
Abstract—We consider an LTE downlink scheduling system
where a base station allocates resource blocks (RBs) to users
running delay-sensitive applications. We aim to find a scheduling
policy that minimizes the queuing delay experienced by the users.
We formulate this problem as a Markov Decision Process (MDP)
that integrates the channel quality indicator (CQI) of each user
in each RB, and queue status of each user. To solve this complex
problem involving high dimensional state and action spaces,
we propose a Deep Reinforcement Learning based scheduling
framework that utilizes the Deep Deterministic Policy Gradient
(DDPG) algorithm to minimize the queuing delay experienced
by the users. Our extensive experiments demonstrate that our
approach outperforms state-of-the-art benchmarks in terms of
average throughput, queuing delay, and fairness, achieving up to
55% lower queuing delay than the best benchmark.

I. INTRODUCTION

The rise of Internet based multimedia applications has
massively driven the evolution of cellular networks [1–3].
Many such applications have stringent quality-of-service (QoS)
requirements, such as low latency and high throughput. The
Long Term Evolution (LTE) specifications introduced by 3GPP
[4] have served as a guideline to address these requirements.
With an increasing number of such applications and tightening
QoS requirements, a common characteristic in 4G/5G networks,
it is imperative for any scheduling framework to make fast
(sub-millisecond) and accurate scheduling decisions, and fairly
allocate the available resources. Therein lies a need to study
such resource allocation algorithms.

We study an LTE downlink scheduling system, illustrated
in Figure 1, where a Deep Reinforcement Learning (RL)
algorithm is employed at the base station (BS) to allocate
resources to minimize the sum-delay experienced by the users.
We assume data arrivals and channel dynamics to be unknown
to the users and the scheduler. Our contributions are as follows:
• We formulate the LTE downlink scheduling problem as a

Markov Decision Process (MDP).
• We utilize the Deep Deterministic Policy Gradient

(DDPG) algorithm to learn an optimal scheduling policy
that minimizes the users’ sum-delay. After extensive of-
fline training, the resulting policy can make near-optimal
scheduling decisions in 210 – 370 µs.

• We show using extensive simulation results that the
proposed Deep RL based resource allocation algorithm
outperforms state-of-the-art benchmark algorithms across
diverse performance metrics.

The work of N. Sharma and N. Mastronarde was supported in part by the
National Science Foundation (NSF) under Award ECCS-1711335. The work of

The rest of the paper is organized as follows. We review
related work in Section II, present our LTE system model
in Section III, formulate our delay minimization problem in
Section IV, describe our proposed DDPG-based algorithm in
Section V, present our numerical results in Section VI, and
present the conclusions of this research in Section VII.

Scheduler

𝜆!

𝜆"
𝜆#

𝑈𝐸!

𝑈𝐸"

𝑈𝐸#

𝑏$

𝑎!
𝑎"

𝑎#

Fig. 1: System Model. λi, bi, and ai represent the arrival rate,
buffer status, and allocated bits, respectively, for UE i.

II. RELATED WORK

In practical networks, the stochastic processes governing the
channel dynamics and data arrivals are unknown a priori. This
drives the need for learning scheduling policies. In this regard,
RL [5, 6] is a widely used tool. In traditional communications
scenarios, RL is often used where the dynamics of the system
are unknown, with Q-learning [7] being the most widely used
RL technique. For instance, in [8], Blasco et al. propose using
Q-learning to maximize the throughput of an energy harvesting
transmitter. In their work, Tabrizi et al. [9], use Q-learning to
develop an algorithm for making dynamic handoff decisions,
which learns the optimal handoff policy from the user’s past
experience and performs close to an optimal oracle algorithm.
Other studies use function approximation and Bayesian RL
techniques to develop algorithms for minimizing the queuing
delay, and maximizing the throughput, respectively [10–12].

This growing push towards RL systems has been supported
by advances in deep neural networks, which are shown to be
universal function approximators [13]. RL techniques taking
advantage of these advances are collectively known as Deep
RL. Among Deep RL techniques, the most popular is the
Deep Q-Network (DQN) [14], which has been used in various
wireless communications applications [15]. Challita et al. [16]
use DQN for proactive resource allocation in small BSs and
show that the proposed approach permits achieving a mixed-
strategy Nash equilibrium. The authors in [17] use DQN with
a Long Short-Term Memory (LSTM) neural network to reduce
the latency in uplink scheduling in Mission Critical Devices,
and show that their approach performs competitively against a
conventional Q-learning based latency-minimizing approach.

J. Chakareski was supported in part by the NSF under Awards CCF-1528030, 
ECCS-1711592, CNS-1836909, and CNS-1821875.

Deep Reinforcement Learning for Delay-Sensitive LTE Downlink Scheduling

Nikhilesh Sharma∗, Sen Zhang∗, Someshwar Rao Somayajula Venkata∗, Filippo Malandra∗,
Nicholas Mastronarde∗, and Jacob Chakareski†

∗Dept. Electrical Engineering, U. Buffalo, †Ying Wu College of Computing, New Jersey Institute of Technology



eNB
User

Equipment
(UE)

fuplink
bandwidth

downlink
bandwidth

t

0.5 ms

180 kHz 180 kHz
Physical Res. Block (PRB)

Resource Block (RB)

Fig. 2: LTE Resource Grid.
While DQN works well with problems involving high-

dimensional observation spaces, it can only handle low-
dimensional and small action spaces. This makes it infeasible
for problems characterized by either high-dimensional action
spaces, or by a large number of actions, such as the one we
consider. Due to these shortcomings, we consider the DDPG
algorithm [18] whose Actor-Critic based framework makes
it suitable for problems involving continuous or large action
spaces, such as the LTE downlink scheduling problem.

III. LTE SYSTEM MODEL

An LTE downlink employs Orthogonal Frequency Division
Multiplexing (OFDM) together with advanced antenna tech-
niques and Adaptive Modulation and Coding (AMC) to achieve
better spectral efficiency, enabling the User Equipments (UEs)
to transmit more data at lower cost per bit. OFDM is a multi-
carrier transmission scheme providing benefits of robustness
against frequency selective fading. The available bandwidth is
divided into multiple narrow sub-carriers and data is transmitted
on these sub-carriers in parallel streams. Each sub-carrier can
possibly use a different modulation scheme, ranging from
BPSK to 64-QAM.

A. LTE Resource Allocation

Resource allocation in LTE is done jointly across the
time/frequency domains. In the time-domain, the downlink
channels are divided into Frames of 10 ms each. Each frame
further consists of 10 Subframes of 1 ms each. Each subframe
interval is referred to as a Transmission Time Interval (TTI).

In the frequency domain, the total available system band-
width is divided into sub-channels of 180 kHz, with each sub-
channel comprising 12 equally spaced sub-carriers of 15 kHz
each. A time-frequency radio resource spanning over a 0.5 ms
slot in the time domain and a 180 kHz sub-channel in the
frequency domain is called a Resource Block (RB). Each RB
carries OFDM symbols and the number of symbols per RB
depends on the used cyclic prefix. The number of resource
blocks in the available bandwidth is called the Resource Grid,
as shown in Fig. 2. The number of RBs in a resource grid
depends on the bandwidth, with RBs ranging from 6 to 100
for bandwidth values between 1.4 MHz and 20 MHz.

B. LTE Downlink Scheduling Framework
Multi-user scheduling is one of the main features in LTE sys-

tems, which works by distributing available resources among
active users in order to satisfy their QoS requirements.

Since the data channel is shared among users, portions of the
spectrum should be distributed every TTI (smallest unit in time
domain which can be allocated to UEs) among them. Packet
schedulers are deployed at the BS or Evolved NodeB (eNB)
and work with a granularity of one TTI and one RB in the
time and frequency domains, respectively.

Resource allocation for each UE is usually based on a
comparison of per-RB metrics. For every decision interval, the
k-th RB is allocated to the i-th user if the value of its metric
mi,k is the largest one, i.e., if it satisfies,

mi,k = maxj {mj,k} . (1)

These metrics denote the transmission priority of each user on
a specific RB. There are various parameters on which to base
the transmission priority, such as:
• Channel Quality: Reported Channel Quality Indicator

(CQI) values can be used to allocate resources to users
experiencing better channel conditions

• Resource Allocation History: Information about the past
achieved performance can be used to improve fairness

• Queue status: Status of transmission queues.

C. Considered System Model
We consider an LTE downlink scheduling model, illustrated

in Fig. 1, in which a base station allocates M RBs to N request-
ing UEs. The UEs are assumed to be running delay-sensitive
multimedia applications and the BS allocates resources every
TTI. The BS monitors the buffer status of all UEs and the
channel fading state in each RB, and decides what RBs should
be assigned to which UEs. The scheduler then schedules the
transmission of ai ∈ A bits from the i-th UE, determined by
the Transport Block Size (TBS) table [4].

Channel Model: We consider an Urban Macro (UMa)
pathloss model as defined in [4]. The pathloss experienced by
the UE at a distance d from the BS is given by,

PL(d) = 128.1 + 37.6× log10(d), (2)

The channel state of UE i in RB k at time t, characterized by
its Signal to Interference plus Noise Ratio (SINR), is denoted
by htik ∈ Sh. The combined channel state of UE i in all RBs
is given by the vector hti = (hti1, . . . , h

t
iM ) ∈ SMh , and the

combined state of all UEs in all RBs is given by the matrix Ht.
Each channel is also assumed to undergo log-normal fading.
Note that we ultimately map the SINR of each channel to a
4-bit CQI, which in turn maps to a modulation and coding
scheme (MCS) using LTE’s CQI table.

Buffer Model: The i-th UE’s data buffer status at time
t is denoted by bti ∈ Sb = {0, 1, ...} (bits). The combined
buffer state of all UEs at time t is given by the vector
bt = (bt1, . . . , b

t
N ) ∈ SNb . We assume that new data arrivals are

independently and identically distributed (i.i.d.). The average



arrival rate of the i-th UE is denoted by λi (bits/s), new bits
arriving in time slot t are denoted by lti , and the UE’s buffer
state in time slot t + 1 is given by the following Lindley’s
recursive equation,

bt+1
i = max

(
bti − ati(bt,Ht), 0

)
+ lti , (3)

where ati(b
t,Ht) denotes the number of bits scheduled for

transmission using the TBS table. Given its arrival distribution
P li and the scheduling action ai, the probability that UE i
transitions from buffer state bi to b′i is,

P bi (b′i|bi, ai) = El
[
I{b′i=max(bi−ai,0)+li}

]
, (4)

where I{} is an indicator function that is set to 1 when {·}
is true, and is set to 0 otherwise. UE i’s state is denoted by
si , (bi, hi) ∈ Si = Sb × SMh and the system state by s =
(s1, . . . , sN ) ∈ ΠN

i=1Si.

IV. PROBLEM FORMULATION

Let π : S → A denote a policy that maps states to scheduling
actions. The objective of the LTE downlink scheduling problem
is to determine the optimal policy π∗ that minimizes the average
sum of queuing delays (sum-delay) across the UEs. Since the
scheduling decisions at the current time affect the present and
future delays experienced by the UEs, we formulate the delay-
sensitive LTE downlink scheduling problem as a MDP [19].

We define a buffer cost to penalize large queue backlogs.
Formally, we define UE i’s buffer cost in time slot t given its
state sti and the scheduling action ati as the change in its buffer
state from time t to t+ 1: i.e.,

cti(s
t
i, a

t
i) =

[
max

(
bti − ati, 0

)
+ lti

]
− bti, (5)

where the term in square brackets is equal to bt+1
i from (3).

Based on the arguments in [20, Section II.C], minimizing the
long-term average of (5) is equivalent to minimizing the UE’s
delay. We define the total cost incurred in time slot t as the
sum of costs incurred by the UEs: i.e.,

ct(st, at) =
∑N

i=1
cti(s

t
i, a

t
i), (6)

where st = (st1, . . . , s
t
N ) and at = (at1, . . . , a

t
N ) are the joint

state and action, respectively.
We now introduce the value function, V π(s), which esti-

mates how good (or bad) it is to be in each state, while
following the policy π. We define V π(s) as follows,

V π(s) = E
[∑∞

t=0
(γ)tct(st, π(st))|s = s0

]
, (7)

where γ ∈ [0, 1) is a discount factor; (γ)t denotes the
discount factor to the t-th power; and the expectation is
taken over the sequence of states, governed by the con-
trolled Markov chain with transition probabilities P (s′|s, a) =
ΠN
i=1P

b(b′i|bi, ai)ΠM
j=1P

h(h′ij |hij). We can rewrite V π(s) re-
cursively by taking advantage of the one-step transition proba-
bility function to represent the expected future costs:

V π(s) = c(s, π(s)) + γ
∑

s′∈S
P (s′|s, π(s))V π(s′).

Then, the scheduling problem’s objective is to determine the
scheduling policy that solves the following optimization:

minπ∈Π V
π(s), (8)

where Π denotes the set of all possible policies. The optimal
solution to (8) satisfies the Bellman equation, ∀s ∈ S:

V ∗(s) = mina∈A

{
c(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

}
,

, mina∈A Q∗(s, a), (9)

where V ∗(s) is the optimal value function, and Q∗(s, a) is
the optimal action-value function denoting the value of taking
action a in state s and then following the optimal policy
thereafter. The optimal policy π∗(s), which gives the optimal
action to take in each state, can be determined by taking the
action that minimizes the right-hand side of (9).

If there are a finite number of states, then in principle
dynamic programming techniques such as value iteration or
policy iteration can be used to compute V ∗(s) and π∗(s) [5].
However, in our problem, we assume that the buffer sizes are
infinite and, even if we did not, the number of states and actions
is enormous. For example, if there are N UEs and M RBs,
and each UE has 10 possible buffer states and there are 16
possible channel states per UE per RB, then there are a total
of 10N × 16N×M possible states and NM possible scheduling
actions. Hence, we resort to a deep RL to solve the problem.

V. DDPG BASED LTE DOWNLINK SCHEDULER

The DDPG algorithm we use [18] is a deep neural net-
work (DNN) adaptation of the off-policy Deterministic Policy
Gradient (DPG) algorithm developed by Silver, et. al [21].
It is designed to solve problems involving continuous, high-
dimensional, and large action spaces since it is based on an
Actor-Critic framework. It has also been shown that DDPG can
perform well in problems involving large but discrete action
spaces [22], such as the one we consider here.

The Actor-Critic framework of DDPG comprises two parts,
an actor function that chooses what actions to take, and a critic
function that evaluates the actor’s selections. The actor function
µ(s|θµ), a DNN parameterized by θµ, specifies the current
policy by deterministically mapping states to a specific action,
while the critic function Q(s, a|θQ), a DNN parameterized by
θQ, is learned using the Bellman equation and gives feedback
on the selected action.

The actor network is updated by taking a gradient of the
expected return J , similar to (7), with respect to the parameters
θµ. We formally define this operation as:

∇θµJ ≈ Est∼ρβ
[
∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)

]
. (10)

The critic network, which learns the action-value function, is
updated by minimizing the Mean Squared Error (MSE) loss,
L(θQ) = Est∼ρβ ,at∼β,ct∼E

[(
Q(st, at|θQ)− yt

)2]
, (11)

where β is the behavior policy, and,

yt = c(st, at) + γQ(st+1, µ(st+1)|θQ), (12)
denotes the target value.



Convergence of DNN approximators is not guaranteed. Still,
inspired by the success of DQN [14], DDPG uses several modi-
fications to its architecture to use DNN function approximation
to learn in large state and action spaces.

Similar to DQN, to address the problem of sample correla-
tion, DDPG uses a replay buffer, which is a finite sized cache
used to store transition tuples (st, at, ct, st+1). At each time
step, the actor and critic are updated by sampling a mini-batch
of stored transitions from the replay buffer. This allows the
algorithm to learn from a set of uncorrelated transitions.

DDPG uses target networks to address the problem of diver-
gence caused by using the same Q-network for updating the
network and the target value yt. This is addressed by creating
copies of the actor and critic networks, and then updating the
copies slowly, resulting in improved stability.

Finally, to address the problem of exploration, DDPG uses
an exploration policy by adding noise sampled from a noisy
process N to the actor policy, µ′(st) = µ(st|θµt ) +N , where
N can be chosen to suit the environment. The complete
description of the algorithm is presented in [18].

Although DDPG mostly works in continuous action spaces,
it has been shown to work well with discrete action spaces with
slight modifications [22]. We adopt similar practices to adapt
the DDPG algorithm to the LTE scheduling problem.

State normalization: Recall that UE i’s state, si , (bi, hi) ∈
Si, depends on its buffer state si and its CQI in each RB,
represented by the vector hi. DDPG accepts states of all the
UEs as its input. All buffer and CQI values in a minibatch of
samples are normalized to [−1, 1] using Batch Normalization
for improved performance [18].

Action scaling and quantization: The DDPG algorithm has
been shown to work effectively in problems involving large but
discrete action spaces such as the problem we consider. For M
RBs, the actor network outputs a vector of size [1×M ]. Each
entry of this vector is a normalized value between -1 and 1.
Inspired by the approach in [22], we then scale these values to
the range [1, N ] as follows:⌈(y + 1

2
× (N − 1)

)
+ 1
⌉
, (13)

where y ∈ [−1, 1]M is the vector output of the actor network,
N is the number of UEs, and d·e denotes the ceiling operator.

VI. EXPERIMENTAL RESULTS

We now present our simulation results where we compare
the performance of our proposed DDPG based LTE downlink
scheduler against three well known scheduling algorithms: Max
CQI, Proportional Fair (PF), and Max-Weight.

Max CQI [23]: The Max CQI scheduler aims to maximize
the eNB’s throughput by opportunistically allocating an RB to
the user with the best CQI (or achievable rate) in that RB. To
implement Max CQI, we use Rj(k, t), the rate of UE j in RB
k at time t, as the metric mj,k in (1). The Max CQI scheduler
is found to be not fair in practice.

Proportional Fair (PF) [24]: The PF scheduler operates
by scheduling a user when its instantaneous channel quality is
high relative to its average channel condition over time. This

approach has been found to be throughput fair in practice. The
metric mj,k from (1), used to allocate RB k at time t is,

mj,k = Rj(k, t)/Tj(t), (14)
where Rj(k, t) is the achievable rate, and Tj(t) is the past
throughput achieved by UE j, calculated as an exponential
moving average of its throughput up to time t.

Max-Weight [25]: The Max-Weight scheduler considers the
queue (buffer) length along with the achievable rate to allocate
RBs. It is known to be throughput optimal [25]. We use a buffer
weight along with the achievable rate Rj(k, t) to establish the
Max-Weight metric:

mj,k = Rj(k, t)×
(
Bj(t)/

∑N

j′=1
Bj′(t)

)
, (15)

where Bj(t) = btj is the buffer state of UE j at time t. This
ensures that the relative buffer states and achievable rates are
considered when allocating the RB.

TABLE I: Simulation Parameters
Notation Value Notation Value
num UEs {6, 20, 30} Cell Radius 0.375 km
Interf. BSs 6 Noise PSD -174 dBm/Hz
numEpochs 30 Bandwidth {1.4, 10, 20} MHz
TTI, τ 1 ms RB Duration 0.5 ms
num PRBs {10, 50, 100} Log-Norm. mean 0
numSlots 50000 Arrival Rate 50 or 10–100 Kbps
Tx. Power 46 dBm Log-Norm. Std. Dev. 8

We developed an LTE scheduling simulator in Python. In our
simulations, we consider a hexagonal grid with 6 interfering
BSs and a central BS that schedules resources to the UEs in
its coverage under three different LTE scenarios: 6 UEs/10
RBs, 20 UEs/50 RBs, and 30 UEs/100 RBs. Each scenario
considers two different settings: homogeneous (UEs all have
50 Kbps arrival rates) and heterogeneous arrivals (UEs have
10–100 Kbps arrival rates). We assume Poisson arrivals for
both settings, thus accounting for the possibility of bursty
arrival traffic. Table I lists the key simulation parameters. We
implemented the DDPG algorithm as described in [18] and
Section V. The actor and critic networks are fully-connected
DNNs with 2 hidden layers, comprising 400 and 300 neurons,
respectively, with ReLU activation. The algorithm is trained
using samples collected by running the simulator for 200
epochs of 10,000 time slots each with a minibatch of 32
samples. Under both homogeneous and heterogeneous arrivals,
the total training times for the different LTE scenarios were 6.5
hours, 34 hours and 83 hours, respectively, on a Dell 40-core
“Cascade Lake” GPU node with 192 GB RAM and 32 GB
video memory.

We compare the performance of our proposed DDPG based
LTE downlink scheduler against the benchmarks described
above, across four metrics: average throughput (thrpt.), average
queuing delay, average throughput fairness, and average delay
fairness. Fairness is calculated using Jain’s Fairness Index [26],
which quantifies how fairly resources are distributed among
users (an index closer to 1 indicates a fairer allocation). All
results are averaged over 30 epochs of 50,000 time slots each,
and were also computed on the Dell GPU node.

Table II presents the performance of different algorithms
under the scenarios listed above. Under homogeneous arrivals,



DDPG performs very close to Max-Weight, which was proved
to be delay-optimal under homogeneous arrivals in [25]. More-
over, DDPG outperforms the benchmark algorithms in all other
metrics. Under heterogeneous arrivals, the DDPG algorithm
outperforms the benchmarks in all scenarios, achieving up to
15% higher throughput and 55% lower queuing delays than
the best benchmark. We generally see more improvement as
we scale up the number of UEs and RBs.

We plot these results for homogeneous and heterogeneous
arrivals in Fig. 3 and4 respectively with error bars representing
95% confidence intervals. Max CQI predictably performs the
worst since it is not fair, and thus leads to high delays and low
actual throughput. We can see from Fig. 3b and 3d that the
DDPG algorithm outperforms the other algorithms in terms of
fair resource allocation. The general trends for heterogeneous
arrivals are similar to those for homogeneous arrivals, save for
two key differences. First, the average fairness values are lower,
which is due to having more variation in arrival rates across
users. Second, from Fig. 4c, DDPG outperforms Max-Weight
even for average delay. This is most pronounced in the case
of 30 UEs and 100 RBs, where the DDPG algorithm performs
almost 55% better than Max-Weight.

Feasibility: Considering the constraint that the algorithm has
to take an action every TTI, the proposed algorithm performs
well in that regard. Even though the algorithm takes long to
train for large networks, it only takes between 210µs – 370µs
with an average of 270µs to schedule an action, thus, making
it suitable for real-time scenarios.

TABLE II: Performance of LTE scheduling algorithms

6 UEs, 10 RBs Homogeneous Arrivals Heterogeneous Arrivals
Max CQI PF Max-Wt. DDPG Max CQI PF Max-Wt. DDPG

Thrpt. (Mbps) 0.160 0.211 0.276 0.285 0.160 0.209 0.282 0.289
Thrpt. Fairness 0.612 0.987 0.994 0.999 0.558 0.884 0.915 0.942
Delay (s) 0.721 0.405 0.162 0.184 0.663 0.369 0.161 0.127
Delay Fairness 0.602 0.670 0.846 0.894 0.588 0.627 0.718 0.761

20 UEs, 50 RBs Homogeneous Arrivals Heterogeneous Arrivals
Max CQI PF Max-Wt. DDPG Max CQI PF Max-Wt. DDPG

Thrpt. (Mbps) 0.298 0.847 0.948 0.977 0.432 0.939 1.057 1.202
Thrpt. Fairness 0.319 0.957 0.981 0.992 0.408 0.821 0.887 0.925
Delay (s) 1.961 0.801 0.251 0.286 1.881 0.726 0.153 0.105
Delay Fairness 0.533 0.635 0.803 0.908 0.515 0.609 0.759 0.846

30 UEs, 100 RBs Homogeneous Arrivals Heterogeneous Arrivals
Max CQI PF Max-Wt. DDPG Max CQI PF Max-Wt. DDPG

Thrpt. (Mbps) 0.437 1.088 1.210 1.293 0.506 1.117 1.285 1.334
Thrpt. Fairness 0.359 0.963 0.979 0.986 0.427 0.837 0.879 0.921
Delay (s) 2.184 0.852 0.288 0.339 2.278 0.785 0.239 0.109
Delay Fairness 0.585 0.674 0.897 0.905 0.533 0.653 0.795 0.863

VII. CONCLUSION

We formulated the LTE downlink scheduling problem as an
MDP and proposed a Deep RL algorithm to solve it. The algo-
rithm can learn near-optimal scheduling policies that minimize
the UEs’ sum-delay, without requiring the scheduler to have
upfront knowledge of the stochastic data arrivals and channel
dynamics. We compared the proposed scheduling algorithm
to well-known LTE-downlink scheduling benchmarks and we
observed an improvement in performance both in terms of
fairness and delay. As future work, we plan to adapt this
algorithm to the more challenging problems of LTE uplink
scheduling and 5G uplink/downlink scheduling.

REFERENCES

[1] J. Chakareski, “UAV-IoT for next generation virtual reality,” IEEE Trans.
Image Processing, vol. 28, no. 12, pp. 5977–5990, Dec. 2019.

[2] J. Chakareski and P. Frossard, “Distributed collaboration for enhanced
sender-driven video streaming,” IEEE Trans. Multimedia, Aug. 2008.

[3] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski, “Viewport-adaptive
navigable 360-degree video delivery,” in Proc. Int’l Conf. Communica-
tions. Paris, France: IEEE, May 2017.

[4] 3GPP TR 25.913, “Requirements for Evolved UTRA (E-UTRA) and
Evolved UTRAN (E-UTRAN),” 2009.

[5] R. Sutton and A. Barto, Reinforcement learning: An introduction, 2nd ed.
MIT Press Cambridge, 2018.

[6] N. Mastronarde and M. van der Schaar, “Joint physical-layer and system-
level power management for delay-sensitive wireless communications,”
IEEE Trans. Mobile Comput., vol. 12, no. 4, 2013.

[7] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[8] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach
to energy harvesting communication system optimization,” IEEE Trans.
Wireless Commun., vol. 12, no. 4, pp. 1872–1882, 2013.

[9] H. Tabrizi, G. Farhadi, and J. Cioffi, “Dynamic handoff decision in
heterogeneous wireless systems: Q-learning approach,” in Proc. Int’l
Conf. on Communications (ICC). IEEE, 2012, pp. 3217–3222.

[10] A. Ortiz, H. Al-Shatri, X. Li, T. Weber, and A. Klein, “Reinforcement
learning for energy harvesting point-to-point communications,” in Proc.
IEEE Int’l Conf. Communications, 2016.

[11] N. Sharma, N. H. Mastronarde, and J. Chakareski, “Accelerated structure-
aware reinforcement learning for delay-sensitive energy harvesting wire-
less sensors,” IEEE Trans. on Signal Process., 2020.

[12] Y. Xiao, Z. Han, D. Niyato, and C. Yuen, “Bayesian reinforcement
learning for energy harvesting communication systems with uncertainty,”
in Proc. IEEE ICC, 2015, pp. 5398–5403.

[13] K. Hornik, M. Stinchcombe, H. White et al., “Multilayer feedforward
networks are universal approximators.” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015.

[15] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in commu-
nications and networking: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[16] U. Challita, L. Dong, and W. Saad, “Proactive resource management
for LTE in unlicensed spectrum: A deep learning perspective,” IEEE
Transactions on Wireless Communications, vol. 17, no. 7.

[17] M. Elsayed and M. Erol-Kantarci, “Deep reinforcement learning for
reducing latency in mission critical services,” in Proc. Global Communi-
cations Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[19] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[20] M. J. Neely, “Stochastic optimization for Markov modulated networks
with application to delay constrained wireless scheduling,” in Proc. IEEE
Conf. Decision and Control, 2009, pp. 4826–4833.

[21] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” 2014.

[22] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[23] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink
packet scheduling in LTE cellular networks: Key design issues and a
survey,” IEEE Comm. Surveys & Tutorials, vol. 15, no. 2, pp. 678–700.

[24] S. Sesia, I. Toufik, and M. Baker, LTE-the UMTS long term evolution:
from theory to practice. John Wiley & Sons, 2011.

[25] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. on Information
Theory, vol. 39, no. 2, pp. 466–478, 1993.

[26] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An
explanation,” in ATM Forum contribution, vol. 99, no. 45, 1999.



6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e 

Th
ro

ug
hp

ut
 (M

bp
s)

Max CQI
PF
Max Weight
DDPG

(a) Avg. Throughput

6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 F

ai
rn

es
s

(b) Throughput Fairness

6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e 

De
la

y 
(s

)

(c) Avg. Delay

6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.2

0.4

0.6

0.8

1.0

De
la

y 
Fa

irn
es

s

(d) Delay Fairness

Fig. 3: Performance for Homogeneous Arrivals

6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e 

Th
ro

ug
hp

ut
 (M

bp
s)

Max CQI
PF
Max Weight
DDPG

(a) Avg. Throughput

6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 F

ai
rn

es
s

(b) Throughput Fairness

6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e 

De
la

y 
(s

)

(c) Avg. Delay

6/10 20/50 30/100
Num UEs/ Num RBs

0.0

0.2

0.4

0.6

0.8

De
la

y 
Fa

irn
es

s

(d) Delay Fairness

Fig. 4: Performance for Heterogeneous Arrivals.




