
MNRAS 500, 3889–3897 (2021) doi:10.1093/mnras/staa3344

Advance Access publication 2020 October 30

Cleaning our own dust: simulating and separating galactic dust
foregrounds with neural networks

K. Aylor,1‹ M. Haq,2 L. Knox,1‹ Y. Hezaveh3,4 and L. Perreault-Levasseur3,4,5

1Department of Physics, University of California, Davis, CA 95616, USA
2Department of Mathematics, University of Texas, Dallas, TX 75080, USA
3Département de Physique, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
4Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
5Montreal Institute for Learning Algorithms, Université de Montréal, Montreal, Quebec H2S 3H1, Canada

Accepted 2020 October 6. Received 2020 September 12; in original form 2019 October 30

ABSTRACT

Separating galactic foreground emission from maps of the cosmic microwave background (CMB) and quantifying the uncertainty

in the CMB maps due to errors in foreground separation are important for avoiding biases in scientific conclusions. Our ability

to quantify such uncertainty is limited by our lack of a model for the statistical distribution of the foreground emission. Here,

we use a deep convolutional generative adversarial network (DCGAN) to create an effective non-Gaussian statistical model for

intensity of emission by interstellar dust. For training data we use a set of dust maps inferred from observations by the Planck

satellite. A DCGAN is uniquely suited for such unsupervised learning tasks as it can learn to model a complex non-Gaussian

distribution directly from examples. We then use these simulations to train a second neural network to estimate the underlying

CMB signal from dust-contaminated maps. We discuss other potential uses for the trained DCGAN, and the generalization to

polarized emission from both dust and synchrotron.

Key words: methods: statistical – software: simulations – dust, extinction – cosmic background radiation.

1 IN T RO D U C T I O N

Polarized emission from the interstellar medium of the Milky Way,

in the cleanest parts of the sky at the cleanest observing frequencies,

is comparable to the cosmic microwave background (CMB) signal

generated by primordial gravitational waves (PGWs) if the PGW

signal is near the current upper limit. The current upper limit,

quantified by the ratio of tensor-to-scalar fluctuation power, r, is r <

0.07 at 95 per cent confidence (Keck Array, BICEP2 Collaborations

et al. 2015). So-called Stage III CMB experiments, such as the

Simons Observatory Ade et al. (2019), and BICEP Array (Cukierman

et al. 2019) combined with SPT-3G (Benson et al. 2014) are designed

to have sufficient sensitivity and systematic error control to tighten

the 95 per cent confidence upper limits by a factor of about 20. The

Stage IV experiments LiteBIRD and CMB-S4 are targeting upper

limits factors of 2 and 5 times more stringent still, respectively.

Thus, we are rapidly moving into a regime where the foreground

contamination is up to two orders of magnitude larger1 than the

signal of interest.

The most exciting possibility is that there will be a detection of

PGW, as opposed to improved upper limits. A detection claim would

essentially be a claim that there is power remaining in the map

that cannot be explained as a residual instrumental systematic or

residual foreground emission. Detection, therefore, requires not only

⋆ E-mail: kmaylor@ucdavis.edu (KA); lknox@ucdavis.edu (LK)
1This is for fluctuation power. The rms level of contamination in the map is

up to one order of magnitude larger than the signal of interest.

foreground cleaning, but the capability to quantify the probability

distribution of residual foreground power. Such capability is ham-

pered by our lack of prior knowledge of the probability distribution

of the non-Gaussian and spatially non-isotropic galactic foreground

emission.

In this paper, we explore the application of neural networks to

the challenges of characterizing non-Gaussian foreground emission

and cleaning it from CMB maps. Although primarily motivated by

the need to clean polarized emission, in this paper we describe our

initial studies that are of the intensity of dust emission, rather than

its polarization. The intensity of the CMB is also of cosmological

interest and our work may also have applications to the extension of

usable regions of the sky to areas of higher galactic emission than is

possible with traditional foreground-cleaning methods.

Neural networks are a class of machine learning algorithms, also

known as deep learning, the development of which was loosely based

on how signals are transmitted through a nervous system. In general,

neural networks approximate a target function as a series of affine and

non-linear transformations, the weights of which are updated during

training through a process known as backpropagation: the error from

a loss function is used to adjust the model weights via stochastic

gradient descent or some other optimization algorithm. Over the

last decade neural networks have become increasingly popular as

a method for performing classification and regression as they have

been shown to be universal approximators (Csáji 2001). In the context

of CMB analysis, some recent works have applied neural networks

to performing Wiener filtering (Münchmeyer & Smith 2019) and

lensing reconstruction (Caldeira et al. 2019). In an earlier work,

C© 2020 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

3890 K. Aylor et al.

Auld, Bridges & Hobson (2008), a network was used to emulate the

calculation of CMB angular power spectra.

Developments in modelling via neural networks and the avail-

ability of powerful computation resources open up a new approach

to conducting cosmological analyses. In particular, neural networks

can be used to create highly accurate simulations based on a training

data set without trying to emulate a particular summary statistic,

and can perform map level component separation without relying

on a predefined spatial and/or frequency dependence model. The

work presented in this paper is meant as a proof of concept and

while we focus on intensity maps we plan to extend the work

to polarization. In Section 2, we present a method for developing

interstellar dust simulations using a deep convolutional generative

adversarial network (DCGAN). A DCGAN is a combination of two

or more neural networks, which together are capable of learning a

generating function; that allows one to sample an unknown distri-

bution (such as the intensity distribution of interstelllar dust). Such

a generating function would have many uses including: estimation

of statistical properties of foreground residuals, approximation of a

likelihood function for a Bayesian sampling approach, or increasing

the size of a training set for another deep learning process. We

apply the latter to test the GAN by training a ResUNet model

to separate the CMB from foregrounds. Finally we conclude in

Section 3.

2 G ENERATIVE A DV ERSARIAL NETWORK

A generative adversarial network (GAN) is a form of unsupervised

deep learning that can be used to model a generating function to create

samples from a desired distribution (Goodfellow et al. 2014). A GAN

consists of two sub-networks; a discriminator and a generator, each

with their own sets of weights to be optimized. The discriminator

is optimized to detect samples from P, the distribution that we

desire to emulate, and the generator is optimized to create samples

from P. During the training process, the discriminator is shown

labelled samples from P and from the generator. As the discriminator

improves at detecting samples from P, the generator must improve at

creating samples belonging to P to minimize its own loss function.

Ideally, training proceeds until the generator’s output distribution

has converged to P. A DCGAN, first presented in Radford, Metz &

Chintala (2015), is a particular design of GAN where the generator

G(z) maps z, a random vector from Z, to P in R
N×M through a series

of upsamplings via strided convolutions. The generator then allows

one to produce samples from P by sampling Z.

In our case, P is the intensity of thermal emission from interstellar

dust across the sky. A DCGAN allows us to generate simulations

of dust intensity maps based on the actual measured intensity. As

we only have one sky to measure, we are limited in our ability to

measure samples from P and instead focus on a subset of P, patches

of sky with approximately 1 per cent coverage of the full sky. The

primary reason for choosing 1 per cent versus some other size is

this coverage reduces the computational power needed to develop a

model while still covering angular scales of interest and allowing for

the creation of a sufficiently large training set.

2.1 The data set

We formed our training data set from the Planck 353 GHz GNILC

intensity dust map (Planck Collaboration XLVIII 2016). The map

was cut into square patches of approximately 1 per cent sky coverage

using the HEALPY and HEALPIX2 package (Górski et al. 2005; Zonca

et al. 2019). One can envision our sampling process as shifting the

centre of a patch at a given longitude and latitude, (φ, θ), to [φ +

s/cos(θ), θ + s], where s is the step size, and selecting a 20◦ × 20◦

region centred on a great circle going through the new centre and

parallel to the top and bottom edges of the new patch. The factor of

1/cos(θ) is included to make the step in longitude the same angular

separation as the step in latitude. We also exclude the galactic plane

by only sampling regions 15◦ above and below the plane as we are

interested in the properties of the dust at high latitudes.

For s = 5◦, we split the full sky map into 1034 smaller overlapping

maps. We chose a resolution of 256 × 256 as this allows for easier

training than trying to match the Planck resolution; with a larger

network and more computational power one could simulate maps at

a greater resolution. The average angular size of an individual pixel

is less than 5 arcmin. Before training we take the log of each pixel

(to reduce the dynamic range and lower the influence of the tails of

the distribution) and normalize the entire data set to the range [−1,

1]. We note that while we use actual measurements of galactic dust

intensity as our training set in this paper, to expand to polarization

one would likely have to resort to using simulations as the training

set. In such cases, the GAN would act as an emulator of the more

computationally expensive simulations.

2.2 DCGAN architecture

We base the architecture of our discriminator and generator on the

guidelines presented in Radford et al. (2015) with several notable

exceptions. We replaced all transpose convolution layers in the

generator with a bi-linear upsampling followed by a convolutional

layer with a stride, or step size, of one unit. We found this method led

to better convergence in the generator by eliminating the checker-

boarding artefact that can be found with transpose convolution

layers (Odena, Dumoulin & Olah 2016). The generator receives a

64-dimensional vector drawn from N (0, 1) as input, that is then

passed through a densely connected layer and reshaped into 512

16 × 16 pixel maps. This is followed by four layers of upsampling

and convolution that result in a 256 × 256 pixel map. After each linear

layer in the generator, we apply a LeakyReLU activation (Maas,

Hannun & Ng 2013), with a slope of 0.2 over the negative domain,

except in the final layer where we apply a hyperbolic-tangent (tanh)

activation. We also apply batch normalization (Ioffe & Szegedy

2015), with a momentum of 0.9, after each activation layer except

the final one. In Table 1, we list the structure of the generator.

The architecture for our discriminator model is where we deviate

from the standard DCGAN the most. Instead of using just a single

discriminator, we employ two. One discriminator receives a map as

input and the other receives the fractional difference of the angular

power spectrum with respect to the mean power of the Planck maps

(Cℓ/C̃
Planck
ℓ − 1) as input; we refer to them as the map and power

discriminators, respectively.

For the map discriminator, we use the same number of feature

maps as in the generator. The upsampling and convolution steps

in the generator are replaced by a convolution in the discriminator

with a stride of two units. After each convolution, we again apply

a LeakyReLU activation and batch normalization with the same

slope and momentum as in the generator. The feature maps are then

flattened into a one-dimensional vector and passed through a densely

connected layer with a sigmoid activation function.

2http://healpix.sourceforge.net

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

Simulating and separating galactic foregrounds 3891

Table 1. The output structure and relevant hyperparameters for each

layer in the generator.

Operation Output Hyperparameters

Linear 16 × 16 × 512

Leaky ReLU 16 × 16 × 512 α = 0.2

Batch normalization 16 × 16 × 512 Momentum = 0.9

Up sampling 32 × 32 × 256 Bi-linear

Convolution 32 × 32 × 256

Leaky ReLU 32 × 32 × 256 α = 0.2

Batch normalization 32 × 32 × 256 Momentum = 0.9

Up sampling 64 × 64 × 128 Bi-linear

Convolution 64 × 64 × 128

Leaky ReLU 64 × 64 × 128 α = 0.2

Batch normalization 64 × 64 × 128 Momentum = 0.9

Up sampling 128 × 128 × 64 Bi-linear

Convolution 128 × 128 × 64

Leaky ReLU 128 × 128 × 64 α = 0.2

Batch normalization 128 × 128 × 64 Momentum = 0.9

Up sampling 256 × 256 × 1 Bi-linear

Convolution 256 × 256 × 1

Tan h 256 × 256 × 1 α = 0.2

The architecture of the power discriminator is largely the same

as the map discriminator, except convolutions in two dimensions are

replaced by convolutions over a single dimension and the overall size

of the power discriminator is smaller. The power discriminator only

has three convolution layers and the number of features increases

from 1 to 256 in multiples of 64.

In the production of this work, we tested various network ar-

chitectures. We do not claim to have found an optimal network

but simply one that performs better than alternatives we have tried.

Since the development of the DCGAN, other architectures have risen

in popularity, in particular architectures employing the Wasserstein

loss function, such as WGAN, WGAN with gradient penalty, and

CTGAN (Arjovsky, Chintala & Bottou 2017; Gulrajani et al. 2017;

Wei et al. 2018). We tested these networks but in all of our trials

we found the generator results to be significantly inferior to those

produced by our best DCGAN, even before we implemented the

second discriminator.

2.3 Training

We used a binary cross entropy loss function and the Adam optimizer

(Kingma & Ba 2015) with the learning rate set to 2 × 10−4 and the

first and second momentum parameters to 0.5 and 0.999 respectively

for each discriminator and the final loss used to update the network is

the sum of the map and power discriminator losses. Training is done

in batches of 32 maps. First, the discriminator is trained on 32 real

images and then 32 fake images (produced by the current state of

the generator). The images’ labels are also swapped with 1 per cent

probability (with a 1 per cent probability the discriminator is told a

real image is a fake image or a fake image is a real image). This helps

to prevent the discriminator from overpowering the generator. Next

the generator is given 32 random noise vectors with dimension 64

drawn from a normal distribution and the output from the generator

is passed to the discriminators to calculate the loss.

The statistic of greatest interest to us is the distribution of the

power spectrum; we base our stopping criteria for training on this.

After every 100 training steps, we generate 1034 simulations, restore

the original range, and calculate the power spectrum for each map.

We then calculate the Fréchet distance (dF) between the real and

simulated distributions of the log of the power spectrum,3 which for

multivariate normal distributions takes the following form:

dF = |μr − μs |
2 + tr(�r + �s − 2(�r�s)

1
2). (1)

In the above equation, μi and �i are the mean and covariance of

either the real (r) or simulated (s) power spectrum. After training for

50 000 steps, we take the GAN state with the minimum dF and train

it for another 5000 steps, this time calculating dF after every step. We

then take the state with the minimum dF as our best-fitting model. We

note this choice of metric is insensitive to the tails of the distributions

but despite the training distribution being non-Gaussian we found

this metric to be computationally efficient and lower values of dF

correlated with improved results. Training was done on the Extreme

Science and Engineering Discovery Environment (XSEDE) Comet

GPU resource (Towns et al. 2014).

2.4 Results

Determining the quality of samples produced by the generator of

a GAN is a current area of research and several methods have

been proposed. We choose to follow the methodology presented

in Mustafa et al. (2017) where quality is determined by the GAN’s

ability to replicate relevant summary statistics. The three statistics we

compare for the real and simulated data sets are the pixel intensity,

power spectra, and Minkowski functional distributions. The first two

statistics capture the one- and two-point function information while

the third is sensitive to higher-order correlations, that are of interest

since the distribution of dust intensity is highly non-Gaussian.

We begin by showing a random selection of images from the

training set and generator in Fig. 1. The generated images appear

to have similar features to the training set and no obvious visual

artefacts. In Fig. 2, we show the distribution of pixel intensities

over the entire set of real maps and an equal number of generated

maps. From Fig. 2, we see the GAN does not produce the same

pixel intensity distribution as the training data but does capture the

bulk mass with an average intersection of 94 per cent taken over 1000

bootstrapped samples. The intersection of two histograms with equal

binning and number of samples is defined as �imin(ai, bi)/(�iai),

where ai and bi are the ith bins of the two histograms. The GAN does

not capture the full range of intensities found in the real distribution

and also fails to replicate some of the more subtle features around

the peak of the real intensity distribution. The behaviour at the tails

is unsurprising as a generator will have more difficulty learning these

regions due to the low rates they are seen during the training. The

discrepancies near the peak may be the result of the distribution

being too complicated for the GAN to learn as the real distribution

is somewhat bi-modal.

Our primary interest in creating these simulations of the dust

intensity is to learn and replicate the distribution of the angular

power spectrum. The power spectrum of an intensity map is the

variance in the intensity at different scales; it is the most informative

statistic of the CMB and measurements of it have resulted in the

tightest constraints on cosmological models. Measurements of the

CMB power spectrum are contaminated by dust and therefore it is

necessary to model the power spectrum of the dust to separate the

two signals.

The angular extent of our maps is sufficiently small that a flat-sky

approximation is sufficiently accurate. We therefore calculate power

3We apply the log10 function to the power spectra in order to work with

distributions that are less skewed and closer to normal distributions.

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

3892 K. Aylor et al.

Figure 1. A random selection of images from the training set (top row) and from our GAN (bottom row).The figure is in log scale with red (blue) indicating

higher (lower) temperatures.

Figure 2. The pixel intensity distribution for the Planck and generated maps.

In the bottom panel, we show the distribution on a log scale to highlight the

differences between the simulations and the real data at the tails.

spectra from 2D Fourier modes instead of spherical harmonics. In

Fig. 3, we show the mean, 68 per cent, and 95 per cent intervals for the

real and generated distributions of the log of the power spectrum. For

all plots involving power spectra in this paper, each bin has a width of

�ℓ = 9. To obtain errors on the presented statistics we bootstrap the

real and generated distributions by drawing 1000 samples with each

sample being the size of the real data set (1034 maps). Just as with

the pixel intensity distribution our GAN has captured the majority

of the variation found in the real data set but fails to capture the

full range. A large portion of the difference in the upper 95 per cent

intervals can be attributed to six maps in the real data set that have

significantly greater power than what is found in the remainder of

the data set. Evidence for this can be seen in Fig. 4 where we show

the distribution of power for three scales chosen at random. These

highly contaminated maps come from a region of the sky just outside

of the 30◦ band excluded from the creation of the training data set.

Each panel in Fig. 4 indicates the real distribution of power has

a heavy tail towards greater power at all scales, that the GAN does

not capture well. We found that by increasing the variance of the

normal distribution used to sample the latent space the GAN will

produce more samples with power spectra similar to those found

at the higher end of the real distribution. The inability to recover

the tails is therefore not due to the GAN being unable to create

maps with greater power. We also note that there are discrepancies

between the two power distributions at the lower end predominantly

for 200 < ℓ < 400. The discrepancies at the tails between the GAN

distribution and the real distribution may not be due to just the

infrequency at which the samples are seen during training but may

also be connected to the non-trivial mapping from the latent space.

Better results could potentially be obtained by sampling the latent

space from a distribution that better matches the distribution to be

emulated instead of a Gaussian. Another option would be to increase

the number of fully connected layers at the beginning of the generator,

allowing the network to learn a more complex transformation from

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

Simulating and separating galactic foregrounds 3893

Figure 3. The mean (dashed lines in centre), 68 per cent, and 95 per cent central intervals of the GAN (orange) and Planck (blue) log power spectra distributions

centred on the Planck mean. The errorbar for each statistic was obtained through bootstrapping the Planck dust intensity maps or the GAN. The GAN is not

capable of emulating the 95 per cent intervals of the Planck distribution as it does not produce the same dynamic range found on the upper end of the Planck

distribution. The largest discrepancies between the two distributions at the lower end are found between 200 < ℓ < 400.

Figure 4. The distributions of the Cℓ for three separate bins at ℓ = 27, 198, and 1008.

the latent space. However, adding more layers to the generator does

not guarantee the optimal transformation will be learned, and is

perhaps additional complexity with no clear benefit over sampling

from a different distribution. We leave the exploration of this issue

to future work.

We also note that in terms of failing to recover the underlying

distribution of power, the GAN has done so in what could be

considered the best possible way. When making measurements of

the CMB, it is desirable to avoid measuring highly contaminated

regions and therefore it is not necessary for the GAN to be able to

produce the full upper range of the dust intensity power spectrum

distribution. Also on the lower end it is better to produce a greater

level of variation than too little as to be sure to capture all of the

possible types of contamination likely to be measured in an actual

experiment. The GAN’s inability to properly recover the tails of the

real power distribution indicates that if one were to extend this work

to polarization and the detection of primordial gravitational waves

it would be better to train a new GAN on the least dynamic range

possible that can contain the truth as a means of simplifying the

distribution to be learned.

The dust maps contain non-Gaussian information that is not

captured by the distribution of pixel intensities and only somewhat

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

3894 K. Aylor et al.

Figure 5. The median (dashed lines in centre), 68 per cent, and 95 per cent central intervals of the GAN (orange) and Planck (blue) Minkowski functional

distributions for the real (blue) and generated (orange) intensity maps. The errorbar for each statistic was obtained through bootstrapping the Planck dust

intensity maps or the GAN. The map sets were normalized to the range of [−1, 1].

captured by the distribution of the power spectra. In order to compare

the real and generated sets in a manner sensitive to the non-Gaussian

information we use the Minkowski functionals V0, V1, and V2, that

respectively measure the area of the foreground, the perimeter of

the foreground, and the connectivity of the foreground for various

thresholds. In Fig. 5, we show the functionals evaluated at 50

different threshold values after normalizing the map sets to the

range [−1, 1]. Errorbars are again obtained through bootstrapping

the real and simulated data. It is here that we find the greatest level

of disagreement between the two data sets, especially in the V2

functional distributions. From Fig. 5, it is clear the GAN has not

captured the full amount of variation found in the training data and

in particular struggles the most where the median values of V1, and

V2 are largest. For all three functionals, the GAN fails to recover the

median for some of the threshold values. This is another indicator

that the GAN struggles to capture the non-Gaussian nature of the

real data set.

Generally validation of a neural network’s predictions or outputs

is done against a subset of data left out of the training process to test if

a model has overfit the data or generalized well. However, we do not

follow this practice for two reasons. First, we only have 1034 images

in our data set; splitting this into a training and validation set would

result in few samples for either set. Also, since we are not working

with a classification or regression problem we are not concerned

about generalization, as we are trying to produce samples from the

same distribution the training set was drawn from. For a large enough

data set, the summary statistics for training and validation sets would

be the same and fitting the training set well would automatically

imply the validation set is also well fitted. Therefore, we choose to

maximize our training set and do not create a separate validation set.

We are then left with the task of showing the generated samples are

not simply copies of the training data. This can be done by exploring

the latent space (the distribution from which inputs to the generator

are drawn) for any hard transitions. We test this via the power spectra

and find that drawing many samples does fill the range of the power

distribution without significant gaps and even fills some regions that

are uncovered by the training data.

2.5 ResUNet for component separation

The best test of the simulation quality from the GAN is to apply the

simulations to a possible use case. In this section, we train a neural

network to recover the CMB signal from maps contaminated with

dust. We train this network using maps contaminated with the dust

simulations generated by the GAN and validate and test on real data.

If the GAN fully captures the statistics of the dust maps, then the

foreground removal model should perform equally well on the maps

contaminated with real foregrounds and those contaminated with the

simulations. The type of neural network we use for this task is known

as a Bayesian ResUNet.

With applications to real data, foreground removal is almost always

done with the use of observations at multiple frequencies. This allows

the analysis to take advantage of the different spectral dependence

of the foregrounds and the CMB. Here we use single-frequency data

so differing frequency dependencies are of no utility; the separation

must be entirely based on the different spatial statistical properties of

the CMB and the dust emission. We stress that we are not advocating

the cleaning procedure we use here for use on real data, for which

we recognize the great value of observations at multiple frequencies.

Instead, we are using it solely as a test of how well the GAN has

captured the spatial statistical properties of dust intensity maps. We

provide a more detailed description of the ResUNet in the appendix.

2.5.1 Data set

We create our training set from a combination of our galactic dust

simulations described in Section 3 and CMB maps generated with

healpy. The CMB maps are realizations drawn from the 2015 Planck

TT lowTEB 	 cold dark matter parameter posterior. Each foreground

simulation is combined with a random realization of the CMB for a

total of 48 000 20◦ × 20◦ maps. For our validation and testing sets,

we combine each map in our set of Planck dust maps with a random

realization of the CMB and split this set in two. The validation and

testing data sets each contain 517 images.

2.5.2 Results

We discussed earlier that the most important statistic of the CMB

is the power spectrum. Therefore, we test our ResUNet’s ability to

recover the power spectrum of the CMB. In the left-hand panel of

Fig. 6, we show the distribution of the ratio of the contaminated

power spectrum to the underlying CMB power spectrum for the

entire test set, which is simulated CMB maps plus dust maps from

Planck observations. In the middle panel we show the distribution

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

Simulating and separating galactic foregrounds 3895

Figure 6. Left: Power spectrum distribution of the CMB maps contaminated with galactic dust relative to the CMB only power spectrum distribution mean at

353 GHz. Middle: The distribution of CMB estimates from the ResUNet, acting on test data made from Planck observations, relative to the CMB only power

spectrum distribution mean. Right: The distribution of CMB estimates from the ResUNet, acting on GAN-simulated test data, relative to the CMB only power

spectrum distribution mean. In all three panels the solid curves are the medians and the shaded regions are the 68 per cent (darker) and 95 per cent (lighter)

intervals. For the approximate range of ℓ < 900, the ResUNet performs roughly as well on the Planck test data as on the GAN-simulated test data. The same

number of maps were used for both tests.

of the ratio of the ResUNet estimate to the underlying CMB power

spectrum. The right panel shows the same ratio except the input

to the ResUNet is a set of maps contaminated with new simulated

foregrounds from the GAN.

We see the ResUNet is able to clean the majority of the test set

to roughly the same degree of precision as the training set for ℓ <

900. This test suggests that the larger-scale statistics of the GAN

simulations are similar enough to the real data to enable cleaning.

Normally, it is standard to compare deep learning techniques to

non deep learning techniques. Here, no comparison is made to other

foreground removal techniques for two reasons. First, the ResUNet

model is meant to primarily function as a test of the quality of

the GAN simulations. Secondly, any serious attempt at foreground

information would leverage multifrequency measurements.

3 SU M M A RY A N D C O N C L U S I O N S

Our work here is motivated by the challenge of detecting or limiting

the contributions from tensor perturbations to degree-scale polariza-

tion of the CMB in the presence of galactic emission. Here, we have

conducted a preliminary study, focused on temperature (intensity)

rather than polarization, of the effectiveness of neural networks for

simulating foreground emission and cleaning foreground emission

from measurements of the CMB.

We showed how a GAN may be used to create simulations of

foregrounds from a relatively small training set. Our GAN was

trained on measurements of the interstellar dust intensity made

by the Planck satellite at 353 GHz. From this single map, we

created approximately 1000 maps with 1 per cent sky coverage.

After exploring a wide range of GAN architectures, we found the

best results came from a modified version of a DCGAN with two

discriminators, one acting at the map level and the other acting at the

power level.

Our GAN was able to produce new images that looked to the

eye to be similar to real dust maps, and that captured the majority

of the variation found in the summary statistics of our training

set. Overall, we view this initial study as sufficiently successful to

motivate training of a GAN to simulate polarized emissions.

Our future work on polarized emission will be informed by some of

the shortcomings we noted here. In all of the tests, we conducted the

GAN showed two modes of failure. First, it failed at replicating the

tails of a distribution, and secondly, it failed when the distribution to

be simulated became more complex; i.e. multiple peaks or sharp

transitions. Beyond simply searching for a better architecture or

increasing the amount of training data we note three ideas for further

study that may lead to better results. The first is to explore the effect

of the distribution used to sample the latent space. Since the statistics

we wish to recover have skewed distributions it may be beneficial to

sample the latent space with a skewed distribution. Secondly, it might

be helpful to include some sensitivity to tails in our stopping criteria.

The criterion we used for training is only sensitive to one statistic

and is insensitive to the tails of said distribution as it only relies on

the mean and covariance of the distribution of the power spectrum.

Finally, it might also be helpful to limit the training set to the level

of foreground emission closer to that expected in the survey under

consideration. Decreasing the dynamic range of contamination will

lessen the challenge of modelling the tails.

With the GAN, we were able to obtain better performance by

having the network act on both the map and power spectrum levels.

This was accomplished by adding an extra discriminator which

received a power spectrum as input. This result suggest further

improvements could be gained by adding additional discriminators

which act on even higher order statistics, such as the trispectrum.

Ultimately while there is room for improvement, our work with

the GAN has been successful enough to warrant further exploration

and expansion to polarization. Expanding this work may prove useful

in future experiments where a precise cleaning of foregrounds and

an understanding of the distribution of foreground residuals will be

necessary for detection of primordial gravitational waves. We believe

there are many more problems in cosmology that deep learning can

provide solutions for and the availability of powerful computation

resources makes this route more attractive than ever. Deep learning

provides a set of tools that may be used to speed up the analysis of

data and improve the accuracy of detection of signals of interest and

can lead to better and faster constraints on cosmological models.

AC K N OW L E D G E M E N T S

This work used the Extreme Science and Engineering Discovery

Environment (XSEDE), that is supported by National Science

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

3896 K. Aylor et al.

Foundation grant number ACI-1548562. KA was supported in part

by NSF award PLR-1248097. LK was supported in part by NSF

awards 1836010 and DMS-1812199.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request

to the corresponding author.

RE FERENCES

Ade P. et al., 2019, J. Cosmol. Astropart. Phys., 2019, 056

Arjovsky M., Chintala S., Bottou L., 2017, preprint (arXiv:1701.07875)

Auld T., Bridges M., Hobson M. P., 2008, MNRAS, 387, 1575

Benson B. A. et al., 2014, Proc. SPIE, 9153, 91531P

Caldeira J., Wu W. L. K., Nord B., Avestruz C., Trivedi S., Story K. T., 2019,

Astronomy and Computing, 28, 100307

Csáji B. C., 2001, MSc thesis, Eötvös Loránd University (ELTE)

Cukierman A. et al., 2019, J. Low Temp. Phys., 199, 858

Diakogiannis F. I., Waldner F., Caccetta P., Wu C., 2020, ISPRS J. Pho-

togramm. Remote Sens., 162, 94

Gal Y., Ghahramani Z., 2016, ICML, preprint (arXiv:1506.02142)

Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair

S., Courville A., Bengio Y., 2014, preprint (arXiv:1406.2661)

Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke

M., Bartelmann M., 2005, ApJ, 622, 759

Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville C., 2017,

preprint (arXiv:1704.00028)

Ioffe S., Szegedy C., 2015, preprint (arXiv:1502.03167)

Keck Array, BICEP2 Collaborations et al., 2015, ApJ, 811, 126

Kendall A., Gal Y., 2017, preprint (arXiv:1703.04977)

Kingma D. P., Ba J., 2015, preprint (arXiv:1412.6980)

Levasseur L. P., Hezaveh Y. D., Wechsler R. H., 2017, ApJ, 850, L7

Maas A. L., Hannun A. Y., Ng A. Y., 2013, Proc. icml, 30, 3

Münchmeyer M., Smith K. M., 2019, preprint (arXiv:1905.05846)

Mustafa M., Bard D., Bhimji W., Al-Rfou R., Lukić Z., 2017, Computational

Astrophysics and Cosmology, 6, 1

Odena A., Dumoulin V., Olah C., 2016, Distill . Available at: http://distill.pu

b/2016/deconv-checkerboard

Planck Collaboration XLVIII, 2016, A&A, 596, A109

Radford A., Metz L., Chintala S., 2015, preprint (arXiv:1511.06434)

Ronneberger O., Fischer P., Brox T., 2015, preprint (arXiv:1505.04597)

Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.,

2014, J. Mach. Learn. Res., 15, 1929

Towns J. et al., 2014, Comput. Sci. Eng., 16, 62

Wei X., Gong B., Liu Z., Lu W., Wang L., 2018, preprint (arXiv:1803.01541)

Zonca A., Singer L., Lenz D., Reinecke M., Rosset C., Hivon E., Gorski K.,

2019, J. Open Source Softw., 4, 1298

A PPEN D IX : ResUNet

A ResUNet is a network architecture based on another network

called a UNet and we begin by discussing the progenitor. The UNet

architecture was first presented in Ronneberger, Fischer & Brox

(2015) as a means for segmenting biomedical images into different

classes. A UNet contains an encoding path and a decoding path.

The encoding path receives an image as input and through a series

of convolutions downsamples the image into a compressed repre-

sentation. The decoding path takes the compressed representation

through a series of convolution and upsampling layers and builds

the target image. Ideally, the compressed representation learned by

the encoding path retains only the most relevant information for

constructing the target. If the input to the encoder is a noisy image

and the target is a cleaned version of the image, a fully optimized

network will drop the information related to the noise and the decoder

will reconstruct the desired component.

The encoding and decoding paths can also be broken down into

blocks that perform operations at a given scale and then re-scale

(downsampling or upsampling) the input before passing it on to the

next block. In an UNet, encoding blocks acting on a particular scale

also pass their output to the decoding block of the same scale where

the encoding output is concatenated with the up-sampled output from

an earlier block in the decoding path. These extra connections allow

the network to focus on extracting the most important information at

each scale and allow easier flow of gradients during training; often

the gradient can shrink significantly before reaching earlier layers in a

network without these kinds of connections, slowing down learning.

A ResUNet was first presented in Diakogiannis et al. (2020)

and recently applied to performing CMB lensing reconstruction in

Caldeira et al. (2019). The main difference between a ResUNet and a

UNet are residual connections from the beginning to the end of each

downsampling or upsampling block. A residual connection sends

the input of a block through an additional linear layer and adds the

result to the output of the same block. In our case, the linear layer

is a convolution that transforms the input to the same shape as the

output for a given block. These residual connections act similarly to

the connections between the downsampling and upsampling blocks

and allow for better flow of gradients. They also potentially simplify

the function the network needs to learn. For this work, we began

using a standard UNet architecture but found training proceeded

more rapidly and we obtained better results with a ResUNet based

architecture.

A1 Network uncertainties

The networks we have described so far in this paper are deterministic:

for a given input you will always receive a particular output. For many

tasks, including the removal of foregrounds, it is necessary to have

a measurement of uncertainty to the degree with which the task has

been completed. We cannot create a network that can separate the

CMB and galactic dust foregrounds with perfect accuracy due to the

stochastic nature of the data and limitations of the network and we

need to quantify the level of uncertainty in a prediction.

Bayesian neural networks are a method through which we may

extract uncertainties of a prediction by specifying the weights

of a network with probabilistic distributions. During training, the

network learns the best distribution to draw weights from instead

of learning an immutable value. The true posterior of plausible

weights usually cannot be evaluated analytically and is replaced with

a variational distribution that has an analytic form. During training,

the parameters of these analytical distributions are optimized so

that the distance between the variational distributions and the true

posteriors is minimized. The choice of variational distribution is

important not only in terms of achieving good results but also for

computational efficiency, i.e. using a Gaussian distribution for a given

network effectively doubles the number of parameters that need to be

learned while a Bernoulli distribution does not increase the number

of parameters.

In Gal & Ghahramani (2016), it was shown that a common method

for regularization in neural networks known as Dropout can be

recast as an approximation to a Gaussian process. Dropout was first

presented in Srivastava et al. (2014) and involves randomly setting

a portion of the inputs to a layer to zero with some predetermined

probability. We refer the reader to Gal & Ghahramani (2016), Kendall

& Gal (2017), and Levasseur, Hezaveh & Wechsler (2017) for

discussion of estimating uncertainties with neural networks. This

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

Simulating and separating galactic foregrounds 3897

Table A1. The architecture for a generic encoding block. Our ResUNet

uses eight of these blocks on the encoding path. The first encoding

block excludes the first batch normalization and ReLU layers; the final

encoding block excludes the last two layers of convolution and addition

(the residual connection). The final layer of each encoding block is

concatenated with the input to the decoding block operating on the same

scale.

Layer Operation Output

[1] Input 128 × 128 × 32

[2] Batch normalization([1]) 128 × 128 × 32

[3] ReLU([2]) 128 × 128 × 32

[4] Convolution([3]) 64 × 64 × 64

[5] Dropout([4]) 64 × 64 × 64

[6] Batch normalization([5]) 64 × 64 × 64

[7] ReLU([6]) 64 × 64 × 64

[8] Convolution([7]) 64 × 64 × 64

[9] Dropout([8]) 64 × 64 × 64

[10] Convolution([1]) 64 × 64 × 64

[11] Add([9],[10]) 64 × 64 × 64

process results in the network learning a distribution of possible

functions conditional on the training data. When one wants to make

a prediction on a new input, one can treat a single pass of the input

through the network with dropout on as sampling from the learned

posterior. Then to calculate the mean or any other relevant statistic

of this posterior, one can simply perform a Monte Carlo by passing

the new input through the network many times.

A2 Architecture

To turn a ResUNet into a Bayesian ResUNet, we simply need to

add a Dropout layer after every convolution layer in the network.

For a typical encoding block, we perform three convolutions with

a Dropout layer immediately after each convolution (except after

the convolution in the residual connection). All convolutions are

performed with 3 × 3 kernels. The first convolution halves the

resolution of the input and if the number of features is to be increased

it is also done here. We also insert a batch normalization and ReLU

layer after the first Dropout layer and at the beginning of every

encoding block except the first one. In the final layer of an encoding

block the residual connection is added to the output of the last dropout

layer and this sum is passed to the next encoding block and the

corresponding decoding block. We use a total of eight encoding

blocks. Starting with the first block, every other encoding block

doubles the number of features and increases the dropout rate (both

Dropout layers in each block use the same dropout rate). The dropout

rates increase from 0.05, to 0.10, to 0.20, and to 0.30. In Table A1,

we describe an encoding block in greater detail.

On the decoding path in each block, the feature map from the

previous block is upsampled with bi-linear interpolation and is then

concatenated with the output from the encoding block of the same

scale. The remaining layers of the decoding block are the same as the

encoding block except the order of the dropout rates is reversed and

the number of features are halved every other block. The final layer

of the decoding path of our network is a convolution with a kernel

size of one pixel that reduces its input to a single channel image. The

resolution of this image is the same as the initial input to the network.

Finally, since we are primarily interested in recovering the power

spectrum we added one final layer that calculates the angular power

spectrum [multiplied by ℓ(ℓ + 1)] of the decoding path output

and have the network predict both the cleaned CMB map and

the corresponding power spectrum. Adding the power spectrum

calculation of the cleaned map to the network and including the

output power in the loss function naturally lead to better predictions

of the power spectrum compared to only having the network predict

the cleaned map. By only having the network predict the cleaned

map, the predictions were allowed to vary from the truth at the map

level in any random manner and we found this produced maps with

highly correlated noise at the power spectrum level. Making the

network predict the map and the power spectrum constrained the

way the predictions were allowed to vary from the truth at the map

level and produced maps with less correlated noise.

A3 Training and predictions

Training a ResUNet is a simpler task than training a GAN. The

input to the ResUNet is a map of the CMB and galactic dust. The

target output is the corresponding uncontaminated CMB map and the

corresponding uncontaminated power spectrum. For a loss function,

we simply use the sum of the mean square error for the map and

the power spectrum estimates. We use the Adamax optimizer with

a learning rate of 0.002 and set the first and second momentum

parameters to 0.9 and 0.999, respectively. The ResUNet is trained

in batches of 32 with early stopping and a patience level of 10 (the

network is trained until the validation loss does not decrease for 10

consecutive epochs). To make an estimate of the underlying CMB

power spectrum, we pass an image from our test set through the

network 1000 times and calculate the mean of the outputs.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 500, 3889–3897 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
0
/3

/3
8
8
9
/5

9
4
4
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, D
a
v
is

 u
s
e
r o

n
 2

9
 J

u
n
e
 2

0
2
1

