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Electronic analogues of optical interferences are a powerful tool to investigate 

quantum phenomena in condensed matter. In carbon nanotubes (CNTs), it is well established 

that an electronic Fabry-Perot interferometer can be realized. Other types of quantum 

interferences should also arise in CNTs, but have proven challenging to realize. In particular, 

CNTs have been identified as a system to realize the electronic analogue of a Sagnac 

interferometer - the most sensitive optical interferometer. To realize this Sagnac effect, 

interference between non-identical transmission channels in a single CNT must be observed. 

Here, we use suspended, ultra-clean CNTs of known chiral index to study both Fabry-Perot 

and Sagnac electron interferences. We verify theoretical predictions for the behavior of 

Sagnac oscillations and the persistence of the Sagnac oscillations at high temperatures. As 

suggested by existing theoretical studies, our results show that these quantum interferences 

may be used for electronic structure characterization of carbon nanotubes and the study of 

many-body effects in these model one-dimensional systems. 

Quantum interferences of electron waves in devices with size close to the electron’s 

coherence length have been instrumental in revealing various quantum and interaction effects  [1–

6]. Electronic analogues of Fabry-Perot  [7] and Mach-Zehnder  [8] interferometers have 
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stimulated extensive research over the past two decades  [9–13]. Fabry-Perot (FP) interference was 

experimentally discovered in single-wall CNTs as conductance oscillations as a function of a 

nearby gate voltage [7] and has been the subject of numerous subsequent studies. In addition to 

the FP interference,  previous theoretical studies have predicted the possibility of other quantum 

interference effects in CNTs with open contacts  [12,14–17]. Refael et al. and Bishara et al.  [14,15] 

proposed the electronic analogue of the Sagnac interferometer in CNTs, resulting from the 

interference between electron paths in two different subbands (K and Kʹ) with different phase 

velocity. A recent quantum interference experiment by Dirnaichner et al. revealed this asymmetry 

between the K and Kʹ subbands [12]. The authors measured conductance versus gate voltage 

characteristics of a long suspended CNT. After averaging over FP oscillations, they found a long-

period oscillation pattern that is consistent K and Kʹ subband asymmetry. Dirnaichner et al. 

proposed that this oscillation can be used to extract information about the chiral angle of the CNT. 

However, due to the lack of structural information of their nanotube, the accuracy of the proposed 

theory was not determined. 

While the study by Dirnaichner et al.  [12] gives preliminary evidence for K-Kʹ interference 

in a CNT, several questions remain to explore.  First, alternative explanations for long-period 

conductance oscillations should be excluded. For example, a pair of weakly scattering defects in 

the CNT channel could produce long-period conductance oscillations. Second, competing models 

for the quantum interference should be tested. The Sagnac model [15] postulates that electron 

waves are split at the contacts between K and Kʹ paths, analogous to an optical beam splitter. In 

contrast, the secondary interference model [12] requires back reflections at the contacts such that 

FP-type interference can evolve independently on different interferometer paths. These different 

models predict different periods for the conductance oscillations (differing by a factor 2). Third, 
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the chirality dependence of long-period conductance oscillations has not been investigated. Lastly, 

the temperature dependence of the quantum interference contrast can reveal important physics. For 

example, electron-electron interactions are predicted to modify the temperature dependence of 

conductance oscillations caused by Sagnac interference  [15].  

Here, we verify the signature of electronic Sagnac interference in CNTs by measuring 

length-, structure-, and temperature-dependent interference patterns in long, ultraclean suspended 

CNTs. We use CNTs of known chiral index to show that the Sagnac oscillation period can be used 

to estimate the CNT chiral angle, consistent with the available theories  [12,16]. We tune the length 

of the 1d channel to show that the period of a Sagnac oscillation increases as channel length 

decreases. We show that Sagnac oscillations persist at temperatures as high as 60K, whereas FP 

oscillations subside beyond ~10K. Finally, from the temperature dependence of Sagnac 

oscillations, we obtain information regarding interactions in CNTs. 

Early studies of interference phenomena in CNTs focused on devices with channel lengths 

of a few hundred nanometers  [7,18,19]. Although the FP interference can be observed in such 

devices, the Sagnac interference is missing from these reports since the predicted period of Sagnac 

oscillations is outside the accessible range of Vg. By studying a long CNT (𝐿𝐿 ≅ 1𝜇𝜇𝜇𝜇) with highly 

transparent contacts, Dirnaichner et al. [12] pioneered the effort to study mesoscopic transport 

phenomena in long, ultraclean, open systems with transparent contacts. This new regime has not 

been comprehensively explored and our current study addresses this deficit in the CNT literature. 

Furthermore, our longer nanotubes (𝐿𝐿 > 2 μm) allow for optical characterization of CNT structure 

and, therefore, investigations of chirality-dependent properties. 

To observe electron interference effects in CNTs we have constructed gate-tunable CNT 

channels that are free of disorder and have highly transparent contacts. To eliminate disorder, we 
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grow suspended CNTs as the final step of fabrication  [20–25]. Details of our growth process are 

provided in previously published works  [26,27]. Such devices have unveiled phenomena that were 

previously masked by disorder  [22–26]. Fig. 1a shows a scanning electron microscopy image of 

a representative CNT. Our nanotubes are suspended over a ~2µm trench, with two gates located 

at the bottom of the trench (Fig. S1). 

 

 

Fig. 1. (a) Scanning electron microscope image of a suspended CNT, scale bar is 1 µm. (b) Energy 
spectrum of left-moving (L) and right-moving (R) carriers in two sub-bands. Geometries for 
realizing Fabry-Perot (c) and (d) Sagnac interferences in CNT waveguide. Red (blue) arrows 
represent electron traveling in the K (Kʹ) sub-band. (e) Conductance (G) versus Vg at T = 1.5K for 
D1 with ∼2µm length. 

 

Fabry-Perot interference can be produced by weak reflections of electron waves at the 

interface between the CNT and the metal contacts  [7]. A direct propagating wave interferes with 

a scattered electron wave as shown in Fig. 1c. The phase difference between the two paths (Fig. 

(c) 

(a) (b) 

(e) 

(d) 
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1c) is ∆𝜑𝜑FP = 2𝑘𝑘𝑘𝑘 where k is the electron momentum in the K sub-band, and L is the length of the 

nanotube channel  [7]. Fabry-Perot interference can also involve the Kʹ sub-band (not shown). 

Sagnac interference is illustrated in Fig. 1d.  In this case, the interference occurs between direct 

paths in the K and Kʹ sub-bands. Asymmetry between the two sub-bands leads to the non-zero 

phase difference ∆𝜑𝜑S = (𝑘𝑘 − 𝑘𝑘′)𝐿𝐿, where 𝑘𝑘′ is the electron momentum in the Kʹ sub-

band  [14,15]. Both FP and Sagnac interferences, can be observed in experiment by measuring 

oscillations in device conductance as a function of Fermi energy. 

To predict the period of conductance oscillations, consider the band structure of a metallic 

CNT. Fig. 1b shows the dispersion relationships for left-moving (L) and right-moving (R) carriers 

in the K and Kʹ sub-bands. The dashed lines show the linear dispersion approximation which is 

most commonly used in the CNT literature. The solid lines illustrate the small (but nevertheless 

observable) deviation from linear dispersion. For example, right-movers in the K sub-band are 

described by: 

𝐸𝐸𝑅𝑅(𝑘𝑘) = ℏ𝑣𝑣F𝑘𝑘−𝛽𝛽𝑘𝑘2 +𝒪𝒪(𝑘𝑘3)            (1) 

where ER and k are measured relative to the Dirac point, 𝑣𝑣F is a constant describing the carrier 

velocity at the Dirac point (tight-binding calculations predict ℏ𝑣𝑣F ≈ 0.65eV. nm [7]), and 𝛽𝛽 is a 

constant that depends on the chiral angle of the CNT, θ  [28]. Our tight-binding calculations predict 

that 𝛽𝛽 = [0.023 eV ∙ nm2] ∙ sin3𝜃𝜃 (see Supplemental Material [29]). Higher order terms, 𝒪𝒪(𝑘𝑘3), are 

too small to be relevant for our experiments. The set of four dispersion curves (Fig. 1b) satisfy 

electron-hole symmetry and time-reversal symmetry.  
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 Using the band structure shown in Fig. 1b, one can calculate the phase differences ∆𝜑𝜑FP 

and ∆𝜑𝜑S for charge carriers at the Fermi energy, EF.  The phase difference ∆𝜑𝜑FP(𝐸𝐸F) and ∆𝜑𝜑S(𝐸𝐸F) 

will cause oscillations in zero-bias conductance described by: 

𝐺𝐺(𝐸𝐸F) = 𝐺𝐺avg +𝐴𝐴FP cos �
2𝐿𝐿𝐸𝐸F
ℏ𝑣𝑣F

�,           (2) 

𝐺𝐺(𝐸𝐸𝐹𝐹) = 𝐺𝐺avg + 𝐴𝐴S cos�
2𝛽𝛽𝛽𝛽𝐸𝐸F2

(ℏ𝑣𝑣F)3�,            (3) 

where AFP and AS are amplitudes of the FP and Sagnac oscillations respectively. In Eq. 3, the factor 

EF2 causes the oscillation period to change with energy (as noted previously by Jiang et al. [16]). 

Given the expected values of L, 𝛽𝛽 and vF, we expect the period of Sagnac oscillations (Eq. 3) to be 

significantly longer than the period of FP for experimentally accessible values of EF. The 

amplitude AFP is determined by reflection coefficients at the contacts (for details see Ref [12]), 

whereas AS depends on the coherent splitting of the electron beam at the contacts into the K and 

Kʹ valleys. If both FP and Sagnac interferences occur at the same time, we expect a superposition 

of these two oscillation patterns.  

Figure 1e shows the conductance of a device D1 as a function of Vg at T=1.5K. The 

regularity and stability of our data indicates that our devices are high-quality and defect-free. The 

observed fast oscillations in conductance of D1 (period ~80mV) have a constant period over a 

wide range of Vg, consistent with the prediction of FP interference (Eq. 2). The observed slow 

oscillations have a much longer period that changes with Vg, consistent with the prediction of 

Sagnac interference (Eq. 3). We have observed this combination of constant-period fast 

oscillations, and variable-period slow oscillations in over 40 nanotube devices. We have 
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undertaken several experiments, described below, to verify that a combination of FP and Sagnac 

interference is generating these conductance oscillations. 

We first verified that the conductance oscillations can be tuned by changing the channel 

length. First, 𝐸𝐸𝐹𝐹 was varied in the full length of the CNT by operating both gate electrodes as a 

single gate (Fig. 2a, black curve). Next, 𝐸𝐸𝐹𝐹 was tuned in half the CNT by holding one gate at a 

large fixed voltage and varying the voltage of the other gate (red curve). In this half-length 

configuration, a high-transparency tunnel barrier was created in the center of CNT  [30]. Figure 

2b&c show differential conductance, dI/dVsd, plots for the full length and half length respectively. 

The differential conductance forms a rhombic pattern with a height of Vc=1.3mV (full-length) or 

Vc=2.1mV (half-length). Similar rhombic patterns have been observed previously and attributed 

to FP interference [7]. 

Figure 2 illustrates that both interference patterns (slow and fast oscillations) are tuned by 

channel length. Assuming the fast oscillation is caused by FP, Eq. 2 predicts that the oscillation 

period will scale inversely with L. Indeed, we find that the fast oscillation has a period of 80mV 

(full length), which increases to 170mV (half length). Similarly, if the slow oscillation is caused 

by Sagnac interference, the increased period of slow oscillation is expected to be consistent with 

Eq. 3. The cycle of the slow oscillation marked with arrows in Fig. 2a., has a period of ~2.47V 

(full length), which increases to ~4.1V (half length). In the Supplemental Material  [29] we provide 

further quantitative analysis, accounting for the role of the gate lever arm, 𝛼𝛼 = 𝑉𝑉c/∆𝑉𝑉gFP [7], to 

verify quantitative agreement with the predicted length dependence (Eq. 2 and 3). The key 

conclusion from Fig. 2 is that the observed interference effects can be attributed to 

scattering/mixing at the channel ends, and not to fixed scattering sites along the length of the 

channel.   
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Fig. 2. (a) Conductance (G) versus Vg at T = 1.5K for whole (black) and half-length (red) of D2. 
Grayscale plot of differential conductance versus Vg and source-drain bias Vsd for (b) whole and 
(c) half-length of D2. 
 

After establishing the length dependence of the interference patterns, we performed 

experiments on six CNTs of known chiral index (D3-D8). Chiral index was determined using 

scanning photocurrent spectroscopy to characterize the devices (see Supplemental Material  [29]). 

A representative photocurrent spectrum is shown in Fig. 3a (see also Fig. S4). The chiral angles of 

the six CNTs ranged from 𝜃𝜃 = 16.1° to 30°. We also used photocurrent microscopy to determine 

the length of the suspended CNT  [29]. Fig. 3b shows the conductance oscillations measured in 

these six CNTs. The red dashed lines show the fit functions that are based on Eq. 3: 

(b) (c) 

(a) 
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𝐺𝐺 = 𝐺𝐺avg + 𝐴𝐴S cos�𝛾𝛾 �𝑉𝑉g − 𝑉𝑉g,0�
2
�            (4) 

where 𝐺𝐺avg describes the average conductance and 𝐴𝐴𝑠𝑠 the amplitude of the oscillation. Here Gavg, 

As, γ and Vg,0 are treated as fit parameters for each device. The periodicity of the measured 

oscillations is well described by the cos(Vg2) dependence.   

 

 

Fig. 3. (a) Photocurrent spectrum of D3 (25, 10) and fit to excitonic model. (b) Experimental data 
(black) and fit functions (red) of conductance versus Vg. The measured chiral index is noted for 
each device. (c) Comparison of measured (dots) and calculated (red line) of 𝛾𝛾/(2𝐿𝐿𝑒𝑒2𝛼𝛼2) as a 
function of 𝜃𝜃 for the six CNTs.  
 

The relative amplitude of fast and slow oscillations varies between devices. This is 

consistent with the FP and Sagnac mechanisms; AFP is determined by reflection coefficients at the 

(a) 

(c) 

(b) 
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contacts, whereas AS is determined by channel splitting at the contacts. If the slow oscillations are 

caused by Sagnac interference, Eq. 3 predicts that the fitting parameter γ will be given by:  

𝛾𝛾 =
2𝐿𝐿𝑒𝑒2𝛼𝛼2𝛽𝛽

(ℏ𝑣𝑣F)3 ≈
2𝐿𝐿𝑒𝑒2𝛼𝛼2 ∙ [0.023 eV ∙ nm2 ] ∙ sin(3𝜃𝜃)

[0.65 eV ∙ nm]3            (5) 

The second equality uses the values of 𝛽𝛽 and ℏ𝑣𝑣F from tight-binding calculations. To compare our 

measurements with theory, we plot 𝛾𝛾/(2𝐿𝐿𝑒𝑒2𝛼𝛼2)  as a function of 𝜃𝜃 for the six CNTs (Fig. 3c). We 

assume that L is equal to the suspended length of the CNT determined from photocurrent 

microscopy. In two devices, α was determined from differential conductance measurements (the 

mean value was 0.028 and the difference was 0.004). The exact value of α is unknown in four 

devices, therefore, we assumed α = 0.028 ± 0.004 for them.  

 Figure 3c shows that the measured γ parameter (normalized for length and gate lever arm) 

is approximately 30% larger than predicted by tight-binding parameters (Eq. 5). It is possible that 

strong electron-electron interactions in the CNT modify the band structure so that tight-binding 

calculations are a poor description of our system. Despite this 30% discrepancy, the approximate 

agreement between measured and predicted 𝛾𝛾/(2𝐿𝐿𝑒𝑒2𝛼𝛼2), is sufficient to increase our confidence 

in the proposed Sagnac interference mechanism.  

The measurements shown in Fig. 3c are not precise enough to verify the expected sin(3θ) 

dependence. Further experiments with a wider range of θ, and with precise characterization of L 

and α, are required. We speculate that future work will refine this characterization method to reach 

a precision that enables researchers to determine θ from quantum interference patterns. There is 

one caveat, however, the sin(3θ) function is flat when θ = 30°. Therefore, the method will not be 

suitable for distinguishing chiral angles that are close to 30°. 
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As a final test of the electron interference mechanisms, we measured the temperature 

dependence of the interference contrast. Fig. 4a shows the evolution of conductance oscillations 

as the temperature is increased from 2.25K to 30K.  The fast oscillations disappear at ~7K while 

slow oscillations survive up to 30K. Slow oscillations survived as high as 60K in other devices 

(see Fig. S5 [29]). 

 

 

Fig. 4. (a) Temperature dependence of the conductance of D2 as a function of Vg. Black arrows 
show the extremum points (Ext) of the slow oscillation. Averaged amplitudes of (b) fast and (c) 
slow oscillations over the whole range of Vg calculated using FFT over a sliding window of 0.75V 
as a function of temperature. Dashed blue line is a fit to Eq. (6) in the text, and red line is an 
extrapolate to 𝑇𝑇 = 0 𝐾𝐾. Insets: Amplitude of (b) fast and (c) slow oscillations at Ext of slow 
oscillation vs. temperature. (d) T* of fast (red) and slow (black) oscillations at Ext of slow 
oscillation, here T* is a temperature at which 𝐴𝐴 (𝑇𝑇∗) =  exp (−1) ∙ 𝐴𝐴 (𝑇𝑇 = 0).  

 

(a) (b) 

(c) (d) 
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The temperature dependence in Fig. 4a is consistent with fast oscillations caused by the FP 

mechanism and slow oscillations by the Sagnac mechanism. At finite temperature, interference 

contrast will be reduced by the thermal spread of electron energies. Contrast is lost completely 

when the thermal energy, ~𝑘𝑘𝐵𝐵𝑇𝑇, causes a 2π spread in the phase difference ∆𝜑𝜑FP or ∆𝜑𝜑S. For FP 

interference, ∆𝜑𝜑FP changes rapidly with electron energy, which results in a low temperature 

threshold for losing interference contrast. For a channel length L=2µm, the expected temperature 

threshold for FP oscillations is a few Kelvin (𝑇𝑇FP ≈ 𝜋𝜋ℏ𝑣𝑣F/(𝐿𝐿𝑘𝑘𝐵𝐵)). For Sagnac interference, ∆𝜑𝜑S 

changes more slowly with electron energy and the expected temperature threshold is significantly 

higher.  

To analyze the temperature dependence in more detail, the oscillation amplitudes were 

calculated by performing a fast Fourier transform (FFT) over a sliding window of 0.75V at each 

temperature. Amplitudes of fast and slow oscillations averaged over the whole range of Vg are 

plotted as a function of temperature in Fig. 4b and c. The amplitude of FP interference 𝐴𝐴𝐹𝐹𝐹𝐹, is 

expected to follow a temperature behavior of  [15,33]: 

𝐴𝐴𝐹𝐹𝐹𝐹(𝑇𝑇) ~ 𝐴𝐴𝐹𝐹𝐹𝐹(𝑇𝑇 = 0) ∙ �
𝑇𝑇

sinh �2π𝑘𝑘𝐵𝐵𝐿𝐿𝑇𝑇ℏ𝑣𝑣𝐹𝐹
�
�                                              (6) 

It can be seen from Fig. 4b that amplitudes of our fast oscillations fit very well (dashed blue line) 

to Eq. 6. Bishara et al.  [15] predicted that the amplitude of Sagnac oscillation in non-interacting 

nanotubes follow a similar relationship to Eq. 6. They modified Eq. 6 by multiplying T by a factor 

𝑢𝑢
𝑣𝑣F

, where u = ℏ−1(𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ − 𝑑𝑑𝐸𝐸′ 𝑑𝑑𝑘𝑘′⁄ ) ≈ 4𝛽𝛽𝛽𝛽
ℏ2𝑣𝑣F

 is the velocity difference between electrons with 

energy E in the K and Kʹ sub-bands. Since 𝑢𝑢 ≪ 𝑣𝑣𝐹𝐹, the non-interacting theory predicts that Sagnac 

oscillations persist to much higher temperatures than FP oscillations  [15]. Indeed, we observe this 
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higher temperature threshold for Sagnac oscillations. However, the functional form of the 

temperature dependence does not follow the inverse sinh relationship that is predicted by the non-

interacting theory (Fig. 4c, dashed blue line). Moreover, the temperature dependence does not 

change significantly as u is modified by tuning the Fermi energy (Fig. 4c inset). 

To explain the deviation from the inverse sinh relationship, we consider the role of 

Coulomb interactions [15]. The inset of Fig. 4c shows the Sagnac oscillation amplitude at each 

extremum of the Sagnac oscillation (the extrema are indicated by black arrows in Fig. 4a, with 

extremum 1 located closest to charge neutrality). The Sagnac oscillation amplitude is almost 

independent of 𝑉𝑉𝑔𝑔 and, therefore, almost independent of u. Bishara predicted that Sagnac 

oscillations will show such behavior in the strongly interacting regime, i.e. Luttinger liquid 

parameter 𝑔𝑔 ≤ 0.5  [15]. The equivalent of Eq. (6) for interacting nanotubes was non-trivial to 

obtain, therefore, Bishara considered the temperature T* at which the amplitude of oscillations 

became a factor 1/e of their zero-temperature amplitude. In the strongly interacting regime, Bishara 

predicted that Sagnac oscillations are characterized by 𝑇𝑇𝑆𝑆∗ which is weakly dependent on 𝑢𝑢 and g, 

and that 𝑇𝑇𝑆𝑆∗ ≈ 7𝑇𝑇𝐹𝐹𝐹𝐹∗ . Figure 4d shows the experimentally determined values of 𝑇𝑇𝑆𝑆∗ and 𝑇𝑇𝐹𝐹𝐹𝐹∗  obtained 

at the extremum points. We find 𝑇𝑇𝑆𝑆∗/𝑇𝑇𝐹𝐹𝐹𝐹∗ ,≈ 4 − 5, slightly less than predicted by Bishara. In other 

devices (Fig. S6), we found 𝑇𝑇𝑆𝑆∗/𝑇𝑇𝐹𝐹𝐹𝐹∗ ≈ 4 − 7. It is possible that this variation in 𝑇𝑇𝑆𝑆∗/𝑇𝑇𝐹𝐹𝐹𝐹∗  is due to 

a non-negligible dependence on u and g, even in the strongly interacting regime. This possibility 

warrants further theoretical investigation. We conclude that Sagnac interference provides 

information on electron interactions in CNTs, and the temperature dependence of Sagnac 

interference may reveal the interaction strength parameter. 

In summary, we studied two forms of quantum interference in long, suspended ultra-clean 

CNTs. Fabry-Perot interference is manifested as rapid oscillations in CNT conductance. A slower, 
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conductance oscillation is identified as arising from Sagnac interference. While the FP mechanism 

involves an electron path that traverses the CNT channel multiple times, the Sagnac mechanism 

involves paths that traverse the channel only once, but in different sub-bands. Using theoretical 

modeling and experiments on devices with known chiral indices, we verified that the Sagnac 

oscillation patterns are consistent with theory. Future measurements of CNTs may use such 

quantum interference measurements to determine CNT chiral angle – circumventing the need for 

optical characterization or atomic-resolution imaging. Lastly, by studying the temperature 

dependence of the interference effects in nanotubes, we showed that Sagnac interference can 

provide information on the interaction effects in these devices. 
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