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Abstract

This paper introduces the jackknife+, which is a novel method for con-
structing predictive confidence intervals. Whereas the jackknife outputs an
interval centered at the predicted response of a test point, with the width of
the interval determined by the quantiles of leave-one-out residuals, the jack-
knife+ also uses the leave-one-out predictions at the test point to account
for the variability in the fitted regression function. Assuming exchangeable
training samples, we prove that this crucial modification permits rigorous
coverage guarantees regardless of the distribution of the data points, for any
algorithm that treats the training points symmetrically. Such guarantees are
not possible for the original jackknife and we demonstrate examples where
the coverage rate may actually vanish. Our theoretical and empirical analysis
reveals that the jackknife and the jackknife+ intervals achieve nearly exact
coverage and have similar lengths whenever the fitting algorithm obeys some
form of stability. Further, we extend the jackknife4+ to K-fold cross valida-
tion and similarly establish rigorous coverage properties. Our methods are
related to cross-conformal prediction proposed by [Vovk| [2015] and we discuss
connections.

1 Introduction

Suppose that we have i.i.d. training data (X;,Y;) € R¢x R, i = 1,...,n, and a
new test point (X, 41, Y,4+1) drawn independently from the same distribution. We
would like to fit a regression model to the training data, i.e., a function 7i : R — R
where ji(x) predicts Y, given a new feature vector X, ;1 = z, and then provide a
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prediction interval for the test point—an interval around (X, ) that is likely to
contain the true test response value Y, ;1. Specifically, given some target coverage
level 1 — o, we would like to construct a prediction interval C,, , as a function of the
n training data points, such that

P {Yn—f—l € 6n,oa()(n—s—l)} 2 1- «,

where the probability is taken with respect to a new test point (X,,41, Yn41) as well
as with respect to the training data.

A naive solution might be to use the residuals on the training data, |Y; — 1(X;)],
to estimate the typical prediction error on the new test point—for instance, we
might consider the prediction interval

A(Xopn) £ <the (1 — @) quantile of [Yi — A(X1)], .., |V — ﬁ(Xn)|). (1)

However, in practice, this interval would typically undercover (meaning that the
probability that Y,,.; lies in this interval would be lower than the target level 1 — ),

since due to overfitting, the residuals on the training data points ¢ = 1,...,n are
typically smaller than the residual on the previously unseen test point, i.e., |Y, 11 —
ﬁ(Xn+1)|'

In order to avoid the overfitting problem, the jackknife prediction method com-
putes a margin of error with a leave-one-out construction:

e For each i = 1,...,n, fit the regression function ji_; to the training data with
the 7th point removed, and compute the corresponding leave-one-out residual,
Vi — (X))

e Fit the regression function j1 to the full training data, and output the prediction
interval

A(Xpp1) £ (the (1 - ) quantile of [Y; — i1 (X})],...,|Y, — ﬁ_n(Xn)|>. 2)

Intuitively, this method should have the right coverage properties on average since
it avoids overfitting—the leave-one-out residuals |Y; — fi_;(X;)| reflect the typical
magnitude of the error in predicting a new data point after fitting to a sample size
n (or, almost equivalently, n — 1), unlike the naive method where the residuals on
the training data are likely to be too small due to overfitting.

However, the jackknife procedure does not have any universal theoretical guaran-
tees. Although many results are known under asymptotic settings or under assump-
tions of stability of the regression algorithm i (we will give an overview below), it is
nonetheless the case that, for settings where 1 is unstable, the jackknife method may
lose predictive coverage—for example, we will see in our simulations in Section
that the jackknife can have extremely poor coverage using least squares regression
when the sample size n is close to the dimension d.



In this paper, we introduce a new method, the jackknife+, that provides non-
asymptotic coverage guarantees under no assumptions beyond the training and test
data being exchangeable. We will see that the jackknife+ offers, in the worst case,
a 1 — 2a coverage rate (where 1 — « is the target), while the original jackknife may
even have zero coverage in degenerate examples. On the other hand, empirically we
often observe that the two methods yield nearly identical intervals and both achieve
1 — a coverage. Theoretically, we will see that under a suitable notion of stability,
the jackknife4+ and jackknife both provably yield close to 1 — a coverage.

1.1 Background

The idea of resampling or subsampling from the available data, in order to assess
the accuracy of our parameter estimates or predictions, has a rich history in the
statistics literature. Early works developing the jackknife and bootstrap methods
include |Quenouille| [1949] [1956], Tukey [1958], Miller| [1974], Efron [1979], |Stine
[1985]. Several papers from this period include leave-one-out methods for assessing
or calibrating predictive accuracy, similar to the predictive interval constructed in (2)
above, e.g., |Stone| [1974], |Geisser| [1975], Butler and Rothman| [1980], generally using
the term “cross-validation” to refer to this approach. (In this work, we will instead
use the term “jackknife” to refer to the leave-one-out style of prediction methods, as
is common in the modern literature.) Efron and Gongl [1983] provides an overview
of the early literature on these types of methods.

While this rich literature demonstrated extensive evidence of the reliable per-
formance of the jackknife in practice, relatively little has been known about the
theoretical properties of this type of method until recently. [Steinberger and Leeb
[2016, 2018 have developed results proving valid predictive coverage of the jackknife
under assumptions of algorithmic stability, meaning that the fitted model iz and its
leave-one-out version Ji_; are required to give similar predictions at the test point.
This work builds on earlier results by Bousquet and Elisseeff] [2002], which study
generalization bounds for risk minimization through the framework of stability con-
ditions; an earlier work in this line is that of Devroye and Wagner| [1979], which give
analogous results for classification risk.

In contrast to cross-validation methods, which perform well but are difficult to
analyze theoretically, we can instead consider a simple validation or holdout method.
We first partition the training data as {1,...,n} = Sirain U Sholdout, then fit figaim on
the subset Siaim of the training data and construct a predictive interval

ﬁtrain(Xn+1) + <the (1 - Oé) quantﬂe Of |}/:L - ﬁtrain(Xi)|7 (RS Sholdout) . (3)

Papadopoulos [2008], [Vovk| [2012], Lei et al.| [2018] study this type of method, under
the name split conformal prediction or inductive conformal prediction, through the
framework of exchangeability, and prove that 1 — a predictive coverage holds with



no assumptions on the algorithm A or on the distribution of the data (with a small
correction to the definition of the quantile). This method is also computationally
very cheap, as we only need to fit a single regression function fig.y,—in contrast,
jackknife and cross-validation methods require running the regression many times.
However, these benefits come at a statistical cost. If the training size |Siain| is
much smaller than n, then the fitted model ji;2;, may be a poor fit, leading to wide
prediction intervals; if instead we decide to take |Siain| =~ 1 then instead |Spoldout|
is very small, leading to high variability.

Finally, |[Vovk| [2015], Vovk et al. [2018] proposed the cross-conformal prediction
method, which is closely related to the jackknife+. We describe the cross-conformal
method, and the previously known theoretical guarantees, in detail later on. Their
work is based on the conformal prediction method (see [Vovk et al. [2005], Lei et al.
[2018] for background), which provably achieves distribution-free predictive coverage
at the target level 1 — « but at an extremely high computational cost.

1.2 Notation

Before proceeding, we first define some notation. First, for any values v; indexed by

1=1,...,n, deﬁn(ﬂ
Gyolviy = the [(1 —a)(n + 1)]-th smallest value of vy, ..., vy,

the 1 — a quantile of the empirical distribution of these values. Similarly, we will
let g, ,{vi} denote the a quantile of the distribution,

Grotviy = the |a(n + 1)]-th smallest value of vy,...,v, = —¢;, {—vi}.
With this notation, the “naive” prediction interval in (1)) can be defined as
Cria” (Xnt1) = (Xns1) = G {1V — X))} (4)

Second, we will write A to denote the algorithm mapping a training data set of
any size, to the fitted regression function. Formally, A is a map from U,,>; (Rd X R)m
(i.e., the collection of all training sets of any size m > 1), to the space of functions
R? — R. For example, when /i is the regression function fitted on the training data
(X1,Y1),...,(X,,Yy), we can write

ﬁzA((Xl,Yl),...,(Xn,Yn)>. (5)

n defining the quantiles G, o of the residuals, we use (1 — a)(n + 1) rather than (1 — a)n to
correct for the finite sample size—we will see later on why this correction is natural. For the
jackknife, it is perhaps more common to see n in place of n + 1, i.e., the residual quantile is

1 . . (o o . . 1
defined slightly differently, but for Large n the difference is negligible. Formally, if o < =7 and
so (1 —a)(n+ 1) > n, then we set ¢i,o{v;} = 0.
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Similarly, to compute the leave-one-out residuals for the jackknife, we let
= AV, (K, Yin), (X, Y, (X, V2)), (6)
and then the jackknife prediction interval can be written as
CRe(Xoen) = A(Xin) £ 30 { RO, (7)

where RFOO = |Y; — 1i_;(X;)| denotes the ith leave-one-out residual.
From this point on, we will assume without comment that A satisfies a symmetry
condition, namely, A must be invariant to reordering the data, i.e.,

A((mea Yeay)s - s (Xam)s Yw(m>)> = A((Xh Y1),y (Xom, Ym)> (8)

for any sample size m > 1, any points (X1,Y)),..., (X, V), and any permutation
7 of the indices {1,...,m}.

2 The jackknife+

Our jackknife+ method is a modification of the jackknife (7). Defining fi_; as in (),
the jackknife+ prediction interval is given by:

Ot (X1) = [ {7-s(Xnsn) = REOCY, Go{ (X)) + RO (9)

To compare this to the usual jackknife, we observe that 6%‘?gékkmfe(Xn+1) can equiv-
alently be defined as

G0t (X, 1) = [ {A(Xn1) = RE2O}, G {i(X) + RO}

The constructions of the usual jackknife and the new jackknife+ are compared in
Figure[ll While both versions of jackknife use the leave-one-out residuals, the differ-
ence is that for jackknife, we center our interval on the predicted value 11(X,,41) fitted
on the full training data, while for jackknife+ we use the leave-one-out predictions
f—i(X,41) for the test point.

Figure (1] illustrates that, if the leave-one-out fitted functions fi_; are all quite
similar to 7z, which was fitted on the full training data, then the two methods should
return nearly identical prediction intervals. On the other hand, in settings where the
regression algorithm is extremely sensitive to the training data, such that removing
one data point can substantially change the predicted value at X, 1, the output may
be quite different. In Section [5, we will examine the role of this type of instability
in 72 more closely.

To give one further interpretation of the difference between the two methods,
while the jackknife interval Cladkknie( X, ) is defined as a symmetric interval around
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(Xpi1) £ RYOO

e . ok o 3
L ﬁ(Xn-HLi R%OO j i /7—2<Xn+1=) + Ej%IQJOO *
(X)) £ REOO s Xnpy) + REOO 1
1 —— 1 > |
i ﬁ(XnJrl)_:l: REOO i iﬁfn(XnJrl_) + R%OO i
® ® —e ®

é\;sg[kknife (Xn—i-l ) é\%%gkknifeJr (Xn—|—1 )

Figure 1: Illustration of the usual jackknife and the new jackknife+. The resulting predic-
tion intervals are chosen so that, on either side, the boundary is exceeded by a sufficiently
small proportion of the two sided arrows—above, these are marked with a star.

the prediction fi(X,41) for the test point @, the jackknife4 interval can be inter-
preted as an interval around the median prediction,

Median (71 (Xpe1), - o Fin(Xai1)).

which is guaranteed to lie inside égfgkknifﬁ(xm) for o < 1 (in general, however,
the jackknife+ interval will not be symmetric around this median prediction).

As detailed in Section [7], the jackknife and jackknife+ often perform nearly iden-
tically in practice (and generally achieve an empirical coverage level very close to the
target 1 —a), but in some more challenging examples where the regression algorithm
is less stable, the original jackknife may lose coverage while jackknife+ still achieves
the target coverage level.

Finally, we remark that in settings where the distribution of Y|X is highly
skewed, it may be more natural to consider an asymmetric version of this method;
we consider this extension in Appendix [A]

2.1 Assumption-free guarantees

Remarkably, although the jackknife+ method appears to only be a slight modi-
fication of jackknife, our main result proves that the jackknife+ is guaranteed to
achieve predictive coverage at the level 1 —2«a, without making any assumptions on
the distribution of the data (X,Y") or the nature of the regression method .A.

For this theorem, and all results that follow, all probabilities are stated with
respect to the distribution of the training data points (X1,Y1),..., (X, Y,) and the



test data point (X411, Y,4+1) drawn i.i.d. from an arbitrary distribution P, and we
assume implicitly that the regression method A is invariant to the ordering of the
data . We will treat the sample size n > 2 and the target coverage level o € [0, 1]
as fixed throughout.

Theorem 1. The jackknife+ prediction interval satisfies
P{Vo1 € Ok (X, )} > 1 - 20

This result is proved in Section [0 using the exchangeability of the n+ 1 data points
(X1, Y1), ..., (Xug1, Yni1)—we remark that this theorem actually holds more gen-
erally under the assumption that the n + 1 data points are exchangeable, with the
i.i.d. assumption as a special case.

In practice, we generally expect to achieve the target level 1 — o with either
version of the jackknife. A natural question is whether the factor of 2 appearing in
the coverage guarantee for jackknife+ is real, or is merely an artifact of the proof.
We would also want to know whether analogous results may be possible for the
original jackknife.

In fact, our next result constructs explicit pathological examples to see that,
without making assumptions, we cannot improve our theoretical guarantee for the
jackknife+ (i.e., we cannot remove the factor of 2 appearing in Theorem , and no
guarantee at all is possible for the jackknife. For completeness, we also construct
an example to show zero coverage for the naive method, although for that method
we expect to see undercoverage in practice, not just in pathological examples.

1
n+1’

there exists a distribution on (X,Y) € R? x R and a regression algorithm A, such
that the predictive coverage of the naive prediction interval and the jackknife
prediction interval satisfy

Theorem 2. For any sample sizen > 2, any a € | 1], and any dimension d > 1,

P{¥ € Ol (Xunn) | = B {Yi € O (K] f =0

Furthermore, if a < %, there exists a distribution on (X,Y) € R x R and a regres-
sion algorithm A, such that the predictive coverage of jackknife+ satisfies

logn

P{ Vo1 € CR (Xop) | <120+ 6y/ =
The proof of this theorem, and the proofs for all our theoretical results presented
below, are deferred to Appendix[B] The example for the original jackknife is simple—
we choose the regression algorithm A4 so that models fitted at sample size n are
always less accurate than models fitted at sample size n — 1. The construction for
jackknife+ is substantially more technical, and is similar in spirit to the example



sketched in [Vovk| [2015, Appendix A] for cross-conformal predictors in the setting
of exchangeable data. (The constant 6 on the vanishing term in the bound for
jackknife+ is simply an artifact of the proof, and can certainly be improved with a
more careful construction.)

2.2 The jackknife-minmax method

We have seen that the best possible coverage guarantee for jackknife4, in the
assumption-free setting, is 1 — 2« rather than the target level 1 — . To address this
gap, we can consider a more conservative alternative to the jackknife+, which will
remove the factor of 2 from the theoretical bound. We define the jackknife-minmax
method as follows:

CRa™ (Xng) =

min 7(Xo1) = Gl (RO, igllf{?inﬁ—i(XnH) + 3 AR (10)

i=1,...,n

It is simple to verify that this interval is strictly more conservative than jackknife+,
meaning that for any data set, we have

Cha™t (Xag1) € CRa™ (X,

The advantage that jackknife-minmax provides is that, without any assumptions on
the algorithm or distribution of the data, it always achieves the target coverage rate.

Theorem 3. The jackknife-minmaz prediction interval satisfies
P {Yn+1 e @fj;k'mm(xm)} >1-a

In practice, however, we will see that the jackknife-minmax prediction interval is
generally too conservative.

3 CV+ for K-fold cross-validation

Suppose that we split the training sample into K disjoint subsets S, ..., Sk each
of size m = n/K (assumed to be an integer). Let

fiis, = A((Xi,YZ-) e {l,... ,n}\Sk>

be the regression function fitted onto the training data with the kth subset removed.
To assess the quality of our regression algorithm using cross-validation (CV), we
would consider the residuals from this K-fold process, namely,

RZ‘CV = ‘Yz _,L/Z—Sk(i>(Xi){> L= L"'ana
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where k(i) € {1,..., K} identifies the subset that contains i, i.e., i € Si(;). Using
these residuals, we can define the CV+ prediction interval as

Cr?,\lf(jra(Xn-&-l) - [é\r;a{ﬁ—sk(i) (Xn-i-l) - Ricv}> arta{ﬁ—sk(i) (Xn-i-l) + Rz‘cv}} . (11)

Of course, jackknife4+ can be viewed as a special case of CV+, by setting K = n.
The advantage of the CV+ method, when we choose a smaller K, is that we only
need to compute K rather than n models—however, this will likely come at the cost
of slightly wider intervals, because the models fi_g, are fitted using a lower sample
size (i.e., n(1 — 1/K)) and will lead to slightly larger residuals.

3.1 Assumption-free guarantee for CV+

Our next result verifies that the CV+ prediction interval enjoys essentially the same
worst-case coverage guarantee as jackknife+.

Theorem 4. The K-fold CV+ prediction interval satisfies the following coverage
guarantees:

(a) (Adapted from|Vovk and Wang [2012], |Vovk et al.| [2018].)

A 2(1— 1/K)
P{Yn VE (X, }>1_2 _ A= UA)
+1 < Cn,K,a( +1) - « TL/K 1
" 1-K/
> - n

Combining the two bounds, it follows that for all K,
20-1/K) 1—-K/n
n/K+1 K+1
>1—2a—+/2/n.

P {Yn+1 € ag}/(fa(XnH)} >1— 2« — min {

The first part of this result, part (a), is derived from the work |[Vovk and Wang [2012],
Vovk et al| [2018]—we give more details on this in Section below. This known
result proves that the worst-case coverage is essentially 1 —2«a when K is sufficiently
small, i.e., K < n. Our new work, proving part (b), completes the picture by giving
a meaningful bound for the case where K is large (at the extreme, K = n for leave-
one-out methods). By combining the two bounds, we see that coverage is essentially
1 — 2« at any K, since the excess noncoverage is at most 1/2/n uniformly over any
choice of K.

We can also compare our result to the holdout or split conformal method ,
which is equivalent to fitting a model 7i_g, and constructing the prediction interval
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using the quantile of the residuals RV for i € Sy, but using only a single subset S,
(without repeating K times for each fold in the partition S,...,Sk). As discussed
earlier, this method offers an assumption-free guarantee of 1 — « coverage, but
this comes at the cost of higher variance due to the single split—in contrast, CV+
reduces variance by averaging over all K splits, but at the cost of a weaker theoretical
guarantee.

3.2 Related method: cross-conformal predictors

Our proposed CV+ prediction interval is related to the cross-conformal prediction
method of Vovk| [2015], |[Vovk et al.| [2018], which (in its symmetric version) returns
the predictive set

oo (X, 1) = {y cR:

T+ Z]l {‘y - //‘Z—Sk(i) (Xn"rl)‘ < chv} + Tl {|y - //Z—Sk(i) (Xn-‘rl)‘ = chv}

i=1
> .
n—+1 a}

(12)

Here 7 ~ Unif]0, 1] introduces randomization into the method. By comparing to
CV+, we can verify that

Cerosseont( X, 11) © OV (K1) (13)

deterministically (we demonstrate this in Appendix . The two methods will
sometimes produce the same output, but not always—in particular, égfggf(;fonf(XnH)
may in principle return a predictive set that is a disjoint union of multiple intervals,
while CV+ always returns an interval.

We next compare our theoretical findings with the known results for cross-
conformal. |[Vovk et al|[201§] show that the K-fold cross-conformal method has
coverage at least]’

1-1/K
n/K+1
When K is small, this additional term is negligible, and so we essentially have
1 — 2« coverage for cross-conformal. However for large K, such as K = n for the
leave-one-out method, their earlier result does not yield a meaningful guarantee—
the guaranteed coverage level is zero. In contrast, our new assumption-free result

1-2a—2(1—a) (14)

ZVovk et al.|[2018] do not state this coverage result directly, but instead prove 1 — 2« coverage for
a modification of the cross-conformal method; however, these two formulations can be shown to
be equivalent. We give details in Appendix @
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in Theorem [1| proves 1 — 2a coverage for the jackknife+ method (i.e., with K =n
folds), and Theorem (4| ensures 1 — 2a — y/2/n coverage for K-fold CV+ at any
choice of K.

Remark 1. By ezamining the proofs of Theorems [1] and [{, we can see that the
arguments apply directly to the K-fold (or n-fold) cross-conformal method; that is,
our proofs for these theorems also establish that

2(1-1/K) 1—K/n
n/K+1 K-+1
>1—2a—+/2/n

P {Yn+1 € ag}f(fa(XnH)} >1—-2a— min{

for K-fold cross-conformal with any K. In the special case that K = n we are
guaranteed coverage > 1 — 2a. The first term in the minimum was established by
Vouk et al.| [2018] as presented in above, but the second term (which allows for
meaningful coverage for large values of K, e.g., K =n) is a new result.

3.3 An alternative method: conformal prediction

The final related method we present is conformal prediction [Vovk et all [2005].
(We will sometimes refer to this method as “full” conformal prediction in order
to distinguish it from the split conformal or cross-conformal methods described
above.) Given the base algorithm A, the full conformal prediction method outputs
a prediction set (which consists of a union of one or more intervals) constructed as
follows:

Cor(Xp) = {y €R: |y — ¥ (Xo)| STV - (X)|}),  (15)

where

v = A((Xlayl)y (X Y, (Xn+1,y)>

denotes the output of the algorithm run on the training data augmented with the
hypothesized test point (X, 11,7). In other words, to determine whether to include
a value y in the prediction set at a new point X,,.1, we need to train the algorithm
on the training+test data (as though Y, .1 = y were the true response value), and
then see whether the residual of the test point “conforms” with the residuals on the
remaining n points. The exchangeability of the test and training data ensures that

P{Yn-i-l € 672?2f(Xn+1)} >1- «,
i.e., coverage at the target level. However, this desirable theoretical property comes

at a high cost—we can see by construction of the prediction interval (ﬁgogf(x) that
the training algorithm A needs to be rerun for every test point feature vector x
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we might consider, and for every possible response value y € R (or in practice, for
each y in a fine grid over R). In certain special cases there are computational tricks
allowing for efficient calculation of the prediction set—for example linear regression
or ridge regression |[Burnaev and Vovk| 2014, and the Lasso |[Lei, 2017]. Outside
of these special cases, full conformal is prohibitively expensive in practice, even on
moderately sized data sets; while it provides an extremely elegant and theoretically
rigorous framework for distribution-free inference, it is not practical in many applied
settings.

4 Summary of coverage guarantees and computa-
tional costs

In light of these theoretical results, which method should a statistician choose in
practice? The following table summarizes the theoretical results behind each of the
methods under consideration, and the typical empirical performance that we have
observed.

Method Assumption-free theory Typical empirical coverage
Naive No guarantee <l—-«a

Split conf. (holdout) (3)) > 1 — « coverage ~1l—a

Jackknife No guarantee ~1—a, or <1— «if i unstable
Jackknife+ (9) > 1 — 2« coverage ~1l—a
Jackknife-minmax ((10)) > 1 — « coverage >1—a«

Full conformal > 1 — « coverage ~1—aq,or >1—«if i overfits
K-fold CV+ (11 > 1 — 2« coverage 21—«

K-fold cross-conf. > 1 — 2« coverage 21l—a

Given the theoretical and empirical properties of the various options, we therefore
recommend the jackknife+ as a practical alternative to the usual jackknife predictive
intervals. On the one hand, the empirical performance of the jackknife+ is nearly
identical to that of the original jackknife (assuming we avoid pathological examples),
with both methods giving intervals of nearly the same width and achieving close to
the target 1 — a coverage level. However, while the jackknife offers no theoretical
guarantees in the absence of stability assumptions, the jackknife+ achieves at least
1—2a coverage in the worst possible case. On the other hand, the methods achieving
1 — « (rather than 1 — 2a) coverage guarantees are either less statistically efficient
in the sense of producing wider intervals (split conformal uses models fitted on a
smaller portion of the data while jackknife-minmax is generally too conservative), or
suffer from computational infeasibility (full conformal is computationally prohibitive
aside from perhaps a few special cases).
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We now turn to a direct comparison of the computational costs of these eight
methods. The split conformal and naive methods require only one run of the re-
gression algorithm A (to fit iz on the full training data), while each of the jackknife
methods requires n runs (to fit fi_; for each i = 1,...,n—and one additional run
to fit fi, in the case of the original jackknife). If the training sample size n is so
large that fitting n regression functions is not feasible, we may instead prefer to
use K-fold cross-validation. In contrast, the full conformal method must train A
many more times—once for each possible combination of a test point feature vector
x and a possible response value y—except for special cases such as linear regression
or ridge regression. These observations are summarized below:

Method Model training cost | Model evaluation cost
Naive 1 T+ Thest

Split conf. (holdout) (3]) 1 "

Jackknife @ n "
Jackknife+ @D n Thest * T
Jackknife-minmax ((10) n "

K-fold CV+ K N+ Nesy - K
K-fold cross-conf. K "

Full conformal Ntest * Ngrid Ntest * Ngrid * 1

This table compares the computational cost (ignoring constants) of each method
when run on a training sample of size n, for producing prediction sets on n. many
test points. The middle column (“Model training cost”) counts the number of times
that the model fitting algorithm A is run on a training data seiﬂ of size (up to) n.
The value ngiq denotes the number of grid points of possible y values (a fine grid
over R), used in the construction of the full conformal prediction method (15]). The
last column (“Model evaluation cost”) counts the number of times we evaluate a
fitted model i on a single new data point. In most settings, the model training cost
is dominant—for example, training a neural network is far more costly than evalu-
ating the prediction of a trained network on a new example. There are important
exceptions, however, such as K-nearest neighbors, where computing a prediction
incurs the cost of identifying the K neighbors of the test point.

3Tt is worth mentioning that for several common regression algorithms, the n leave-one-out resid-
uals can be obtained without refitting n times, but by simply reweighting the in-sample training
residuals. Examples include linear smoothing methods like ordinary least squares, kernel ridge
regression, kernel smoothing, thin plate splines and smoothing splines. Another interesting ex-
ample is random forests, where the i-th leave-one-out fit can be obtained by simply ignoring all
trees containing the i-th point.

13



5 Guarantees under stability assumptions

Next, we consider how adding stability assumptions—conditions that ensure that
the fitted regression function j is not too sensitive to perturbations of the training
data set—can improve the theoretical guarantees of the jackknife and its variants.
(For simplicity, we only consider leave-one-out methods, and do not examine K-fold
cross-validation here.)

5.1 In-sample and out-of-sample stability

Fix any € > 0, v € [0, 1], any sample size n > 2, and any distribution P on (X,Y).
We say that a regression algorithm A satisfies (e, ) out-of-sample stability with
respect to the distribution P and sample size n if, for all i € {1,...,n},

P{i(Xns1) —i-i(Xnp)| S e 21—, (16)

for i1 and ji_; defined as before in and ([6). The probability above is taken with
respect to the distribution of the data points (Xi1,Y1),..., (X, Y2o), (Xnt1, Yai1)
drawn i.i.d. from P. Similarly, A satisfies (€, ) in-sample stability with respect to
the distribution P and sample size n if, for all i € {1,... ,n},

P{Aa(X:) —pi(Xi)| < e} 21— (17)

Naturally, since the data points are exchangeable, if or holds for any single
i€ {l,...,n} then it holds for all i € {1,...,n}. These types of conditions appear
elsewhere in the literature—for example Bousquet and Elisseeff] [2002] define similar
conditions, termed “hypothesis stability” and “pointwise hypothesis stability”.

While the out-of-sample and in-sample stability properties may at first appear
similar, they are extremely different in practice. Out-of-sample stability requires
that, for a test point that is independent of the training data, the predicted value
does not change much if we remove one point from the training data. In contrast,
in-sample stability requires that, for a point in the training data set, the predicted
value does not change much if we remove this point itself from the training data set.
In a scenario where the model fitting algorithm suffers from strong overfitting, we
would expect in-sample stability to be very poor, while out-of-sample stability may
still hold—for example, we will see in Section [5.5|that this is the case for K -nearest-
neighbor methods. On the other hand, strongly convex regularization, such as ridge
regression, induces both in- and out-of-sample stability [Bousquet and Elisseeff,
2002, Example 3|. This is not the case, however, for sparse regression methods (e.g.,
{1 regularization), which are proved by Xu et al| [2012] to be incompatible with
in-sample stability.
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5.2 Summary of stability results

Before giving the details of our theoretical results, we summarize our findings on
the various methods’ predictive coverage guarantees, with and without stability
assumptions:

Method Assumption-free | Out-of-sample In-sample and
theory stability out-of-sample stability
Naive No guarantee No guarantee ~1l—a«
Jackknife No guarantee ~1l—a«a ~1l—a«
Jackknife+ (9) 1 -2« ~1—a«a ~1l—«
Jackknife-minmax ((10)) 11—« 11—« 1—a

The assumption free results are the same as those discussed in Section [4] while the
results under stability assumptions are presented next in Theorems [5] and [6]

5.3 Out-of-sample stability and the jackknife

We will next prove that out-of-sample stability is sufficient for the jackknife and
jackknife+ methods to achieve the target coverage rate, with a slight modification.
Define R

CRadatee(X, 1) = il Xoi1) & (Gra{REOO} + ),

and similarly, define
agla};kknife+7e(Xn+l> - [a\r;,a{//z—i(Xn+1) - R}OO} -6 a&a{ﬂ—i(Xn-&-l) + RzI‘JOO} + 6]’

which we refer to as the e-inflated versions of the jackknife and jackknife+ predictive
intervals.

Theorem 5. Suppose that the regression algorithm A satisfies the (e,v) out-of-
sample stability property with respect to the data distribution P and the sample
size n. Then the e-inflated jackknife prediction interval satisfies

P {yn+1 € égggkkmfe’e(xnﬂ)} >1—a- 20
Similarly, the 2e-inflated jackknife+ prediction interval satisfies
P {Yn+1 c @'ﬁ;kknife+’26(xn+1)} >1—a—4v.
(The different amounts of inflation, € for jackknife versus 2e¢ for jackknife+, are
simply an artifact of the particular definition of out-of-sample stability that we

use, and should not be interpreted as a meaningful difference between these two
methods.)
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We remark that if we additionally assume that, in the data distribution, Y |X
has a bounded conditional density (for example, Y = u(X) + N(0,02) for some
unknown true mean function pu(-)), then the result of Theorem [5] is sufficient to
ensure that the (non-inflated) jackknife and jackknife+ intervals achieve close to
target coverage. The reason is this: if the conditional density of Y| X is bounded by
some constant ¢ < oo, then very little probability can be captured by inflating the
interval. Specifically,

P{Yn-i-l c aggzkknife% - )\Cgackknlfe( 1)} < 2.
Combined with the result of Theorem [5] this proves that

P {Yn+1 € @ﬁ;“knife(){nﬂ)} >1—a—2v—2ec
Similarly, for jackknife+, we have

P {YnH c @%gkknife+(xn+1)} >1—a— 4y — dec.

5.4 In-sample stability and overfitting

To contrast the scenarios of in-sample and out-of-sample stability, we will next
demonstrate that adding the in-sample stability assumption would in fact be suffi-
cient for the “naive” prediction interval, defined earlier in , to have coverage at
roughly the target level. Its e-inflated version is defined as

Comtre(Xon) = (X)) = (G 1Y = XD} + ). (18)

Recall from Section [1| that we would typically expect C’“a“’e( Xn41) to undercover
severely due to the overfitting problem (thus inspiring the use of the jackknife to
avoid this issue), and similarly égjgve’f(xnﬂ) will also undercover whenever e is
too small to correct for overfitting. This is often the case even when out-of-sample
stability is satisfied. With in-sample stability, however, this is no longer the case—in
other words, the in-sample stability property is essentially assuming that inflation
by e is sufficient to correct for overfitting.

Theorem 6. Suppose that the regression algorithm A satisfies both the (e,v) in-
sample stability property and the (€, v) out-of-sample stability property with
respect to the data distribution P and the sample size n. Then the naive prediction
interval satisfies

P {YnH € égivevZf(XnH)} >1—a—4yv.
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5.5 Example: K-nearest-neighbors

To give an illustrative example, consider a K-nearest-neighbor (K-NN) method.
This style of example is also considered in Steinberger and Leeb|[2018, Example 4.1],
and was studied earlier by [Devroye and Wagner [1979] in the context of estimating
the error of a classifier, and by |Bousquet and Elisseefl [2002] in the context of error
in regression. Given a training data set (Xi,Y1),...,(X,,Y,) and a new test point

x, our prediction is
N 1
M(x> = E Z Y,

€N (x)

where N(z) C {1,...,n} is the set of the K nearest neighbors to the test point z,
i.e., the K indices i giving the smallest values of || X; — z||o (of course, we can replace
the ¢, norm with any other metric). We will assume for simplicity that there are
no ties between these distances (for instance, the X; points might be continuously
distributed on R?, or we apply a random tie-breaking rule). Now consider out-of-
sample stability. Let N(X,11) and N_;(X,.1) be the K-nearest-neighbor sets for
the test point X,,;1 given the full training data, or the training data with data point
1 removed, respectively. Then we can easily verify that

i€ N(Xny1) © N(Xpp1) = Noi(Xpq1) = 0(Xng1) = 1-(Xng).

Therefore,

P{\ﬁ(XnH) - ﬁ—z‘(Xn+1)| = 0} > P{i ¢ N(Xn+1>} =1- 5;

n
where the last step holds by exchangeability of the n training points. This proves
that the K-NN method satisfies (¢, v)-out-of-sample stability with ¢ = 0 and v =
K/n. (In contrast, we cannot hope for a similar argument to guarantee in-sample
stability, since we will always have i € N(X;); that is, X; is one of its own nearest
neighbors—and so in general we will have 1(X;) # f_;(X;).)

Applying the conclusion of Theorem [5| to this setting, then, we see that K-NN
leads to a coverage rate at least

P {YnH c C*gfjgkknife(xw)} >1-a—2yK/n
for the jackknife, and

P{Vo1 € CRi (X, )} > 1 a = 4y/K/n
for the jackknife+. These results hold with no assumptions whatsoever on the
distribution of the data—and in particular, we do not need to assume that the

K-NN prediction is accurate or consistent on the given data.
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5.6 Comparison to existing results

As mentioned above, Bousquet and Elisseeff] [2002] study stability in the context
of generalization bounds for regression, with the aim of bounding risk rather than
predictive inference. The predictive accuracy of the jackknife under assumptions of
algorithm stability was explored by |Steinberger and Leeb| [2016] for the linear re-
gression setting, and in a more general setting by [Steinberger and Leeb [2018]. Their
stability assumption (see, e.g., Steinberger and Leeb [2018, Definition 1]) is essen-
tially equivalent to our out-of-sample stability condition . However, the theory
obtained in their work is asymptotic, and relies also on distributional assumptions
(see Steinberger and Leeb| 2018, (C1)]), namely, that Y; = E[Y; | Xi] + v; where
the noise v; is continuously distributed and is independent of X; (for example, this
does not allow for heteroskedasticity). In contrast, our guarantee, in Theorem ,
offers a simple finite-sample coverage guarantee with no distributional assumptions,
requiring only algorithm stability.

6 Proof of Theorem [1

Suppose for a moment that we have access to the test point (X1, Y, 1) as well
as the training data. For any indices 4,5 € {1,...,n 4 1} with i # j, let fi_q
define the regression function fitted on the training plus test data, with points ¢ and
j removed. (We use g rather than i to remind ourselves that the model is fitted

on a subset of the combined training and test data ¢« = 1,...,n + 1, rather than a
subset of only the training data.) Note that fi_(; jy = fi—(;) for any i # j, and that
f—(in+1) = H—; forany i =1,...,n.
Next, we define a matrix of residuals, R € R"HD*+1) with entries
Ry=14 0% L
Yi = fiap(Xa)|, i #7,

i.e., the off-diagonal entries represent the residual for the ith point when both i
and j are left out of the regression. We also define a comparison matrix, A €
{0, 13+ (+D) " with entries

Aij =1 {RZJ > Rﬂ} .

In other words, A;; is the indicator for the event that, when excluding data points
1 and j from the regression, data point ¢ has higher residual than data point j.
Naturally we see that A;; = 1 implies A;; = 0, for any 7,j. We note that this
comparison matrix construction is also examined by Vovk| [2015, Appendix A|, where
it is used to establish that leave-one-out conformal methods fail to achieve 1 — «
coverage.
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Next, we are interested in finding data points ¢ with unusually large residuals—
the ones that are hardest to predict. We will define a set S(A) C {1,...,n+ 1} of
“strange” pointsE]

SA)={ie{l,....n+1}: Ae>1—-a)(n+1)},

where A;q = Z;L;rll A;j; is the i¢th row sum of A. In other words, the ¢th point is

“strange” (i.e., ¢ € S(A)) if it holds that, when we compare the residual R;; of the

ith point against residual R;; for the jth point (for each j # i), the residual R;; for

the 7th point is the larger one, for a sufficiently high fraction of these comparisons.
From this point on, the proof will proceed as follows:

e Step 1: we will establish deterministically that |S(A)| < 2a(n+1), that is, for
any comparison matrix A it is impossible to have more than 2a(n + 1) many
strange points.

e Step 2: using the fact that the data points are i.i.d. (or more generally ex-
changeable), we will show that the probability that the test point n + 1 is
strange (i.e., n+ 1 € S(A)) is therefore bounded by 2a.

e Step 3: finally, we will verify that the jackknife+ interval can only fail to cover
the test response value Y, if n + 1 is a strange point.

Step 1: bounding the number of strange points This bound is essentially a
consequence of Landau’s theorem for tournaments [Landau, [1953]. For data points i
and j, we say that data point ¢ “wins” its game against data point j, if A;; = 1; that
is, point ¢ has a higher residual than point 7, under the corresponding regression
fi—gij)- Note that each strange point ¢ € S(A) can lose against at most a(n+1) —1
other strange points—this is because point ¢ must win against at least (1 —a)(n+1)
points in total since it is strange, and as we have defined it, point ¢ cannot win
against itself.

Let s = |S(A)| denote the number of strange points. The key realization is now
that, if we think about grouping each pair of strange points by the losing point, then
we see that there are at most

s (a(n+1)—1)

pairs of strange points. This is because there are at most s unique possibilities for
the loser, and for each such loser, it can only lose against at most a(n+1) —1 other
strange points, as argued above. In other words, we have established
s(s—1)
2
and rearranging gives s < 2a(n+1) — 1 < 2a(n + 1), as desired.

<s-(an+1)-1),

4The authors thank an anonymous reviewer for suggesting this presentation of the proof.
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Step 2: exchangeability of the data points We next leverage the exchange-
ability of the data points to show that, since there are at most 2a(n + 1) strange
points among a total of n + 1 points, it follows that the test point has at most 2«
probability of being strange—this reasoning uses the exchangeability of the data in
exactly the same way as the conformal prediction literature [Vovk et al., 2005].

To establish this formally, since the data points (X1,Y7),..., (Xpi1, Yas1) are
exchangeable and the regression fitting algorithm A is invariant to the ordering of
the data points (the symmetry condition ), it follows that A < TIATI" for any

(n+1) x (n+1) permutation matrix II, where £ denotes equality in distribution. In
particular, for any index j € {1,...,n+1}, suppose we take II to be any permutation
matrix with II;,,,; = 1 (i.e., corresponding to a permutation mapping n + 1 to j).
Then, deterministically, we have

n+1leS8(4) & jeS(IAID),
and therefore,
P{n+1€S(A)}=P{jeSHAN")} =P{j € S(A)}

for all j = 1,...,n+ 1. In other words, if we compare an arbitrary training point
7 versus the test point n + 1, these two points are equally likely to be strange, by
exchangeability of the data. We can then calculate

o) - oy pis e oy - ESAN
jeSA w1 < 2a,

where the last step applies the result of Step 1.

Step 3: connecting to jackknife+ Finally, we need to relate the question of
coverage of the jackknife+ interval, to our notion of strange points. Suppose that
Vi1 & Clckknifet (X, 1), This means that either

YTH-l > qn a{lu’ ”+1> RZLOO}’

which implies that Y11 > fi_j(X,41)+ RyO© for at least (1—a)(n+1) many indices
j €{1,...,n}, or otherwise

Yn+1 < a\'n:a{ﬁ—i(Xn-i-l) - RZLOO})
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which implies that Y, 11 < fi;(X,41) — RFO© for at least (1—a)(n+1) many indices
j€{l,...,n}. In either case, then, we have

(1—a)(n+1) < Z L{Yo & (X)) £ R]LOO}

j=1
= Z L{|Y; — i5(X5)| < [Yo = (Xas)|}
j=1

n+1 n+1

= Z 1{Rjn1 < Rpyrj} = ZAn+1,j:
=1 =1

and therefore n+1 € S(A), that is, point n+ 1 is strange. Combining this with the
result of Step 2, we have

P {Yn+1 ¢ égj;kknife+(xn+l)} <P{n+1eS8(A)} <2

7 Empirical results

In this section, we compare seven methods—naive , jackknife @, jackknife+ @,
jackknife-minmax (10), CV+ (11)), split conformal (3], and full conformal (15)—on
simulated and real data. Code for reproducing all results and figures is available
onlinel’

7.1 Simulations

We first examine the performance of the various prediction intervals on a simulated
example, using least squares as our regression method. We will see that when the
training sample size n is equal or approximately equal to the dimension d, the
instability of the least squares method (due to poor conditioning of the n x d design
matrix) leads to a wide disparity in performance between the various methods. This
simulation is thus designed to demonstrate the role of stability in the performance
of these various methods.

7.1.1 Data and methods

Our target coverage level is 1 — a = 0.9. We use training sample size n = 100, and
repeat the experiment at each dimension d = 5, 10, ...,200, with i.i.d. data points
(X;,Y;) generated as

Xi ~N(0,1;) and Y; | X; ~ N(X, 3, 1).

Shttp://www.stat.uchicago.edu/~rina/jackknife.html
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The true coefficient vector /3 is drawn as 3 = v/10-u for a uniform random unit vector
u € R The regression method A is simply least squares, with the convention that
if the linear system is underdetermined then we take the solution with the lowest /5
norm (the limit of ridge regression as the regularization tends to zero). Specifically,

for training data (X1,Y1),...,(X,,Ys), we return the regression function fi(z) =
x' B, R
B = Xr];laty:/ecu

where X,,.; denotes the n x d matrix of covariates, Y., the vector of responses, and
T the Moore—Penrose pseudoinverse.

We then generate 100 test data points from the same distribution, and calculate
the empirical probability of coverage (i.e., the proportion of test points for which the
prediction interval computed at the X value contains the Y value) and the average
width of the prediction interval.

7.1.2 Results

Figure [2 displays the results of the simulation, averaged over 50 trials (where each
trial has an independent draw of the training sample of n = 100 and the test sample
of size 100).

When d < n, the jackknife and jackknife+ show very similar performance, with
approximately the right coverage level 1 —a = 0.9 and with nearly identical interval
width. For d =~ n (the regime where least squares is quite unstable), the jackknife has
substantial undercoverage—at d = n the jackknife shows coverage rate around 0.5,
and continues to show substantial undercoverage when d is slightly larger than n. In
this regime, the jackknife+ continues to show the right coverage level, at the cost of
a prediction interval that is only slightly wider than the jackknife. For large d, the
jackknife and jackknife+ again show very similar performance. In fact, this connects
to recent work on interpolation methods (methods that achieve zero training error).
Specifically, Hastie et al. [2019] study “ridgeless” regression (i.e., the least squares
solution with the lowest 5 norm, as in our simulation), and demonstrate that this
provides a stable solution with good test error as long as d is either sufficiently small
or sufficiently large relative to n. We see a similar phenomenon in the predictive
coverage performance of the jackknife.

As expected, the jackknife-minmax is over-conservative, with typical coverage
higher than 1 — a = 0.9 across all dimensions d, while the naive method drastically
undercovers due to increasing overfitting as d grows (and in fact, at d > n, the
training error is exactly zero, so the prediction intervals have width zero and coverage
z€ero.)

When d > n, we note that full conformal prediction will always have infinite
length intervals since for every potential y in the (X,11,y) pair, all n + 1 residuals
will equal zero. Naturally, in such a situation, full conformal will have coverage
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Figure 2: Simulation results, showing the coverage and width of the predictive interval for
all methods. The solid lines show the mean over 50 independent trials, with shading to
show =+ one standard error. We observe that the jackknife undercovers around d = 100 due
to instability (since n = 100). Jackknife+ and split conformal are the only two methods
that maintain the correct coverage level throughout without under- or over-covering, but
we can observe that jackknife+ often produces shorter intervals than split conformal. (See
text for more details.)



equal to one deterministically. In practice, it is common to modify the conformal
prediction method by truncating to a finite range, e.g., to the observed range of
Y values in the training data (which has minimal effect on the coverage guarantee
[Chen et al| [2018]); this is why we see finite length intervals for full conformal in
our simulation results.

Split conformal is the only method other than jackknife+ to maintain coverage
at 0.9 throughout. (Note that since split conformal trains on half of the data, its
length spikes near d = 50, rather than d = 100 as for the other methods; this is
simply due to the change in sample size n/2 = 50 used in training. This is a result of
instability of OLS when n =~ d and is not reflective of comparisons between holdout
and jackknife+.)

7.2 Real data

We next compare the various methods on three real data sets. We will try three
regression algorithms: ridge regression, random forests, and neural networks (details
given below). Our aim in these experiments is to demonstrate the typical perfor-
mance of the various prediction interval methods in a real data setting; we do not
seek to optimize the base methods used as our regression algorithms, but are only
interested in how the various prediction interval methods behave in comparison to
each other. Due to the high computational cost of the full conformal method, we
do not include it in the comparison.

7.2.1 Data

The Communities and Crime data setﬁ [Redmond and Baveja, [2002| contains infor-
mation on 1994 communities, with covariates such as median income, distribution
of ages, family size, etc., and the goal of predicting a response variable defined as
the per capita violent crime rate. After removing categorical variables and variables
with missing data, d = 99 covariates remain.

The BlogFeedback data setf] [Buzal 2014] contains 52397 data points, each cor-
responding to a single blog post. The goal is to predict the response variable of the
number of comments left on the blog post in the following 24 hours, using d = 280
covariates such as the length of the post, the number of comments on previous posts,
etc. Since the distribution of the response is extremely skewed, we transform it as
Y =log(1l + # comments).

The Medical Expenditure Panel Survey 2016 data setﬁ provided by the Agency
for Healthcare Research and Quality, contains data on individuals’ utilization of

Shttp://archive.ics.uci.edu/ml/datasets/communities+and+crime

"https://archive.ics.uci.edu/ml/datasets/BlogFeedback

Shttps://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?
cboPufNumber=HC-192
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medical services such as visits to the doctor, hospital stays, etc. Details on the data
collection for older versions of this data set are described in |Ezzati-Rice et al.| [2008].
We select a subset of relevant features, such as age, race/ethnicity, family income,
occupation type, etc. After splitting categorical features into dummy variables to
encode each category separately, the resulting dimension is d = 107. The goal is to
predict the health care system utilization of each individual, which is a composite
score reflecting the number of visits to a doctor’s office, hospital visits, days in
nursing home care, etc. With missing data removed, this data set contains 33005
data points. Since the distribution of the response is highly skewed, we transform
it as Y = log(1 + (utilization score)).

7.2.2 Methods

Our procedure is the same for each of the three data sets. We randomly sample
n = 200 data points from the full data set, to use as the training data. The
remaining points form the test set.

We run our experiment using three different regression algorithms A-—namely,
ridge regression, random forests, and neural networks. The details of these algo-
rithms is as follows:

e For ridge regression, we define fi(z) = B\o + wTB\ for

BocR,BeRd | 2 4 -

~ o~ . 1 2
Bo, B = arg_ min {—Z(n — B — X7 B + Al|ﬁl|2}7
where the penalty parameter is chosen as A = 0.001|| X a¢]|?, where Xpa €
R™*4 is the covariate matrix of the training data, and || X is its spectral
norm. This choice is to accommodate situations in which the matrix X,
does not have full column rank as in the case where d > n. In such cases, the

solution above is nearly the least-squares solution with minimum ¢, norm.

e For random forests, we use the RandomForestRegressor method from the
scikit-learn package [Pedregosa et al 2011] in Python, with 20 trees grown
for each random forest using the mean absolute error criterion, and with de-
fault settings otherwise.

e For neural networks, we use the MLPRegressor method also from scikit-learn,
run with the L-BFGS solver and the logistic activation function, and with de-
fault settings otherwise.

For each choice of A, we construct six prediction intervals (naive, jackknife, jack-
knife+, jackknife-minmax, CV+, split conformal), and calculate their empirical cov-
erage rate and their average width on the test set. We then repeat this procedure
20 times, with the train/test split formed randomly each time, and report the mean
and standard error over these 20 trials.
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(a) Communities and crime data set
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Figure 3: Results on three real data sets, using either ridge regression, random forests,
or neural networks as the regression algorithm. The bar plots show the coverage and
the width of the predictive interval for all methods. The figures display the mean over
20 independent trials (i.e., splits into training and test data), with error bars to show
=+ one standard error. In general, the naive method undercovers while jackknife-minmax
overcovers, and the remaining methods have well calibrated coverage. In terms of their
interval lengths, we typically (but not necessarily) get the expected order: jackknife <

jackknife+ < 10-fold CV+ < split conformal.

26

naive
jackknife
jackknife+
jackknife-mm
CV+

split



7.2.3 Results

Figure (3| displays the results of the real data experiments. For each data set, each
regression algorithm, and each one of the six prediction interval methods, the figure
plots the average coverage and average width, together with their standard errors
across the 20 independent trials.

We see that the jackknife and jackknife+ methods both yield empirical coverage
extremely close to the target level of 90%, and have very similar predictive interval
widths. However, in some settings, the jackknife4 shows slightly higher coverage
than jackknife, and slightly wider prediction intervals. These settings correspond to
regression methods with greater instability. As expected, the naive method under-
covers in some settings and the jackknife-minmax is generally overly conservative.
Split conformal performs reasonably well: its length and coverage is sometimes
comparable to the jackknife+, but is also significantly wider in some instances. In-
tuitively, if the best regression function in the considered function class is simple
and the dataset is large, split conformal should perform fine even though it uses n/2
points for training and n/2 for calibration; however, in settings where the dataset
is small relative to the complexity of the best regressor, then we should observe
significant gains in using n — 1 points for training and n points for calibration. One
phenomenon that is not visible in the empirical results is that split conformal is a
randomized method, with output varying slightly depending on the random split,
while jackknife+ is a deterministic method on any fixed training data set.

8 Summary

The jackknife+ differs from the jackknife in that it uses the quantiles of
//Z—i(Xn-i-l) + RZI‘JOO = //Z(Xn-&-l) + <ﬁ—i(Xn+1) - //Z(Xn-i-l)) + RzI‘JOC)?

instead of those of [i(X,;1) & R¥°O, to build predictive intervals. By applying the
shifts fi_;(Xpn41) — #(Xn11), the jackknife+ effectively accounts for the (possible)
algorithm instability, yielding rigorous coverage guarantees under no assumptions
other than exchangeable samples. This, together with its empirical performance on
real data, makes it a better choice than the jackknife in practice. In cases where the
jackknife+ is computationally prohibitive, K-fold CV+ offers an attractive alterna-
tive. Here, it would be interesting to see if the coverage guarantees for the latter
method can be somewhat sharpened.
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A Asymmetric jackknife4+ and CV+

In settings where the distribution of Y given X appears to have symmetric noise,
it is natural to construct predictions intervals symmetrically, which is why we can
consider absolute values of residuals. If the data is likely to be skewed, however,
we may want to consider an asymmetric construction. Fix any ay,a_ > 0 with
a; +a_ = a, and let

égla:zkiknifeJr( Xpy1) =
[@;a_ {A_i(Xp4) + REVOOL G, A (Xp1) + Rf’gn’Loo}] , (19)
where the signed residuals are
R;gn,LOO — Y, — fii(X,).
We can of course consider the analogous asymmetric version of the original jackknife,
@'ackknife ( Xn+1) _

n,a4
[ﬁ(Xnﬂ) +ZJ\TZQ,{R§gn’LOO}; A Xpt1) +€7$a+{st‘gn’Loo}] . (20)

This type of asymmetric jackknife was considered by [Steinberger and Leeb| [2018].
Similarly we can define an asymmetric version of jackknife-minmax or of CV+.
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We remark that, even if we were to choose a_ = a, = «/2, these asymmetric
constructions would not necessarily be equal to the original jackknife, jackknife+,
jackknife-minmax, and CV+ intervals, because the empirical distribution of the
signed residuals will in general be asymmetric even if only due to random chance.

All of the coverage guarantees that we have proved for the various symmetric
methods, hold also for their asymmetric counterparts. For example, to verify 1 — 2«
coverage for the asymmetric jackknife+ in the assumption-free setting, the proof of
Theorem [1| proceeds identically except that the matrix of residuals R € R®+1)x(n+1)
constructed in the proof is replaced with two matrices

+o0, =7,
(Ry)ij = _ o0
’ + (Y — (X)), 1 # 7,

where R, (resp. R_) is used to bound the probability of noncoverage in the right
(resp. left) tail by a (resp. a_).

B Additional proofs

B.1 Proof of jackknife-minmax (Theorem [3))

The proof for jackknife-minmax proceeds nearly identically to the proof for jack-
knife+ (Theorem . We define the residuals R;; exactly as in the proof of Theo-
rem |1} but we will use a different definition for the matrix A:

Aij =1 {mln Ri]‘/ > Rﬂ} ,
]/

that is, the smallest residual for data point ¢ (leaving out any point j’) is larger
than Rj;, which is data point j’s residual when leaving out point i. Define S(A)
exactly as before. Now we follow essentially the same three steps as in the proof of
Theorem [I}

e Step 1: we will establish deterministically that, for this new definition of the
matrix A, we have |S(A)| < a(n+ 1) (whereas, for jackknife+, the bound was
2a(n +1)).

e Step 2: using the fact that the data points are i.i.d. (or more generally ex-
changeable), we will show that the probability that the test point n + 1 is
strange (i.e., n+ 1 € S(A)) is therefore bounded by «.

e Step 3: finally, we will verify that the jackknife-minmax interval can only fail
to cover the test response value Y,, .1 if n 4+ 1 is a strange point.
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Step 1: bounding the number of strange points To prove Step 1, let

i, € arg min min R; ;.
i€S(A) j

Then by definition, for all j € S(A), R;;, > miny R;; > miny R, . This means
that, by definition of the new comparison matrix A, we have A; ; = 0 for all j €
S(A), and therefore,

where the last step holds by definition of S(A) (since i, € S(A) is a strange point).
Therefore |S(A)| < a(n + 1) as desired.

Step 2: exchangeability of the data points This step is identical to Step 2 in
the proof of Theorem [1]

Step 3: connecting to jackknife-minmax Suppose that Y, 1 & @%gk-mm(XnH).
This means that either

Yn+1 > maXx //Z—i(Xn—l—l) + Z]\JQ{R?OO}a

i=1,...,n

which implies that Y, 11 > max;—1__, fi—i(Xnt1) + R;JOO for at least (1 —a)(n+1)
many indices j € {1,...,n}, or otherwise

Yn+1 < 'min Zz—i(Xn—‘rl) - Z]\JQ{R;OO})

i=1,...,n

which implies that Y1 < ming_1_, fi—i(Xni1) — RO for at least (1 —a)(n+ 1)
many indices j € {1,...,n}. In either case, then, we have

(1-a)(n+1) < Z 1 {Yn+1 ¢ [l min fii(Xn41) — R]L'OOa max U-i(Xp41) + RJL'OO] }
j=1

=1,...,n 1=1,....,n

n

= Z 1 {igiﬂn Yo = -i(Xnp1)| > Y — ﬁ—j(Xj>‘}
—
-

= Z 1 {min Ry > Rj,n+1}
]/

j=1
n+1

= E Ang,
=1

and therefore n +1 € S(A).
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B.2 Proofs for the CV+ method

In this section, we will give details for how the CV+ method relates to the cross-
conformal prediction method, and then prove our theoretical guarantees for CV+-.

B.2.1 Detalils for comparing to the cross-conformal method

In Section [3.2] we introduced the cross-conformal method of [Vovk] [2015], [Vovk
et al. [2018], and stated two properties—first, that the cross-conformal prediction
set is always contained in the CV+ prediction interval , and second, that the
results of Vovk et al.|[2018] imply a coverage guarantee for the cross-conformal
method. Here we give details to justify these two statements.

First, we verify that the cross-conformal prediction set CSe%5" (X, 1) is con-

tained in the CV+ interval. To see this, suppose that y € af;}’(s’so‘fonf()(nﬂ). Then
by definition of this predictive set, we have

T+Z]l {|y - ﬁ—sk(i) (X’rl-‘rl)‘ < chv}+T]l {ly - ﬁ—sk(i) (XTH-I)’ = RZCV} > Oé(ﬂ"‘].)
i=1

for some 7 € [0,1]. Since the left-hand side is monotone in 7, in particular this
implies that the above inequality holds at 7 = 1, and so

ZI]' {‘y - ﬁ—Sk(i)(Xn+1)| S RZCV} > a(n + 1) — 1.

i=1
Therefore,

> 1{y > s (Xa) + BV} < (1= a)(n+ 1),

i=1
meaning that y is not larger than the [(1—a)(n+1)]-th smallest value of fi_g, , (Xy41)+
REV,i=1,...,n. In other words,

y =< @;a{ﬁ—sk(i) (X”+1> + Ricv}'

An identical argument proves that

y = a?’;,a{ﬁ_sk(i) (Xn+1) - RZ‘CV}7
meaning that y must lie in the CV+ prediction interval 55}/{1(Xn+1). This com-
pletes our verification of the claim that the CV+ interval contains the cross-
conformal prediction set deterministically.
Next we give details for the coverage guarantee for the cross-conformal method,
which is implied but not stated explicitly by [Vovk et al. [2018]. Specifically, Vovk
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et al.|[2018] show that a modification of the K-fold cross-conformal method can lead
to a 1 — 2a coverage guarantee. To define the modified method, let

_ T+ Ziesk 1 {’y - //I*Sk(Xn+1>‘ < Ricv} +71 {‘y - //I*Sk(Xn‘Fl)‘ = chv}
m+1 ’

Pi(y)

where m = n/K is the number of data points in each fold (assumed to be an integer).
Plugging in the true test value Y1, we see that Py(Y, 1) is a rank-based p-value
comparing the test residual ‘Yn—i-l — fi_s, (Xn—i-l)’ of the test point against all other
residuals in the kth fold. (Here 7 ~ Unif[0, 1] corrects for discretization, so that this
p-value is uniformly distributed on [0, 1] instead of on a discrete grid.) Vovk et al.
[2018] then consider a modified cross-conformal method,

K
Amodified-cc 1
modified (Xn+1):{y€R3EZPk(y>>a}- (21)
k=1

Vovk et al| [2018] cite earlier work by Vovk and Wang| [2012, Corollary 2|, which
proves that an arithmetic means of p-values is itself a valid p-value up to a factor

of 2—that is,
1 K
P {E ; Py(Yi1) < a} < 2w

for any a € [0,1], and so the modified cross-conformal method at level « has pre-
dictive coverage at least 1 — 2a.

Now we relate the modified cross-conformal method to its original version. Plug-
ging in the definition of the p-values Py(y) and comparing with the original (un-
modified) cross-conformal predictive set , we can see that, deterministically,

K—-1
n+ K’

Cergescont(X,, ) D Omgdifiedeee (X, 1) where o = o+ (1 — a)
Since the modified cross-conformal method, run at level o, has coverage at least
1 — 2¢/, this proves that

ACI‘OSS-COH 1_ 1/K
P{Vi1 € Copn (X1} 21 =20/ 21 =20 —2(1 — a) TRAT

B.2.2 Proof of Theorem {4

This proof follows essentially the same steps as the proof of Theorem [I} Suppose
that we draw n/K — 1 additional test points, so that in total we have m = n/K
many test points, (X,11, Yni1),--+, (Xotm, Ynem). After partitioning the training
data into sets Sy, ..., Sk of size m, we define Si1 = {n+1,...,n+m}, the set of
test points.
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For any k, k" € {1,...,K + 1} with k # K, let [i_(s,.s,,) define the regression
function fitted on the training plus test data, with subsets S, and Sy removed.
Next, we define a matrix of residuals, R € R™x("+m) with entries

no {+oo, K(i) = K(j),
? ‘Y; - ﬁ*(sk(z'):sk(j))(Xi) ) k(l) 7é k(])

Define a comparison matrix A € {0, 1}+m)x(n+m) with

Aij =1 {RU > Rji},

and consider the set of “strange” points,
SA)={ie{l,....n4+m}: A>1—-a)(n+1)},
where A;q = Z?jﬂ A;;. Now we proceed as for the proof of Theorem .
e First, for Step 1, we bound the number of strange points deterministically as
|S(A)| <2a(n+m)+ (1 —2a)(m—1) —1.

e For Step 2 we see that the exchangeability of the data points implies that the
probability that the test point n +1 is strange (i.e., n+1 € S(A)) is therefore

1-K/n
bounded by 2o + ==~

e For Step 3, we see that noncoverage of the CV+ interval implies that the test
point is strange, which completes the proof of the theorem.

For Step 3, the proof that Y, 1 & ég}’ga(xnﬂ) implies that n + 1 € S(A), is
identical to the corresponding step in Theorem [I, We remark that in fact, our
argument verifies a strictly stronger statement: if Y,,,; is not contained in the K-
fold cross-conformal prediction set (with n = K, in the case of jackknife+), then the
test point is strange—this is strictly stronger because the cross-conformal prediction
set satisfies C 3% (X,4) C Cg}/{fa(){nﬂ) always.

Turning to Step 1, we now bound the number of strange points. This step is very
similar to the proof of Step 1 in the proof of Theorem [} Let s, = |S, N S(A)| be
the number of strange points in the kth fold, so that s; + -+ sy = s := |S(A)].
As before, each strange point ¢ € S(A) can lose against at most a(n + 1) — 1
other strange points. However, the difference relative to jackknife+ is that the data
points ¢ and j in the same fold (k(i) = k(j)) do not play against each other in the
“tournament” so there are two types of pairs of strange points: those that are in
different folds (writing s = |S(A)|, there are at most s - (a(n + 1) — 1) such pairs,
as in the jackknife+ proof), and those that are in the same fold (and therefore do
not play a game). Thus we have established that

@gs-(a(n—i—l)—l)jtgw.
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We can simplify the last sum as

sp(se —1) s2 — s, msy — s, m—1 _s(m—1)
275 _;kz Szk: T D S e

k k

since s < |Sk| = n/K = m for each k. Simplifying the expression above we have
therefore proved that

s<2a(n+1)+m-—-2=2a(n+m)+ (1 —2a)(m—1) —1,

as desired.

Finally, we verify Step 2. For the K-fold setting, this is a bit more subtle
than for jackknife+. This is because we cannot claim that A L AT for any
(n +m) x (n + m) permutation matrix II—indices 7, j belonging in the same fold
(k(i) = k(j)) behave differently than indices 7, in different folds (k(i) # k(7)).
However, treating the split of the training and test data into folds Sy, ..., Sk, Sk11
as fixed, we can verify that A < ITAII" for any (n+m) X (n+m) permutation matrix
IT that preserves the equivalence relation induced by the folds, i ~ j if k(i) = k(j).
Now, for any j € {1,...,n+m}, there exists such a I with II;,, = 1. Thus, as in
the proof of Theorem [1] this implies that P{n+ 1 € Z(A)} = P{j € Z(A)} for all
j €{1,...,n+m}. Therefore, combining with the result of Step 1,

2a(n+m)+ (1 —2a)(m—1)—1 <2a+1—K/n

P 1 Al < .
{n+ ES( )}_ n+m = K+1

Combining with Step 3, we have completed the proof of the coverage guarantee.

B.3 Proof of Theorem [

We will first consider an oracle leave-one-out method that, while impossible to im-
plement in practice, achieves the target 1 — a coverage rate. We will then relate the
e-inflated jackknife and 2e-inflated jackknife+ to the oracle method.

B.3.1 Oracle method

For each i = 1,...,n+ 1, let ji_; be the regression function fitted on the training
and test data with point ¢ removed, i.e.

,ZZ—i = A((Xla }/l)a sy (Xi—b }/;—1)) (Xi+l7 Y;—i—l)a sy (Xn-i-la Yn+l)> .

Note that fi_(,41) = 1, while fori = 1,...,n, g_; differs from zi_; since the test point
(Xpt1, Yoy1) is included in the regression. Consider an “oracle jackknife” method,
where we use fi_; in place of ji_;:

Cg,rgfle<Xn+1) = ﬁ(Xn-i-l) + ZI\J,Q’{RSraCle},
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where o/ = a + /v and
R?racle — }Y; o ﬁ—z(Xz)|

Next, we will confirm that this oracle method achieves 1 — o’ coverage. This fact is
based on the exchangeability of the training and test data points, and can be proved
using standard techniques from the conformal prediction literature (see, e.g., Vovk
et al. [2005], Lei et al.|[2018] for background). Writing

Rzrfile - |Yn+1 - ﬁ—(n+1)(Xn+1)| - ’Y”“ - ﬂ(X”+1)|’

we see that failure to cover, i.e., Y, 1 & Co% occurs if and only if

Rele > the [(1 — o/)(n + 1)]-th smallest value of RY™, ... RO, (22)

Now, since the training and test data are i.i.d., and the algorithm A is assumed
to be invariant to the labeling of the points , this means that the resulting
oracle residuals R{racle, .| Roracle poracle are exchangeable. In other words, the rank
of Rl among this list of oracle residuals is uniformly random. Therefore, the
probability that the event in occurs is equal to the probability that R?ffile is
not one of the smallest [(1 —«')(n+ 1)] values in the list of oracle residuals, and so

(1-a)n+1)] _
n+1 -

P{Vour ¢ Com (X)) p <1 (23)

(The first inequality cannot be replaced with an equality, due to the possibility of
ties among the residuals.)

B.3.2 Bound for the jackknife
Now we relate the oracle method back to the jackknife. We will show that
Chatme(Xni1) 2 O (Xosa)

with sufficiently high probability. To see why, suppose instead that this set inclusion
does not hold. Then by definition of CI*¢ifec(X, ), we must have

/q\rta{R%OO} te< Z]\;—,a/ {R;)racle}'

By definition of these quantiles, we can conclude that the number of indices i €
{1,...,n} with Rgracle > RLOO 4 ¢ s at least

(= a)(n+ 1] = ([0 =)+ 1] = 1) 2 Vo +1).
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Therefore,
P { Ch (X ) 2 O™ (Xoa) }

SP{Z]]-{R?MCIG > RZLOO_i_E} > \/Z(?”L—i-l)}

i=1

<P {Z L{|7-i(Xi) — ioi(X0)| > e} > Vu(n+ 1)}

* B[S 1 ([ (X)) — (X)) > )]
- \/_(n+1)

where the last step holds by Markov’s inequality. Observe also that, for every
1=1,...,n,

, (24)

_P{|M (n+1)(X +1 ) iy (Xnga)| > €}

= IP){|/~L()(n+l) Ji— ( n+1)| > E}
<v,

where the first and third step hold by definition of the various regression functions;
the second step holds since the data points are i.i.d. and so swapping the label of
point ¢ and point n + 1 does not change the distribution; and the last step holds by
applying out-of-sample stability . Therefore, returning to (24)), we have

< V.

Vr(n+1)

Combining this bound with , we have therefore proved that

P { Ol (X ) 2 O (X } <

P{Vi € Claeotec(x, )b > P{V, 0 ¢ G (X | — v
>1—ad —Vr=1-—a-2yv. (25)

B.3.3 Bound for the jackknife+

The argument for the jackknife+ proceeds similarly, except that we now compare
against the jackknife rather than the oracle—we will verify that

Ajackknife+,2 ~jackknife,e
O™ ™ (Xng1) 2 O (Xng)

holds with sufficiently high probability, where we again define o/ = a + /v.

38



Suppose that this does not hold. Then it must either fail at the upper bounds
of the intervals, i.e.,

Gl i X)) + REOOY + 26 < B(Xp1) + G o ARV + €
or at the lower bounds, i.e.,
G i(Xni1) — RYOOY = 2¢ > fi(Xpi1) — @ o { RO} — €.

In the first case, this implies that 1(X,1) > i_i(X,.1) + € for at least /v(n + 1)
many indices ¢ € {1,...,n}, while in the second case, we instead have (X, 1) <
U_i(Xny1) — € for at least /v(n + 1) many indices 7 € {1,...,n}. Combining the
two, then, we have

n,o

P {éjackknifeJr,Qe (XnJrl) z aiazélfknife,e (XTL+1)}

<P {Z]l {|ﬁ<Xn+1) - ﬁ—i(Xn—&-l)‘ > 6} > \v(n+ 1)}

i=1
< E [Z?:l 1 {}//Z(Xn-&-l) - ﬁ—i(Xn-‘rl)‘ > E}] < vn
- Vr(n+1) ~ Vr(n+1)
where we again apply Markov’s inequality and the out-of-sample stability property

just as for the jackknife proof. Combining the coverage result (with o/ in place
of a) with , we have proved that

<V, (26)

P {Yn—I—l e 6%aj;kknife+,2s(Xn+l)} Z P {Yn-i-l Qz aiz?;ljknife,%Xn_’_l)} . \/;
>[1—d —-2yv] —Vr=1-a—4/v.

B.4 Proof of Theorem

Let R = |Y; — [i(X;)| be the ith residual in the “naive” method while R} =
}Y} — //Ll(XZ)‘ is the leave-one-out residual as before. Suppose that we run jackknife
at level 1 — o/, where o/ = a++/v. Then by definition of the two methods, we have

érrzliiveQe(Xn-i-l) = //Z(Xn-i-l) + (26 + gl\nta{R?aive})

and N .
CJackknlfe,E<Xn+1) _ ﬁ(Xn—i—l) + (E + a\;a/ {RZLOO}) ]

n,ao’

We will now check that

aﬁive’Qe(XnH) 2 aﬁgfknife’e()(nﬂ)
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with sufficiently high probability. Following similar arguments as in the proof of
Theorem [5], if this does not hold, then it must be the case that

n

Z]l {R/°° > R + €} > [(1—a)(n+1)] - (((1—0/)(714—1)] —1> > \v(n+1).

i=1
By the triangle inequality, this implies that

n

Zﬂ {[A(X:) = a(X)| > e} > Vv(n+1).

=1

Therefore, by Markov’s inequality,

Amnaive,2e Ajackknife, 5
P {On,a (Xn+1) 2 Cn,o/

_E[ZL, {\<z> x>
= Vo(n+ 1) =V + 1)

where the second step applies the in-sample stability property . Therefore,

<V,

P {Yn+1 < Onalve 2€(Xn+1>} 2 P {Yn+1 S aﬂsgﬁknife’&(Xn—&—l)} - \/;
>[1—o =2V =V >1—a—-4/v,

where for the next-to-last step we apply the result of Theorem [5 (with o/ in place
of o).

B.5 Proof of Theorem [2

In this section, we will prove a stronger version of Theorem 2, and will verify that
the lower bounds on coverage hold even when we use the e-inflated versions of each
of the intervals, for any € > 0. That is, we will construct pathological examples for
which, for the naive method and for jackknife, we have

P{ i c Cnalve e( n+1)} —P {Yn+1 c aglajzkknife,e(XnJrl)} — 07
and for jackknife4+ with a < %, we have

logn

P {Yn+1 € égfgkkmfe*vﬁ(xm)} <1-2a+6

n
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B.5.1 Proof for jackknife and naive methods

First we construct a simple example for the jackknife and naive intervals. Define
the regression method A as follows: given a training sample of size n, the algorithm
returns the function

i) {O, if x = X; for any of the training points X;, i =1,...,n,
) =

(14+¢€)n, otherwise.

Now we define the data distribution on (X,Y): let X ~ N(0,1), and let Y = 0.
Then with probability 1, the values X;,..., X, 41 will be distinct. In this case, the
leave-one-out residuals will be given by

RYO = |Y; = iLy(X)| = [Yi = (14 (n = 1)| = (L + )(n— 1)

for all i = 1,...,n, yiclding a residual quantile g ,{ RF°°} = (1 +¢)(n — 1) and a
prediction interval

Clackdanife(x ) = [i(Xni1) 20 | RFOO} = (1he)nE(1+€) (n—1) = [1+¢, (14+€)(2n—1)].
Therefore, the e-inflated interval is given by
Gkt (X, 1) = [1 e+ (1+ €)(2n — 1)].
However, Y, 11 = 0 with probability 1, and so
P {yn+1 c égg;kkmfeﬁ(xnﬂ)} —0.
Similarly, for the naive method, its residuals will be given by
Rt = |Y; — i(X3)| = |Yi - 0] =0,
and so following the same argument we see that
P {Yn+1 c égfgvef(xnﬂ)} —0.

A simple calculation shows that in this example, jackknife+ interval contains 0 at
its left endpoint, and hence maintains its coverage.

B.5.2 Proof for jackknife+

Next we give the construction for the jackknife+. Our construction is similar in spirit
to the example constructed by [Vovk| [2015, Appendix A], which gives intuition for
why the leave-one-out cross-conformal predictor (described earlier in Section [2)) may
fail when the n + 1 data points are only assumed to be exchangeable (specifically,
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the data points and their residuals are chosen deterministically, and then randomly
permuted). Here our construction is more technical as we need to work in the setting
of i.i.d. data.

To give intuition we first sketch the idea. Suppose that the distribution of (X,Y)
is chosen such that, with probability ~ 2a, X is drawn from some “bad” region
where predicting Y is challenging and we consistently underestimate Y, while with
the remaining probability, X is drawn from some “good” region where predicting Y
is easy—in fact, we can do this with zero error. Now, what is the chance that Y,
is not covered by the jackknife+?7 If X, is “good”, then Y, will be covered. If
Xpa1 is “bad”, then we will have

e For approximately half of the “bad” X; (= an data points), we will have

0 < Yoi1 — B-i(Xng1) < Vi — 1-4(X5).

e For all “good” X; and for the remaining “bad” X; (in total, =~ (1 — a)n of the
data points), we will have

Yot1 — f—i(Xpg1) > Y — i—i(X;) > 0.

This will be sufficient to see that Y, is almost certainly not covered by the jack-
knife+ interval whenever X, is “bad”, i.e., with probability 2a.

Now we give the formal construction. Fix a small v > 0 and a large 7 > 0, which
we will specify later on. First, we will choose the distribution for the data. Letﬂ

X; = (A;, B;, C;) ~ Bernoulli(2a(1 — 7)) x Unif{+1} x Unif[—1, 1],

and let Y; = 7A;. Next we define the regression algorithm A as follows: given a
training sample (X;,Y;) = ((Aj, B;, Cj), Y;) indexed over j = 1,...,m, the resulting
fitted regression function i is defined as

at any point z = (a,b,c) € {0,1} x {£1} x [-1,1]. Defining B_; =[]
we therefore have

G=1,m55 70 Bj,

~

pi—i(x) = Tac- B_;

9To obtain this distribution, if the dimension is d > 3 we can take the above distribution over the
first 3 coefficients in X; and simply ignore the remaining coefficients, while if d =1 or d = 2 we
can transform the data if needed; for example if d = 1, taking X; ~ Unif[0, 1], we can use the first
k digits of X to generate a draw A; ~ Bernoulli(p) where p ~ (2a(1 — 7)) (up to 107* accuracy),
then we use the next digit of X; to draw B; ~ Unif{£1}, and finally let C; ~ Unif[—1,1] be
defined by the remaining digits of Xj.
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for each 2 = 1,...,n. Now we check that coverage is roughly 1 — 2a. We have

P {Yn+1 ¢ af’uzkknifeJr,e (Xn+1>}

>P{Y,1 > qA?Za{ﬁ—z’(XnH) + RO + et}

> P{ Vi1 > G o{i-i(Xng1) + RP°C 4+ €} and A,4q = 1}
=2a(l—~)-P {T > a\;a{TC’nHB_i + RMO0 4 6}}

= 20&(1 — ’7) -P {7' > E]\,ZQ{TCn—i-lB—i + TAZ(I — CZB_J + 6}}

= 20&(1 — ’}/) -P {Z]\;a{CnJAB,Z’ + Al(l — CZB,Z) + ;} < 1}

—20(1 - 7) -P{i]l {Cn+1B_i+Ai(1 — CB_) +§ < 1} > (1—a)(n+ 1)}.

i=1
Next we verify that this last probability is close to 1. These indicator variables are

independent conditional on Ay, ..., A,, By,..., By, Cyi1 (as they then depend only
on C; for each 7). We denote the conditional probabilities by

P, = ]P){CTH»IBfi +Az<1 — CZB,J +§ <1 ’ Al,...,An,Bl,...,Bn,CnJrl},

and calculate

1
P=1 {CnJrlei <1l- 6/7—} ’ {1’—B-6’n 1—€/T :
LBuCunidn i 4,

By Hoeffding’s inequality, we have

IP{ i 1{ConiBoi+ A1 - CiBL) + = <1}

=1

EZP’_t ’ Al"”’An’Bl7"'aBn>Cn+1} > 1—6_2t2/n7

for any ¢t > 0. Choosing t = \/”loﬂ and marginalizing, we have

P{iﬂ{CnHB_ﬂrA(l—CB_ZJr = ZP—\/MOgn}Zl—%.

i=1

Combining everything so far, we have therefore proved that

P {YnJrl Q C«\;;T(kaknife+,e(Xn+1)} 2

20(1 — 7) - (1---@{213 —,/”log" (1—a)(n+1)}>.
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Now we bound this last probability. We have

- B—icn—i-l - E/T)

> R=Y 1B < 1) (1A =0 41 =1y 22
=1 =1

- |- B..Coy —
> 1{[Chpa] < 1—€/T}~Z((1_Ai>+Ai_ 2+1 6/7’)
i—1

1+e/T & 1<
21{|Cn+1|§1—5/7}'<n_ 5 ;Ai>_§ ;AiBi

where the last step holds since A;B_;C, 1 = A;B; - (Cnﬂ H;L:1 Bj). Next, |Cpiq| <
1 — €¢/7 holds with probability 1 — €/7, while by Hoeffding’s inequality,

. 1 1
P{g A <n-2a(l—7v)+ n(;gn}21__
n

=1

]p{z
2

Putting these calculations together,

_ l+e¢/T nlogn nlogn 3
P P> (n— - 2a(1 — - > 1—¢/7—=.
(2 (oo 57 oomr o P) ) - P

After simplifying,

P{ZH >n(l—a(l+e/T)(1—7)) - \/inogn} >1—€/T— %

=1

Y

and

n

Z A; B

i=1

IN
S
|2
N
——
v
—_
|
3|

1 .
% %(”) and 7 = en (we can assume that v < 1, since

otherwise the theorem is trivial as it only claims that the coverage rate is no higher
than 1). With this choice, we calculate

& 1 4
IP{§ P— (;gn<(1—a)(n+1)} <Z,
n

1=1

and so returning to our earlier calculations we have

Now we choose v =

P{ Vo & R (X, 1)} > 20(1—9) (1 - —) > 20— 6/ &)
7 n
thus proving the theorem.
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