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Abstract—We investigate a novel communications system that inte-
grates scalable multi-layer 360◦ video tiling, viewport-adaptive rate-
distortion optimal resource allocation, and VR-centric edge computing
and caching, to enable future high-quality untethered VR streaming.
Our system comprises a collection of 5G small cells that can pool
their communication, computing, and storage resources to collectively
deliver scalable 360◦ video content to mobile VR clients at much
higher quality. Our major contributions are rigorous design of multi-
layer 360◦ tiling and related models of statistical user navigation, and
analysis and optimization of edge-based multi-user VR streaming that
integrates viewport adaptation and server cooperation. We also explore
the possibility of network coded data operation and its implications for
the analysis, optimization, and system performance we pursue here. We
demonstrate considerable gains in delivered immersion fidelity, featuring
much higher 360◦ viewport peak signal to noise ratio (PSNR) and VR
video frame rates and spatial resolutions.

I. INTRODUCTION

Virtual reality holds tremendous potential to advance our society.
It is expected to make impact on quality of life, energy conservation,
and the economy [1], and reach a $120B market by 2022 [2]. As the
Internet-of-Things (IoT) is becoming a reality, modern technologists
envision transferring remote contextual and environmental immer-
sion experiences as part of an online VR session. However, two
main highly-intertwined challenges stand in the way of realizing
this vision: VR requires (1) ultra-low latency high data rate
communications, and (2) highly data-intensive computing. Neither
of these challenges can be met by current and upcoming traditional
communications systems [3], as the content to be delivered is too
voluminous and the headsets’ computing/storage capabilities are
insufficient within an acceptable and wearable form factor. Hence,
VR applications are presently limited to off-line operation, low-
fidelity graphics content, tethered high-end computing equipment,
and gaming/entertainment settings. 360◦ video is the first actual-scene
content format to enable remote VR immersion. However, emerging
360◦ streaming practices are highly inefficient, which considerably
degrades the quality of experience, as explained in detail later.

Fig. 1: System scenario under investigation.
To overcome these challenges, we investigate for the first time

a novel communications system that integrates scalable multi-layer
360◦ video tiling, viewport-adaptive rate-distortion optimal resource
allocation, and VR-centric edge computing and caching, to enable
next generation high-quality untethered on-demand VR streaming.
Our system is illustrated in Figure 1 and comprises a collection of
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5G small cells featuring a base station and an edge server each,
which pool their communication, computing, and storage resources
to collectively deliver scalable 360◦ video content to mobile VR
clients, at much higher quality. Cooperation among the small cells is
enabled via backhaul links that interconnect them, and the scalable
360◦ content featuring multiple layers Li of incrementally increasing
quality is initially delivered from a backend server, as illustrated in
Figure 1. Considerable advances in 360◦ video quality, frame rate,
and spatial resolution are enabled.

II. 360◦ VIDEO VR STREAMING BACKGROUND

360◦ video is an emerging video format that is captured by an
omnidirectional camera that records incoming light rays from every
direction (see Figure 2 top left).

Fig. 2: 360◦ video capture and streaming, and user viewport Vc.

It enables a three dimensional 360◦ look-around of the surrounding
scene for a remote user, virtually placed at the camera location,
on his VR head-mounted display (HMD), as illustrated in Figure 2
right. After capture, the spherical 360◦ raw video frames are first
mapped to a wide equirectangular panorama (illustrated in Figure 2,
bottom left) and then compressed using state-of-the-art (planar)
video compression such as HEVC. The former intermediate step is
introduced, as compression techniques operating directly on spherical
data are much less mature and performing relative to conventional
video compression operating on planar (2D) video frames.

For remote service, present practices stream the entire monolithic
360◦ panorama to the user using MPEG-DASH [4]. However, at any
point of time, the user experiences only a small portion of it denoted
as Vc (current viewport). This considerably penalizes the quality of
experience, due to the overwhelming volume of 360◦ data that needs
to be delivered, which exceeds the available network bandwidth C by
orders of magnitude. Similarly, the streaming also lacks the ultra-low
latency interactivity required for truly immersive experiences, due to
the use of traditional server-client Internet architectures.

III. RELATED WORK

Similarly to our approach, a few existing studies of single-user
on-demand 360◦ Internet streaming [5–7] considered splitting the
360◦ video into spatial tiles as part of the encoding, using the
tiling feature of the latest High Efficiency Video Coding (HEVC)
standard [8]. However, their design choices are heuristic and lack
analysis of the fundamental trade-offs between delivered immersion
fidelity, user navigation patterns, coding efficiency, view switching
capability, and available system resources, as we carry out. Moreover,
our integration of scalability, edge-based delivery, and formal 360◦



partitioning considerably enhances the VR application interactivity,
by reducing its streaming latency, relative to these studies.

Existing work on wireless base station caching includes [9], which
studied minimizing the total delay of content retrieval at a base station
online. [10] studied reducing the delay of content delivery using
caching at wireless helper nodes, differentiating available helpers
based on their proximity to the served node. Moreover, [11] studied
hierarchical caching in cellular back-haul networks. Joint caching and
channel assignment in multi-cellular systems is studied in [12].

IV. SCALABLE MULTI-LAYER 360◦ TILING

A. 360◦ Panorama Tiling
We partition each panoramic frame of a 360◦ video into a set of

N × M spatial tiles, where the first and second dimensions of the
denoted tiling, (N,M), parallel the horizontal and vertical spatial
dimensions of the 360◦ video frames. Each tile is then independently
encoded and streamed to the user, according to our analysis and
optimization. Denser tiling layouts increase the processing complex-
ity and reduce the compression efficiency, but, enable more precise
delineation of the user viewport and thus more efficient viewport-
aware resource allocation across the 360◦ panorama. We empirically
observed that the 6 × 4 and 8 × 6 tiling options provide good
performance in terms of processing complexity and compression
efficiency, for the 360◦ spatial resolutions available today (4K/8K).

B. 360◦ Navigation Data Capture

We have captured navigation data that characterizes how a mobile
VR user explores a 360◦ video over time. Specifically, his VR
head-mounted display (device) outputs the direction of the current
viewpoint of the user Vc on the 360◦ view sphere up to 250 times
per second (see Figure 2 right, for an illustration). Formally, this
is the surface normal of Vc on the 360◦ sphere, which is uniquely
characterized by the azimuth and polar angles φ ∈ [0◦, 360◦] and
θ ∈ [0◦, 180◦] that it spans on the sphere, in a spherical coordinate
system with the 360◦ sphere center as its origin (see Figure 3, right).
These two angles are equivalently denoted as yaw and pitch in the
VR community, captured as rotation angles around the Z and Y axes
(see Figure 3, left). We recorded the (φj , θj) pairs that coincided with
the discrete temporal instances tj of consecutive 360◦ video frames
j from which the respective viewport Vc is selected to be displayed
to the user, as he navigates the content. We leverage this data to
formulate our statistical analysis of user navigation next.

Fig. 3: 360◦ navigation data of current viewport Vc. Left: Rotation angles
yaw, pitch, and roll around the three coordinate axis. Right: Azimuthal
and polar angles (φ, θ) in spherical coordinates.

C. Statistical Characterization of User Navigation

Let the set {(φj , θj)} denote a navigation trace for a given 360◦

video and VR user. Let SVc
j denote the set of pixels in the 360◦

panorama occupied by the user viewport Vc at time instance tj

(temporal video frame j). Similarly, let Snm
j denote the set of pixels

in the 360◦ panorama associated with tile (n,m), for n = 1, . . . , N ,
and m = 1, . . . ,M . Now, let Snm,Vc

j = SVc
j ∩Snm

j denote the set of
pixels in tile (n,m) present in the user viewport at that time instance.
That is, Snm,Vc

j represents the spatial area in the 360◦ panorama
shared by tile (n,m) and Vc at time tj .

We illustrate later that a user viewport may occupy very different,
in terms of shape and size, spatial areas of the 360◦ panorama,
depending on its latitude (the polar angle θ on the 360◦ view
sphere). To account for this, in developing our statistical model of
user navigation, we formulate next the fractions of the spatial areas
of every tile, present in the user viewport Vc at tj , as follows:
wnm

j = |Snm,Vc
j |/

∑
n,m |Snm,Vc

j |, where |S| denotes the size of
a set S, in this case in number of pixels. Thus, {wnm

j } represents
the normalized distribution of the spatial area of the user viewport
across every tile in the 360◦ panorama, at time instance tj .

Given the above analysis, we formulate the probability (likelihood)
of the user navigating tile (n,m) over a time interval spanned by the
time instances [ti, tj ] as: P

(ti,tj)
nm =

∑j
k=i w

nm
k /(j− i+1). In other

words, P (ti,tj)
nm indicates how often tile (n,m) appears (at least in

part) in the user viewport during navigation of the 360◦ video from its
temporal instance ti to tj , or the popularity of the 360◦ scene content
captured by the tile for this user and time interval. For instance, if ti
and tj correspond to the first and last video frame of the 360◦ video,
then, P (ti,tj)

nm captures the navigation probability or popularity of tile
(n,m) across the entire video.

D. Viewport-Adaptive Space-Time Scalability

To enable an effective allocation of system resources across a 360◦

video, we explore a scalable multi-layer tiling of a 360◦ panorama. In
particular, for every tile (n,m) in the panorama, we will construct
L embedded layers of progressively increasing signal fidelity. The
multi-layer tiling construction is illustrated in Figure 4. It can enable
carrying out effective trade-offs between delivered immersion fidelity
and induced data rate, spatiotemporally over the 360◦ content, in
response to the user navigation actions. This can be effectively
accomplished by optimally selecting the number of layers lnm sent
for every tile (n,m) during a time interval, such that the expected
user viewport quality over that interval is maximized, given the
available network streaming bandwidth C.

Fig. 4: Scalable multi-layer 360◦ tiling.

We can formally capture this optimization as:

max
lnm

∑
nm

PnmQnm(lnm), subject to:
∑
nm

Rnm(lnm) ≤ C.

Here, Pnm denotes the likelihood of navigating tile tnm during the
time period under consideration, as introduced earlier. Qnm(lnm)
and Rnm(lnm) denote respectively the delivered immersion fidelity
and induced data rate associated with tile tnm, given that its first lnm

scalable layers are sent to a user.
Note that the proposed statistical analysis of user navigation

captures as navigation likelihoods the expected overlap of a tile with



the user viewport over a time interval, and the aspect that equatorial
tiles are more likely navigated than polar tiles. Thus, our expected
viewport quality formulation can correspond to a tile-level WS-PSNR
(Weighted Spherical PSNR) [13].

V. EDGE-BASED MULTI-USER VR STREAMING

A. System Modeling
There is a set of 360◦ videos served to mobile VR users at each

small-base station. Each 360◦ video comprises N ×M tiles. To ease
the notation, we assign to every tile (n,m) of an entire 360◦ video a
unique index j, and denote it henceforth as video j. Each base station
i serves a set of VR clients that collectively induce a popularity
distribution Pij over the tile-videos, by their navigation actions. A
base station can store a subset of the videos at its edge server, to
deliver them locally to its own users. It can also serve one of its
videos to a VR client at another small base station via the backhaul
links through which they can cooperate, if this video is not stored
locally at the edge server of that small base station. If a requested
video is not available locally or from a neighboring small base station,
it is delivered remotely from the back-end server.

Let Y l
ij ∈ {0, 1} denote the decision for small base station i to

cache tile-video j comprising its first l scalable layers (see Figure 4).
Let Xl,k

ij ∈ {0, 1} denote the decision to deliver video j comprising
its first l scalable layers from base station k to a VR user at base
station i. If k = i, then Xl,k

ij = 1 will denote the event of local
delivery at base station i. If k is greater than the number of small base
stations in the system, Xl,k

ij will capture the decision to deliver video
j comprising its first l scalable layers remotely, from the back-end
server, as introduced earlier. Let Qj,l denote the delivered immersion
fidelity of tile-video j comprising its first l scalable layers.

Let Cl,k
ij denote the cost of delivering tile video j comprising its

first l scalable layers to a VR user at small base station i from the
cache of small base station k. Cl,k

ij captures the impact of the relative
distance between base stations i and k, and the data volume Bl

j of
tile-video j featuring l scalable layers. Similarly, let B̄l

j denote the
processing and rendering cost associated with tile-video j featuring l
scalable layers, induced at a small base station. Let Zi and Z̄i denote
respectively the storage and computing capabilities of the edge server
at base station i. We model B̄l

j accurately as a polynomial function
of the data volume of tile-video j comprising l scalable layers.

We consider the possibility of having the data packets associated
with tile-video j encoded using network coding or fountain codes
[14]. Working with such packets helps use system resources more
efficiently and reduce the system’s transmission scheduling complex-
ity. These advances stem from their construction which eliminates
packet duplication and thus enables working with fractional network
flows, instead of their discrete {0, 1} counterparts.

Fig. 5: Video tile layers to data packets to network coding packets.

Our method for constructing network coding packets is illustrated
in Figure 5. The bitstream representing the scalable compressed

video tile layers is first packetized into data packets pi. Network
coding packets are then constructed as weighted linear combinations
of the data packets using

∑
i βipi, where the weights βi are selected

uniformly at random from a Galois finite field. The arithmetic
operation of summation is performed over the same finite field.

B. Problem Formulation

We are interested in maximizing the immersion fidelity delivered
to the VR clients at the small base stations, while minimizing the
induced cost. Given a tile-video j featuring l scalable layers and a
small base station i, let Qj,l/C

l,k
i,j denote the delivered immersion

fidelity per unit cost, when this content is delivered from small base
station k. We recall that in this case the decision variables Y l

kj and
Xl,k

ij would need to be set to one. Now, let
∑

i,j,k,l PijX
l,k
ij Qj,l/C

l,k
i,j

denote the aggregate expected delivered immersion fidelity per unit
cost. Our objective is to maximize this quantity given various system
and problem formulation constraints that arise here.

We formally characterize our objective as:

max
Y l
ij ,X

l,k
ij

∑
i,j,k,l

PijX
l,k
ij Qj,l/C

l,k
i,j , (1)

s.t.: Xl,k
ij ≤ Y l

kj , ∀i, j, k, l,
∑
l

Y l
ij ≤ 1, ∀i, j, (2)∑

k

Xl,k
ij ≤ 1, ∀i, j, l,

∑
j,l,k

Xl,k
ij Bl

j ≤ Zbh, ∀i, (3)∑
j,l

Y l
ijB

l
j ≤ Zi, ∀i,

∑
j,l

Y l
ijB̄

l
j ≤ Z̄i, ∀i, (4)

where the first constraint in (2) captures the notion that tile-video j
cannot be delivered from small base station k, unless it is cached
there. The second constraint in (2) captures the condition that only
one replica of tile-video j comprising l scalable layers is stored at
base station i. The first constraint in (3) captures the notion that
tile-video j comprising l scalable layers is streamed to VR clients
at small base station i from the edge server of only one small base
station k. The second constraint in (3) ensures that the tile-video data
streamed to any small base station i does not exceed the transmission
capacity of the carrier backhaul links, denoted here as Zbh. Finally,
the two constraints in (4) capture the limited caching and computing
capabilities of the edge servers at each base station.

C. Analysis and Approximation

The problem (1) - (4) is discrete and has a combinatorial nature.
Thus, it is difficult to solve. Showing that (1) - (4) is NP-complete
requires showing that any given solution can be verified quickly and
that a known NP-complete problem can be reduced to (1) - (4) [15].
We can verify a given solution by checking its feasibility against
the constraints (2) - (4) in polynomial time. This meets the first
requirement. We meet the second requirement by mapping the known
NP-complete multi-knapsack problem [16] to (1) - (4).

The multiple knapsack problem comprises N items, characterized
with profit and weight factors αn and γn, and K knapsacks, charac-
terized with holding capacity factors ck. The objective is to select K
disjoint subsets of items such that their aggregate profit is maximized
and each can be assigned to a knapsack k such that its aggregate
weight does not exceed ck. We extend this definition to include
two weight factors per item n, namely γ1

n γ2
n, and respectively two

capacity factors c1k and c2k per knapsack k. The NP-complete nature
of the problem remains under the extension. We map this problem
then to (1) - (4) as follows. First, we map each knapsack to the edge
server associated with one small base station, such that Zk = c1k and
Z̄k = c2k. Next, we map item n to tile video j comprising l scalable



layer such that Bl
j = γ1

n and B̄l
j = γ2

n, and
∑

i Pij = αn. Finally,
we set Qj,l/C

l,k
i,j = 1, ∀i, j, l, k.

Given the above, the knapsack problem and the mapped instance
of our problem share a feasible solution with a common objective
function value. Moreover, we can carry out the problem mapping
reduction above in polynomial time. This completes the verification
that (1) - (4) is NP-complete.

To formulate an approximation solution to solve (1) - (4), we note
that given our system setting in Figure 1, the cost factors Cl,k

i,j will
all be equal when streaming tile video j featuring l scalable layers
from any neighboring small base station k ̸= i, and smaller than
the cost factor of delivering this content from the remote back-end
server. Thus, we can rewrite (1) - (4) as:

max
Yin,Xk

in

∑
i,n

PinX
i
inQn/C

i
i,n +

∑
i,n,k ̸=i

PinX
k
inQn/C̄n, (5)

subject to: (2)− (4).

To simplify the notation, we have mapped each original index pair
(j, l) to a unique single variable n in the reformulation above. C̄n

denotes the common cost factor of delivering content item n from
any neighboring small base station k ̸= i.

Let αin = PinQn/C
i
i,n+

∑
k ̸=i PknQn/C̄n denote the maximum

prospective benefit of caching item n at small base station i. We
define V = {1, . . . ,K} × {1, . . . , N} to be the set representing the
vector product of the sets of small base stations and content items,
where K and N denote their respective sizes. Let v = (i, n) ∈ V
denote a member of this set. Facilitating V , we can solve (5) as a
multiple knapsack problem with multiple constraints associated with
each small base station k, as follows.

Using dynamic programming [17], we formulate the optimal value
function fv(·) associated with (5) as

fv(s1, s̄1, . . . , sK , s̄K) =

maxxv∈{0,1}{αinxv + fv−1(. . . , si −Bl
jxv, s̄i − B̄l

jxv, . . . )},

if @v′ < v : xv′ = 1 ∧ n′ = n ∧ si ≥ Bl
j , s̄i ≥ B̄l

j ,

maxxv∈{0,1}{(αin − PinQn/C̄n)xv+

fv−1(. . . , si −Bl
jxv, s̄i − B̄l

jxv, . . . )},

if ∃v′ < v : xv′ = 1 ∧ n′ = n, i′ ̸= i ∧ si ≥ Bl
j , s̄i ≥ B̄l

j ,

fv−1(s1, s̄1, . . . , sK , s̄K),

if ∃v′ < v : xv′ = 1 ∧ n′ = n, i′ = i ∨ si < Bl
j ∨ s̄i < B̄l

j ,

for v = |V|, . . . , 1, where f0(·) = 0. The state variables si ∈
{0, . . . , Zi} and s̄i ∈ {0, . . . , Z̄i} capture the slack caching and
computing capacity, respectively, at small base station i.
We develop the optimal value function fv(·) using the above

Bellman optimality condition recursion, in stages, iteratively, start-
ing from stage v = 1, . . . , |V|. Our objective is to determine
f|V|(Z1, Z̄1, . . . , ZK , Z̄K), which corresponds to the objective in (5)
at the optimal solution {x∗

v}. The latter can then be obtained by
backtracking from f|V|(Z1, Z̄1, . . . , ZK , Z̄K).

Completing fv(·) requires a total running time of O(|V|KM),
where M = maxi{Zi, Z̄i}. Thus, this approach represents a pseudo-
polynomial time algorithm for solving (5).

We proceed one step further to formulate a fully-polynomial time
approximation scheme [15] for solving (5) that will leverage the
above development. In particular, we first scale the benefit factors
αin associated with caching item n at small base station i, such that
they are all small numbers, polynomially bounded in |V|. Applying

dynamic programming via the optimal value function, as formulated
above, to the scaled instance of (5) would then result in a polynomial
running time (in |V|) solution strategy, with an induced approximation
factor ϵ. Moreover, we integrate a desired ϵ into the scaling of the
factors αin, so that this strategy is fully-polynomial time, i.e., with
respect to 1/ϵ, as well.

Let αmax = maxi,n αin denote a scaling factor we will use.
Let p = ⌊log (ϵαmax/|V|)⌋ capture the precision at which we
will approximate/quantize the benefit factors αin. Then, we define

αs
in = ⌊PinQn/Ci

i,n

10p
⌋+

∑
k ̸=i⌊

PknQn/C̄n

10p
⌋.

Algorithm 1 outlines our efficient branch-and-prune algorithmic
implementation of the above strategy, as noted earlier.

Algorithm 1 Branch-And-Prune Approximation Scheme

1: Initialize T = ∅, F0 = 0,Q0 = {(T, F0)}
2: for ∀v ∈ V do
2: Expansion Phase
3: for ∀(T, Pv−1) ∈ Qv−1 do
4: Branch Qv = Qv−1 ∪ {(T ∪ {v}, Fv−1 + αv)}

Subject to:
4: (i)

∑
v′∈T Bn′ +Bn ≤ Zi ∧

∑
v′∈T B̄n′ + B̄n ≤ Z̄i

(ii) If @v′ ∈ T : n′ = n,
Set αv = αs

in

(iii) If ∃v′ ∈ T : n′ = n ∧ i′ ̸= i,

Set αv = ⌊PinQn/Ci
i,n

10p
⌋ − ⌊PknQn/C̄n

10p
⌋

5: end for
5: Prunning Phase
5: if ∃(T′, F ′

v), (T
′′, F ′′

v ) ∈ Qv

Subject to:
(i) F ′

v = F ′′
v , and

(ii)
∑

v∈T′ Bn >
∑

v∈T′′ Bn∧
∑

v∈T′ B̄n ≥
∑

v∈T′′ B̄n,
or

(iii)
∑

v∈T′ Bn ≥
∑

v∈T′′ Bn∧
∑

v∈T′ B̄n >
∑

v∈T′′ B̄n,
6: then prune Qv = Qv \ {(T′, F ′

v)}
7: end if
8: end for
9: Select (T∗, F ∗

|V|) : F
∗
|V| = argmaxFv{(T, F|V|) ∈ Q|V|}

In particular, Algorithm 1 leverages an efficient tree data structure
Qv that is dynamically updated during execution. Member elements
(T, Fv) ∈ Qv comprise subsets T of size ≤ v, of the first v elements
in V , such that they induce the maximum achieved benefit (Fv),
given the constraints (2) - (4). For every subsequent v, Algorithm 1
comprises an expansion phase, where the optimal paths (subsets of
cached data) maintained in Qv−1 are branched out by considering
the next decision variable v (to cache item n at base station i), while
observing constraints (2) - (4), and a pruning phase, where only the
optimal paths after the expansion are retained.

At completion of stage v = |V|, Algorithm 1 terminates by
selecting the caching configuration T∗ in Q|V| that exhibits the
maximum achieved benefit F ∗

|V|. Then, the corresponding optimal
streaming variables can be selected as follows. First, ∀ v ∈ T∗, we
set Xi

in = 1. Next, if ∃ i, k ̸= i : Xi
in = 1 ∧Xm

kn = 0, ∀m, we set
Xi

kn = 1. Last, if ∃ i : Xk
in = 0, ∀ k, we set XK+1

in = 1.
Finally, we verify the approximation guarantees of Algorithm 1.

Let OPT denote the optimal objective in (5) and let {Xk
in}∗ denote

the respective solution. We want to verify that the solution {Xk
in}′



computed by Algorithm 1 satisfies O({Xk
in}′) ≥ (1−ϵ)·OPT, where

O(·) denotes the objective function in (5). In particular, Algorithm 1
operates on scaled benefit factors, where ∆ = ϵαmax/|V| denotes the
scaling aspect. Thus, the benefit αs

in achieved by selecting item v in
the solution {Xk

in}′ will satisfy ∆αs
in ≤ αin. This implies that the

achieved benefit induced by {Xk
in}′ can drop at most ∆, for every

item v cached according to {Xk
in}∗. Hence, we can bound the overall

achieved benefit drop as O({Xk
in}∗) − ∆ · O′({Xk

in}∗) ≤ |V|∆.
Here, O′ denotes the objective function in (5) evaluated on the scaled
benefit factors.

On the other hand, the solution {Xk
in}′ computed by Algorithm 1

represents the optimal solution for the scaled instance of the problem
(5), (2) - (4). Thus, O′({Xk

in}′) ≥ O′({Xk
in}∗). Leveraging these

two inequality relationships, we can write

O({Xk
in}′) ≥ ∆ ·O′({Xk

in}′) ≥ ∆ ·O′({Xk
in}∗)

≥ O({Xk
in}∗)− |V|∆ (6)

= OPT− ϵαmax

≥ (1− ϵ) · OPT (7)

where (6) follows from the first inequality relationship established
earlier and (7) holds as OPT ≥ αmax. This verifies the desired
approximation guarantees of Algorithm 1.

The running time of Algorithm 1 is polynomial in |V|, as it
corresponds to completing a table of at most |V|2⌊αmax/∆⌋ entries.
The scaling enables the running time of Algorithm 1 also to be
polynomial in 1/ϵ, as |V|αmax/∆ = 1/ϵ.

D. Streaming network coding packets

Using network coding packets reduces the complexity of (1) -
(4), as the decision variables Y l

kj and Xl,k
ij can be continuous in

that case. Thus, (1) - (4) becomes linear programming, which can
be solved exactly in polynomial time [18]. In particular, relaxing
Y l
kj , X

l,k
ij ∈ [0, 1] to be fractional will capture that now portions

of the network coding packets representing tile-video j featuring l
scalable layers can be cached at small base station k, and streamed
from this base station to users at small base station i, respectively.
Hence, the objective (1) will become a linear weighted-sum function
of continuous variables indicating the proportions of network coding
packets associated with a specific tile-video streamed to users at
a given small base station, from each base station. Moreover, the
constraints (2) - (4) will become linear functions as well and will still
hold after relaxing the original discrete decision variables. Specifi-
cally, all constraints from (2) - (4) will apply in a straightforward
manner, with for instance Y l

kjB
l
j and Xl,k

ij Bl
j indicating in this case

the data volumes associated with the proportions of network coding
packets representing tile-video j comprising l scalable layers cached
at small base station k, and streamed from this small base station to
users at base station i, respectively.

VI. EXPERIMENTS

For performance evaluation, we implemented our setting from
Figure 1 as follows. There are three small base stations and five
users assigned to each base station. There are eight 360◦ videos the
users can request for streaming. These are Coaster, Wingsuit, Paris,
Basketball, Runner, Angel Falls, Kite Flite, and Dolphins, featuring
spatial resolutions of 4K or 8K, and frame rates of 30 or 60 fps. We
constructed our scalable 360◦ tiling to feature L = 3 scalable layers,
Group of Pictures (GOP) size of 30 frames, and 6×4 spatial tiles. The
reference methods used in our evaluation use instead the above 360◦

videos compressed using HEVC into GOPs of 30 frames. We related

the cost factors Cl,k
i,j from Section V to the energy consumption of

streaming the 360◦ content, proportional to the number of network
hops the data needs to traverse to the destination. We considered that
the energy per bit consumed by wireless transmission is 3.5 µJ and
that for wireline transmission is 0.5 µJ per hop [19, 20]. To examine
the pure streaming performance of our 360◦ tiling and the associated
viewport-adaptive allocation of resources, we implemented a state-of-
the-art method based on MPEG-DASH [21]. We also implemented
two caching methods, Blasco2014 [9] and LRU (Least-Recently-
Used), to compare against our cooperative edge-based multi-user VR
streaming and the associated Algorithm 1 for optimal allocation of
storage and computing resources.

Advantages of scalable tiling and user-viewport adaptation.
We carried out this experiment. A sender transmits 360◦ content to
a VR client over a network link of a given data rate C (see Fig. 2).
We implemented our optimization from Section IV-D to allocate C
across the scalable tile layers of the 360◦ content, in response to the
navigation actions of the user, and measured the resulting expected
immersion fidelity experienced by the user. We formally measure the
latter as the expected Y-PSNR of the user’s viewport. We measured
the respective performance of the reference method noted earlier. We
used the content Wingsuit and Angel Falls in this experiment.
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Fig. 6: Transmission efficiency vs. MPEG-DASH.

We can see from Figure 6 that our approach enables considerable
benefits over MPEG-DASH by integrating the user navigation ac-
tions and the rate-distortion trade-offs across the 360◦ panorama,
in deciding how transmission resources should be allocated. Ap-
proximately 6-7 dB of immersion fidelity improvement have been
enabled across both 360◦ sequences and all streaming data rates
considered in Figure 6. These advances can in turn enable much
higher operational efficiency for a streaming system for 360◦ video
delivery that integrates our methodology from Section IV, as our
subsequent results demonstrate.

End-to-end system performance. In Figure 7, we study the energy
consumption of the several methods under comparison, as a function
of the available storage capacity of the base stations’ edge servers.
We set the computing power Z̄i of each server to 65W [22]. We can
see that our approach considerably outperforms the two reference
methods, demonstrating three to six times lower energy consumption
across the entire range of x-axis values examined in Figure 7. These
gains are enabled by our optimization framework that can optimally
pool and allocate the transmission, storage, and computing resources
available at the small base stations. Moreover, our approach enables
much higher energy consumption versus storage capacity efficiency,
for low values of the latter, as observed in Figure 7.
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As expected, the reference method Blasco2014 outperforms the
other reference method LRU due to the optimization it implements,
though its gains appear to be marginal. Finally, we also evaluated the
performance of our framework when operating on network coding
packets. We can see from Figure 7 that this introduces further energy
consumption savings, as in this case the optimization (1) - (4) can be
solved exactly, as explained earlier. This then leads to even higher
utilization of the available system resources, as expected.

We also studied the energy consumption of the three competing
methods, as a function of the available computing capacity of the
edge servers collocated with the small base stations. These results
follow the same trends and relative performances as those observed
in Figure 7 and cannot be included here due to limited space.
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Fig. 8: Delivered immersion fidelity across different 360◦ videos.

Finally, in Figure 8, we assessed the delivered immersion fidelity
across the different 360◦ videos streamed in our system. We can
see that across all five 360◦ videos considered in Figure 8 our
approach enables consistently significant gains in immersion fidelity
delivered to the mobile users, ranging between six to ten decibels
of the viewport Y-PSNR for a mobile VR user. Moreover, our
approach enabled delivering some 360◦ videos also at higher spatial
resolutions or temporal frame rates, thereby augmenting further the
user’s immersion quality of experience. In particular, the video Paris
was delivered at temporal frame rate of 60 fps by our approach, as
indicated in Figure 8, while the reference method Blasco2014 could
only stream it at 30 fps. Similarly, our approach enabled delivering
the videos Basketball and Runner at higher 8K spatial resolution for
the 360◦ panorama, as indicated in Figure 8, while Blasco2014 could
only stream them at 4K spatial resolution. The results for the second
reference method LRU are not included, to avoid cluttering Figure 8,
as they are lower than those for Blasco2014.

VII. CONCLUSION

We explored a novel communications system that integrates for
the first time scalable multi-layer 360◦ video tiling, viewport-adaptive

rate-distortion optimal resource allocation, and VR-centric edge com-
puting and caching, to enable next generation high-quality untethered
VR streaming. Our system comprises a collection of 5G small cells
that can pool their communication, computing, and storage resources
to collectively deliver scalable 360◦ video content to mobile VR
clients at much higher quality. The major contributions of the paper
are the rigorous design of multi-layer 360◦ tiling and related models
of statistical user navigation, and analysis and optimization of edge-
based multi-user VR streaming that integrates viewport adaptation
and server cooperation. We also investigated the possibility of net-
work coded data operation and its implications for the analysis,
optimization, and system performance we pursue in this setting.
The advances introduced by our framework over the state-of-the-art
comprise considerable gains in delivered immersion fidelity, featuring
much higher 360◦ viewport peak signal to noise ratio (PSNR) and
VR video frame rates and spatial resolutions.
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