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Abstract

Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions

called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged

Q-balls. The soliton solutions to the resulting set of nonlinear differential equations have markedly different

properties, such as a maximal possible size and charge. Despite these differences, we discover a relation

that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from

the more easily obtained properties of global Q-balls. These results provide a new guide to understanding

gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.
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I. INTRODUCTION

Q-balls are stable nontopological solitons that can arise in theories involving complex scalars φ [1]

(for a review see Ref. [2]). In the case of global Q-balls, φ carries a conserved global charge and the

solitons are stabilized by a scalar potential that provides an attractive force [3]. Global Q-balls have

been proposed as dark matter [4, 5] due to their potential occurrence in supersymmetric models and

provide in particular a simple realization of macroscopic dark matter [6, 7].

The analytic construction of Q-balls requires solving a nonlinear differential equation. In certain

potentials, the equation can be solved exactly [8–11]. For many other cases numerical solutions can

be efficiently obtained via computer programs such as AnyBubble [12]. Recently, it was shown that

almost all aspects of global Q-balls can be understood essentially analytically, even for potentials

which are not exactly solvable [13]. Extremely accurate analytical expressions were obtained for

global Q-ball properties such as radius, charge, and energy in some non-solvable scenarios which

essentially obviate the need for numerical studies [13]. It appears that for all intents and purposes
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single-field global Q-balls are a solved problem.

The system’s complexity increases if φ is charged under a local symmetry, which leads to gauged

Q-balls [14–16]. Given the prevalence of gauge bosons in the Standard Model and its extensions,

understanding gauged Q-balls is important phenomenologically. However, they are considerably

more difficult to describe, both analytically and numerically. On the analytic side, no exactly solvable

examples are known to us. Numerical studies are made difficult by the gauge field, which appears

in the scalar potential as a field whose kinetic term has the opposite sign. This makes numerical

studies (using, for example, the ever-popular shooting method) far more tedious to implement.

In this article we extend the methods of Ref. [13] to gauged Q-balls. In so doing we reveal a close

connection between global Q-balls and gauged Q-balls. This enables us to use our understanding

of global Q-balls to analytically calculate the properties of these gauged Q-balls—such as radius,

charge, and energy. Furthermore, we find simple expressions for the scalar and gauge-field profiles

that can be used to solve the differential equations efficiently using finite-element methods. This

work paves the way for detailed phenomenological studies of these objects.

In the next section, we review global Q-balls and establish our notation. Section III introduces

gauged Q-balls and analytical approximations for the scalar and gauge field profiles. In Sec. IV we

present a method for solving the Q-ball differential equations using finite-element methods rather

than the shooting method. The novel mapping between global and gauged solutions is given in

Sec. V. The accuracy of our analytical predictions for the Q-ball profiles and observables such as

energy, mass, and radius, are established in Sec. VI. We also derive quantities of interest such as the

parametric regions of Q-ball stability before concluding in Sec. VII. A derivation of the Q-ball energy

and alternative derivation of the mapping formula is given in Appendices A and B, respectively.

II. REVIEW OF GLOBAL Q-BALLS

The Lagrangian density for a complex scalar φ

L = |∂µφ|2 − U(|φ|), (1)

enjoys an explicit global U(1) symmetry φ→ eiαφ. The conserved charge Q under this symmetry is

φ number, normalized so that Q(φ) = 1. To preserve the U(1) symmetry, we require 〈φ〉 = 0 in the

vacuum. We choose the potential energy to be zero in the vacuum by setting U(0) = 0 and enforce

that the vacuum is a stable minimum of the potential by

dU

d|φ|

∣∣∣∣
φ=0

= 0 ,
d2U

dφ dφ∗

∣∣∣∣
φ=0

= m2
φ , (2)
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where mφ is the mass of the complex scalar. In this scenario, Coleman [1] showed that nontopological

solitons, Q-balls, exist when the function U(|φ|)/|φ|2 has a minimum at 0 < φ0 <∞ such that

0 ≤

√
2U(φ0)

φ2
0

≡ ω0 < mφ . (3)

Spherical Q-ball solutions have the form

φ(t, ~x) =
φ0√

2
f(r)eiωGt , (4)

for a constant ω0 < ωG < mφ. We choose ωG to be positive, which results in a positive charge Q of

the Q-ball. It is convenient to define the dimensionless quantities

ρ ≡ r
√
m2
φ − ω2

0 , ΩG ≡
ωG√

m2
φ − ω2

0

, Ω0 ≡
ω0√

m2
φ − ω2

0

, Φ0 ≡
φ0√

m2
φ − ω2

0

. (5)

We can then write the Lagrangian as

L = 4πΦ2
0

√
m2
φ − ω2

0

∫
dρ ρ2

[
−1

2
f ′2 +

1

2
f 2Ω2

G −
U(f)

Φ2
0(m2

φ − ω2
0)2

]
, (6)

where a prime denotes a derivative with respect to ρ. The equation of motion for f is

f ′′ +
2

ρ
f ′ =

1

Φ2
0(m2

φ − ω2
0)2

dU

df
− Ω2

Gf . (7)

Q-ball solutions for f satisfy this nonlinear differential equation along with the boundary conditions

f ′(ρ→ 0) = 0 = f(ρ→∞).

As an explicit example, we consider the most generic U(1)-symmetric sextic potential studied in

Ref. [13]. This can be parametrized as

U(f) = φ2
0

(
m2
φ − ω2

0

2
f 2(1− f 2)2 +

ω2
0

2
f 2

)
. (8)

The differential equation of Eq. (7) then takes the form

f ′′ +
2

ρ
f ′ = f

(
1− κ2

G − 4f 2 + 3f 4
)
, (9)

where κ2
G ≡ Ω2

G − Ω2
0. The solutions depend on the single parameter κG ∈ (0, 1), which also

determines the (dimensionless) Q-ball radius R∗.1

For small κG, the Q-balls are large and the relation R∗(κG) can be calculated analytically at

leading order to be R∗(κG) = 1/κ2
G [13]. For these large Q-balls, the exact Q-ball profile is close to

1 The definition of R∗ is somewhat ambiguous as f transitions smoothly from its value at the center of the Q-ball to

its value outside, but a useful definition is f ′′(ρ = R∗) = 0.
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FIG. 1. The global Q-ball radius R∗ vs κG =
√

Ω2
G − Ω2

0 for the sextic potential [13] in red. The blue

dotted line shows the approximation κ2
G = 1/R∗. The region κG & 0.84 leads to unstable global Q-balls

due to E > mφQ [13].

a step function f(ρ) ' 1−Θ(ρ−R∗), this is the so-called thin wall limit [1]. As shown in Ref. [13],

an even better profile for these thin-wall Q-balls around ρ ∼ R∗ � 1 is

fT (ρ) =
1√

1 + 2e2(ρ−R∗)
. (10)

This is called the transition profile, since it describes the rapid transition from the nearly constant

f ' 1 inside the Q-ball to f ' 0 outside the Q-ball. The transition profile is actually a very good

approximation to the full profile for all ρ and even works reasonably well for smaller Q-balls [13].

We also present here a new relation for R∗(κG)

R∗(κG) =
1

κ2
G

− 1

4κG
+

3

2
− 2κG +

1

3
√

1− κ2
G

, (11)

which provides an approximation to the numerical result that is accurate to better than 2% in the

region κG < 0.84 (or R∗ & 1.5) that leads to stable Q-balls (i.e. Q-balls with E < mφQ). This

relation can be used to produce extremely accurate expressions of the global Q-ball’s energy and

charge as a function of radius using the expressions in Ref. [13].

III. GAUGED Q-BALLS

Gauged Q-balls result from promoting the global U(1) symmetry to a local symmetry. The

Lagrangian density is

L = |Dµφ|2 − U(|φ|)− 1

4
FµνF

µν , (12)
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where Dµ = ∂µ− ieAµ is the gauge covariant derivative and Fµν = ∂µAν − ∂νAµ is the field-strength

tensor. The parameter e is the gauge coupling normalized so that φ has charge one. After making

the static charge ansatz [14]

φ(t, ~x) =
φ0√

2
f(r)eiωt , A0(t, ~x) = A0(r) , Ai(t, ~x) = 0 , (13)

and defining dimensionless quantities

Ω ≡ ω√
m2
φ − ω2

0

, A(ρ) ≡ A0(ρ)

φ0

, α ≡ eΦ0 , κ2 ≡ Ω2 − Ω2
0 , (14)

we rewrite the Lagrangian as

L = 4πΦ2
0

√
m2
φ − ω2

0

∫
dρ ρ2

{
−1

2
f ′2 +

1

2
A′2 +

1

2
f 2 (Ω− αA)2 − U(f)

Φ2
0(m2

φ − ω2
0)2

}
. (15)

This has the form of two scalar fields under the influence of the potential

V (f, A) =
1

2
f 2 (Ω− αA)2 − U(f)

Φ2
0(m2

φ − ω2
0)2

. (16)

However, it is important to notice that in this analogy the A field’s kinetic term has the wrong sign.

The two equations of motion

f ′′ +
2

ρ
f ′ = −∂V

∂f
=

1

Φ2
0(m2

φ − ω2
0)2

dU

df
− (Ω− αA)2 f , (17)

A′′ +
2

ρ
A′ = +

∂V

∂A
= αf 2(Aα− Ω) , (18)

are to be solved subject to the boundary conditions

lim
ρ→0

f ′ = lim
ρ→∞

f = lim
ρ→0

A′ = lim
ρ→∞

A = 0 . (19)

In the analogy of two fields moving in the potential V , ρ becomes a time coordinate and the terms

with an explicit 1/ρ can be interpreted as time-dependent friction terms. As shown below, this

analogy greatly aids our understanding of the Q-ball solutions.

The scalar frequency ω is restricted to the region ω0 < ω ≤ mφ; this is similar to the global Q-ball

case, except that it is possible to have gauged Q-balls with ω = mφ (or κ = 1) [15], where no global

Q-balls exist. In section VI we show that a stronger lower bound on ω exists.

The conserved charge Q is defined in the usual way as the integral over the time component of

the scalar current [14]

Q = 4πΦ2
0

∫
dρ ρ2f 2 (Ω− αA) (20)

= −4πΦ2
0

α
lim
ρ→∞

ρ2A′ , (21)
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where the second line uses Eq. (18) and integration by parts. This implies that for large ρ,

A =
αQ

4πΦ2
0 ρ
, (22)

up to corrections that fall off faster than 1/ρ [14]. The gauged Q-ball energy E is obtained from the

Hamiltonian

E/
√
m2
φ − ω2

0 = 4πΦ2
0

∫
dρ ρ2

{
1

2
f ′2 +

1

2
A′2 +

1

2
f 2 (Ω− αA)2 +

U(f)

Φ2
0(m2

φ − ω2
0)2

}
(23)

= ΩQ+
4πΦ2

0

3

∫
dρ ρ2

(
f ′2 − A′2

)
. (24)

The second expression corrects a typo in Ref. [14] and is derived in App. A. The energy and charge

also satisfy the non-trivial differential equation [17]

dE

dω
= ω

dQ

dω
. (25)

This is a powerful relation among the Q-ball observables and, in particular, allows ω to be interpreted

as the chemical potential.

For concreteness we restrict most of our discussion to the sextic scalar potential of Eq. (8),

although we expect our results to be qualitatively applicable to a far larger class of potentials. Just

like in the global case we only study ground-state Q-balls, which have no nodes; excited gauged

Q-balls in the same potential have been discussed in Ref. [18].

IV. NUMERICAL METHODS

While the shooting method is quite successful for global Q-balls [1], the addition of the gauge

field makes finding a solution using this method tedious, especially for large Q-balls. We avoid this

by changing coordinates and solving the boundary value problem directly. A similar approach was

employed in Ref. [19].

In order to enforce the boundary conditions at ρ =∞ we switch to a compactified coordinate y,

y =
ρ

1 + ρ/a
, (26)

where a is a positive constant. The value of a makes no real difference in obtaining numerical

solutions. However, choosing a much larger than the Q-ball radius ensures that the most drastic

compactification effects occur outside the Q-ball. Clearly, y takes values y ∈ [0, a] and so we can

require the conditions f(a) = 0 and A(a) = 0. The derivatives become

d

dρ
=

dy

dρ

d

dy
=
(

1− y

a

)2 d

dy
, (27)
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so the boundary conditions at y = 0 are f ′(0) = 0 and A′(0) = 0 where primes denote a derivative

with respect to y. The set of equations(
1− y

a

)4
(
f ′′ +

2

y
f ′
)

+ f
(
κ2 + αA(αA− 2Ω)− 1 + 4f 2 − 3f 4

)
= 0 , (28)(

1− y

a

)4
(
A′′ +

2

y
A′
)
− αf 2 (αA− Ω) = 0 , (29)

can then be solved by finite element methods, using Mathematica’s [20] routines for instance, and

quickly converges to the exact solution if the initial guess is reasonably accurate. In the next section

we present a method for finding analytical test functions for f and A that are close to the exact

solutions. These can be successfully used as initial seed functions for this method.

V. MAPPING GLOBAL Q-BALLS TO GAUGED Q-BALLS

Much of the Q-ball profile can be understood by comparing it to the motion of a particle moving

in the potential of Eq. (16)

V (f, A) =
1

2
f 2
[
κ2 + αA(αA− 2Ω)−

(
1− f 2

)2
]
. (30)

For constant A the potential in f ≥ 0 has three extrema, one at f = 0 and the other two at

f 2
± =

1

3

(
2±

√
1 + 3κ2 − 3αA(2Ω− αA)

)
, (31)

f+ being a maximum and f− a minimum.

For global Q-balls, the second term in V (f, 0) vanishes; the scalar field starts close to the top

of the potential at f ≈ f+(A = 0). Eventually, the scalar rolls off and transitions to the second

maximum at f = 0. Figure 2 gives an example global profile (blue curve of the left panel) along with

the potential that determines its dynamics (right panel). Black points on the potential mark values

of integer ρ, and illustrate that the field is nearly constant until ρ ≈ 20, after which the field rolls

quickly. The initial location of the field profile on the potential was found in Ref. [13] by matching

the energy gap between the initial and final maxima to the loss of energy due to the friction-like

term in the equation of motion.

Similar arguments apply to gauged Q-balls. The primary difference between the global and gauged

cases is that the evolving gauge field A causes the effective potential for the scalar to change with

ρ, see the left panel of Fig. 3. The gauge field evolution changes the location and height of the

second maximum at f+, and the scalar continues to follow this maximum until a certain point when

it transitions quickly to the other maximum at f = 0. Of course, this can only occur when f+ exists,
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FIG. 2. Left: Profiles for global fG and gauged f, αA Q-balls corresponding to R∗ ≈ 22. Right: Effective

potential for the global Q-ball. Black points indicate the value of fG for integer values of ρ ∈ [0, 30].

so the requirement that Eq. (31) is real implies

1

3
+ κ2 ≥ αA(2Ω− αA) . (32)

Notice that this condition is trivially satisfied in the global case, i.e. for α → 0, but in the gauged

case restricts αA to two possible regions:

αA ≤ Ω−
√

Ω2
0 −

1

3
or αA ≥ Ω +

√
Ω2

0 −
1

3
. (33)

As shown below, the second inequality in Eq. (33) is not compatible with Q-ball solutions, leaving

us with an upper bound on αA when Ω0 ≥ 1/
√

3.

As with the global case, we can determine the initial values of the fields by energy considerations.

Neglecting the friction terms, we can write the equations of motion as

f ′′ +
∂V

∂f
= 0, A′′ − ∂V

∂A
= 0 . (34)

This means that the quantity

E =
1

2
f ′2 − 1

2
A′2 + V (f, A) , (35)

is conserved as a function of ρ:

dE
dρ

= f ′
(
f ′′ +

∂V

∂f

)
− A′

(
A′′ − ∂V

∂A

)
= 0 . (36)

Of course, when the friction is included this quantity is not conserved and we immediately find that

dE
dρ

= −2

ρ

(
f ′2 − A′2

)
. (37)
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FIG. 3. Black points indicate the values of the gauged Q-ball profiles for integer values of ρ ∈ [0, 30]. Left:

Effective potentials for f given for specific values of A(ρ). Right: Contour plot of the potential V as a

function of f and αA.

This justifies our interpretation of the term on the right hand side of the equation as a friction.

For constant f , the potential for A has one extremum at

Amax =
Ω

α
. (38)

Again, Eqs. (24) and (37) indicate that f ′ and A′ affect the energy differently. The f profile behaves

according to our usual intuition, but the A kinetic term has the opposite sign. Consequently, as

Eq. (38) is a minimum in V , the dynamics of the system drive A uphill either toward A = 0 or

A → ∞. If A is larger than Amax it diverges as ρ → ∞, which clearly does not satisfy the Q-ball

boundary conditions. This implies that for Q-ball solutions Ω−αA > 0, which has two consequences:

First, because the right-hand side of the A equation of motion

A′′ +
2

ρ
A′ = −αf 2(Ω− Aα) , (39)

is always negative, A is monotonically decreasing for Q-ball solutions [14]. Second, as the system

evolves the negative term under the square-root in Eq. (31) becomes smaller so the value of f+ grows.

For some solutions, such as the one shown in Fig. 3, the “force” from the A gradient pushes f uphill

toward this growing f+.

While the gauge field does affect the total Q-ball dynamics, it seems to play a relatively minor role

when f transitions from near one to near zero. This observation suggests a relationship between the
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global Q-ball solutions and gauged Q-ball solutions. To explore this, we need analytic expressions for

A and f . Beginning at the thin-wall limit, we approximate f by a step function, f(ρ) = 1−Θ(ρ−R∗)

and then solve the equation of motion Eq. (18) for A. By demanding that A(ρ) and its derivative

be continuous at ρ = R∗ one finds [14]

A(ρ) =
Ω

α


1− sinh (αρ)

cosh (αR∗)αρ
, ρ < R∗ ,

αR∗ − tanh (αR∗)

αρ
, ρ ≥ R∗ .

(40)

Remarkably, this result is a good approximation to the exact gauge field solution even beyond the

thin-wall regime.

This result indicates that the derivative of αA is small if the Q-ball radius R∗ is large:

|αA′(R∗)| = Ω

R∗

∣∣∣∣tanh(αR∗)− αR∗

αR∗

∣∣∣∣ < Ω

R∗
, (41)

which implies that αA is essentially constant over the transition. We can then refine our analysis of

the scalar profile by solving the f equation of motion around ρ ∼ R∗ with a constant A:

f ′′ +
2

ρ
f ′ =

1

Φ2
0(m2

φ − ω2
0)2

dU

df
− [Ω− αA(R∗)]2 f . (42)

Equation (42) is exactly the form of the equation for the global Q-ball Eq. (7) with the global value

of ΩG given by

ΩG = Ω− αA(R∗) . (43)

Since the derivative of αA is small, it does not contribute significantly to the friction over the

transition region. This means that the frictional effects over the transition are also nearly identical

to the global case. Since the relation between ΩG and R∗ is determined by the friction, if the R∗

dependence of the global Q-ball parameter ΩG(R∗) is known, we can determine the R∗ dependence

of the gauged Q-ball Ω(R∗) via

Ω(R∗) = ΩG(R∗)αR∗ coth(αR∗) , (44)

where we have used Eq. (43) and the thin-wall formula of Eq. (40) for A(R∗).

Equation (44) is the key result of our article. It provides a mapping from global Q-balls—for

which the relation ΩG(R∗) is much easier to obtain both analytically and numerically—and gauged

Q-balls with any α. Furthermore, the scalar transition profiles for the gauged Q-balls are expected

to be identical to the transition profiles for the corresponding global Q-balls (Eq. (10)). As we now

show, this rather simple argument leads to accurate analytic descriptions of gauged Q-balls.
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FIG. 4. Profiles for the scalar field and gauge field for a thick-wall (left) Q-ball and a thin-wall (right) Q-

ball. The exact numerical results are denoted by the solid lines, while the thin-wall analytic approximation

is given by the dashed lines.

VI. RESULTS

We can now use these results to construct an analytical estimate for the Q-ball profile. The

mapping in Eq. (44) provides the radius of the gauged Q-ball given the known relationship ΩG(R∗)

from the global Q-ball (Eq. 11). The scalar profile f(ρ) is taken to be the transition profile of global

Q-balls (Eq. (10)); this is well motivated around ρ ∼ R∗ for large R∗ but happens to be a very good

approximation for all other cases as well. Finally, the gauge profile A(ρ) is taken from Eq. (40). We

can also use this analytical profile to find approximations for Q (via Eq. (20)) and E (via Eq. (24));

since the resulting expressions are lengthy we do not show them here.

These profiles serve as excellent seed functions for the numerical solution of the differential equa-

tions described in Sec. IV. Figure 4 shows a comparison between the numerical calculations and

our analytical estimates for one choice of parameters. Note that the two solutions in Fig. 4 have

the same potential parameters and scalar frequency ω, but differ in their Q-ball observables such

as radius, charge, and energy. These two solutions correspond to the two solutions for R∗ obtained

from the mapping in Eq. (44). As the plot illustrates, the analytical profiles for f and A match the

numerical results remarkably well, especially for the large Q-balls (right panel).

We now discuss the Q-ball observables for the benchmark point Ω0 = 5 and α = 1/100; we set

φ0 = mφ throughout and measure all dimensional quantities in units of mφ. The results for this

benchmark are shown in Fig. 5. In the top left panel, the numerical results for κ vs. R∗ (circles) are

compared with the prediction obtained from Eq. (44) (line). The other panels show the analogous
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FIG. 5. A comparison of predictions from Eq. (44) and numerical solutions for a sample benchmark

Ω0 = 5, α = 0.01, φ0 = mφ. Predicted stable and unstable solutions are shown as solid and dashed lines,

respectively, and stable and unstable numerical solutions are shown as filled and open points, respectively.

The gray dotted line shows the global Q-ball case. The rectangle shows the largest numerical solution.

results for E/mφ, Q, and (E/mφQ). Overall, there is excellent agreement between the numerical

and analytical results.

There are a number of features that restrict the allowable Q-ball solutions. First, we must have

ω ≤ mφ (or κ ≤ 1) in order for the Q-ball solution to relax to zero for large ρ. This typically2 implies

a maximum Q-ball radius. Secondly, we must have E ≤ mφQ so that the Q-ball is stable against

decay to scalars. This constraint is most easily seen in the top right panel of Fig. 5, and implies

the existence of a minimal Q-ball radius. We have shown this second instability by representing

our prediction by a dashed line in the unstable region. The numerical solutions show the same

instability; we have represented the last stable solution (the stable solution with smallest R∗) as a

star.

2 The functional form of ΩG(R∗) depends on the scalar potential. Equation (44) implies that ΩG(R∗) must fall off

faster than 1/R∗ at large R∗ in order to construct gauged Q-balls without a maximal radius. We are not aware of

such potentials and global Q-balls in the literature.
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Finally, we must impose the constraint of Eq. (33) that demands that the scalar potential have

a second maximum away from f = 0. This puts an upper bound on the radius which, for this

benchmark, is more restrictive than the maximal radius determined by the relation ω ≤ mφ. Using

Eq. (33) with A = A(0) from our thin-wall expression Eq. (40), we can calculate this maximal radius

R∗max and impose this constraint on our analytical prediction shown in the figure, ending the solid line

before κ = 1 . Since the thin-wall A(0) overestimates the true value, our maximal radius is slightly

smaller than the true maximal radius (indicated by a rectangle in the plot), but the agreement is

still good.

One interesting feature in the κ vs. R∗ plot is the existence of a minimum allowed value of κ. An

analytic expression for this minimum value can be obtained; since this minimum value must be less

than or equal to one for Q-balls to exist, we find the constraint

α .
1√

1/(0.58)2 + 9Ω2
0/2

. (45)

In particular, this predicts that there are no gauged Q-balls with α > 0.58. Numerically, we find that

the actual upper limit for α is 0.52, in quantitative agreement with the above mapping derivation.

Note that it was pointed out in Ref. [14] that for any scalar potential (and its implied attractive

force) there must be an upper bound on the allowed gauge coupling (and its implied repulsive force)

in order to form a stable Q-ball.

The lower panels of Fig. 5 show the behavior of Q and E as a function of R∗. They inherit both

a minimal and a maximal value from the corresponding radius. Our analytical predictions match

the numerical results on the (phenomenologically interesting) stable Q-ball branch.

We compare the analytical and numerical data for several other benchmarks in Fig. 6. Our

predictions show only small deviations with respect to the numerical results for all benchmarks.

This illustrates that the mapping in Eq. (44) holds qualitatively and quantitatively over the whole

parameter space.

For these benchmarks, R∗max is set by the condition κ = 1 rather than by Eq. (33). Using Eq. (44)

and the large-R∗ relation κG = 1/
√
R∗ [13] we find

α2R∗max(1 + R∗maxΩ2
0) coth2(R∗maxα)− Ω2

0 = 1 . (46)

This equation cannot be solved analytically, but has the limiting cases:

R∗max '


1
α2 , for Ω0 . α ,

1
αΩ0

, for Ω0 � α .
(47)
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FIG. 6. A comparison of predictions from Eq. (44) and numerical solutions for benchmarks Ω0 = 0, α = 0.1

(left, blue), Ω0 = 1, α = 0.1 (left, orange). Ω0 = 0, α = 0.4 (right, green) and Ω0 = 1, α = 0.2 (right, red).

Conventions are as in Fig. 5.

Since both charge and energy grow with R∗ for large radii, this R∗max also implies a maximal Q-

ball charge and energy for a given set of potential parameters. This qualitative claim was made in

Ref. [14], but here we provide easy-to-use quantitative predictions.

We also note that in the limiting situation of large R∗, the expressions for charge and energy
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simplify to

Q =
4π

α2
Φ2

0 (αR∗ coth(αR∗)− 1)

√
R∗2Ω2

0 +R∗ , (48)

E =
πmφR

∗Φ2
0csch2(αR∗)

6α
√

Ω2
0 + 1

[
αR∗

(
4R∗Ω2

0 + 3
)
− 6

(
R∗Ω2

0 + 1
)

sinh(2αR∗)

+αR∗
(
8R∗Ω2

0 + 9
)

cosh(2αR∗)
]
, (49)

as derived in App. B. These are more approximate than the full integrals used in our figures, but

are significantly more manageable and still make excellent predictions at large R∗.

Using our analytical approximations together with numerical results, we can show that stable

gauged Q-balls have R∗ & 1.5, which is similar to the lower limit found for global Q-balls [13]. This

matches the physical expectation that the introduction of a repulsive force to a Q-ball should not

decrease the Q-ball radius.

We note that for Ω0 = 0, the scalar profile is found to be essentially constant in the interior of

thin-wall Q-balls (Fig. 4, right), and our approximations become more accurate, especially for small

α, where the solutions approach the global Q-ball case. For larger Ω0, the solutions deviate from

the global case (Fig. 2, left), but our results remain accurate. It would be interesting to explore the

dependence on Ω0 further; we leave this to future work.

VII. CONCLUSION

Global Q-balls are curious objects that arise in certain U(1)-symmetric scalar field theories and

can be studied analytically and numerically with relative ease. Promoting the U(1) symmetry to

a gauge symmetry complicates the discussion significantly and has eluded analytical descriptions

outside of some limiting cases.

In this article we have exhibited a method to obtain essentially all properties of gauged Q-balls

via a mapping from global Q-balls. Since the latter can be easily obtained numerically and often

even analytically, this mapping allows for an excellent prediction of the gauged Q-ball properties

without the need to solve the coupled, nonlinear differential equations. Our analytical expressions

also make possible the solution of the differential equations by finite-element methods rather than

the shooting method.

Finally, we stress that our analytical approximations are best in the thin-wall or large-radius

limit. Smaller Q-balls show larger deviations, but these are also the Q-balls that are easiest to study

numerically, providing good complementarity. Importantly, our analytical approximations also serve
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as good seed functions for numerical finite-element methods, significantly simplifying the numerical

study of thick-wall gauged Q-balls.
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Appendix A: Energy of Gauged Q-Balls

In this appendix we derive the form of the energy given in Eq (24). We begin with the Lagrangian

and rescale the radial coordinate ρ→ χρ. This yields

L = 4πΦ2
0

√
m2
φ − ω2

0

∫
dρ ρ2χ

[
−1

2
f ′2 +

1

2
A′2 + χ2V (f, A)

]
, (A1)

where V (f, A) is defined in Eq. (16). We now consider the variation of the Lagrangian with respect

to χ and then set χ = 1. The variation has two parts, first the explicit dependence on χ and second

the variation that appears because functions now depend on χ, f(ρ)→ f(ρχ). This second collection

of terms, with χ then set to one, is simply the usual variation of the Lagrangian, and so vanishes by

definition. Requiring the other term in the variation to also vanish yields the constraint

0 =

∫
dρ ρ2

[
−1

2
f ′2 +

1

2
A′2 + 3V (f, A)

]
. (A2)

We can use this constraint to remove the explicit dependence on U(f) from the energy in Eq. (23):

E =4πΦ2
0

√
m2
φ − ω2

0

∫
dρ ρ2

[
1

3
f ′2 +

2

3
A′2 + f 2(αA− Ω)2

]
=4πΦ2

0

√
m2
φ − ω2

0

∫
dρ ρ2

[
1

3
f ′2 +

2

3
A′2 +

1

αρ2
(αA− Ω)

(
ρ2A′

)′]
, (A3)

where in the last line we have used the A equation of motion in (18). The third term is then

integrated by parts to produce

E√
m2
φ − ω2

0

=ΩQ+
4πΦ2

0

3

∫
dρ ρ2

(
f ′2 − A′2

)
. (A4)

This result is useful in that it only depends on the change in f and A. Alternatively, the form

E√
m2
φ − ω2

0

= ΩQ+ 8πΦ2
0

∫
dρ ρ2V (f, A) , (A5)

can also be used to determine the energy without any use of the derivatives of f and A.
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Appendix B: An Alternative Mapping Derivation

As an alternative to the derivation of the mapping equation (44) in Sec. V we provide here a

derivation in the thin-wall limit, i.e. for large R∗. For this we consider the simplest thin-wall ansatz

for the profiles [14], where f is a step function, f(ρ) ' 1 − Θ(ρ − R∗), and A is given by Eq. (40).

We can easily integrate these functions to obtain the charge Q [14],

Q =
4πΩΦ2

0

α3
(αR∗ − tanh(αR∗)) , (B1)

and the energy [Eq. (24)],

E = ωQ+
πφ2

0

3
√
m2
φ − ω2

0

R∗2 − 4πφ2
0

3
√
m2
φ − ω2

0

Ω2
(
αR∗

(
sech2(αR∗) + 2

)
− 3 tanh(αR∗)

)
2α3

, (B2)

using the results from Ref. [13] to properly integrate over the discontinuous f ′2. Notice that the last

term in E goes to zero for α→ 0, leading back to the global case. Now we can use the equation (25)

in the form dE/dR∗ = ω(R∗)dQ/dR∗ to obtain – and solve – a differential equation for ω(R∗),

yielding

ω(R∗) = coth(αR∗)
√
cR∗2 + α2(m2

φ − ω2
0)R∗ . (B3)

Here, c is an integration constant that is difficult to obtain, but we can get c = α2ω2
0 +O(α3) from

matching to the global case κ2 ' 1/R∗ (valid roughly for R∗ > 2). This gives us

ω(R∗) = αR∗ coth(αR∗)

√
ω2

0 +
m2
φ − ω2

0

R∗
, (B4)

which is identical to the more general mapping formula in Eq. (44) in the large R∗ limit due to

ωG '
√
ω2

0 +
m2
φ−ω

2
0

R∗ [13].
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