ that may or may
not coincide with the center points. In the following, we will include a superscript to
distinguish the center-point sets (i.e., Sc

⌦ and S
c
@⌦) and test-point sets (i.e., St

⌦ and
S
t
@⌦). Note that the number of test points should be the same as that of center points,

i.e., |St
⌦̄
| = |S

c
⌦̄
| = N̄ , to ensure a square linear system for �i.

First, we will derive the approximation of the Dirichlet Laplacian, i.e., a finite-
dimensional representation of the operator (��)

↵
2 with Dirichlet boundary conditions

in (2.6). To facilitate our explanation, we will start with separate discussion for
↵ = 2 and ↵ < 2, demonstrating the di↵erence between the classical and fractional
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Laplacians. Later, we will combine our results of ↵ = 2 and ↵ < 2 into a single ↵-
parametric scheme. The situation of the classical Laplacian is relatively simple, and
combining (2.4) with (2.7) immediately leads to the approximation

��hu(x) = ��bu(x) = cd,2|"|
2

N̄X

i=1

�i 1F1

✓
d

2
+ 1;

d

2
;�"2|x� xi|

2

◆
(2.8)

for x 2 ⌦, where ��h denotes the numerical approximation of the operator ��.
In contrast, the approximation to the fractional Laplacian (i.e., ↵ < 2) is more

complicated owing to its nonlocality over the entire space Rd. For x 2 ⌦, we take the
pointwise definition of the fractional Laplacian in (1.2) and reformulate it as

(��)
↵
2 u(x) = Cd,↵

✓
P.V.

Z

⌦

u(x)� u(y)

|x� y|d+↵
dy +

Z

⌦c

u(x)� u(y)

|x� y|d+↵
dy

◆
.(2.9)

Substituting (2.7) for x 2 ⌦ into (2.9) and taking the boundary conditions (2.6) into
account, we obtain the approximation to the fractional Laplacian as

(��)
↵
2

h u(x) = Cd,↵

✓
P.V.

Z

⌦

bu(x)� bu(y)
|x� y|d+↵

dy +

Z

⌦c

bu(x)� g(y)

|x� y|d+↵
dy

◆

= Cd,↵

✓
P.V.

Z

Rd

bu(x)� bu(y)
|x� y|d+↵

dy +

Z

⌦c

bu(y)� g(y)

|x� y|d+↵
dy

◆

= (��)
↵
2 bu(x) + Cd,↵

Z

⌦c

bu(y)� g(y)

|x� y|d+↵
dy,(2.10)

where the definition (1.2) is used again in the last line. We remark that substituting
(2.7) into (2.9) assumes as a default that u(x) = bu(x) for x 2 ⌦c, however, the exact
boundary condition is given by u(x) = g(x) in (2.6). Hence, the second term at the
right side of (2.10) can be viewed to match the di↵erence of the Dirichlet boundary
conditions on ⌦c, while the term (��)

↵
2 bu(x) in (2.10) can be easily obtained by

combining (2.4) with (2.7).
Combining (2.8) and (2.10) yields a unified approximation to the Dirichlet Laplace

operator (��)
↵
2 for ↵ 2 (0, 2], i.e., for x 2 ⌦,

(��)
↵
2

h u(x) = cd,↵|"|
↵

N̄X

i=1

�i 1F1

✓
d+ ↵

2
;
d

2
;�"2|x� xi|

2

◆

+ ⇣↵Cd,↵

Z

⌦c

bu(y)� g(y)

|x� y|d+↵
dy for x 2 ⌦,(2.11)

where ⇣↵ = 1� b↵/2c with b·c being the floor function. Note that constants cd,↵ and
Cd,↵ are di↵erent and defined in (2.4) and (1.2), respectively. The formulation in (2.11)
provides a uniform approximation to the classical and fractional Laplacian with the
Dirichlet boundary conditions (2.6), and their di↵erence lies in the integral term over
⌦c. If ↵ = 2, the integral term in (2.11) vanishes as b↵/2c = 1, and (2.11) reduces to
the approximation of the classical Laplacian in (2.8). If ↵ < 2, the nonlocal boundary
conditions are exactly accounted through the integral over ⌦c. The approximation in
(2.11) again reveals the nonlocal nature of the fractional Laplacian—the value at one
point depends on all the other points over y 2 Rd.

Next, we will move to approximate the solution of the Poisson problem (2.5)–
(2.6). Choose a set of test points xk 2 S

t
⌦̄
. Substituting (2.11) with x = xk 2 S

t
⌦ into

the Poisson equation (2.5), we obtain the fully discretized scheme
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(2.12)

N̄X

i=1

�i

"
cd,↵|"|

↵
1F1

✓
d+ ↵

2
;
d

2
;�"2|xk � xi|

2

◆
+ ⇣↵Cd,↵

Z

⌦c

'"
�
|y � xi|

�

|xk � y|d+↵
dy

#

= f(xk) + ⇣↵Cd,↵

Z

⌦c

g(y)

|xk � y|d+↵
dy for 1  k  N.

For xk 2 S
t
@⌦, the boundary condition (2.6) leads to

N̄X

i=1

�i'
"
�
|xk � xi|

�
= g(xk) for N + 1  k  N̄ .(2.13)

The discrete system (2.12)–(2.13) has N̄ equations with the same number of unknowns
�i (for 1  i  N̄). After obtaining �i, the solution of the Poisson problem (2.5)–
(2.6) can be approximated from (2.7). Even though nonlocal boundary conditions are
imposed on ⌦c, the number of equations for the fractional Poisson problem remains
the same as in the classical cases. For ↵ < 2, the integrals over ⌦c can be easily
approximated, as their integrands decay quickly and are free of singularities.

Note that the linear system of (2.12)–(2.13) has a full sti↵ness matrix for both
classical and fractional Poisson problems, as the globally supported Gaussian RBFs
are used. Due to the nonlocal nature of the fractional Laplacian, evaluating integrals
over ⌦c and solving a linear system with full dense matrix are also required in other
numerical methods [10, 13, 2]; thus our method does not introduce extra computa-
tions. However, compared to other local methods, our method can achieve higher
accuracy with smaller number of points, implying smaller number of unknowns and
smaller computational costs. This suggests that the global numerical methods might
be more beneficial for nonlocal or fractional problems.

Remark 2.1 (exact boundary conditions). In the fractional cases, our method
exactly incorporates the nonlocal boundary condition (2.6) into the numerical scheme,
which is one major di↵erence from the method in [40]. In [40], the authors consider
the boundary conditions on a small region ! ⇢ ⌦c and assume the Wendland RBF
approximation to solution u for all x 2 ⌦ [ !. Consequently, their method not
only introduces extra errors from boundary truncation but significantly increases the
computational cost, as the fractional Poisson problem is actually solved on region ⌦[!
(in contrast to ⌦ [ @⌦ in our method). Moreover, their method directly discretizes
the pseudodi↵erential form of the fractional Laplacian in (1.1), reducing its usability
on irregular domains.

3. Estimation of the Laplace operator. In this section, we will study the
performance of our method in approximating the Laplace operator (��)

↵
2 for ↵ 2

(0, 2]. Let ⌦ denote the domain of interest. Unless otherwise stated, we will choose
the test points from the same set of center points, i.e., S

t
⌦̄

= S
c
⌦̄
. This choice is

not required by our method, but it has the advantage of yielding a symmetric linear
system of �i. First, using the RBF approximation (2.7) at all test points xk 2 S

t
⌦̄

gives a linear system of unknowns �i, where the coe�cient matrix is positive definite
with its entries given by the Gaussian RBFs '"(|xk � xi|) for xi,xk 2 S

c
⌦̄
. Solving

and substituting �i into (2.11), we then obtain the approximation of (��)
↵
2 u for any

x 2 ⌦. For ↵ < 2, the integral term in (2.11) can be computed by setting g(x) = u(x)
for x 2 ⌦c.
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In the following, we will study and compare numerical errors under di↵erent
conditions of u, where numerical errors are computed as the root mean square (RMS)
error, i.e.,

ke�krms =

0

@ 1

M

MX

j=1

h
(��)

↵
2 u(xj)� (��)

↵
2

h u(xj)
i2
1

A
1/2

with xj (for 1  j  M) denoting the interpolation points on domain ⌦. To better
estimate numerical errors, the number of interpolation points M is chosen to be much
larger than that of center points, i.e., M � N̄ . We usually take a large enough M
such that the error ke�krms is insensitive to the number of interpolation points.

3.1. Globally smooth functions. Consider a globally smooth function u(x) =
1/(1 + x2) for x 2 R. In this case, the function (��)

↵
2 u can be exactly given by

(��)
↵
2 u(x) = �

�
1 + ↵

�
2F1

✓
1 + ↵

2
,
2 + ↵

2
;
1

2
; �x2

◆
for ↵ � 0, x 2 R,(3.1)

where 2F1 represents the Gauss hypergeometric function. We remark that the exact
solution (3.1) holds for any ↵ � 0. It is easy to verify that the result (3.1) is consistent
with the classical integer-order derivatives if ↵ = 2m for m 2 N. Figure 2 illustrates
function (��)

↵
2 u for various ↵. It shows that function (��)

↵
2 u approaches to u as

↵ ! 0. The nonlocal e↵ects become stronger for smaller ↵, and particularly we find
that (��)

↵
2 u(x)  u(x) for any x 2 R if ↵  1. For ↵ > 2 but ↵

2 /2 N, the operator
(��)

↵
2 remains nonlocal, which is beyond the scope of our study.

Table 1 presents the RMS errors of our method in approximating (��)
↵
2 u on

domain ⌦ = (�2, 2). Here, we take the shape parameter " = 2. The center and
test points are chosen to be uniformly distributed on [�2, 2]. We remark that our
method is flexible in choosing center and test points, but the “best” shape parameter
might change according to this choice. For example, our studies show that using
the Chebyshev points as RBF center and test points can give the similar numerical
accuracy as in Table 1 if a larger shape parameter is used. Note that the optimal
choice of shape parameter and center and test points of RBF-based methods is still
an open research topic [36, 21], and we will leave it for our future study.

-5 -2.5 0 2.5 5
-0.2

0.2

0.6

1
 = 0.1
 = 0.4
 = 0.7
 = 1

-5 -2.5 0 2.5 5

-0.5

0.5

1.5

2.5
 = 1.3
 = 1.6
 = 2
 = 2.2

Fig. 2. Illustration of function (��)
↵
2 (1 + x2)�1 for various ↵. For easy comparison, the

function u(x) = (1 + x2)�1 is also presented by black dashed lines.

D
ow

nl
oa

de
d 

05
/1

1/
21

 to
 1

38
.2

6.
16

.8
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1398 JOHN BURKARDT, YIXUAN WU, AND YANZHI ZHANG

Table 1
Numerical errors ke�krms and condition number K in approximating (��)

↵
2 u for x 2 (�2, 2),

where the shape parameter " = 2 and the exact solution is given in (3.1).

N̄ ↵ = 0.4 ↵ = 1 ↵ = 1.6 ↵ = 2 K
9 1.957E-3 2.177E-2 8.091E-2 1.941E-1 5.431
17 8.442E-4 4.009E-3 2.230E-2 8.116E-2 5.079E3
33 1.010E-6 7.856E-6 7.732E-5 4.949E-4 2.369E14
65 2.220E-9 1.486E-8 1.832E-7 1.514E-6 2.350E17

-2 -1 0 1 2
-10

-6

-2
 = 0.4
 = 1
 = 1.6
 = 2

-2 -1 0 1 2
-12

-9

-6

 = 0.4
 = 1
 = 1.6
 = 2

(a) (b)

Fig. 3. Error distribution in approximating (3.1), where |e�| =
��(��)

↵
2 u � (��)

↵
2

h u
��. (a)

N̄ = 33 and (b) N̄ = 129.

Table 1 shows that our method yields a good approximation to (��)
↵
2 u even

with a small number of points N̄ . Comparing the errors of di↵erent ↵, we find that
the larger the exponent ↵, the bigger the numerical errors, but a spectral accuracy is
achieved for any ↵ 2 (0, 2]. The condition number K of the linear system increases
with the number of points N̄ , which may lead to an ill-conditioned system if N̄ is too
big. The ill-conditioning is one issue of methods with infinitely di↵erentiable RBFs,
and so far di↵erent strategies have been developed to improve or control it (see, e.g.,
[28] and references therein). Recently, new algorithms based on expansion of RBFs
have been also proposed in [20, 25, 30] to tackle the ill-conditioning issues. However,
the expansion of Gaussian RBFs destroys the property in Lemma 1 and thus fails to
work for our method. In practical simulations, we can control the condition number
to O(1013) ⇠ O(1017) via adjusting the shape parameter " so as to obtain the best
accuracy. Furthermore, multiprecision toolboxes and domain decompositions are also
recommended in the literature [42, 28, 43] if higher accuracy is demanded.

As discussed previously, our method of approximating the classical and fractional
Laplacians are the same, where extra e↵orts are required in the fractional cases to
evaluate the integrals over the domain R\(�2, 2). In Figure 3, we further demonstrate
the pointwise error for N̄ = 33 and 129. It shows that if N̄ is small the maximum error
occurs symmetrically around the domain boundary (see Figure 3(a)). This is simply
because of the lack of points around the domain boundary. Our extensive studies show
that including more RBF points around or outside of the boundary could improve the
accuracy of approximation, consistent with the observations in [22].
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MESHFREE METHOD FOR CLASSICAL AND FRACTIONAL PDEs A1399

In Figure 4, we present the numerical approximation of the two-dimensional func-
tion (��)

↵
2 u with u(x) = exp[�(x2+y2)] sin(y). It shows that the result is symmetric

with respect to the x-axis, as the function u. In this case, the exact solution of (��)
↵
2 u

is unknown for ↵ < 2, but if ↵ = 2 we have the analytical result

��u(x) = e�(x2+y2)
⇥
4y cos(y)� sin(y)

�
4x2 + 4y2 � 5

�⇤
for x 2 R2.

For ↵ = 2, our approximate results agree well with their exact solutions (see Figure
4(c)). Furthermore, we compare our method with the finite di↵erence method in
Table 2, where the RBF center points are taken to be the same as the finite di↵er-
ence grid points. It shows that our method provides a more accurate approximation
with the same number of points N̄ . Moreover, the geometric flexibility and easy
implementation make our method more advantageous in high dimensions.

3.2. Compactly supported functions. In the following, we approximate the
Laplacian of compactly supported functions which are often studied in the field of
fractional calculus. Consider function u(x) = x(1 � x2)p+ for x 2 R, which has
compact support on (�1, 1) and is always zero for x /2 (�1, 1). For p > �1, there is
the exact solution [15]

(��)
↵
2 u(x) =

2↵(↵+ 1)�((1 + ↵)/2)�(p+ 1)
p
⇡ �(p+ 1� ↵/2)

2F1

⇣↵+ 3

2
, �p+

↵

2
;
3

2
; x2

⌘
x(3.2)

for |x| < 1. It is shown in [15] that the exact solution (3.2) holds for ↵ 2 (0, 2),
but we find that it is also valid for ↵ = 2m with m 2 N. It is easy to see that
the di↵erentiability of function u at x = ±1 increases as p > 0 increases. Figure 5
compares the solution behavior of (��)

↵
2

⇥
x(1� x2)p+

⇤
for di↵erent p and ↵. It shows

that for p = 1, the results become much sharper around the boundary as ↵ < 2
increases, which makes the accurate approximation more challenging for low-order
methods.

(a) (b) (c)

Fig. 4. Numerical approximation of (��)
↵
2 u for two-dimensional function u(x) = e�(x2+y2)

sin(y). From (a) to (c): ↵ = 0.6, 1.4, and 2.

Table 2
Numerical errors ke�krms of the finite di↵erence method (FDM) and our method (RBF) with

" = 1 in approximating function ��u on (�1, 1)2, where u(x) = e�(x2+y2) sin(y).

N̄ 42 52 62 72

FDM 1.046E-2 5.493E-3 3.388E-3 2.299E-3
RBF 3.094E-3 5.479E-5 5.818E-7 4.010E-9
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-1 -0.5 0 0.5 1
-6

-3

0

3

6
 = 0.3
 = 1
 = 1.5
 = 2

-1 -0.5 0 0.5 1
-6

-3

0

3

6
 = 0.3
 = 1
 = 1.5
 = 2

Fig. 5. Illustration of function (��)
↵
2

⇥
x(1�x2)p+

⇤
for di↵erent p and ↵. For easy comparison,

the function u(x) = x(1� x2)p+ is also presented by black dashed lines.

Table 3
Numerical errors ke�krms in approximating (��)

↵
2 u for x 2 (�1, 1), where the shape param-

eter " = 4 and the exact solution is given in (3.2).

p = 4 p = 1
↵ = 0.3 ↵ = 1 ↵ = 1.5 ↵ = 2 N̄ ↵ = 0.3 ↵ = 1 ↵ = 1.5 ↵ = 2
1.208E-1 4.521E-1 1.2041 3.2937 5 1.725E-1 6.789E-1 2.0617 6.5544
1.456E-3 9.267E-3 3.709E-2 1.539E-1 9 3.423E-2 1.993E-1 7.551E-1 2.9834
1.266E-4 1.169E-3 5.867E-3 2.963E-2 17 3.519E-3 3.159E-2 1.551E-1 7.596E-1
6.636E-7 1.389E-5 1.096E-4 8.462E-4 33 3.074E-6 6.261E-5 4.905E-4 3.777E-3
4.251E-9 4.174E-8 2.793E-7 2.029E-6 65 5.917E-9 5.736E-8 3.803E-7 2.720E-6

Table 3 presents the RMS errors for cases of p = 4 and p = 1, where the RBF
center and test points are chosen uniformly on [�1, 1] and the shape parameter " = 4.
The function (��)

↵
2 u is approximated following the same process as in section 3.1,

except the boundary conditions considered here are g(x) = 0 for x 2 R\(�1, 1). It
shows that our method provides a good approximation to (��)

↵
2 u for both ↵ = 2

and ↵ < 2. The larger the exponent ↵, the bigger the numerical errors, an observation
similar to that from Table 1. Our studies show that the numerical errors are symmetric
with respect to x = 0. Compared to the finite di↵erence methods in [10, 13], the
proposed method has significantly smaller errors with the same number of points (see
Figure 6). Moreover, the finite di↵erence method fails to converge when p = 1 and
1 < ↵ < 2, since the function u in this case does not satisfy the consistency condition
as discussed in [13, 14]. In contrast to it, our method achieves a spectral accuracy for
both p = 1 and 4.

In Figure 7, we further study the numerical errors for di↵erent shape parameters,
where the number of points N̄ = 33 is fixed. We find that the dependence of numerical
errors on the shape parameter are qualitatively the same for di↵erent ↵ and p. To
obtain good accuracy, one should choose the shape parameter neither too small nor
too large. The optimal shape parameter might exist and depend not only on the choice
of RBF points but also on function u and exponent ↵. In Figure 7, for example, the
optimal shape parameter occurs around 2.8 for p = 4 and around 1.8 for p = 1. How
to find the optimal shape parameter remains an active research topic in the field of
RBF-related methods, and we will leave it for our future research.
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5 21 37 53 69
-10

-5

0

5 21 37 53 69
-10

-5

0

(a) (b)

Fig. 6. Comparison of numerical errors from our method with " = 4 and the finite di↵erence
method (FDM) in approximating (��)

↵
2

⇥
x(1� x2)p+

⇤
for x 2 (�1, 1).

0.5 2 3.5 5
-8

-4

0
 = 0.3
 = 1
 = 1.5
 = 2

0.5 2 3.5 5
-8

-4

0
 = 0.3
 = 1
 = 1.5
 = 2

(a) (b)

Fig. 7. Numerical errors versus shape parameters in approximating the function in (3.2), where
the number of points N̄ = 33. (a) p = 4; (b) p = 1.

4. Solutions of classical and fractional PDEs. In this section, we test the
performance of our method in solving both classical and fractional PDEs. So far, most
existing numerical methods for fractional PDEs with the integral fractional Laplacian
are incompatible with those for their classical counterparts, due to di↵erent formula-
tions of the Laplace operators as well as the boundary conditions. For example, the
weak formulation of the classical and fractional Poisson equations are significantly
di↵erent when using finite element methods. Consequently, numerical schemes and
computer codes have to be developed separately for the classical and fractional prob-
lems. One important merit of our method is to solve both the classical and fractional
problems in a single scheme, owing to the unified Laplace formulation of the Gaussian
RBFs in Lemmas 1 and 2. We will further demonstrate this and other advantages of
our method in this section. To quantify its performance, we define the RMS error in
solution u as
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keukrms =

0

@ 1

M

MX

j=1

��uj � uh
j

��2
1

A
1/2

,

whereM denotes the number of interpolation points on ⌦, and uj and uh
j , respectively,

represent the exact and numerical solutions at point xj 2 ⌦.

4.1. One-dimensional Poisson problems. In this case, we take d = 1 in
(2.5)–(2.6) and choose the domain ⌦ = (�1, 1). We study a benchmark fractional
Poisson problem in [10, 40, 2], i.e., choosing

f(x) =
2↵�(↵+1

2 )�(s+ 1 + ↵
2 )

p
⇡�(s+ 1)

2F1

✓
↵+ 1

2
,�s;

1

2
; x2

◆
for x 2 ⌦,(4.1)

g(x) ⌘ 0 for x 2 ⌥,(4.2)

for s 2 N0. Noticing the definition of⌥, (4.2) implies that the two-point zero boundary
conditions at x = ±1 are imposed for the classical problem with ↵ = 2, while the
extended homogeneous Dirichlet boundary conditions are considered for ↵ < 2. The

exact solution of the Poisson equation with (4.1)–(4.2) is given by u(x) = (1�x2)
s+↵

2

+

for any ↵ 2 (0, 2]. It is evident that the larger the value of s, the better the regularity
of solution u up to the boundary.

Table 4 presents the RMS errors keukrms when di↵erent s are chosen in (4.1). In
our simulations, the center and test points are taken to be uniformly distributed on
[�1, 1], and the shape parameter " = 4.5 is used. From Table 4, we find that numerical
errors depend on the solution regularity and exponent ↵. If the solution u is smooth
enough up to the boundary (e.g., s = 3), the numerical errors decrease with a spectral
rate as the number of RBF points increases. Moreover, our numerical errors are much
smaller than those computed from finite di↵erence method [10, Tables 4–5] with the
same number of points. While s = 0, the solution of the fractional Poisson problem
has low regularity around the boundary, which negatively a↵ects the accuracy of our
method. Consequently, the numerical errors of s = 0 are much larger than those of
s = 3 for any ↵ 2 (0, 2). However, the e↵ect of s on the solution of the classical
problem (i.e., ↵ = 2) is less significant, as the classical Laplacian is a local operator.
For both s = 0 and 3, the numerical errors are generally larger around the two
boundary points x = ±1 (see Figure 8). It implies that including more points around
the boundary might improve the accuracy of our method.

As discussed previously, the shape parameter " plays an important role in the
accuracy of RBF-based methods. To study it, we compare the numerical errors of
di↵erent shape parameters in Figure 9. It shows that the optimal shape parameter
depends not only on exponent ↵ but also on solution regularity. For s = 3, large

Table 4
Numerical errors keukrms in solving the 1D Poisson problem with f and g defined in (4.1)–(4.2),

where the shape parameter " = 4.5.

s = 3 s = 0
↵ = 0.6 ↵ = 1 ↵ = 1.5 ↵ = 2 N̄ ↵ = 0.6 ↵ = 1 ↵ = 1.5 ↵ = 2
3.262E-1 4.134E-1 4.791E-1 5.074E-1 5 5.863E-1 6.539E-1 6.922E-1 6.952E-1
5.052E-3 1.308E-2 4.263E-2 1.166E-1 9 1.627E-1 1.357E-1 1.437E-1 2.098E-1
1.147E-4 1.648E-4 2.553E-4 3.750E-4 17 7.746E-2 5.225E-2 3.405E-2 1.607E-2
3.120E-7 2.909E-6 1.174E-5 2.383E-5 33 3.265E-2 1.867E-2 9.485E-3 3.193E-4
8.147E-8 1.719E-7 2.288E-7 1.462E-6 65 1.631E-2 8.538E-3 3.966E-3 3.014E-6
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Fig. 8. Numerical errors in solving the 1D Poisson problem with f and g defined in (4.1)–(4.2),
where " = 4.5, N̄ = 33, s = 3 (left), and s = 0 (right).

numerical errors are found if the shape parameter is too small or too big. However,
numerical errors for s = 0 and ↵ < 2 become almost insensitive to the shape pa-
rameter (see Figure9 (c) and (d)), suggesting that the solution regularity caps the
numerical errors in this case. Moreover, the dependence of numerical errors on the
shape parameter becomes more complicated when the number of RBF center points
increases, and multiple optimal shape parameters might occur (cf. Figure 9(a) and
(b)). We will leave the investigation of optimal shape parameters in solving nonlocal
problems as our future research.

Next, we compare our method with the recently proposed pseudospectral method
in [40], where the benchmark fractional Poisson problem with s = 0 was studied. The
method in [40] is di↵erent from ours mainly in the following aspects:

(i) It applies the extended Dirichlet boundary conditions to the pseudo-
di↵erential form of the fractional Laplacian in (1.1). To this end, this method
requires a much larger computational domain than the physical domain ⌦.
For instance, a computational domain of [�8, 8] was taken in solving the Pois-
son problem on ⌦ = (�1, 1); see [40, section 4.2]. This significantly increases
the computational cost and storage requirement as more points are demanded
in their computations. Figure 10(a) compares our numerical errors with those
in [40, Table 2] in solving the 1D fractional Poisson problem with s = 0, where
the uniform distance between center points is denoted as h. Numerical errors
of these two methods are comparable, but the method in [40] used 8 times
more points than ours due to its larger computational domain.

(ii) Even though a larger computational domain is adopted, it has di�culties
in handling the exact boundary conditions over ⌦c. In fact, the boundary
conditions only on a small region ! ⇢ ⌦c are considered in their method; see
more discussion in Remark 2.1. Consequently, as pointed out in [40, Figures.
2 and 3], the Gibbs phenomenon was observed near the boundary points
x = ±1, and large numerical errors were found outside of the domain [�1, 1].
In contrast, our method is free of these issues (see Figure 10(b)), as it exactly
utilizes the boundary conditions and avoids the RBF approximation on R\⌦̄.

(iii) Unlike ours, the method in [40] uses compactly supported Wendland RBFs
as the basis function. Since the fractional Laplacian of Wendland RBFs is
unknown, numerical quadrature rules are required for their approximation.
This not only complicates the practical implementation of this method but
hinders its generalization to problems with the classical Laplacian.
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Fig. 9. Numerical errors versus shape parameters in solving the 1D Poisson problem with f
and g in (4.1)–(4.2). (a) N̄ = 17, s = 3; (b) N̄ = 33, s = 3; (c) N̄ = 17, s = 0; (d) N̄ = 33, s = 0.
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(a) (b)

Fig. 10. (a) Comparison of our numerical errors (dashed line) with those in [40, Table 2] (solid
line) in solving 1D Poisson problem with s = 0. (b) Numerical solution of the 1D Poisson problem
with s = 0, showing no Gibbs phenomenon with our method, where the shape parameter " = 4.3.
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4.2. Two-dimensional Poisson problems. Our meshfree method can eas-
ily handle complex geometry, and its computational complexity is independent of
dimension d � 1. In this section, we will study its performance in solving the two-
dimensional Poisson problem (2.5)–(2.6) on both regular and irregular domains.

4.2.1. Regular domain. Here, we consider the two-dimensional Poisson prob-
lem (2.5)–(2.6) on a unit disk domain, i.e., ⌦ = {x 2 R2

| |x| < 1}. We choose func-
tion f(x) ⌘ 1 for x 2 ⌦ and homogeneous Dirichlet boundary conditions g(x) ⌘ 0 for
x 2 ⌥. In this case, the exact solution is given by

u(x) = 2�↵
⇣
�
⇣
1 +

↵

2

⌘⌘�2 �
1� |x|2

�↵
2 for x 2 ⌦, ↵ 2 (0, 2].

In our simulations, we choose the RBF center and test points radially distributed on
the disk domain ⌦̄. Choose an integer n � 1, and define the sets

S
c
⌦̄ = S

t
⌦̄ =

⇢
l

n

⇣
cos

�
2j⇡/(n+ 1)

�
, sin

�
2j⇡/(n+ 1)

�◆
for 0  l  n, 0  j  n

o
,

that is, the total number of points is N̄ = n(n+ 1) + 1 with n radial layers.
In this example, the solution has low regularity up to the boundary, i.e., u 2

C0,↵
2 (⌦̄) [13, 15, 2]. The smaller the exponent ↵, the less smooth the solution near

boundaries; see Figure 11 for numerical solution of ↵ = 0.6, 1.5, and 2. Moreover,
the solution becomes much flatter as ↵ increases. Table 5 presents numerical errors
keukrms for di↵erent n, where we take the shape parameter " = 2. It shows that as
the number of points increases, the numerical errors decrease with a spectral rate for
↵ = 2. While ↵ < 2, the solution regularity dominates the problem, and numerical
errors decrease slowly, which is similar to the observations in Table 4 for s = 0.
Figure 12 further shows the pointwise errors for ↵ = 1. We find that numerical
errors are radially symmetric and the maximum error is found around the domain
boundary. This suggests that the local refinement (including more points around the
boundary) might improve the accuracy of this problem. Our extensive studies show
that numerical errors are considerably smaller if the solution is smoother around the
boundary.

Compared to other methods, the geometric flexibility enables our method to solve
this problem with much less computational e↵orts. For instance, when ↵ = 1, our
method can achieve the accuracy of O(10�2) with the total number of points N̄ ⇡ 10,
but the Wendland RBF method requires at least 400 points due to its larger com-
putational domain (see [40, Table 4]). On the other hand, finite element methods

Fig. 11. Numerical solution of the Poisson problem on a unit disk domain.
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Table 5
Numerical errors keukrms in solving the Poisson problem on a unit disk domain, where the

shape parameter " = 2.

n ↵ = 0.6 ↵ = 1 ↵ = 1.5 ↵ = 2
3 1.360E-1 8.187E-2 3.817E-2 1.211E-2
4 9.802E-2 5.640E-2 2.459E-2 5.924E-3
5 7.471E-2 4.130E-2 1.667E-2 2.488E-3
6 5.925E-2 3.178E-2 1.204E-2 9.059E-4
7 4.844E-2 2.544E-2 9.229E-3 2.803E-4

α = 1

x

-1  -0.5 0   0.5 1   
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-0.5
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0.5

1

0

0.01
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0.04
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0.06

0.07

0 0.25 0.5 0.75 1
-15

-12

-9

-6

-3

0

 = 0.6
 = 1
 = 1.5
 = 2

(a) (b)

Fig. 12. Pointwise numerical errors in solving the Poisson problem on a unit disk domain,
where ↵ = 1 and y = 0 is fixed in (b).

(FEMs) are also flexible of domain geometry, but they are mesh-based local approxi-
mation methods. The results in [6] show that to achieve the same accuracy, a much
larger number of unknowns is introduced by FEMs; see [6, Table 1]. Moreover, the
nonlocality and singularity of the fractional Laplacian makes assembling the sti↵ness
matrix extremely challenging for FEMs [1, 6].

4.2.2. Irregular domain. In this section, we solve the two-dimensional Poisson
problem (2.5)–(2.6) on an irregular domain ⌦ =

�
x |x 2 (�1, 1)2 and |x| > 0.5

 
, i.e.,

a two-dimensional domain confined between a unit square and a circle with radius
r = 0.5. We will consider an inhomogeneous Dirichlet boundary condition and choose

f(x) = �(2 + ↵) 2F1

✓
2 + ↵

2
,
3 + ↵

2
; 1;�|x|2

◆
for x 2 ⌦,

g(x) =
p
(1 + |x|2)�3 for x 2 ⌥.

In this case, the exact solution of the Poisson problem can be constructed as u(x) =p
(1 + |x|2)�3 for x 2 R2 and ↵ 2 (0, 2].
In our simulations, we take the shape parameter " = 1.5. The test points are

chosen to be the same as center points. To this end, we first choose a set of points
radially distributed on an annulus for 0.5  |x|  1, i.e., for n 2 N,

Ŝ =

⇢✓
1

2
+

l

2n

◆�
cos

�
j⇡/2n

�
, sin

�
j⇡/2n

��
for 0  l  n, 1  j  4n

�
.
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Then we map the points in Ŝ to domain ⌦ using the elliptic grid mapping [23], i.e.,
letting

xi =
1

2

✓q
2 + x̂2

i � ŷ2i + 2
p
2x̂i �

q
2 + x̂2

i � ŷ2i � 2
p
2x̂i

◆
,

yi =
1

2

✓q
2� x̂2

i + ŷ2i + 2
p
2ŷi �

q
2� x̂2

i + ŷ2i � 2
p
2ŷi

◆

for (x̂i, ŷi) 2 Ŝ. That is, the total number of points is N̄ = 4n(n+ 1).
Figure 13 shows the numerical solution and pointwise errors for ↵ = 1.5. We find

that numerical errors reach the maximum at four corners of the domain, but overall
they are small even with the number of points N̄ = 24. Table 6 further demonstrates
the numerical errors keukrms and condition number K of the linear system for various
↵. Compared to the results in Table 5, numerical errors reduce much faster as the
number of points increases, since the solutions in this case are infinitely di↵erentiable
on R2. With N̄ further increasing, the system may become ill-conditioned and a↵ect
the simulation errors. Recently, multiprecision toolboxes and domain decompositions
have been proposed to resolve this issue; see [28, 42, 43] and references therein for
more discussion.

4.3. Di↵usion problems. In this section, we further study the performance
of our method in solving time-dependent problems. To this end, we consider the
following di↵usion problem with nonhomogeneous Dirichlet boundary conditions:

@tu(x, t) = �(��)
↵
2 u+ f(x, t) for x 2 ⌦ = (�1, 1)2, t > 0,(4.3)

u(x, t) = t(1 + 0.5|x|2)�
3

2 for x 2 ⌥, t � 0,(4.4)

u(x, 0) = 0 for x 2 R2.(4.5)

(a) (b)

Fig. 13. Numerical solution (a) and numerical errors (b) in solving the two-dimensional
Poisson problem on an irregular domain, where we choose n = 5 in our simulations.

Table 6
Numerical errors keukrms and condition number K in solving the two-dimensional Poisson

problem on an irregular domain, where the shape parameter " = 1.5.

↵ = 0.6 ↵ = 1 ↵ = 1.5 ↵ = 2
n keukrms K keukrms K keukrms K keukrms K
2 1.635E-3 2.3E7 1.772E-3 3.1E7 2.044E-3 4.7E7 2.503E-3 7.0E7
3 2.983E-4 3.5E11 3.958E-4 5.7E11 6.156E-4 1.0E12 1.006E-3 1.5E12
4 8.118E-5 1.7E16 9.821E-5 2.5E16 1.554E-4 4.6E16 9.821E-5 4.4E16
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The source term f is chosen such that the exact solution of (4.3)–(4.5) is given by

u(x, y) = t
.q�

1 + 0.5(x2 + y2)
�3

for x 2 R2, t � 0.(4.6)

Denote time sequence tn = n�t (for n = 0, 1, . . .) with time step �t > 0. Choose
the RBF center and test points as uniformly distributed tensor grid points on [�1, 1]2.
We then discretize (4.3) with the Crank–Nicolson method in time and our meshfree
method in space and obtain the fully discretized scheme as

un+1
k � un

k

�t
= �(��)

↵
2

h

✓
un
k + un+1

k

2

◆
+

f(xk, tn) + f(xk, tn+1)

2
(4.7)

for xk 2 S
t
⌦ and n = 0, 1, . . ., where (��)

↵
2

h un
k represents the numerical approximation

of (��)
↵
2 u(xk, tn) with un

k being the approximation of u(xk, tn), i.e.,

un
k =

X

1iN̄

�n
i '

"(|xk � xi|).(4.8)

At each time step, we will solve for the unknowns �n+1
i for 1  i  N̄ . Simplifying

(4.7) and also applying (4.8) to boundary points xk 2 S
t
@⌦, we then obtain our scheme

in matrix-vector form:
 

BN⇥N̄ +
�t
2

AN⇥N̄

C(N̄�N)⇥N̄

!
⇤n+1

N̄⇥1 =

0

@

✓
B � �t

2
A

◆
⇤n +

�t
2

�
fn + fn+1 +wn +wn+1�

gn+1

1

A

for n = 0, 1, . . ., where ⇤n = (�n
1 , . . . ,�

n
N̄
)T , fn = (f(x1, tn), . . . , f(xN , tn))T , and

gn = (g(xN+1, tn), . . . , g(xN̄ , tn))T with g denoting the boundary condition in (4.4).
The vector wn = (w(x1, tn), . . . , w(xN , tn))T is from the discretization of (��)

↵
2 in

(2.11) with

w(x, t) = ⇣↵Cd,↵

Z

⌦c

g(y, t)

|x� y|d+↵
dy,

which reduces to zero if ↵ = 2 or homogeneous boundary conditions are considered.
The matrices B and C are composed of the Gaussian RBFs '"(|xk � xi|), while the
entries of matrix A are given by the coe�cients of �i in (2.12). All of these matrices
remain the same at all time steps.

In our simulations, we take a small time step �t = 0.001 such that the temporal
errors are neglectable in comparison to spatial errors. Figure 14 shows the time
evolution of the solution for ↵ = 1, which agrees well with the exact solution in (4.6).
Furthermore, we present the numerical errors keukrms at t = 1 and the condition
number K of the linear system in Figure 15. It shows that numerical errors decrease
with a spectral rate for any ↵ 2 (0, 2], while the condition number increases quickly
as more points are used. If the number of points N̄ is too big, one can adopt the
strategies in [42, 28, 43] to avoid the ill-conditioning issue.

5. Summary and discussions. We proposed a novel meshfree pseudospectral
method to solve both the classical and fractional PDEs in a unified scheme. Our
method takes great advantage of the Laplacian of the Gaussian RBFs and enables
us to approximate the classical and fractional Laplacian in a single framework, which
is the key merit of our method distinguishing it from other existing methods for

D
ow

nl
oa

de
d 

05
/1

1/
21

 to
 1

38
.2

6.
16

.8
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MESHFREE METHOD FOR CLASSICAL AND FRACTIONAL PDEs A1409

Fig. 14. Time evolution of the solution of the di↵usion problem (4.3)–(4.5).

15 48 81 114 147 180
-4.5

-3

-1.5

15 48 81 114 147 180
0

5

10

15

(a) (b)

Fig. 15. Numerical errors keukrms at time t = 1 and condition number K in solving the
di↵usion problem (4.3)–(4.5), where the shape parameter " = 1.9.

fractional PDEs. Extensive numerical experiments were carried out to study the per-
formance of our method in approximating the Dirichlet Laplace operators and solving
the classical and fractional PDE problems. Compared to mesh-based methods, our
method can easily handle complex geometry and achieve higher accuracy with fewer
points. More importantly, our method can solve the d-dimensional (for d � 1) classical
and fractional PDEs with a single computer implementation, which could greatly ben-
efit the study of coexistence of normal and anomalous di↵usion in recent applications.
We compared our method with the recently proposed Wendland RBF method in [40].
In contrast to it, our method exactly incorporates the Dirichlet boundary conditions
into the scheme and is free of the Gibbs phenomenon as observed in [40]. Moreover,
the method in [40] solves the problem on a computational domain that is much larger
than the physical domain ⌦̄, and consequently its computational complexity is much
larger than ours. Our studies suggested that to obtain good accuracy the shape pa-
rameter cannot be too small or too big, and the optimal shape parameter depends
on the RBF center points, the exponent ↵, and the solution properties. How to find
the optimal shape parameter is still an active research topic in the area of RBF-based
methods. We will leave it for our future study, especially in solving nonlocal problems.

Acknowledgments. We acknowledge two anonymous reviewers for their valu-
able comments that greatly helped to improve this manuscript.
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