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Abstract: Westudy a three-dimensional, incompressible, viscous,micropolar fluidwith
anisotropic microstructure on a periodic domain. Subject to a uniform microtorque,
this system admits a unique nontrivial equilibrium. We prove that this equilibrium is
nonlinearly unstable. Our proof relies on a nonlinear bootstrap instability argument
which uses control of higher-order norms to identify the instability at the L2 level.

1. Introduction

1.1. Brief discussion of the model. Micropolar fluids were introduced by Eringen in
[Eri66] as part of an effort to describemicrocontinuummechanics,which extend classical
continuum mechanics by taking into account the effects of microstructure present in the
medium. For viscous, incompressible continua, this results in a model in which the
incompressible Navier–Stokes equations are coupled to an evolution equation for the
rigid microstructure present at every point of the continuum. This theory can be used
to describe aerosols and colloidal suspensions such as those appearing in biological
fluids [Mau85], blood flow [Ram85,BBR+08,MK08], lubrication [AK71,BŁ96,NS12]
and in particular the lubrication of human joints [SSP82], liquid crystals [Eri66,LR04,
GBRT13], and ferromagnetic fluids [NST16].

We postpone a more thorough discussion of the model until Sect. 2 and here provide
only a brief overview sufficient to state the main result. The variables needed to describe
the state of a micropolar fluid at a point in three-space and time are as follows: the fluid
velocity is a vector u ∈ R

3, the fluid pressure is a scalar p ∈ R, the microstructure’s
angular velocity is a vector ω ∈ R

3, and the microstructure’s inertia tensor is a positive
definite symmetric matrix J ∈ R

3×3. We study homogeneous micropolar fluids, which
means that the microstructures at any two points of the fluid are equal up to a proper
rotation. In turn, this means that the microinertia tensors at any two points of the fluid are
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equal up to conjugation. Note that the shape of the microstructure determines the inertia
tensor, but the converse fails in the sense that the same inertia tensor may be achieved
by differently shaped microstructure.

We restrict our attention to problems in which the microinertia plays a significant
role, and so in this paper we only consider anisotropic micropolar fluids for which the
microinertia tensor is not isotropic, i.e. J has at least two distinct eigenvalues. In fact, we
study micropolar fluids whose microstructure has an inertial axis of symmetry, which
means that the microinertia J has a repeated eigenvalue. More concretely: there are
some physical constants λ, ν > 0 which depend on the microstructure such that, at
every point, J is a symmetric matrix with spectrum {λ, λ, ν}. This is in some sense the
intermediate case between the case of isotropic microstructure where the microinertia
has a repeated eigenvalue of multiplicity three and the “fully” anisotropic case where
the microstructure has three distinct eigenvalues.

The equations of motion related to these quantities in the periodic spatial domain
T
3 = R

3/(2πZ)3, subject to an external microtorque τe3, read:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t u + (u · ∇) u = μ̃�u + κ∇ × ω − ∇ p on (0, T ) × T
3, (1.1a)

∇ · u = 0 on (0, T ) × T
3, (1.1b)

J (∂tω + (u · ∇) ω) + ω × Jω

= κ∇ × u − 2κω + (α̃ − γ̃ ) ∇ (∇ · ω) + γ̃ �ω + τe3 on (0, T ) × T
3, (1.1c)

∂t J + (u · ∇) J = [�, J ] on (0, T ) × T
3, (1.1d)

where [ · , · ] denotes the matrix commutator, μ̃, κ , α̃, and γ̃ are physical constants
related to viscosity, τ denotes the magnitude of the microtorque, and � is the 3-by-3
antisymmetric matrix identified with ω via the identity �v = ω × v for every v ∈ R

3.
We have chosen to consider the situation in which external forces are absent and

the external microtorque is constant, namely equal to τe3 for some fixed τ > 0. Note
that the choice of e3 as the direction of the microtorque may be made without loss of
generality since the equations are equivariant under proper rotations, in the sense that if
(u, p, ω, J ) is a solution of (1.1a)–(1.1d) then, for anyR ∈ SO (3),

(
u, p,Rω,RJRT

)

is a solution of (1.1a)–(1.1d) provided that the external torque τe3 is replaced by τRe3.
There are two ways to motivate our choice to have no external forces and a constant

microtorque. On one hand, it is reminiscent of certain chiral active fluids constituted of
self-spinning particles which continually pump energy into the system [BSAV17], as
our constant microtorque does. On the other hand, this choice of an external force—
external microtorque pair is motivated by the dearth of analytical results on anisotropic
micropolar fluids. It is indeed natural, as a first step in the study of non-trivial equilibria of
anisotropic micropolar fluids, to consider a simple external force—external microtorque
pair yielding non-trivial equilibria for the angular velocity ω and the microinertia J . The
simplest nonzero such pair is precisely our choice of (0, τe3).

Let us now turn to the aforementioned equilibrium. Due to the uniform microtorque,
the system admits a nontrivial equilibrium. At equilibrium the fluid velocity is quiescent
(ueq = 0), the pressure is null (peq = 0), the angular velocity is aligned with the
microtorque (ωeq = τ

2κ e3), and the inertial axis of symmetry of the microstructure is
aligned with the microtorque such that the microinertia is Jeq = diag(λ, λ, ν).

Physically-motivated heuristics (which again we postpone until Sect. 2) suggest that
the stability of this equilibrium depends on the ‘shape’ of the microstructure. The heuris-
tics suggest that if the microinertia is inertially oblong, i.e. if λ > ν, then the equilibrium
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(a) This rigid body is inertially oblong if h2 > 6r2.

h

r

(b) This rigid body is inertially oblate if h2 < 6r2.

Fig. 1. Two rigid bodies with uniform density which possess an inertial axis of symmetry

is unstable, and that if the microinertia is inertially oblate, i.e. if ν > λ, then the equi-
librium is stable. This nomenclature is justified by the fact that for rigid bodies with an
axis of symmetry and a uniform mass density, the notions of being oblong (or oblate),
which essentially means that the body is longer (respectively shorter) along its axis of
symmetry than it is wide across it, and being inertially oblong (respectivelly inertially
oblate) coincide. Examples of inertially oblong and oblate rigid bodies are provided in
Fig. 1. This paper deals with the instability of inertially oblong microstructure. In future
work we will study the stability of inertially oblate microstructure.

1.2. Statement of the main result. The main thrust of this paper is to prove that if the
microstructure is inertially oblong, then the equilibrium is nonlinearly unstable in L2. A
precise statement of the theoremmay be found in Theorem 5.2, but an informal statement
of the result is the following.

Theorem 1.1 (L2 instability of the equilibrium). Suppose that the microstructure is iner-
tially oblong, i.e. suppose that λ > ν, and let Xeq = (ueq , ωeq , Jeq) =
(0, τ

2κ e3, diag(λ, λ, ν)) be the equilibrium solution of (1.1a)–(1.1d). Then Xeq is non-
linearly unstable in L2.

Here the notion of nonlinear instability is the familiar one from dynamical systems:
there exists a radius δ > 0 and a sequence of initial data {X0

n}∞n=0, converging to Xeq in
L2, such that the solutions to (1.1a)–(1.1d) starting from X0

n exit the ball B(Xeq , δ) in
finite time, depending on n.

Note that in Theorem 1.1 the pressure has disappeared from consideration. This is
because the pressure plays only an auxiliary role in the equations and may be eliminated
from (1.1a) by projecting onto the space of divergence-free vector fields.

2. Background, Preliminaries, and Discussion

2.1. Micropolar fluids. To the best of our knowledge, the anisotropic micropolar fluid
model has not been studied in the PDE literature, so our aim in this subsection is to
provide the reader with a brief overview of the model and its features. We emphasize
that it is a natural extension of the Navier–Stokes model, as it follows from the same
principles of rational continuum mechanics. We refer to [Eri99,Eri01] for a complete
continuum mechanics derivation of the micropolar fluid model, and we refer to [Łuk99]
for a thorough discussion of the mathematical analysis of isotropic micropolar fluids.
Throughout this discussion we will take the domain under consideration to be the (nor-
malized) torus T3 = R

3/(2πZ)3 and we will let T ∈ (0,+∞] denote our time horizon.
For the sake of brevity, in this subsection we will commit the usual crime of assuming
all quantities are “sufficiently regular” to justify the written assertions.
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Fig. 2. A depiction of how a subset�0 ⊆ T
3 of the micropolar continuum behaves under the flow of η and Q.

�(t) = η (t,�0) is the image of �0 under the flow of η and y ∈ �0 is a point in �0 at which the micropolar
continuum has microinertia I0. At the point x = η (t, y) the microinertia is I (t, y) = Q (t) I0 Qt (t) since
the microinertia transforms as a 2-tensor under the flow of the microrotation Q

Just as rational continuum mechanics begins with the postulation that there exists
some flow map η : (0, T )×T

3 → T
3 which describes the motion of the continuum, the

micropolar theory posits the existence of an additional (Lagrangian) microrotation map
Q : (0, T ) × T

3 → SO (3) which describes the rotation of the microstructure present
at every point in the continuum. The pair (η, Q) thus provides a complete kinematic
description of a micropolar continuum as illustrated in Fig. 2.

A word of warning: there are two ways to define the microrotation map and we have
chosen here the convention that Q is absolute. Indeed, one may either define Q to be
the rotation of the microstructure with respect to its immediate environment, in which
case Q would be equal to the identity when the micropolar continuum undergoes rigid
motions such as rotations, or one may define Q to be the identity at time t = 0 and to be
the absolute rotation underwent by the micropolar continuum thereafter. We choose the
latter convention. In order to illustrate the physical interpretation of the microrotation
map Q, Table 1 contrasts the motions obtained for various simple expressions of η and
Q

Analogously to how the flowmap η ismore conveniently characterized by its Eulerian
velocity u, the microrotation map Q is characterized by its Eulerian angular velocity ω

where

u(t, · ) = ∂tη(t, · ) ◦ η(t, · )−1 and ω(t, · ) = vec ∂t Q(t, · )QT (t, · ) ◦ η(t, · )−1

and

(vec M)i = 1

2
εaib Mab for any 3-by-3 matrix M. (2.1)

Recall that the Levi-Civita symbol εi jk is defined to be the sign of the permutation
which maps 1 �→ i , 2 �→ j , and 3 �→ k. Note that here, since Q ∈ SO(3) we know that
�(t) = ∂t Q(t)QT (t) ◦ η(t)−1 is antisymmetric, and hence we may use the standard
identification of a 3-by-3 antisymmetricmatrix Awith a vector a = vec A via Av = a×v

for any v ∈ R
3, where × denotes the usual cross product in R

3.
The derivation of the equations of motion for a micropolar continuum begins by

postulating the conservation of mass, the balance of linear momentum, and the balance
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Table 1. Three explicit examples of the motion of a micropolar continuumwith the same initial configuration.
Thesemotions are chosen to be similar to emphasize that themicrorotation Q is anabsolute rotation. Thefigures
shown correspond to cross-sections perpendicular to e3, each colored arrow is a depiction of the orientation
of the microstructure at that point, y0 is some point in the micropolar continuum, and R = e2 ⊗ e1 − e1 ⊗ e2
corresponds to a (counter-clockwise) rotation by π/2 in the plane perpendicular to e3

of angular momentum. For micropolar continua the angular momentum is the sum of
the macroscopic angular momentum, obtained from the fluid velocity u and a choice
of reference point in space, and the microscopic angular momentum Jω. Additionally,
micropolar fluids conserve microinertia, which means that the Lagrangian microinertia
I(t, · ) = J ◦ η(t, · ) satisfies I(t, · ) = Q(t, · ) I(0, · ) QT (t, · ). Differentiating in
time yields ∂tI = [

∂t Q QT , I], where [·, ·] denotes the matrix commutator. We may
rewrite this in Eulerian coordinates as

∂t J + (u · ∇) J = [�, J ] . (2.2)

Note that a microinertia is physical when its spectrum {λ1, λ2, λ3} satisfies λi �
1
2

∑3
j=1 λ j = 1

2 tr J for i = 1, 2, 3. This comes from the fact that we may compute the
microinertia tensor of a rigid body of mass M from the covariance matrix V of its mass
distribution via J = M ((tr V ) I − V ). The condition above on the eigenvalues of J is
then equivalent to requiring the physical condition that V be positive semi-definite.

For incompressible continua with constant density the conservation of mass reduces
to the divergence-free condition

∇ · u = 0. (2.3)

Using (2.2), the conservation of linear and angular momentum then respectively take
the form

∂t u + (u · ∇) u = ∇ · T + f (2.4)

and

(∂t + u · ∇) (Jω) = J (∂tω + (u · ∇) ω) + ω × Jω = 2 vec T + ∇ · M + g (2.5)
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where T is the Cauchy stress tensor which expresses the internal forces exerted by
the continuum on itself, M is the couple stress tensor which expresses the internal
microtorques exerted by the continuum on itself (and on its microstructure), and where
f and g are the external forces and microtorques acting on the continuum, respectively.

To close the systemwe continue along the path of rational mechanics which produces
Navier–Stokes and postulate that some constitutive equations hold which determine the
stresses T and M in terms of the velocity u, the angular velocity ω, and the pressure
p. Analogously to how a Newtonian fluid is defined as a continuum for which the
stress tensor is given by T = μDu − pI , a micropolar fluid is defined as a micropolar
continuum for which

T = μDu − pI + κ ten

(
1

2
∇ × u − ω

)

and M = α (∇ · ω) I + βD0ω + γ ten∇ × ω,

(2.6)
where: D denotes the symmetrized gradient defined by Dv = ∇v + ∇vT , ten is the
inverse of vec introduced in (2.1) such that ten (v) w = v × w for every v,w ∈ R

3, D0

is the trace-free part of the symmetrized gradient defined by D
0v = Dv − 2

3 (∇ · v) I ,
and μ, κ , α, β, γ are physical constants commonly referred to as fluid viscosities. Note
that, by contrast with classical fluids, the stress tensor T is not symmetric.

The terms in M are analogous to the terms one finds in the viscous stress tensor
for a compressible fluid and have a similar physical interpretation. The most interesting
novelty in the micropolar model is the coupling term κ ten

( 1
2∇ × u − ω

)
. It serves to

induce a stress when there is a mismatch between the local rotation induced by the flow
map and the rotation of the microstructure: see Table 1 for some examples. Note that
the coupling term is not symmetric, and so it spoils the usual symmetry enjoyed by the
stress tensor in standard continuum models.

Finally, thermodynamical considerations, and in particular the Clausius-Duhem in-
equality, tell us that the quadratic form given by the dissipation

T : (∇u − �)+M : ∇ω = μ

2
|Du|2+2κ

∣
∣
∣
∣
1

2
∇ × u − ω

∣
∣
∣
∣

2

+α|∇·ω|2+β

2
|D0ω|2+2γ |∇×ω|2

must be positive-semidefinite, from which it follows that μ, κ, α, β, γ � 0. Note that in
this paper we require that

μ, κ, α +
4β

3
, β + γ > 0. (2.7)

In particular μ and κ must be strictly positive but some of α, β, and γ may vanish. More
precisely: if β > 0 then we allow α = γ = 0 and if α, γ > 0 then we allow β = 0.
This requirement comes from the fact that

∇ · M = (α + 4β/3) ∇ (∇ · ω) + (β + γ ) (�ω − ∇ (∇ · ω))

where the symbol of ∇∇ · is −|k|2 projk and the symbol of � − ∇∇ · is −|k|2 projk⊥ ,
therefore the contribution of the dissipation coming from M is

ˆ
T3

(∇ · M) · ω =
∑

k∈Z3

−|k|2
(
(α + 4β/3) |projk ω̂|2 + (β + γ ) |projk⊥ ω̂|2

)
.

This dissipative term will then control ||∇ω||L2 precisely when α + 4β/3, β + γ > 0.
Putting (2.2), (2.3), (2.4), and (2.5) together with (2.6) yields (1.1a)–(1.1d) when the

external forces are taken to vanish and when the external microtorques are taken to be
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constant, namely g = τe3 for some fixed τ > 0. Note also that, for simplicity, we have
defined μ̃ = μ + κ/2, α̃ = α + 4β/3, and γ̃ = β + γ in (1.1a)–(1.1d).

It is worth noting that this system is equivariant under Galilean transformations.
More precisely: if (u, p, ω, J ) is a sufficiently regular solution of (1.1a)–(1.1d) then
uavg := ffl

T3 u is constant in time and

(0, T ) × T
3 � (t, y) �→ (

u − uavg, p, ω, J
) (

t, y + tuavg
)

also satisfies (1.1a)–(1.1d). We may therefore assume without loss of generality that u
has average zero at all times. Similarly, since the pressure only appears in the equations
with a gradient, we are free to posit that p has average zero for all times.

2.2. Previous work. Micropolar fluids have been extensively studied by the continuum
mechanics community over the last fifty years and an exhaustive literature review is
beyond the scopeof this paper.We restrict our attention to themathematics literature here,
in which case, to the best of our knowledge all results relate to isotropic microstructure,
where the microinertia J is a scalar multiple of the identity. In that case the precession
term ω × Jω from (1.1c) vanishes and the entire equation (1.1d) trivializes. Note that
in two dimensions the micro-inertia is a scalar, and therefore all micropolar fluids are
isotropic.

In two dimensions the problem is globally well-posed, as per [Łuk01] where global
well-posedness and qualitative results on the long-time behaviour are obtained. Some
quantitative information on long-time behaviour is also known in two dimensions: for
example, decay rates are obtained in [DC09]. The situation is more delicate in three
dimensions, which is an unsurprising assertion in the setting of viscous fluids. The first
discussion of well-posedness in three dimensions is due to Galdi and Rionero [GR77].
Łukaszewicz then obtainedweak solutions in [Łuk90] and uniqueness of strong solutions
in [Lu89]. More recent work has established global well-posedness for small data in
critical Besov spaces [CM12], in Besov-Morrey spaces [FP13], and in the space of
pseudomeasures [FVR07], as well as derived blow-up criteria [Yua10]. There is also an
industry devoted to the study of micropolar fluids when one or more of the viscosity
coefficients vanishes: we refer to [DZ10] for an illustrative example.

Various extensions of the incompressible micropolar fluid model considered here
have been studied. For example, compressible models [LZ16], models coupled to heat
transfer [Tar06,KLŁ19], and models with coupled magnetic fields [AS74,RM97] have
all been studied. Again, to the best of our knowledge all of these works consider isotropic
micropolar fluids.

2.3. Equilibria. In this section we describe the two classes of equilibria which arise as
particular solutions of (1.1a)–(1.1d). A critical piece of this description is the following
energy-dissipation relation:

d

dt

ˆ
T3

1

2
|u|2 + 1

2
J
(
ω − ωeq

) · (ω − ωeq
)− 1

2
Jωeq · ωeq

= −
ˆ
T3

μ

2
|Du|2 + 2κ

∣
∣
∣
∣
1

2
∇ × u − (

ω − ωeq
)
∣
∣
∣
∣

2

+ α|∇ · ω|2 + β

2
|D0ω|2 + 2γ |∇ × ω|2,

(2.8)
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where recall that ωeq = τ
2κ e3. This energy-dissipation relation is obtained by testing

(1.1a) and (1.1c) against u and ω − ωeq respectively and integrating by parts. For a full
derivation, see “Appendix C”. With the relation (2.8) in hand we may define two classes
of equilibria.

Definition 2.1. We say that a solution (u, p, ω, J ) of (1.1a)–(1.1d) is an equilibrium if
∂t (u, p, ω, J ) = 0 and we say that it is an energetic equilibrium if d

dt Erel = 0 where
the relative energy Erel is given as in (2.8) by

Erel (u, p, ω, J ) =
ˆ
T3

1

2
|u|2 + 1

2
J
(
ω − ωeq

) · (ω − ωeq
)− 1

2
Jωeq · ωeq . (2.9)

There are two reasonswhy onemight study the energetic equilibria introduced inDef-
inition 2.1: (1) they arise naturally as the stationary points of a Lyapunov functional and
(2) we believe that they play an essential role in characterizing the long-time behaviour
of the system.

We justify (1) now and postpone the justification of (2) until after the identification
of the various equilibria is carried out in Proposition 2.2. Since the relative energy
Erel is both non-increasing in time and bounded below we may indeed view it as a
Lyapunov functional. The observation that d

dt Erel � 0 follows immediately from (2.8)
and the boundedness from below of Erel follows from the fact that the spectrum of the
microinertia J is invariant over time.

More precisely: as described in Sect. 2.1, the conservation of microinertia for a
homogeneous micropolar fluid means that there exists some reference microinertia Jref
to which J (t, x) is similar at all times 0 � t < T and at every point x ∈ T

3. Denoting
by λmax the largest eigenvalue of Jref it follows that the only non-positive term in Erel is
bounded below: −Jωeq · ωeq � −λmax|ωeq |2, and hence Erel itself is bounded below.

We now identify all of the (sufficiently regular) equilibria which belong to each class
as defined in Definition 2.1. Recall that we are considering a homogeneous micropolar
fluid whose microstructure has an inertial axis of symmetry, which means that there
are physical constants λ, ν > 0 such that the microinertia has spectrum {λ, λ, ν}. In
particular this microinertia tensor is physical precisely when 2λ � ν � 0. We will
assume thereafter that strict inequalities hold, i.e. 2λ > ν > 0. This assumptions means
that the microstructure is not degenerate, in the sense that it corresponds to a genuinely
three-dimensional rigid body (as opposed to a degenerate rigid body which would be
lower-dimensional, e.g. because it is flat in one or more directions).

Proposition 2.2. Let (u, p, ω, J )be a sufficiently regular solution of (1.1a)–(1.1d)where
u has average zero.

(1) If (u, p, ω, J ) is an equilibrium then u = 0, p = 0, ω = ωeq = τ
2κ e3, and J =

diag(λ, λ, ν) = λI2 ⊕ ν.
(2) If (u, p, ω, J ) is an energetic equilibrium then either it is an equilibrium or u = 0,

p = 0, ω = ωeq , and J = et τ
2κ R J̄ (0)e−t τ

2κ R ⊕ λ where R =
(
0 − 1
1 0

)

and where

the spectrum of J̄ (0) is {λ, ν}. Here ‘⊕’ denotes the direct sum of two linear operators,
see Sect. 2.7 to recall the precise definition.

In simpler words Proposition 2.2 says that for both equilibria and energetic equilibria
the microstructure rotates in the direction of the imposed microtorque, with one cru-
cial difference: the unique equilibrium corresponds to the inertial axis of symmetry of
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the microstructure being aligned with the microtorque, giving rise to a constant mi-
croinertia, whilst the energetic equilibria consist of an orbit where the inertial axis of
symmetry rotates in the plane perpendicular to the microtorque, giving rise to a periodic
microinertia (with period 4πκ/τ ).

Proof of Proposition 2.2. Since equilibria are energetic equilibria we begin by suppos-
ing that (u, p, ω, J ) is an energetic equilibrium. It follows from the energy-dissipation
relation (2.8) that the dissipation vanishes, i.e.

ˆ
T3

μ

2
|Du|2 + 2κ

∣
∣
∣
∣
1

2
∇ × u − (

ω − ωeq
)
∣
∣
∣
∣

2

+ α|∇ · ω|2 + β

2
|D0ω|2 + 2γ |∇ × ω|2 = 0.

In particular: ω is constant and u has constant curl. Coupling this with the fact that u
is divergence-free we deduce that u is harmonic. Since u has average zero, it follows
that u = 0, and hence that p = 0 (recall that we require p to have average zero) and
ω = ωeq .

So now we know from (1.1c) that the precession term ω × Jω = (
τ
2κ

)2
e3 × Je3

vanishes, and hence J has the block form J = J̄ ⊕ J33 for some 2-by-2 matrix J̄ .
The conservation of microinertia (1.1d) now becomes the ODE ∂t J = [

tenωeq , J
] =

τ
2κ

[
R, J̄

] ⊕ 0 which may be solved explicitly to yield J̄ (t) = et τ
2κ R J̄ (0)e−t τ

2κ R and
J33(t) = J33(0).

There are now two cases to consider: either J̄ has a repeated eigenvalue λ or J̄ has
distinct eigenvalues λ and ν. Since et τ

2κ R J̄ (0)e−t τ
2κ R is constant in time if and only if

J̄ (0), and hence J̄ (t), has a repeated eigenvalue, the result follows. 
�
As the next section suggests, we believe that the global attractors of (1.1a)–(1.1d)

may be characterized in terms of the equilibrium and the orbit of energetic equilibria.
This is summarized in the conjecture below, which is the second reason why energetic
equilibria are worthy of attention.

Conjecture 2.3. (1) If the microstructure is inertially oblong, i.e. λ > ν, then the orbit of
energetic equilibria identified in Proposition 2.2 is the global attractor of the system
(1.1a)–(1.1d).

(2) If the microstructure is inertially oblate, i.e. λ < ν, then the equilibrium identified in
Proposition 2.2 is the global attractor of the system (1.1a)–(1.1d).

We note that attractors have been obtained in previous works in the context of two-
dimensional isotropic micropolar fluids [CCD07,LuT09].

A depiction of the equilibrium and the energetic equilibria configurations of the
microstructure can be found in Fig. 3, where we also label each configuration with its
relevant conjectured long-time behaviour.

2.4. Heuristics for the long-time behaviour. In this section we briefly discuss heuristics
for the long-term behaviour of the system (1.1a)–(1.1d). The central element of the
reasoning that follows is the energy-dissipation relation (2.8). As remarked in Sect. 2.3,
this relation tells us that the relative energy Erel defined in (2.9) is non-increasing in
time and bounded below. Let us therefore, for the sake of this discussion, assume that
Erel approaches its absolute minimum as time approaches +∞. In particular this means
that each term in Erel approaches its absolute minimum, from which we deduce that u
approaches zero, ω approaches ωeq (since J is strictly positive-definite at time t = 0
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e3

(a)Unstable.

e3

(b) Globally attracting?

e3

(c) Globally attracting?

e3

(d)Unstable?

Fig. 3. Depictions of the microstructure for the equilibrium (a, c) and an energetic equilibrium (b, d) corre-
sponding to both the oblong (a, b) and oblate cases (c, d). b, c are conjectured to be globally attracting for the
oblong and oblate cases respectively, d is conjectured to be be unstable for the oblate case, and we prove in
Theorem 1.1 that a is unstable

and hence strictly positive-definite for all time), and −J33 approaches −λmax for λmax
denoting the maximum eigenvalue of J , i.e. λmax = max(λ, ν).

This last observation is precisely where the dichotomy between inertially oblong and
inertially oblate microstructure comes in. If the microstructure is inertially oblong, i.e.
λ > ν, then J33 approaches λwhichmeans that J̄ must consist of the distinct eigenvalues
λ, ν, and hence the global attractor is conjectured to be the orbit of energetic equilibria.
If the microstructure is inertially oblate, i.e. ν > λ, then J33 approaches ν and hence J̄
has repeated eigenvalues equal to λ, such that the global attractor is conjectured to be
the equilibrium.

2.5. Heuristics for the origin of the instability. In this section we discuss heuristics for
the origin of the instability of the system (1.1a)–(1.1d). Beyond being helpful heuristics
that physically motivate the instability of the system, the ideas presented below actually
form the core of our proof of the nonlinear instability.

We begin with another energy-dissipation relation, which is associated with the lin-
earization of the problem (1.1a)–(1.1d) about its equilibrium. This relation is

d

dt
Elin := d

dt

ˆ
T3

(
1

2
|u|2 + 1

2
Jeqω · ω − 1

2

1

λ − ν

( τ

2κ

)2|a|2
)

= −D (u, ω − ωeq
)

(2.10)
where a = (J31, J32) = (J13, J23) and where the dissipation D is given as in (2.8) by

D (u, ω) =
ˆ
T3

μ

2
|Du|2 + 2κ

∣
∣
∣
∣
1

2
∇ × u − ω

∣
∣
∣
∣

2

+ α|∇ · ω|2 + β

2
|D0ω|2 + 2γ |∇ × ω|2.

Note that only part of themicro-inertia J appears in (2.10), namely a = (J31, J32)which
corresponds to the products of inertia which describe the moment of inertia about the
e1-axis and e2-axis, respectively, when the microstructure rotates about the e3-axis. This
is due to the fact that, as explained in detail in Sect. 3.1, the linearized problem can de
decomposed into blocks which do not interact with one another. In particular the block
governing the dynamics of u, ω, and a is the only block which produces non-trivial
dynamics, and it is this block which gives rise to (2.10).

Since the integrand of Elin in (2.10), viewed as a quadratic form on (u, ω, a), has
negative directions precisely when the microstructure is inertially oblong, i.e. when
λ > ν, this suggests that the equilibrium is unstable in that case.

We actually know a little bit more about the instability mechanism. If we denote by
M (k), where k ∈ Z

3, the symbol of the linearized operator about the equilibrium, then
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0

0.1

0.2

r

max
‖k‖1=r

Reσ(Mk)

(a) Physical parameters: λ = 3.2, ν = 0.6, μ = 4.3,
κ = 3.3, α = 0.9, β = 6.8, γ = 0.4, τ = 4.4.

0 10 20 30

0

0.1

0.2

r

max
‖k‖1=r

Reσ(Mk)

(b) Physical parameters: λ = 3.6, ν = 1.2, μ = 2.4,
κ = 0.4, α = 5.3, β = 3.1, γ = 1.7, τ = 20.

Fig. 4. An illustration of the fact that the instability is not exclusively due to the zero mode: depending on the
physical parameter regime the eigenvalue with largest real part may or may not occur when k = 0. Here Mk
denotes the symbol of the linearization of (1.1a)–(1.1d) about the equilibrium

we can compute the spectrum of M(0) explicitly and see that is has exactly two unstable
eigenvalues, which come as a conjugate pair. An important point to note here is that the
only nonzero components of the eigenvectors corresponding to this conjugate pair are
the components corresponding to a and ω̄, which denotes the horizontal components of
ω, i.e. ω̄ = (ω1, ω2). It is thus precisely a and ω̄ that are at the origin of the instability.

This is particularly interesting since M(0) is precisely (up to neglecting its compo-
nents depending on u) the linearization of the ODE

⎧
⎪⎨

⎪⎩

J
dω

dt
+ ω × Jω = τe3 − 2κω

d J

dt
= [�, J ]

about its equilibrium
(
ωeq , Jeq

) = (
τ
2κ e3, diag (λ, λ, ν)

)
, where here ω and J are only

time-dependent. This ODE describes the rotation of a damped rigid body subject to a
uniform torque, which tells us that instability of the system (1.1a)–(1.1d) stems precisely
from the instability of this ODE.

Finally note that, although this ODE plays a key role in explaining the instability
mechanism, it does not fully characterize it. To understand what we mean by this, recall
that the linearization of the ODE about its equilibrium describes the evolution of the
zero Fourier mode of the linearized PDE. However, the nonzero Fourier modes play a
nontrivial role in the instability mechanism. Indeed numerics show that, depending on
the physical regime, the most unstable mode (i.e. that giving rise to the eigenvalue with
the largest positive real part) may or may not be the zero mode. This is shown in Fig. 4.

2.6. Summary of techniques and plan of paper. Our technique for proving Theorem 1.1
is to employ the nonlinear bootstrap instability framework first introduced by Guo-
Strauss [GS95a], which is not so much a black-box theorem as it is a strategy for proving
instability. In broad strokes, the idea is to construct a maximally unstable solution to
the linearized equations and then employ a nonlinear energy method to prove that this
solution is nonlinearly stable, i.e. the nonlinear dynamics stay close to the linear growing
mode, which then leads to instability.

An essential feature of the Guo-Strauss bootstrap instability framework is that it does
not require the presence of a spectral gap, as is required for other standard methods used
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to prove nonlinear instability (see for example [FSV97]). This is crucial for us since it is
quite delicate to obtain spectral information about the problem at hand, as discussed in
more detail below. In particular, note that Proposition 3.9 tells us that a pair of conjugate
eigenvalues of the linearized operator approach the imaginary axis as the wavenumber
approaches infinity. As an immediate consequence, we may thus deduce that there is no
spectral gap.

In order to implement the bootstrap instability strategy we need four ingredients. The
first is the maximally unstable linear growing mode. This is a solution to the linearized
equations (linearized around the equilibrium) that grows exponentially in time (when
measured in various Sobolev norms) at a rate that is maximal in the sense that no other
solution to the linearized equations grows more rapidly. The second is a scheme of
nonlinear energy estimates that allows us to obtain control of high-regularity norms
of solutions to the nonlinear problems in terms of certain low-regularity norms. This
is the bootstrap portion of the argument. The third is a low-regularity estimate of the
nonlinearity in terms of the square of the high-regularity energy, valid at least in a small
energy regime. Finally, we need a local existence theory for the nonlinear problem that
is capable of producing solutions to which the bootstrap estimates apply. With these
ingredients in hand, we can then prove that the nonlinear solution stays sufficiently
close to the growing linearized solution that it must leave a ball of fixed radius within a
timescale computed in terms of the data.

In Sect. 3 we construct the maximally unstable solution to the linearized equations. A
principal difficulty is encountered immediately upon linearizing: the resulting (spatial)
differential operator is not self-adjoint. This is due entirely to the anisotropy of the
microstructure, and in particular to the term ω × Jω in (1.1c); indeed, in the case of
isotropic microstructure this term vanishes and the linearized operator becomes self-
adjoint. The lack of self-adjointness means we have far fewer tools at our disposal, and
in particular it means that we cannot employ variational methods to find the maximal
growing mode.

Since we work on the torus and the linearization is a constant coefficient problem,
we are naturally led to seek the maximal solution in the form of a growing Fourier mode
solution. This leads to an ODE in C

8 of the form ∂t X̂k = B̂k X̂k , where k ∈ Z
3 is the

wavenumber and B̂k ∈ C
8×8 is not Hermitian. Without the precision tools associated

to Hermitian matrices, we are forced to naively study the degree eight characteristic
polynomial of B̂k , which, due to the appearance of the physical parameters α, β, γ, κ ,
μ, τ , λ, ν, in addition to the wave number k, is an unmitigated mess. Numerics (see
Fig. 4) suggest that for any k ∈ Z

3 the spectrum consists of a conjugate pair of unstable
eigenvalues, a zero eigenvalue (coming from the incompressibility condition), and five
stable eigenvalues. However, due to the inherent complexity of B̂k and its characteristic
polynomial, we were unable to prove this, except in the case k = 0.

Failing at the direct approach of simply factoring the characteristic polynomial of B̂k ,
we instead employ an indirect approach based on isolating the highest order (in terms
of the wavenumber k) part of the characteristic polynomial and deriving its asymptotic
form as |k| → ∞. For this it’s convenient to parameterize the matrices in terms of
k ∈ R

3 rather than Z
3. Using this idea, the special form of the highest-order term, and

the implicit function theorem, we are then able to prove the existence of an unstable
conjugate pair of eigenvalues, smoothly parameterized by k ∈ R

3 in a neighborhood of
infinity. Remarkably, since the neighborhood of infinity contains all but finitely many
lattice points from Z

3, we conclude from this argument that for all but finitely many
wavenumbers B̂k is unstable. Combining thiswith a number of delicate spectral estimates
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and an application of Rouché’s theorem, we are then able to find k∗ ∈ Z
3 with the largest

growth rate. From this and a Fourier synthesis we then construct the desired maximal
growing mode.

The lack of self-adjointness is also an issue when we seek to use spectral information

about B̂k to obtain bounds on the corresponding matrix exponential etB̂k . These bounds
are required to obtain the bounds on the semigroup generated by the linearization that
verify that our growing mode is actually maximal among all linear solutions. We only

know that etB̂k is similar to its diagonal matrix up to a change of basismatrix whose norm
depends on k. Circumventing this issue requires a good understanding of the decay of
the spectrum of the symmetric part of B̂k as k becomes large, and the precise workaround
is discussed at the beginning of the proof of Proposition 3.11.

In Sect. 4 we derive the nonlinear bootstrap energy estimates and the nonlinearity
estimate. Here the primary difficulty is related to rewriting the problem in a way that pre-
vents time derivatives from entering the nonlinearity. If we were to naively rewrite (1.1c)
by writing J∂tω = Jeq∂tω +

(
J − Jeq

)
∂tω and considering the term

(
J − Jeq

)
∂tω as

a remainder term, then we would then not be able to close the estimates due to this time
derivative being present as part of the nonlinear remainder. Instead we must multiply
(1.1c) by Jeq J−1, which solves the time derivative problem but significantly worsens
the form of the remaining terms in the nonlinearity. In spite of this, we are able to derive
the appropriate estimates needed for the bootstrap argument.

We delay the development of the final ingredient, the local existence theory, until
“Appendix A”. Our local existence theory is built on a nonlinear Galerkin scheme that
employs the Fourier basis for the finite dimensional approximations. To solve the result-
ing nonlinear, but finite dimensional, ODE we borrow many of the nonlinear estimates
from Sect. 4.

Section 5 combines the four ingredients to prove our instability result. This culminates
inTheorem5.2, themain result of the paper. Finally, in “AppendixB”we record a number
of auxiliary results that are used throughout the main body of the paper.

2.7. Notation. We say a constant C is universal if it only depends on the various pa-
rameters of the problem, the dimension, etc., but not on the solution or the data. The
notation α � β will be used to mean that there exists a universal constant C > 0 such
that α � Cβ.

Let us also record here some basic notation for linear algebraic operations. For any
w ∈ R

n we denote by P‖ (w) and P⊥ (w) the orthogonal projections onto the span
of w and its orthogonal complement, respectively. More precisely: for any nonzero w,
P‖ (w) = w⊗w

|w|2 and P⊥ (w) = I − w⊗w
|w|2 , whilst P‖ (0) = 0 and P⊥ (0) = I . For any

v ∈ R
2 and w ∈ R

3 we write w̄ = (w1, w2), w̄⊥ = (−w2, w1), ṽ = (v1, v2, 0),
and ṽ⊥ = (−v2, v1, 0). Finally, let X1, X2, Y1, and Y2 be normed vector spaces, let
L1 ∈ L (X1, Y1), and let L2 ∈ L (X2, Y2). The direct sum of L1 and L2, denoted
L1 ⊕ L2, is the bounded linear operator from X1 × X2 to Y1 × Y2 defined via, for every
( f1, f2) ∈ X1 × X2, (L1 ⊕ L2) ( f1, f2) := (L1 f1, L2 f2).

3. Analysis of the Linearization

To begin we record the precise form of the linearization of (1.1a)–(1.1d) about the
equilibrium solution

(
ueq , peq , ωeq , Jeq

) = (0, 0, τ
2κ e3, diag(λ, λ, ν)) and introduce
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notation which allows us to write the linearized problem in a compact form. Then in
Sect. 3.1 we note that the linearized operator has a natural block structure with only one
block which gives rise to non-trivial dynamics. It is this component whose spectrum
we study in detail in Sect. 3.2. The results from Sect. 3.2 are then used to construct the
semigroup associated with the linearization in Sect. 3.3 and to construct a maximally
unstable solution to the linearized problem in Sect. 3.4.

The linearization is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u = (μ + κ/2)�u + κ∇ × ω − ∇ p, (3.1a)

Jeq∂tω = − (ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω
)

+κ∇ × u−2κω+ (α+β/3−γ )∇∇ · ω + (β + γ ) �ω, and (3.1b)

∂t J = [
�eq , J

]
+
[
�, Jeq

]
(3.1c)

subject to ∇ · u = 0 which, for X = (u, ω, J ), D = I3 ⊕ Jeq ⊕ IMat(3) (where IMat(3)
denotes the identity function on the space of 3-by-3 matrices), �(p) = (−∇ p, 0, 0),
and an appropriate linear operator L̃ can be written more succintly as

∂t DX = L̃X + �(p) subject to ∇ · u = 0. (3.2)

3.1. The block structure. The linearization (3.1a)–(3.1c) can be decomposed into blocks
which do not interact with one another. Notably, only one of these blocks gives rise to
non-trivial dynamics, so we will identify this block before studying its spectrum in
Sect. 3.2. More precisely: writing

J =
(

J̄ a
aT J33

)

,

the linearization becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u = (μ + κ/2)�u + κ∇ × ω − ∇ p, (3.3a)

Jeq∂tω = κ∇ × u − 2κω + (α + β/3 − γ )∇∇ · ω + (β + γ ) �ω

− (λ − ν)
τ

2κ
ω̃⊥ −

( τ

2κ

)2
ã⊥, (3.3b)

∂t a = (λ − ν) ω̄⊥ +
τ

2κ
a⊥, (3.3c)

∂t J̄ = τ

2κ

[
R, J̄

]
, and (3.3d)

∂t J33 = 0 (3.3e)

subject to ∇ · u = 0, where R is the 2-by-2 matrix given by R = e2 ⊗ e1 − e1 ⊗ e2.
In particular, if we write Y = (u, ω, a) and D̄ = I3 ⊕ Jeq ⊕ I2 then (3.3a), (3.3b), and
(3.3c) can be written as ∂t D̄Y = M̃Y + �(p) subject to ∇ · u = 0 for an appropriate
operatorM̃. In particular, sinceM̃ commutes with the application of the Leray projector
to u it suffices to study ∂t D̄Y = M̃ P̄ Y , where P̄ := PL ⊕ I3 ⊕ I2 for PL denoting the
Leray projector. Recall that the Leray projector is the projection onto divergence-free
vector fields, which on the 3-torus can be written explicitly as PL = −∇ × �−1 ∇×
(see Lemma B.20).



Instability of an Anisotropic Micropolar Fluid 961

So finally, for B := D̄−1M̃ P̄ we have that L := D−1L̃P, where P := PL ⊕ I3 ⊕
IMat(3), can be written as L = B ⊕ τ

2κ [R, · ] ⊕ 0. Note that using this notation we may
write the linearized problem (3.2), after Leray projection, as

∂t X = LX. (3.4)

This is a particularly convenient formulation since it is amenable to attack via semigroup
theory.

What matters for the purpose of the spectral analysis carried out in the following
section is that the equations governing the non-trivial dynamics of the problem can be
written as ∂t Y = BY . The punchline is that it suffices to study the spectrum of B, which
is precisely what we do in Sect. 3.2 below.

3.2. Spectral analysis. In this subsection we study the spectrum of the operator B intro-
duced in the preceding section. Since our domain is the torus it is natural to consider the
symbol B̂ of this operator, which gives a matrix in C

8×8 for each wavenumber k ∈ Z
3.

However, it will be more convenient for us to parameterize these with a continuous
wavenumber k ∈ R

3; for each such k we define B̂k ∈ C
8×8 according to

B̂k :=
⎛

⎜
⎝

− (μ + κ
2

) |k|2 P⊥ (k) iκk× 0

J−1
eq (iκk×) P⊥ (k) −2κ J−1

eq − α̃|k|2 J−1
eq P‖ (k) − γ̃ |k|2 J−1

eq P⊥ (k) − (
1 − ν

λ

)
τ
2κ R33 − 1

λ

(
τ
2κ

)2
R32

0 (λ − ν) R23
τ
2κ R22

⎞

⎟
⎠ ,

(3.5)

where P‖ and P⊥ are as defined in Sect. 2.7, and

R22 = R =
(
0 − 1
1 0

)

, R23 =
(
0 − 1 0
1 0 0

)

, R32 =
⎛

⎝
0 − 1
1 0
0 0

⎞

⎠ , and R33 =
⎛

⎝
0 − 1 0
1 0 0
0 0 0

⎞

⎠ .

Note here that we have abused notation by writing iκk× as a place-holder to indicate
the matrix corresponding to the linear map z �→ iκk × z.

It is somewhat tricky to extract useful spectral information from B̂k directly. Instead,
we introduce a sort of similarity transformation Mk := QkB̂k Q̄k in such a way that Mk
is a real matrix, i.e. Mk ∈ R

8×8 for each k ∈ R
3, which carries the spectral information

of B̂k . Here the matrices Qk, Q̄k ∈ C
8×8 are defined by

Qk := T (k) ⊕ J 1/2
eq ⊕ s R22 and Q̄k := T (k) ⊕ J−1/2

eq ⊕
(
−s−1

)
R22,

where T (k) := ik×
|k| if k �= 0, T (0) := 0, and s := −1√

λ−ν

τ
2κ . Unfortunately, Qk and Q̄k

are not quite invertible, so this isn’t exactly a similarity transformation. When k �= 0,
this is due to the fact that (k, 0, 0) belongs to the kernels of both operators, a fact that is
ultimately related to the divergence-free condition for u, which reads k · ûk = 0 on the
Fourier side. In principle we could remove the kernel and restore invertibility, but the
resulting 7-by-7 matrices are less convenient to work with. As such, we will stick with
the 8-by-8 setup and find a work-around for the invertibility issue. Ultimately we will
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prove in Propositions 3.10 and 3.11 that we can gain good spectral information about
Mk , and it will follow from Definition 3.1 and Lemmas 3.2 and B.2 that the spectrum of
B̂k coincides with that of Mk . Note that for all these k-dependent matrices we will write
equivalently Mk or M (k).

An important observation is that the matrix Mk ∈ R
8×8 may be decomposed into

its symmetric part Sk ∈ R
8×8 and its antisymmetric part A ∈ R

8×8 such that A is
independent of k. More precisely

Sk =
⎛

⎜
⎝

− (μ + κ
2

) |k|2P⊥ (k) κ|k|P⊥ (k) J−1/2
eq 0

κ|k|J−1/2
eq P⊥ (k) −2κ J−1

eq − α̃|k|2 J−1/2
eq P‖ (k) J−1/2

eq − γ̃ |k|2 J−1/2
eq P⊥ (k) J−1/2

eq φ I32
0 φ I23 0

⎞

⎟
⎠

(3.6)
and

A = 0 ⊕ cR33 ⊕ d R22, (3.7)

where

φ =
√

1 − ν

λ

τ

2κ
, c =

(ν

λ
− 1

) τ

2κ
, and d = τ

2κ
. (3.8)

Note that Mk is written out explicitly in all its gory details in “Appendix D”.
We now turn to the issue of proving that the spectra of B̂k and Mk coincide. To do

this we will need to use the notion of linear maps acting on quotient spaces. Here we
quotient out by the spaces Vk defined as V0 := span

{
(v, 0, 0)

∣
∣ v ∈ R

3
}
as well as, for

any nonzero k ∈ R
3, Vk := span (k, 0, 0).

Definition 3.1 (Linear maps acting on quotient spaces). Let A ∈ C
n×n and let V be a

subspace of Cn . We say that A acts on C
n/ V if and only if ker A = V and im A ⊆ V ⊥,

where V ⊥ is the orthogonal complement relative to the standard Hermitian structure on
C

n .

We refer to Lemma B.2 for the key property of linear maps acting on quotient spaces
which we will use in the sequel, namely conditions under which two matrix represen-
tations of such maps are equivalent, even when the ‘change of basis’ matrices involved
are not invertible. We now prove that the matrices we are dealing with here do satisfy
the hypotheses of Lemma B.2.

Lemma 3.2. For any k ∈ R
3, B̂k , Qk, and Q̄k act on C

8/ Vk and Qk Q̄k = Q̄k Qk =
projV ⊥

k
.

Proof. First we consider B̂k for k �= 0. Since B̂†
k (k, 0, 0) = B̂k (k, 0, 0) = 0, where †

denotes the conjugate transpose, we know that im B̂k ⊆ Vk and that Vk ⊆ ker B̂k , so we
only have to show that ker B̂k ⊆ Vk . Let y = (v, θ, b) ∈ ker B̂k . The third row of (3.5)
tells us that b = 2κ(λ−ν)

τ
θ̄ and hence

0 = D̄B̂k y · y = −μ|k|2|v⊥|2 − 2κ

∣
∣
∣
∣
1

2
ik × v − θ

∣
∣
∣
∣

2

− α̃|k|2∣∣θ‖
∣
∣2 − γ̃ |k|2|θ⊥|2.

Therefore θ = v⊥ = 0, and hence also b = 0, such that indeed y = (
v‖, 0, 0

) ∈ Vk . So

indeed B̂k acts on C8/ Vk .
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Now we consider B̂0, proceeding essentially as we did above for the case k �= 0.
Since B̂†

0 (v, 0, 0) = B̂0 (v, 0, 0) = 0 for any v ∈ R
3 it follows that im B̂0 ⊆ V0 and that

V0 ⊆ ker B̂0. Now let y = (v, θ, b) ∈ ker B̂0 and observe that, as above, b = 2κ(λ−ν)
τ

θ̄

and that hence 0 = D̄B̂0y · y = −2κ|θ |2. Therefore θ = 0 and b = 0 such that indeed
y = (v, 0, 0) ∈ V0. So ker B̂0 ⊆ V0 and thus indeed B̂0 acts on C8/ V0.

We now turn our attention to Qk and Q̄k . Since (k, 0, 0)T Qk = (k, 0, 0)T Q̄k =
(k · T (k))⊕0⊕0 = 0 for any nonzero k ∈ R

3 and since (v, 0, 0)· Q0 = (v, 0, 0)· Q̄0 =
v · T (0) ⊕ 0 ⊕ 0 = 0, we may deduce that im Qk, im Q̄k ⊆ V ⊥

k for all k ∈ Z
3. Now

observe that, since J 1/2
eq and R22 are invertible, we deduce that ker Qk = ker Q̄k =

(ker T (k)) ⊕ 0 ⊕ 0. Therefore, since ker T (k) = span {k} when k is nonzero and since
ker T (0) = R

3, we have that indeed ker Qk = ker Q̄k = Vk for all k ∈ Z
3, i.e. Qk and

Q̄k act on C8/ Vk for all k ∈ Z
3.

Finally observe that, since R2
22 = −I2, it follows that Qk Q̄k = Q̄k Qk = T (k)2 ⊕

I3 ⊕ I2, where T (0)2 = 0 and T (k)2 = (ik×)2

|k|2 = projspan{k}⊥ for k �= 0. Note

that we have used the ε-δ identity εai jεakl = δikδ jl − δilδ jk to deduce that (k×)2 =
−|k|2 projspan{k}⊥ . So indeed Qk Q̄k = Q̄k Qk = projV ⊥

k
. 
�

We now record how Mk behaves under transformations of the form k �→ −k and k =
(k̄, k3) �→ (H̄ k̄, k3) for H̄ an orthogonal map. This comes in handy when constructing
the maximally unstable solution in Sect. 3.4.

Lemma 3.3 (Equivariance and invariance of M). Let H be a horizontal rotation, i.e.
H ∈ R

3×3 such that H = H̄ ⊕ 1 for some 2-by-2 orthogonal matrix H̄ . We call
H̃ := H ⊕ H ⊕ H̄ the joint horizontal rotation associated with H.

(1) M is equivariant under horizontal rotations, i.e. for any k ∈ R
3 and any horizontal

rotation H, M (Hk) = H̃ M (k) H̃ T and
(2) M is even, i.e. for any k ∈ R

3, M (−k) = M (k).

Proof. Note that k �→ P‖ (k) , P⊥ (k) are both even and equivariant under horizontal
rotations, i.e., for any horizontal rotation H , P‖ (Hk) = H P‖ (k) H T and similarly for
P⊥, whilst k �→ |k| is even and invariant under horizontal rotations. We can therefore
write

S (k) =
⎛

⎝
A (k) B (k) 0
C (k) −2κ J−1

eq + D (k) φ I32
0 φ I23 0

⎞

⎠

for some A, B, C, D which are equivariant under horizontal rotations and even. It follows
immediately that M is even. Now let H be a horizontal rotation. Since H̄ I23H =
I23, H I32 H̄ = I32, and since H commutes with J−1

eq one may readily compute that
S (Hk) = H̃ S (k) H̃ T . Finally, since two-dimensional rotations (i.e. elements of O (2))
commutewith one another, A = H̃ AH̃ T and so indeed M is equivariant under horizontal
rotations. 
�

We now obtain some fairly crude bounds on the spectrum of Mk in Lemmas 3.5, 3.6,
and 3.7. These bounds are nonetheless essential in the proofs of Propositions 3.10
and 3.11. As a first step in obtaining these bounds we identify the quadratic form asso-
ciated with Sk , the symmetric part of Mk , in Lemma 3.4.
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Lemma 3.4 (Quadratic form associated with Sk). For any y = (v, θ, b) ∈ R
3 × R

3 ×
R
2 = R

8 and any k ∈ R
3,

S (k) y · y = −μ|k|2|v⊥|2 − 2κ

∣
∣
∣
∣
1

2
|k|v⊥ − J−1/2

eq θ

∣
∣
∣
∣

2

− α̃|k|2
∣
∣
∣
∣

(
J−1/2

eq θ
)

‖

∣
∣
∣
∣

2

−γ̃ |k|2
∣
∣
∣

(
J−1/2

eq θ
)

⊥

∣
∣
∣
2
+ 2φθ̄ · b.

where, for any w ∈ R
3, w‖ := projk w and w⊥ := (

I − projk
)
w, and φ is as in (3.8).

Proof. This follows immediately from the definition of S in (3.6). 
�
We now use Lemma 3.4 to obtain upper bounds on the eigenvalues of S.

Lemma 3.5 (Spectral bounds on Sk). For any k ∈ R
3, it holds that max σ (Sk) �

min
(
φ, Cσ

|k|2
)

, where Cσ := φ2λ
min(α̃,γ̃ )

and φ is as in (3.8).

Proof. Let k ∈ R
3 and let y = (v, θ, b) ∈ R

3 × R
3 × R

2. By Lemma 3.4

S (k) y · y � −α̃|k|2
∣
∣
∣
∣

(
J−1/2

eq θ
)

‖

∣
∣
∣
∣

2

− γ̃ |k|2
∣
∣
∣

(
J−1/2

eq θ
)

⊥

∣
∣
∣
2
+ 2φθ̄ · b (3.9)

from which it follows that S (k) y · y � φ
(|θ̄ |2 + |b|2) and hence that max σ (Sk) � φ.

Now observe that

−α̃|k|2
∣
∣
∣
∣

(
J−1/2

eq θ
)

‖

∣
∣
∣
∣

2

− γ̃ |k|2
∣
∣
∣

(
J−1/2

eq θ
)

⊥

∣
∣
∣
2

� −min (α̃, γ̃ ) |k|2
∣
∣
∣J

−1/2
eq θ

∣
∣
∣
2

� −1

λ
min (α̃, γ̃ ) |k|2|θ̄ |2. (3.10)

Combining (3.9) and (3.10) tells us that, for k �= 0,

S (k) y · y � −φ2|k|2
Cσ

|θ̄ |2 + 2φθ̄ · b = −φ2|k|2
Cσ

∣
∣
∣
∣θ̄ − Cσ

φ|k|2 b

∣
∣
∣
∣

2

+
Cσ

|k|2 |b|2 � Cσ

|k|2 |y|2

from which we deduce that max σ (Sk) � Cσ

|k|2 . 
�
The bounds on S from Lemma 3.5 coupled with elementary considerations from linear
algebra allow us to deduce bounds on the real parts of the eigenvalues of Mk .

Lemma 3.6. (Bounds on the real parts of eigenvalues of Mk) For any k ∈ R
3, and with

φ as in (3.8), it holds that maxRe σ (Mk) � φ.

Proof. This follows immediately from Lemmas 3.5 and B.3. 
�
To conclude this batch of spectral estimates we obtain bounds on the imaginary parts of
the eigenvalues of Mk as a corollary of the Gershgorin disk theorem (Theorem B.4).

Lemma 3.7 (Bounds on the imaginary parts of eigenvalues of Mk). For any k ∈ R
3 it

holds that max|Im σ (Mk)| �
√
7τ
2κ .
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Proof. This follows from Corollary B.5 since

||A||22 = 2
(

c2 + d2
)

=
( τ

2κ

)2
(1 − 2ν (ν − 2λ)) �

( τ

2κ

)2
.


�
We now record some useful facts about the characteristic polynomial p of Mk . Com-

puting p was done by using a computer algebra system, and we thus record Mk in
“Appendix D” in a form which can readily be used for computer-assisted algebraic
manipulations.

Upon computing p we observe that it is a polynomial in k of degree 10 and that it
only depends on even powers of |k̄| and k3. Therefore we may write

p (x, k) =
5∑

q=0

rq
(
x, |k̄|, k3

)
(3.11)

where each rq is a polynomial in
(
x, |k̄|, k3

)
which is homogeneous of degree 2q in

(|k̄|, k3
)
. In particular:

r5
(
x, |k̄|, k3

) = C0x
(

x2 + d2
)

|k|10 and r4
(
x, |k̄|, k3

) = |k|6
(

t1 (x) |k̄|2 + t2 (x) k23

)

(3.12)
where

ti (x) = x2
(
−Ci,0 + Ci,1x + Ci,2

(
x2 + d2

))
(3.13)

and

C0 = (μ + κ/2)2 (α + 4β/3) (β + γ )2/(νλ2),

C1,0 = (α + 5β/3 + γ ) (β + γ ) (μ + κ/2)2φ/(νλ), C2,0

= 2 (α + 4β/3) (β + γ ) (μ + κ/2) φ/(νλ),

C1,1 = C2,1 = 2κ (μ + κ/2) (β + γ ) (2μ (α + 4β/3) + (μ + κ/2) (β + γ )) /(νλ2),

C1,2 = (μ + κ/2) (β + γ ) (2 (α + 4β/3) (β + γ ) + (μ + κ/2) ((α + 5β/3 + γ ) λ

+ (α + 4β/3) ν)) /(νλ2) and

C2,2 = 2 (μ + κ/2) (β + γ ) ((α + 4β/3) (β + γ )

+ (μ + κ/2) ((α + 4β/3) λ + (β + γ ) ν/2)) /(νλ2).

The exact dependence of these constants on the various physical parameters is not of
concern here, since all that matters is that all these constants are strictly positive, i.e.
C0, Ci, j > 0 for all i, j .

We now use Rouché’s Theorem (c.f. Theorem B.10) and our explicit expressions
for the leading factors (with respect to |k|) of the characteristic polynomial p of Mk
to control the number of eigenvalues remaining within bounded neighbourhoods of the
origin as |k| becomes large. This is stated precisely in Lemma 3.8 below,which is another
ingredient of the proof of Proposition 3.10.

Lemma 3.8 (Isolation of some eigenvalues of M for large wavenumbers). For any
R > τ

2κ there exist K I > 0 such that for any k ∈ R
3, if |k| > K I then there are precisely

three eigenvalues of Mk in an open ball of radius R about the origin.
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Proof. Let k ∈ R
3 be nonzero, let p (·, k) denote the characteristic polynomial of Mk ,

and let us write s := p − r5 for r5 as in (3.12). The key observations are that r5 has
precisely three roots in BR when R > τ

2κ and that s is lower-order in k than r5. The
result then follows from Rouché’s Theorem since r5 dominates s for large |k|.

More precisely, let R > d = τ
2κ and let r̃5 (x) := C0x

(
x2 + d2

)
for C0 as in (3.12)

such that r5 (x, k) = r̃5 (x) |k|10. Since r̃5 is a polynomial whose roots are away from
∂ BR , since s (x, k) is a polynomial of degree 8 in k, and since ∂ BR is compact, it follows
that Cr := inf∂ BR |r̃5| > 0 and that Cs := sup

x∈∂ BR
k �=0

s(x,k)

|k|8 < ∞.

So pick K I :=
√

Cs
Cr

and observe that for any k ∈ Z
3, if |k| > K I then, on ∂ BR ,

|r5 (·, k)| = |r̃5||k|10 > Cr |k|8K 2
I � Cr

Cs
K 2

I |s (·, k)| = |s (·, k)|. (3.14)

Since r5 (·, k) has three roots in BR , namely 0 and ± τ
2κ , we may use (3.14) to deduce

from Theorem B.10 that p (·, k) has three roots in BR . 
�
In Proposition 3.9 below we use the Implicit Function Theorem to identify the tra-

jectories of some unstable eigenvalues of Mk when |k| is large. In particular we will see
in the proof of Proposition 3.10 that, combining this result with earlier results from this
section, we may deduce that these eigenvalues are the most unstable eigenvalues of Mk
for large k. Here we say that an eigenvalue is unstable when it has strictly positive real
part.

Proposition 3.9 (Trajectories of some eigenvalues of M for large wavenumbers). There
exists KT > 0 and a function z : {k ∈ R

3 : |k| > KT
} → C, which is continuously

differentiable in the real sense (i.e. after identifying C with R
2 in the canonical way),

such that

(1) for every k ∈ R
3, if |k| > KT then

(a) z (k) and z (k) are eigenvalues of M (k) and
(b) Re z (k) > 0, and

(2) z (k) → iτ
2κ as |k| → ∞.

Proof. Recall that d = τ
2κ and let p (·, k) denote the characteristic polynomial of Mk .

We proceed in three steps: first we define s to be essentially |ε|5 p
( · , ε−1/2

)
(such that

the study of s about zero is equivalent to the study of p about infinity) and verify that
we may apply the Implicit Function Theorem to s about (x, ε) ∼ (id, 0), second we
deduce from explicit computations of p [namely (3.12)] that, for small nonzero ε, s has
two roots with strictly positive real parts, and third we write k ∼ ε−1/2 to turn our result
from step 2 about ε ∼ 0 into a result about k ∼ ∞ which allows us to conclude that, for
large |k|, p has two roots with strictly positive real part.

Step 1: Recall [from (3.11) and the preceding discussion] that p only depends on
|k̄| and k3, so we may write p (x, k) = p̃

(
x, |k̄|, k3

)
. Now define, for any x ∈ C

and any ε = (εh, εv) ∈ R
2
>0, s (x, ε) := |ε|51 p̃

(
x,

(
√

εh ,
√

εv)
|ε|1

)
, where | · |1 denotes

the l1 norm. It follows from (3.11) that s (x, ε) = ∑5
q=0 uq (x, ε) for u5−q (x, ε) :=

|ε|51 rq

(
x,

√
εh

|ε|1 ,
√

εh
|ε|1
)
. Since the only dependence of rq on k is through

(|k̄|, k3
)
, i.e. since
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rq
(
x, |k̄|, k3

) = r̃q
(
x, |k̄|2, k23

)
for some r̃q , we may write rq

(
x, |k̄|, k3

) = Cq (x) •
(|k̄|2, k23

)⊗q
for some polynomial Cq . In particular, it follows that

u2 (x, ε) = C3 (x) • ε⊗3

|ε|1 , u3 (x, ε) = |ε|1 C2 (x) • ε⊗2,

u4 (x, ε) = |ε|31 C1 (x) , and u5 (x, ε) = |ε|51 C0 (x)

such that, for q � 2, uq (x, 0) = 0 and both ∂x uq (x, 0) = 0 and ∇εuq (x, 0) = 0.
Moreover we may compute, using (3.12), that

u0 (x, ε) = C0x
(

x2 + d2
)

=: u0 (x) and u1 (x, ε) = (t1 (x) , t2 (x)) · ε =: ū1 (ε) .

(3.15)
So finally, for v := s − (u0 + u1) = ∑5

q=2 uq , we have that s (x, ε) = u0 (x) + ū1 (x) ·
ε+v (x, ε)where v (x, 0) = 0 and both ∂xv (x, 0) = 0 and∇εv (x, 0) = 0. In particular,
note that s (id, 0) = u0 (id) = 0 and that ∂x s (id, 0) = u′

0 (id) = −2C0d2 �= 0.
Step 2: By step 1 we may apply Theorem B.11 to s about id to deduce that there

exists a number ξ > 0 and a functionw : B+
1,ξ → Cwhich is continuously differentiable

in the real sense, where B+
1,ξ is the intersection of the first quadrant and the l1-ball

of radius ξ , i.e. B+
1,ξ := {

(εh, εv)
∣
∣ εh, εv > 0 and εh + εv < ξ

}
, such that w (0) =

id, s (w (ε) , ε) = 0 for every ε ∈ B+
1,ξ , and ∇εw (0) = −∇εs(id,0)

∂x s(id,0) . Moreover we

may compute from (3.13) and (3.15) that ∇εw (0) = 1
2C0

(
C1,0 + iC1,1d
C2,0 + iC2,1d

)

, such that

Re∇εw (0) ∈ R
2
>0. It follows that there exists 0 < σ < ξ such that Rew (ε) > 0 for

all ε ∈ B+
1,σ .

Step 3: Pick KT := 1/
√

σ and define z via, for every k ∈ R
3 such that |k| >

KT , z (k) := w (ε (k)) for ε (k) := 1
|k|4

(|k̄|2, k23
)
. Note that z is well-defined on

{
k ∈ R

3 : |k| > KT
}
since, for every k∈R3, |k| > KT ⇐⇒ |ε (k)| = 1/|k|2 < σ .

Nowobserve that, for every k ∈ R
3 such that |k|>KT , p̃ (z (k) , k) = 1

|ε|51
s (w (ε (k)) , ε (k))

=0, i.e. indeed z (k) is a root of p (·, k) and hence an eigenvalue of Mk . Since Mk is a
matrix with real entries, we may deduce that z̄ (k) is also an eigenvalue of Mk . Moreover
it follows from step 2 above that Re z (k) > 0 for every |k| > KT . Finally, note that
since w (0) = id, since w is continuous, and since ε (k) is continuous away from k = 0,
we may conclude that z (k) → id as k → ∞. 
�

We now have all the ingredients in hand to prove one of the two key results of this
section, namely Proposition 3.10. This result tells us that there exists a most unstable
eigenvalue of Mk , i.e. an eigenvalue with largest strictly positive real part.

Proposition 3.10 (Maximally unstable eigenvalues). There exist k∗ ∈ Z
3 and w∗ ∈ C

with strictly positive real part such that

(1) w∗ is an eigenvalue of M (k∗) and
(2) for every k ∈ Z

3 and every eigenvalue w of M (k), Rew � Rew∗.

We define η∗ := Rew∗.

Proof. The key observations are that: (i) by combining Proposition 3.9 and Lemmas 3.6
and 3.7, we can show that for |k| large enough, the eigenvalues whose trajectory can
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Fig. 5. A pictorial summary of step 1 of the proof of Proposition 3.10

be obtained via the implicit function theorem in Proposition 3.9 are the most unstable
eigenvalues (i.e those with the largest real part) and that (ii) by Proposition 3.9 we know
that Re z (k) → 0 as |k| → ∞. We prove the first observation in step 1 below, and in
step 2 we use the first step and the second observation to conclude.

Step 1: We show that there exists K∗ > 0 such that, for every |k| > K∗, Re z (k) =
max

w∈σ(M(k))
Rew. Pick R > φ2 + 7d2 and note that since R > d = τ

2κ we may pick

K I = K I (R) as in Lemma 3.8. Let K∗ := max (K I , KT ) for KT as in Proposition 3.9,

let H denote the half-slab
{
w ∈ C

∣
∣ Re z � φ, |Im z| �

√
7d
}
, and let BR ⊆ C denote

the open ball of radius R about the origin.
Let k ∈ Z

3 such that |k| > K∗. By Lemmas 3.6 and 3.7 we know that all the
eigenvalues of M (k) are in H , and by Lemma 3.8we know that exactly three eigenvalues
of M (k) are in BR ∩ H . Moreover, by Proposition 3.9 we know that the three eigenvalues
of M (k) in BR ∩ H are precisely 0 (since M (k) (k, 0, 0) = 0), z (k), and z̄(k), for z as
in Proposition 3.9.

In particular, since R > φ2 + 7d2 such that no points in the half-slab H have larger
real parts than all points in BR ∩ H , it follows that indeed the eigenvalues of M (k) with
largest real part are z (k) and z̄(k) (Fig. 5).

Step 2: We want to show that the supremum

sup
k∈Z3

max
w∈σ(M(k))

Rew

is strictly positive and attained. It is clearly strictly positive since for any k ∈ Z
3 such

that |k| > KT it follows from Proposition 3.9 that z (k) is an eigenvalue of M (k) with
strictly positive real part. To see that this supremum is attained, we write for simplicity

s (E) := sup
k∈E

max
w∈σ(M(k))

Rew

for any E ⊆ Z
3. We thus want to show that s

(
Z
3
)
is attained. On one hand, by step 1,

the supremum s
({

k ∈ Z
3 : |k| > K∗

})
is achieved. Indeed, we may pick the eigenvalue
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z (kcrit) of M (kcrit) corresponding to any kcrit such that |kcrit| is equal to the smallest
integer strictly larger than K∗ which can be written as a sum of squares of integers. On
the other hand the supremum s

({
k ∈ Z

3 : |k| � K∗
})

is attained since it is taken over
a finite set. Since Z3 is the union of

{
k ∈ Z

3 : |k| > K∗
}
and

{
k ∈ Z

3 : |k| � K∗
}
we

may conclude that the supremum s
(
Z
3
)
is attained. 
�

We conclude this section with the second of its two key results: Proposition 3.11.
This result is essential in the construction of the semigroup associated with the linearized
operator. This construction is performed in Sect. 3.3 below.

Proposition 3.11 (Uniform bound on the matrix exponentials). Let η∗ be as in Propo-
sition 3.10. There exists CS > 0 such that for every k ∈ Z

3 and every t > 0,
|et Mk | � CS

(
1 + t8

)
eη∗t . As a consequence, for every ε > 0 there exists CS (ε) > 0

such that for every k ∈ Z
3 and every t > 0, |etB̂k | � CS (ε) e(η∗+ε)t .

Proof. Naively, one may seek to use the bound from Corollary B.8 to control et Mk .
However, this bounds only holds up to a constant dependent on k. To circumvent this
issue, we observe that alternatively one may bound et Mk using its symmetric part (as
per Lemma B.3). Coupling this observation with the fact that we have an upper bound
which decays as |k|−2 for the spectrum of Sk , namely Lemma 3.5, we see that for
sufficiently large |k| the exponential et Mk grows at most like eη∗t . It thus suffices to
use Corollary B.8 for the finitely many modes with non-large |k|, in which case the
dependence of the constant on k is harmless.

More precisely: let KS :=
√

Cσ

η∗ whereCσ is as in Lemma 3.5, writeC (k) := C (Mk)

for C (M) as in Corollary B.8, and let CS := max

(

1, max|k|<KS
C (k)

)

> 0. Then, for

every k ∈ Z
3, if |k| � KS then Cσ t

|k|2 � Cσ t
K 2

S
= η∗t and hence, by Lemmas B.3 and 3.5,

∣
∣
∣
∣et Mk

∣
∣
∣
∣L(l2, l2)

� e
Cσ t
|k|2 � eη∗t , and if |k| < KS then by Corollary B.8, the choice of

CS , and Proposition 3.10
∣
∣
∣

∣
∣
∣et Mk

∣
∣
∣

∣
∣
∣L(l2, l2)

� C (k)
(
1 + t8

)
e(maxRe σ(Mk ))t � CS

(
1 + t8

)
eη∗t

from which the first part of the result follows. To obtain the second part we simply use
the fact that polynomials of arbitrarily large degree can be controlled by exponentials
of arbitrarily slow growth, i.e. the fact that for every j ∈ N and every ε > 0 there exists
C = C ( j, ε) > 0 such that, for every t � 0, 1 + t j � Ceεt . 
�

3.3. The semigroup. In this section we proceed in a standard fashion and use Proposi-
tion 3.11 to construct the semigroup associated with the linearized problem as recorded
after Leray projection in (3.4).

Proposition 3.12 (Semigroup for the linearization). Let η∗ be as in Proposition 3.10.
For every t � 0 we define the operator etB on L2

(
T
3, R8

)
via the Fourier multiplier

(
etB)∧ (k) := etB̂k for every k ∈ Z

3 and we define etL as etL := etB ⊕et
[
�̄eq , · ]⊕1, i.e.

for every
(

f, J̄ , J33
) ∈ L2

(
T
3, R8

)× L2
(
T
3, R2×2

)× L2
(
T
3, R

)
, etL ( f, J̄ , J33

) :=
(

etB f, et
[
�̄eq , · ] J̄ , J33

)
.
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Then
(
etL)

t�0 is a semigroup on L2 and for every ε > 0 it is an (η∗ + ε)-contractive

semigroup with domain H2
(
T
3, R6

)× L2
(
T
3, R2

)× L2
(
T
3, R2×2

)× L2
(
T
3, R

) =:
D and generator L.

Moreover, for every ε > 0 there exists a constant CS (ε) > 0 such that, for every
p, q, r � 0 and every t � 0, etL is a bounded operator on H p,q,r := H p

(
T
3,R8

) ×
Hq

(
T
3,R2×2

) × Hr
(
T
3,R

)
such that for any

(
f, J̄ , J33

) ∈ H p,q,r ,
∣
∣
∣
∣etL ( f, J̄ , J33

)∣
∣
∣
∣2

H p,q,r � C2
S (ε) e2(η∗+ε)t

∣
∣
∣
∣
(

f, J̄ , J33
)∣
∣
∣
∣2

H p,q,r , where

∣
∣
∣
∣
(

f, J̄ , J33
)∣
∣
∣
∣2

H p,q,r := || f ||2H p +
∣
∣
∣
∣ J̄
∣
∣
∣
∣2

Hq + ||J33||2Hr .

Finally: the semigroup propagates incompressibility. More precisely: let

X0 = (
u0, ω0, a0, J̄0, (J33)0

) ∈ L2
(
T
3, R3

)
× L2

(
T
3, R3

)
× L2

(
T
3, R2

)

×L2
(
T
3, R2×2

)
× L2

(
T
3, R

)

and let X (t, ·) = (
u, ω, a, J̄ , J33

)
(t, ·) := etLX0 for all t > 0. If u0 is incompressible,

in a distributional sense, then u (t, ·) is incompressible for all time t > 0.

Proof. Step 1:We begin by constructing the semigroup etB. Note that, in this proof, all
matrix norms are norms in L (l2, l2

)
. To construct this semigroup we will use Propo-

sition B.9 and must therefore verify that (i) for every ε > 0 there exists CS (ε) > 0

such that for every k ∈ Z
3 and every t > 0,

∣
∣
∣

∣
∣
∣etB̂k

∣
∣
∣

∣
∣
∣ � CS (ε) e(η∗+ε)t and that (ii)

there exists CD > 0 such that for every (v, θ, b) ∈ R
3 × R

3 × R
2,
∣
∣
∣B̂k (v, θ, b)

∣
∣
∣ �

CD
(〈k〉4 (|u|2 + |ω|2) + |a|2). Note that (ii) follows immediately from the expression

provided for B̂ in (3.5). To obtain (i) we note that it follows from Lemmas 3.2 and B.2
that

B̂n
k = (

Q̄k Mk Qk
)n = Q̄k Mn

k Qk for every n � 1

whilst B̂0
k = id = projVk

+ projV ⊥
k

= projVk
+Q̄k M0

k Qk . Therefore

etB̂k = projVk
+ Q̄ket Mk Qk (3.16)

where

1

2

(
||Qk ||2 +

∣
∣
∣
∣Q̄k

∣
∣
∣
∣2
)

�
∣
∣
∣
∣

∣
∣
∣
∣
ik×
|k|

∣
∣
∣
∣

∣
∣
∣
∣

2

+
1

2

(∣
∣
∣

∣
∣
∣J

1/2
eq

∣
∣
∣

∣
∣
∣
2
+
∣
∣
∣

∣
∣
∣J

−1/2
eq

∣
∣
∣

∣
∣
∣
2
)

+
1

2

(
s + s−1

)
||R||2 � Cb (3.17)

for some Cb > 0 independent of k. We may thus deduce from (3.16), (3.17), and
Proposition 3.10 that (i) holds.

With (i) and (ii) in hand we apply Proposition B.9 and obtain that etB is a semi-
group on L2 which is (η∗ + ε)-contractive on all Hr spaces, for r � 0, with domain
H2

(
T
3, R3 × R

3
)× L2

(
T
3, R3

)
and generator B.

Step 2:Nowwe construct the full semigroup etL. First observe that, since
[
�̄eq , · ] is

a finite-dimensional linear operator,
(

et
[
�̄eq , · ]

)

t�0
is a semigrouponR2×2 andmoreover

the domain of
(

et
[
�̄eq , · ])

t�0
is R2×2 and its generator is

[
�̄eq , · ] . (3.18)
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Moreover, Lemma B.14 tells us that
[
�̄eq , · ] is antisymmetric, and thus it follows from

Lemma B.6 that
(

et
[
�̄eq , · ]

)

t�0
is a contractive semigroup, i.e.

∣
∣
∣

∣
∣
∣et

[
�̄eq , · ]

∣
∣
∣

∣
∣
∣L(l2,l2)

� 1. (3.19)

From (3.19) and step 1 it follows that etL = etN ⊕ et
[
�̄eq , · ] ⊕ 1 is a direct sum of

semigroups which are, for every ε > 0, (η∗ + ε)-contractive (since contractive semi-
groups are η-contractive for any η > 0 and since 1 = e0 is the trivial semigroup, which
is contractive), and is hence (η∗ + ε)-contractive itself. Moreover, it follows from the
observation (3.18) and step 1 that the domain and generator of etL are as claimed. Finally
the H p,q,r estimates follow immediately from (3.19) and the Hr estimates of step 1,
upon observing that since, for each t > 0, et

[
�̄eq , · ] is a linear operator independent of the

spatial variable x , it commutes with partial derivatives and with the Fourier transform.
Step 3: We now prove that incompressibility is propagated. Let us write Y (t, ·) :=

(u, ω, a) (t, ·). The key observation is that, as a consequence of Lemma 3.2,

∂t

(
(k, 0, 0) · Ŷk

)
= (k, 0, 0) · B̂k Ŷk = 0 for every k ∈ Z

3. In particular, if ∇ ·0 u = 0

then indeed

(∇ · u) (t, ·) =
∑

k∈Z3

(k, 0, 0) · Ŷk (t) =
∑

k∈Z3

(k, 0, 0) · Ŷk (0) = ∇ · u0 = 0.


�

3.4. A maximally unstable solution. In this section we construct a maximally unstable
solution of the linearized problem (3.4). Recall that (3.4) is obtained from the linearized
problem by Leray projection. In particular, since (3.4) is invariant under the transforma-
tion u �→ u +C for any constant C , the component corresponding to u in this maximally
unstable solution will have average zero (this is as expected in light of the Galilean
equivariance of the original system of equations, as discussed at the end of Sect. 2.1).
Note that, just as Proposition 3.12 is essentially a semigroup version of Proposition 3.11,
Proposition 3.13 below is essentially a semigroup version of Proposition 3.10.

Proposition 3.13 (Maximally unstable solution). Let η∗ be as in Proposition 3.10. There
is a smooth function Y : [0,∞)×T

3 → R
8 such that ∂t Y = BY and ||Y (t, ·)||Hr(T3,R8) =

eη∗t ||Y (0, ·)||Hr(T3,R8) for every t � 0 and every r � 0. Moreover, if we write

Y = (u, ω, a) ∈ R
3 × R

3 × R
2, then ∇ · u = 0, and for every t � 0 and every

r � 0

||u (t, ·)||Hr(T3,R3) = eη∗t ||u (0, ·)||Hr(T3,R3),

||ω (t, ·)||Hr(T3,R3) = eη∗t ||ω (0, ·)||Hr(T3,R3), and

||a (t, ·)||Hr(T3,R3) = eη∗t ||a (0, ·)||Hr(T3,R3).

Proof. Let k∗ ∈ Z
3 and w∗ ∈ C be as in Proposition 3.10 and recall that η∗ := Rew∗.

It follows from Lemma 3.2 and Lemma B.2 that, for any k ∈ Z
3, B̂k and Mk are

similar, so in particular w∗ is an eigenvalue of B̂k and thus there exists v∗ ∈ C
8 such

that B̂ (k∗) v∗ = w∗v∗. Now define, for every t � 0 and every x ∈ T
3, Y (t, x) :=
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v∗ew∗t+ik∗·x + v
†∗ew

†∗t−ik∗·x where, for any complex number w, we denote its complex
conjugate by w†. For a complex matrix A we will write, in this proof only, A† to denote
its entry-wise complex conjugate (and not its conjugate transpose).

Observe that Y † = Y and hence Y is real-valued. Note that since B̂k = Qk Mk Q̄k
(which follows from Lemmas 3.2 and B.2), since Mk has real entries and is even in k
(i.e. M−k = Mk), and since Q (k)† = Q (−k) and Q̄ (k)

† = Q̄ (−k), we obtain that

B̂ (k)
† = B̂ (−k) and hence

(
w

†∗, v
†∗
)
is an eigenvalue-eigenvector pair for B̂ (−k∗).

Therefore

∂t Y=w∗v∗ew∗t+ik∗·x +w†∗v†∗ew
†∗t−ik∗·x=B̂ (k∗) v∗ew∗t+ik∗·x + B̂ (−k∗) v†∗ew

†∗t−ik∗·x=BY.

(3.20)
Now we argue that u := (Y1, Y2, Y3) is divergence-free. Observe that if k∗ = 0 then

Y is constant in the spatial variable x ∈ T
3 and thus u is constant and hence divergence-

free. Now consider the case k∗ �= 0. Note that we have proved in Lemma 3.2 that, for
all k ∈ Z

3, im B̂k ⊆ V ⊥
k and hence (k, 0, 0) · v = 0 for any eigenvector v of B̂k . We

may thus compute:

∇ · u =
∑

k∈Z3

k · û (k) = (k∗, 0, 0) · Ŷ (k∗) + (−k∗, 0, 0) · Ŷ (−k∗) = 0. (3.21)

Finally, observe that for any j = 1, . . . , 8,Y j (t, x) = (v∗) j ew∗t+ik∗·x+(v
†∗) j ew

†∗t−ik∗·x
and hence, proceeding as above yields

∣
∣
∣
∣Y j (t, ·)∣∣∣∣2Hr = 〈k∗〉2r |(v∗) j |2 |eRew∗t |2 + 〈k∗〉2r |(v†∗) j |2 |eRew

†∗t |2 = 2〈k∗〉2r |v∗| e2η∗t

= e2η∗t
∣
∣
∣
∣Y j (0, ·)∣∣∣∣2Hr .

We can thus conclude that, for u = (Y1, Y2, Y3), ω = (Y4, Y5, Y6), and a = (Y7, Y8),

||u (t, ·)||2Hr = e2η∗t ||u (0, ·)||2Hr , ||ω (t, ·)||2Hr = e2η∗t ||ω (0, ·)||2Hr , and ||a (t, ·)||2Hr

= e2η∗t ||a (0, ·)||2Hr .


�

4. Nonlinear Energy Estimates

In this sectionwe perform the nonlinear energy estimates necessary to carry out the boot-
strap instability argument in Sect. 5. First we record the precise form of the nonlinearities
and introduce, in Definitions 4.1 and 4.2, notation used in the remainder of the paper. In
Sect. 4.1 we obtain bounds on the nonlinearity in L2. We record the energy-dissipation
relations satisfied by solutions of (1.1a)–(1.1d) and their derivatives in Sect. 4.2. In
Sect. 4.3 we estimate the interaction terms appearing in the relations obtained in the
preceding section. Finally we use the results of Sects. 4.2 and 4.3 in Sect. 4.4 to obtain a
chain of energy inequalities from which we deduce the key bootstrap energy inequality.

Writing the problem compactly using the same notation as that which was used in
(3.2) and defining Z := X − Xeq and q := p − peq we may write the original problem
(1.1a)–(1.1d) as

∂t DZ = L̃Z + �(q) + N (Z) subject to ∇ · u = 0. (4.1)
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For simplicity we will abuse notation in this section and write the components of the
perturbative unknown Z as Z = (u, ω, J ). This does conflict with the notation used in
Sect. 3 for X . However confusion may be avoided by noting that all the unknowns ap-
pearing in this section are perturbative, i.e. (u, ω, J )will always denote the components
of Z . We also abuse notation and, in this section, write p = q.

Using this notation we have that N = (N1, N2, N3) for

N1 (Z) = − (u · ∇) u, N3 (Z) = [�, J ] − (u · ∇) J, (4.2)

and

N2 (Z) = − Jeq (u · ∇) ω−
(

I + J J−1
eq

)−1 (
ω×Jω+ωeq × Jω+ω×Jeqω+ω × Jωeq

)

− J J−1
eq

(
I + J J−1

eq

)−1 (
κ∇ × u − 2κω + (α̃ − γ̃ ) ∇ (∇ · ω) + γ̃ �ω

− ω × Jeqωeq − ωeq × Jωeq − ωeq × Jeqω
)

(4.3)

Note that Z being a solution of (4.1) is equivalent to Z being a solution of

∂t Z = LZ + �(p) + D−1N (Z) subject to ∇ · u = 0, (4.4)

for L as in (3.4). The fact that both of these formulations are equivalent is very handy
since (4.1) is particularly convenient for energy estimates whilst semigroup theory may
be readily applied to (4.4).

Definition 4.1. LetB := {
A ∈ R

n×n
∣
∣ ||A||op < 1

}
and define m (A) := (I + A)−1 for

any A ∈ B. Note that m is well-defined by Corollary B.13.

Definition 4.2 (Small energy regime). Since n = 3 there exists C0 > 0 such that

||J ||∞ � C0||J ||H4 for every J∈H4
(
T
3, R3×3

)
.Wedefine δ0 := min

(

1
2 ,

1

2C0

∣
∣
∣

∣
∣
∣J−1

eq

∣
∣
∣

∣
∣
∣∞

)

.

4.1. Estimating the nonlinearity. In this section we record some preliminary results in
Lemmas 4.3 and 4.4 and then estimate the nonlinearity in L2 in Proposition 4.5.

First we record for convenience some elementary consequences of the Sobolev em-
beddings. In particular Lemma 4.3 tells us that in the small energy regime Z , ∇Z , and
∇2Z are L∞-multipliers, which simplifies many of the estimates below. It is precisely
because the estimates are easier to perform when ∇2Z is in L∞ that we have chosen to
close the estimates in H4.

Lemma 4.3. Let Z ∈ H4
(
T
3,R3 × R

2×2 × R
)
.

(1) There exists C > 0 independent of Z such that ||Z ||L∞ + ||∇Z ||L∞ +
∣
∣
∣
∣∇2Z

∣
∣
∣
∣
L∞ �

C ||Z ||H4 .
(2) For any polynomial p with no zeroth-order term there exists C (p) > 0 such that if

||Z ||H4 � 1 then p
(||Z ||H4

)
� C (p) ||Z ||H4 .

Proof. (1) follows from the Sobolev embedding H2
(
T
3
)

↪→ L∞ (
T
3
)
and (2) is im-

mediate. 
�
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The result below ensures, when combined with Corollary B.13, that the nonlineari-
ties written in (4.2) and (4.3) are well-defined. Note that the only subtlety in ensuring
that the nonlinearities are well-defined comes from the presence of

(
I + J Jeq−1

)−1 =
m
(

J J−1
eq

)
. This terms owes its appearance to our choice to write (1.1c) in a form such

that the left-hand side is Jeq∂tω, and not J∂tω. The former is more convenient since it
makes it possible to use semigroup theory.

Lemma 4.4. Let δ0 be as in the small energy regime (c.f. Definition 4.2). If ||Z ||H4 � δ0

then
∣
∣
∣

∣
∣
∣J J−1

eq

∣
∣
∣

∣
∣
∣∞ � 1

2 and
∣
∣
∣

∣
∣
∣m
(

J J−1
eq

)∣
∣
∣

∣
∣
∣∞ � 2.

Proof. If ||Z ||H4 � δ0 then
∣
∣
∣

∣
∣
∣J J−1

eq

∣
∣
∣

∣
∣
∣∞ � ||J ||∞

∣
∣
∣

∣
∣
∣J−1

eq

∣
∣
∣

∣
∣
∣∞ � C0||J ||H4

∣
∣
∣

∣
∣
∣J−1

eq

∣
∣
∣

∣
∣
∣∞ �

C0δ0

∣
∣
∣

∣
∣
∣J−1

eq

∣
∣
∣

∣
∣
∣∞ � 1

2 and hence, by Corollary B.13,
∣
∣
∣

∣
∣
∣m
(

J J−1
eq

)∣
∣
∣

∣
∣
∣∞ � 1

1−
∣
∣
∣

∣
∣
∣J J−1

eq

∣
∣
∣

∣
∣
∣∞

� 2. 
�
We now prove the main result of this section, namely the L2 bound on the nonlinearity.

Proposition 4.5 (Estimate of the nonlinearity). Let δ0 be as in the small energy regime
(c.f. Definition 4.2). There exists CN > 0 such that if ||Z ||H4 � δ0 then ||N (Z)||L2 �
CN ||Z ||2

H2 .

Proof. Recall that N = (N1, N2, N3) is recorded in (4.2)–(4.3). In particular, one im-
mediately obtains that ||N1||L2 + ||N3||L2 � ||Z ||L2 ||Z ||H1 � ||Z ||2

H2 . Dealing with

N2 is only slightly more delicate. Considering m
(

J J−1
eq

)
as a fixed L∞ multiplier we

see that all terms in N2 are quadratic or cubic in Z (more precisely: the only cubic term

is −
(

I + J J−1
eq

)−1
(ω × Jω)). We can thus use the generalized Hölder inequality as

well as the Sobolev embeddings H1
(
T
3
)

↪→ L6
(
T
3
)

↪→ L p
(
T
3
)
for all p ∈ [1, 6]

and H2
(
T
3
)

↪→ L∞ (
T
3
)
to obtain that ||N2||L2 � ||Z ||2

H2 + ||Z ||3
H2 � (1 + δ0)

||Z ||2
H2 . 
�

Remark 4.6. The operator which must be estimated in the bootstrap instability argument
is actually PN (and not merely N as is done in Proposition 4.5 above), where P = PL ⊕
id⊕ id for PL denoting the Leray projector. However, since P̂L (k) = proj(span k)⊥ =
I − k⊗k

|k|2 for every k ∈ Z
3, i.e. since PL is a bounded Fourier multiplier, it follows that

it is bounded on L2.

4.2. The energy-dissipation identities. In this section we begin by recording the energy-
dissipation relation and then remark on the coercivity of the dissipation.

Proposition 4.7 (The energy-dissipation relation). If Z solves (4.1) then for any multi-
index α ∈ N

3

1

2

d

dt

∣
∣
∣

∣
∣
∣
√

D
(
∂α Z

)∣∣
∣

∣
∣
∣
2

L2
+D (∂αu, ∂αω

) = B
(
∂αω̄, ∂αa

)
+
ˆ
T3

∂α N (Z) · ∂α Z
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where

D (u, ω) :=
ˆ
T3

μ

2
|Du|2 + 2κ

∣
∣
∣
∣
1

2
∇ × u − ω

∣
∣
∣
∣

2

+ α|∇ · ω|2 + β

2
|D0ω|2 + 2γ |∇ × ω|2

and

B (ω̄, a) :=
(

2 (λ − ν) +
( τ

2κ

)2
)ˆ

T3
ω̄⊥ · a.

Proof. To compute the energy-dissipation relation we take a derivative ∂α of (4.1), mul-
tiply by Z , and integrate over the torus. Note that due to incompressibility

´
T3 ∂α� (p) ·

∂α Z = ´
T3 − (∇∂α p) · ∂αu = 0. Now we compute

´
T3 L̃Z · Z . Observe that for T and

M as in (2.6), if we write T̃ for the trace-free part of T , i.e. T̃ = T + pI , then we have
thatˆ

T3
((μ + κ/2)�u + κ∇ × ω) · u

+
ˆ
T3

(κ∇ × u − 2κω + (α + β/3 − γ )∇ (∇ · ω) + (β + γ )�ω) · ω

=
ˆ
T3

(
∇ · T̃

)
· u +

(
2 vec T̃ + ∇ · M

)
· ω = −

ˆ
T3

T̃ : (∇u − �) + M : ∇ω

= −D (u, ω) . (4.5)

Moreover, we may compute

ωeq × Jωeq =
( τ

2κ

)2
ã⊥, ωeq × Jeqω = λτ

2κ
ω̃⊥, and

[
�, Jeq

] = (λ − ν)

⎛

⎝
0 0 −ω2

0 0 ω1

ω2 −ω1 0

⎞

⎠

such that ˆ
T3

− (ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω
) · ω

+
ˆ
T3

([
�eq , J

]
+
[
�, Jeq

]) : J = B (ω̄, a) (4.6)

where we have used that
[
�eq , J

] : J = 0 (c.f. Lemma B.14). Combining (4.5) and
(4.6), we obtain that

´
T3 L̃Z · Z = −D (u, ω) + B (ω̄, a), and hence we may conclude

that

1

2

d

dt

∣
∣
∣

∣
∣
∣
√

D
(
∂α Z

)∣∣
∣

∣
∣
∣
2

L2
=
ˆ
T3

∂t
(
D∂α Z

) · ∂α Z =
ˆ
T3

L̃ ∂α Z · ∂α Z +
ˆ
T3

∂α N (Z) · ∂α Z

= −D (∂αu, ∂αω
)
+ B

(
∂α (ω) , ∂αa

)
+
ˆ
T3

∂α N (Z) · ∂α Z .


�
Besides the interaction term

´
T3 ∂α N (Z)·∂α Z , the only term appearing in the energy-

dissipation relation which does not have a sign is the term B (∂αω̄, ∂αa). We refer to
this term as the unstable term since, as detailed in Sect. 2.5 the instability originates
from ω̄ and a. In Lemma 4.8 below we estimate this term in a manner which allows us
to absorb a high-order contribution into the dissipation and leaves us with a lower-order
term which is controlled by the energy.
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Lemma 4.8 (Bounds on the unstable term). For any σ > 0 there exists Cσ > 0 such
that for any sufficiently regular (ω, a) and any nonzero multi-index α,

∣
∣B
(
∂αω̄, ∂αa

)∣
∣ � σ

∣
∣
∣

∣
∣
∣∂

α+1ω̄

∣
∣
∣

∣
∣
∣
2

L2
+ Cσ

∣
∣
∣

∣
∣
∣∂

α−1a
∣
∣
∣

∣
∣
∣
2

L2

where we write α ± 1 := α ± ei for some i such that αi nonzero.

Proof. This follows immediately from integrating by parts and applying an ε-Cauchy
inequality: if we define C := 2 (λ − ν) +

(
τ
2κ

)2 then, for any ε > 0,

∣
∣B
(
∂αω̄, ∂αa

)∣
∣ = C

∣
∣
∣
∣

ˆ
T3

∂α+1ω̄⊥ · ∂α−1a

∣
∣
∣
∣ � ε

∣
∣
∣

∣
∣
∣∂

α+1ω̄⊥
∣
∣
∣

∣
∣
∣
2

L2
+

C2

4ε

∣
∣
∣

∣
∣
∣∂

α−1a
∣
∣
∣

∣
∣
∣
2

L2
.


�
We now prove that the dissipation is coercive, since the velocity u has average zero.

Lemma 4.9 (Coercivity of the dissipation over linear velocities of average zero). There
exists a constant CD > 0 such that for every (u, ω) ∈ H1

(
T
3, R3 × R

3
)
, if
ffl

u = 0
then D (u, ω) � CD

(||u||2
H1 + ||ω||2

H1

)
.

Proof. Since u has average zero, it follows from Propositions B.15 and B.16 that

||u||2H1 � ||Du||2L2 � D (u, ω) . (4.7)

To see that the dissipation also controls the H1 norm of ω we observe that, by (4.7),

||ω||2L2 �
ˆ
T3

∣
∣
∣
∣
1

2
∇ × u − ω

∣
∣
∣
∣

2

+
ˆ
T3

∣
∣
∣
∣
1

2
∇ × u

∣
∣
∣
∣

2

� D (u, ω) + ||u||2H1 � D (u, ω)

whilst, by Lemma B.17, ||∇ω||2
L2 = ´

T3 |∇ · ω|2 + ´
T3 |∇ × ω|2 � D (u, ω), such that

indeed ||ω||2
H1 � D (u, ω). 
�

Recall that, as detailed in Sect. 2.1, due to the Galilean equivariance of (1.1a)–
(1.1d) solutions of that system can be assumed without loss of generality to have an
Eulerian velocity with average zero. Since ueq = 0 it follows that we can assume that
the perturbative velocity u has average zero as well, and hence the coercivity result
proven in Lemma 4.9 applies.

4.3. Estimating the interactions. In this section we introduce notation which makes it
easier to write down the Faà di Bruno formula for the chain rule, use this notation to
record useful bounds on m (defined in Definition 4.1), and finally we estimate the inter-
actions arising from the energy-dissipation relations satisfied by derivatives of solutions
to (1.1a)–(1.1d) in Proposition 4.16.

Definition 4.10 (Integer partitions and derivatives). Let k ∈ N.

• Let i1 � i2 � · · · � il � 1 be integers such that k = i1 + i2 + · · · + il . The sequence
(i1, i2, . . . , il) is called an integer partition of k and l is referred to as the size of that
partition.
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• For 1 � i � k we denote by Pi (k) the set of integer partitions of k of size i , and by
P (k) the set of integer partitions of k. In particular note that P (k) = ∐k

i=1 Pi (k).
• Let f : Rn → R

m be k-times differentiable. For any π = (i1, . . . , il) ∈ P (k)

(where possibly i p = iq for p �= q) we define ∇π f := Sym
(∇ i1 f ⊗ · · · ⊗ ∇ il f

)

where for any tensor T of rank r , (Sym T ) j1 ... jr := 1
r !
∑

σ∈Sr
Tjσ(1) ... jσ(r)

.

Example 4.11. Examples of integer partitions and derivatives indexed by integer parti-
tions are

• P2(4) = {(3, 1) , (2, 2)},
• P(4) = {(4) , (3, 1) , (2, 2) , (2, 1, 1) , (1, 1, 1, 1)}, and
• ∇(2,1,1) f = Sym

(∇2 f ⊗ ∇ f ⊗ ∇ f
) = Sym

(∇ f ⊗ ∇2 f ⊗ ∇ f
) =

Sym
(∇ f ⊗ ∇ f ⊗ ∇2 f

)
.

Remark 4.12. Derivatives indexed by integer partitions, denoted by ∇π f , are a conve-
nient shorthand for terms appearing in the Faà di Bruno formula for derivatives of compo-
sitions. Their key property which wewill use in estimates is that, for any integer partition
π = (i1, . . . , il), |∇π f | �

∏l
j=1

∣
∣∇ i j f

∣
∣. For example

∣
∣∇(2,1,1) f

∣
∣ �

∣
∣∇2 f

∣
∣ |∇ f |2.

Having introduced notation for derivatives indexed by integer partitions we now use
it to obtain bounds on derivatives of m in Lemma 4.13 below.

Lemma 4.13 (Bounds on derivatives ofm). The function m from Definition 4.1 is smooth
and moreover for every k ∈ N there exists Ck > 0 such that, for every A ∈ B,∣
∣∇km (A)

∣
∣ � Ck |m (A)|k+1.

Proof. First we observe that it suffices to show that, for ∂i j m := ∂m(A)
∂ Ai j

,

∂i j mkl = −mki m jl . (4.8)

To prove that (4.8) holds, note that for any smooth A : (−1, 1) → B (where B is as in
Definition 4.1), d

dt m (A (t)) = −m (A (t))
( d
dt A (t)

)
m (A (t)). Sincewe can pick A such

that A (0) and d
dt A (0) are arbitrarily specified, it follows that for any A0 ∈ B and any

V ∈ R
n×n , ∇m (A0) V = −m (A0) V m (A), i.e. indeed ∂i j mkl = ∇mkl

(
ei ⊗ e j

) =
−(m (

ei ⊗ e j
)

m
)

kl = −mki m jl . 
�
Wenowuse theboundsonm wehave just obtained toderiveboundsonpost-compositions
with m.

Lemma 4.14 (Bounds on derivatives of post-compositions with m). Let 0 < δ < 1 and
consider m from Definition 4.1, which is smooth by Lemma 4.13. For every k ∈ N there
exists Ck,δ > 0 such that for every smooth A : Tn → R

n×n, if ||A||∞ < δ then, for
every x ∈ T

n,
∣
∣∇k (m (A)) (x)

∣
∣ � Ck,δ

∑
π∈P(k) |∇π A (x)|, where P (k) and ∇π are

defined in Notation 4.10.

Proof. Note that since ||A||∞ < δ < 1 it follows fromCorollary B.13 that ||m (A)||∞ <
1

1−δ
. Therefore, by Proposition B.18 and Lemma 4.13,

|∇k (m (A)) (x)| � C
k∑

i=1

|∇ i m (A (x))|
∑

π∈Pi (k)

|∇π A (x)|



978 A. Remond-Tiedrez, I. Tice

� C
k∑

i=1

|m (A (x))|i+1
∑

π∈Pi (k)

|∇π A (x)|

� Ck,δ

∑

π∈P(k)

|∇π A (x)|.


�
Below we specialize Lemma 4.14 to the only case which matters for us, namely the case

of m
(

J J−1
eq

)
.

Corollary 4.15. Let δ0 be as in the small energy regime (c.f. Definition 4.2). For every

k ∈ N there exists Ck > 0 such that if ||Z ||H4 � δ0 then
∣
∣
∣∇k

(
m
(

J J−1
eq

))
(x)

∣
∣
∣ �

Ck
∑

π∈P(k) |∇π J (x)|, for almost every x ∈ T
3.

Proof. This follow immediately from combining Lemmas 4.4 and 4.14. 
�
Having obtained good estimates on terms involving m which appear in the nonlinearity
we are ready to estimate the interaction terms.

Proposition 4.16 (Estimates of the interactions). Let δ0 be as in the small energy regime
(c.f. Definition 4.2). For every k = 0, 1, 2, 3, 4 there exists CI, k > 0 such that if
||Z ||H4 � δ0 then ∣

∣
∣
∣

ˆ
T3

N (Z) · Z

∣
∣
∣
∣ � CI, 0||Z ||H4 ||Z ||2L2

and

∑

|α|=k

∣
∣
∣
∣

ˆ
T3

∂α N (Z) · ∂α Z

∣
∣
∣
∣ � CI, k ||Z ||H4

(
k∑

i=1

∣
∣
∣

∣
∣
∣∇ i Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇k+1 (u, ω)

∣
∣
∣

∣
∣
∣
2

L2

)

.

Proof. The nonlinearities are all of one of three types, and sowewrite N = NI+NII+NIII
for

NI := − ((u · ∇) u, Jeq (u · ∇) ω, (u · ∇) J
)
,

NII :=
(
0, J J−1

eq m
(

J J−1
eq

) (
ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω + 2κω

)

− m
(

J J−1
eq

) (
ω × Jω + ω × Jωeq + ω × Jeqω + ωeq × Jω

)
, [�, J ]

)
, and

NIII :=
(
0, −J J−1

eq m
(

J J−1
eq

)
(κ∇ × u + α̃∇ (∇ · ω) + γ̃ �ω) , 0

)
.

We first consider the case of α nonzero and so for T ∈ {I, II, III} and i = 1, 2, 3, 4 we
write NT,i := ∑

|α|=i

´
T3 ∂α NT (Z) · ∂α Z .

Estimatingnonlinearities of type I is fairly straightforward.Weexpandout
´
T3 ∂α NI (Z)·

∂α Z and use the generalized Hölder inequality, putting two factors in L2 and putting
the remaining factors in L∞ (thanks to Lemma 4.3). For example, writing for simplicity
NI (Z) = (u · ∇) Z and considering the case where ∂α = ∂i jkl , one of the terms that
appears is

´
T3

(
∂i jku · ∇)∇l Z · ∂i jkl Z , and it can be estimated in the following way,

which is typical of how nonlinear interactions of type I are handled:
∣
∣
∣
∣

ˆ
T3

(
∂i jku · ∇)∇l Z · ∂i jkl Z

∣
∣
∣
∣ �

∣
∣
∣

∣
∣
∣∇3u

∣
∣
∣

∣
∣
∣
L2

∣
∣
∣

∣
∣
∣∇2Z

∣
∣
∣

∣
∣
∣∞

∣
∣
∣

∣
∣
∣∇4Z

∣
∣
∣

∣
∣
∣
L2
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� ||Z ||H4

(∣
∣
∣

∣
∣
∣∇3Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇4Z

∣
∣
∣

∣
∣
∣
2

L2

)

.

The only subtlety for these nonlinear terms is the fact that when ∂α hits∇Z in (u · ∇) Z ,
the interaction vanishes due to the incompressibility constraint. Indeed, for any multi-
index α, ˆ

T3
(u · ∇) ∂α Z · ∂α Z = −1

2

ˆ
T3

(∇ · u) |∂α Z |2 = 0.

This cancellation is essential since we have no dissipative control of J and hence we
would not be able to control interactions involving ∇∂α J (which is a component of
∇∂α Z ). Estimating all the nonlinearities of type I in this manner we obtain:

|NI,1| � ||Z ||H4 ||∇Z ||2L2 , |NI,3| � ||Z ||H4

(∣
∣
∣

∣
∣
∣∇3Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇2Z

∣
∣
∣

∣
∣
∣
2

L2

)

, and

|NI,2| � ||Z ||H4

∣
∣
∣

∣
∣
∣∇2Z

∣
∣
∣

∣
∣
∣
2

L2
, |NI,4| � ||Z ||H4

(∣
∣
∣

∣
∣
∣∇4Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇3Z

∣
∣
∣

∣
∣
∣
2

L2

)

.

To estimate nonlinearities of type II we proceed similarly, namely applying the gen-
eralized Hölder inequality with two factors in L2 and the rest in L∞. In particular we

use Lemma 4.4 and Corollary 4.15 to control m
(

J J−1
eq

)
and its derivatives, as well as

the second part of Lemma 4.3 for the terms appearing when applying Corollary 4.15
which are cubic or higher-order. As an illustrative example let us write the nonlinear-
ities of type II as NII (Z) = m (J ) b (Z , Z) for some bilinear form b and consider´
T3 ∂i jk

(
m
(

J J−1
eq

))
b (∂l Z , Z) · ∂i jkl Z . This terms appears when ∂α = ∂i jkl and can

be estimated as follows:
∣
∣
∣
∣

ˆ
T3

∂i jk

(
m
(

J J−1
eq

))
b (∂l Z , Z) · ∂i jkl Z

∣
∣
∣
∣

�
ˆ
T3

(
|∇3 J | + |∇2 J ||∇ J | + |∇ J |3

)
|∇Z ||Z ||∇4Z |

�
(∣
∣
∣

∣
∣
∣∇3Z

∣
∣
∣

∣
∣
∣
L2

+ ||Z ||H4

∣
∣
∣

∣
∣
∣∇2Z

∣
∣
∣

∣
∣
∣
L2

+ ||Z ||2H4 ||∇Z ||L2

)
||Z ||2H4

∣
∣
∣

∣
∣
∣∇4Z

∣
∣
∣

∣
∣
∣
L2

� ||Z ||H4

(∣
∣
∣

∣
∣
∣∇3Z

∣
∣
∣

∣
∣
∣
L2

+
∣
∣
∣

∣
∣
∣∇2Z

∣
∣
∣

∣
∣
∣
L2

+ ||∇Z ||L2

) ∣
∣
∣

∣
∣
∣∇4Z

∣
∣
∣

∣
∣
∣
L2

� ||Z ||H4

(∣
∣
∣

∣
∣
∣∇4Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇3Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇2Z

∣
∣
∣

∣
∣
∣
2

L2
+ ||∇Z ||2L2

)

.

Estimating all terms of type II in this fashion yields, for i = 1, 2, 3, 4, |NII,i | �
||Z ||H4

∑i
j=1

∣
∣
∣
∣∇ j Z

∣
∣
∣
∣2
L2 .

Nonlinearities of type III are the most delicate to estimate due to the presence of
∇ × u, ∇ (∇ · ω), and �ω. The presence of these terms causes two difficulties

(1) when ∂α hits �ω (or ∇ (∇ · ω)) we must integrate by parts since we do not have any
control, even through the dissipation, on ∇|α|+2ω, and

(2) there are precisely two terms in which more than two derivatives of order three or
above appear, terms for which we cannot simply use L2 and L∞ in the right-hand
side of the generalized Hölder inequality. This is easily remedied by more carefully
choosing the L p spaces used, which is done explicitly below.
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Let us write the nonlinearity schematically as NIII (Z) = m
(

J J−1
eq

)
b
(
Z ,∇2ω

)
for

some bilinear form b. Here is how we handle (1) discussed above: for any multi-index α

Nα :=
ˆ
T3

m
(

J J−1
eq

)
b
(
Z ,�∂αω

) · ∂αω = −
ˆ
T3

∂i

(
m
(

J J−1
eq

))
b
(
Z , ∂i∂

αω
) · ∂αω

−
ˆ
T3

m
(

J J−1
eq

)
b
(
∂i Z , ∂i∂

αω
) · ∂αω −

ˆ
T3

m
(

J J−1
eq

)
b
(
Z , ∂i∂

αω
) · ∂i∂

αω

and hence

|Nα| � (||∇Z ||∞||Z ||∞ + ||∇Z ||∞)

∣
∣
∣

∣
∣
∣∇|α|+1ω

∣
∣
∣

∣
∣
∣
L2

∣
∣
∣

∣
∣
∣∇|α|ω

∣
∣
∣

∣
∣
∣
L2

+ ||Z ||∞
∣
∣
∣

∣
∣
∣∇|α|+1ω

∣
∣
∣

∣
∣
∣
L2

� ||Z ||H4

(∣
∣
∣

∣
∣
∣∇|α|+1ω

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇|α|+1ω

∣
∣
∣

∣
∣
∣
2

L2

)

.

Nowwe show how to handle (2) discussed above. Both terms under consideration appear
when |α| = 4, and so we write ∂α = ∂i jkl . Note that we will use Corollary 4.15 to bound

|m
(

J J−1
eq

)
| above by |∇3 J |+ |∇2 J ||∇ J |+ |∇ J |3, but below we will only indicate how

to deal with the first one amongst these three terms (since the last two can be taken care
of by a generalized Hölder inequality using only L2 and L∞). We have, using the fact
that H1

(
T
3
)

↪→ L4
(
T
3
)
,

∣
∣
∣
∣

ˆ
T3

m
(

J J−1
eq

)
b
(
∂i jk Z ,�∂lω

) · ∂i jklω +
ˆ
T3

∂i jk

(
m
(

J J−1
eq

))
b (Z ,�∂lω) · ∂i jklω

∣
∣
∣
∣

�
ˆ
T3

|∇3Z ||∇3ω||∇4ω| + ||Z ||∞
ˆ
T3

|∇3 J ||∇3ω||∇4ω| + · · ·

�
ˆ
T3

|∇3Z ||∇3ω||∇4ω| �
∣
∣
∣

∣
∣
∣∇3Z

∣
∣
∣

∣
∣
∣

H1

∣
∣
∣

∣
∣
∣∇3ω

∣
∣
∣

∣
∣
∣

H1

∣
∣
∣

∣
∣
∣∇4ω

∣
∣
∣

∣
∣
∣
L2

� ||Z ||H4

(∣
∣
∣

∣
∣
∣∇3ω

∣
∣
∣

∣
∣
∣
L2

+
∣
∣
∣

∣
∣
∣∇4ω

∣
∣
∣

∣
∣
∣
L2

) ∣
∣
∣

∣
∣
∣∇4ω

∣
∣
∣

∣
∣
∣
L2

� ||Z ||H4

(∣
∣
∣

∣
∣
∣∇4ω

∣
∣
∣

∣
∣
∣
L2

+
∣
∣
∣

∣
∣
∣∇3ω

∣
∣
∣

∣
∣
∣
L2

)
.

Estimating all nonlinearities of type III in this fashion yields, for i = 1, 2, 3, 4,

|NIII,i | � ||Z ||H4

⎛

⎝
i∑

j=1

∣
∣
∣

∣
∣
∣∇ j Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇ i+1 (u, ω)

∣
∣
∣

∣
∣
∣
2

L2

⎞

⎠ .

Finally we consider the case α = 0. Using the fact that
´
T3 (u · ∇) Z · Z = 0 and

that [�, J ] : J = 0 (see Lemma B.14) we see that
ˆ
T3

N (Z) · Z = −
ˆ
T3

m
(

J J−1
eq

) (
ω × Jω + ω × Jωeq + ω × Jeqω + ωeq × Jω

) · ω

+
ˆ
T3

J J−1
eq m

(
J J−1

eq

) (
ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω + 2κω − κ∇

×u − α̃∇ (∇ · ω) − γ̃ �ω) · ω.

It thus follows from Lemmas 4.3 and 4.4 that
∣
∣
´
T3 N (Z) · Z

∣
∣ � ||Z ||H4 ||Z ||2

L2 . 
�
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4.4. The chain of energy inequalities. We begin this section by combining the results
of Sects. 4.2 and 4.3 in order to obtain a chain of energy inequalities.

Proposition 4.17 (Chain of energy inequalities). There exist C0, C1, CD > 0 such that
for every 0 < ε < 1 there exists 0 < δ (ε) < 1 such that if sup0�t�T ||Z (t)||H4 � δ (ε)

and Z solves (4.1) then

1

2

d

dt

∣
∣
∣

∣
∣
∣
√

DZ
∣
∣
∣

∣
∣
∣
2

L2
+D (u, ω) � ε||Z ||2L2 + C0

(
||ω̄||2L2 + ||a||2L2

)

and, for k = 1, 2, 3, 4,

1

2

d

dt

∣
∣
∣

∣
∣
∣∇k

(√
DZ

)∣
∣
∣

∣
∣
∣
2

L2
+

CD

2

∣
∣
∣

∣
∣
∣∇k (u, ω)

∣
∣
∣

∣
∣
∣
2

H1
� ε

∣
∣
∣

∣
∣
∣∇k Z

∣
∣
∣

∣
∣
∣
2

L2
+ C1

k−1∑

i=0

∣
∣
∣

∣
∣
∣∇ i Z

∣
∣
∣

∣
∣
∣
2

L2
.

Proof. Let ε > 0, letCD andCI, k be as in Lemma 4.9 and Proposition 4.16 respectively,
let Cσ be as in Lemma 4.8 for σ := CD

4 , let nk := # {multi-index α : |α| = k}, and pick
δ := min

0�k�4

{
δ0,

ε
CI,k nk

, CD
4CI,k

}
.

First we consider k = 0. Observe that for 2C0 := 2 (λ − ν) +
(

τ
2κ

)2,

B (ω̄, a) = 2C0

ˆ
T3

ω̄⊥ · a � C0

(
||ω̄||2L2 + ||a||2L2

)
. (4.9)

By Propositions 4.7, 4.16, (4.9), and the fact that δ � ε
CI,0

we deduce the energy
inequality for k = 0.

Now we consider k = 1, 2, 3, 4. For any nonzero multi-index α it follows from
Propositions 4.7 and 4.16 and from Lemmas 4.9 and 4.8 that

1

2

d

dt

∣
∣
∣

∣
∣
∣
√

D
(
∂α Z

)∣∣
∣

∣
∣
∣
2

L2
+ CD

∣
∣
∣
∣∂α (u, ω)

∣
∣
∣
∣2

H1 �
(

CD

4

∣
∣
∣

∣
∣
∣∂

α+1ω

∣
∣
∣

∣
∣
∣
2

L2
+ Cσ

∣
∣
∣

∣
∣
∣∂

α−1a
∣
∣
∣

∣
∣
∣
2

L2

)

+ CI,k ||Z ||H4

(
k∑

i=1

∣
∣
∣

∣
∣
∣∇ i Z

∣
∣
∣

∣
∣
∣
2

L2
+
∣
∣
∣

∣
∣
∣∇k+1 (u, ω)

∣
∣
∣

∣
∣
∣
2

L2

)

.

Summing over |α| = k and using that δ � min
(

CD
4CI,k

, ε
CI,k nk

)
we observe that, after

absorbing
∣
∣
∣
∣∂α+1ω

∣
∣
∣
∣2
L2 and

∣
∣
∣
∣∇k+1 (u, ω)

∣
∣
∣
∣2
L2 into the dissipation on the left-hand side,

1

2

d

dt

∣
∣
∣

∣
∣
∣∇k

(√
DZ

)∣
∣
∣

∣
∣
∣
2

L2
+

CD

2

∣
∣
∣

∣
∣
∣∇k (u, ω)

∣
∣
∣

∣
∣
∣
2

H1
� nkCσ

∣
∣
∣

∣
∣
∣∂

k−1a
∣
∣
∣

∣
∣
∣
2

L2
+ ε

k∑

i=1

∣
∣
∣

∣
∣
∣∇ i Z

∣
∣
∣

∣
∣
∣
2

L2

from which the result follows upon taking C1 := max (1, n4Cσ ). 
�
We now record, in abstract form, a Gronwall-type lemma for chains of differential
inequalities.
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Lemma 4.18 (Chain of Gronwall inequalities). Consider, for k � −1, Ek : [0,∞) →
[0,∞). Suppose that there exists C−1, C > 0, 0 < θ � θ0 < ψ , and kmax � −1 such
that for every t � 0, E−1 (t) � C−1eψ t and every k � 0,

d

dt
Ek (t) � θ Ek (t) + C

k−1∑

i=−1

Ei (t) . (4.10)

Then, for every 0 � k � kmax, there exist Ck > 0 such that for every t � 0

Ek (t) � Ck

(

C−1 +
k∑

i=0

Ei (0)

)

eψ t =: C̃keψ t . (4.11)

Moreover: if (4.10) holds for every k � −1 then so does (4.11).

Proof. We induct on k, noting that the base case k = −1 holds by assumption. Now sup-
pose that (4.11) holds for every i = −1, . . . , k − 1. Then, by (4.10), d

dt

(
Ek (t) e−θ t

)
�

C
∑k−1

i=−1 Ei (t) e−θ t andhence, integrating in time andusing (4.11),where C̃−1 := C−1,

Ek(t)� Ek(0) eθ t + C
k−1∑

i=−1

eθ t
ˆ t

0
C̃i e

(ψ−θ)sds �
(

Ek(0) +
C

ψ − θ0

k−1∑

i=−1

C̃i

)

eψ t

�Ck

(

C−1 +
k∑

i=0

Ei (0)

)

eψ t

for some Ck > 0. 
�
We conclude this section by applying Lemma 4.18 to the chain of differential in-

equalities obtained in Proposition 4.17, which yields a bootstrap energy inequality.

Proposition 4.19 (Bootstrap energy inequality). There exists 0 < δB < 1 such that if Z
solves (4.1) and sup0�t�T ||Z (t)||H4 � δB then for every ψ > 0 there exists C (ψ) > 0
such that if there exists Cins > 0 such that Eins (t) := ||ω̄ (t)||2L2 + ||a (t)||2L2 satisfies

Eins (t) � Cinseψ t for all t > 0 then, for all t � 0,

||Z (t)||2H4 � C (ψ)
(
||Z (0)||2H4 + Cins

)
eψ t .

Proof. Let us define E−1 := Eins, Ek (t) :=
∣
∣
∣

∣
∣
∣∇k

(√
DZ

)∣
∣
∣

∣
∣
∣
2

L2
for every t � 0 and

every k � 0, and C := max (C0, C1) for C0 and C1 as in Proposition 4.17. Observe that

|J 1/2
eq w|2 � ν/2|w|2 for anyw ∈ R

3 and hence ||Z ||2
L2 � max (1, 2/ν)

∣
∣
∣

∣
∣
∣
√

DZ
∣
∣
∣

∣
∣
∣
2

L2
. Let

ψ > 0 andnote thatwemaydeduce fromProposition4.17, picking ε = 1
2 min (1, ψ/2, ψν/2),

δB := δ (ε), and neglecting the dissipation, that for k = 0, . . . , 4 and every t � 0

d

dt
Ek (t) � ψ

2
Ek (t) + C

k−1∑

i=−1

Ei (t) . (4.12)
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Now suppose that, for every t � 0, E−1 (t) = Eins (t) � Cinseψ t =: C−1eψ t . Using
Lemma 4.18 we obtain that for k = 0, . . . , 4 there exists Ck > 0 such that Ek (t) �
Ck

(
C−1 +

∑k
i=0 Ei (0)

)
eψ t . Finally, summing over k = 0, . . . , 4 we obtain that

||Z (t)||2H4 � max (1, 2/ν)

4∑

k=0

Ek (t) � C̃ (ψ)

(

C−1 +
∣
∣
∣

∣
∣
∣
√

DZ (0)
∣
∣
∣

∣
∣
∣
2

H4

)

eψ t

� max (1, λ, ν) C̃ (ψ)
(

Cins + ||Z (0)||2H4

)
eψ t

for some C̃ (ψ) > 0, so we may simply pick C (ψ) := max (1, λ, ν) C̃ (ψ). 
�

5. The Bootstrap Instability Argument

In this section we prove our main result using a Guo–Strauss bootstrapping argument.
This technique was introduced by Guo and Strauss in [GS95a], inspired by [GS95b]
and [FSV97]. For a cleanly written and very readable form of the bootstrap instability
argument we refer to Lemma 1.1 of [GHS07].

For the purpose of the theorem below, we define what we mean by a strong solution
of (1.1a)–(1.1d).

Definition 5.1. (Strong solutions) For any X0 ∈ H2
(
T
3
)
and any T > 0 we define

a strong solution of (1.1a)–(1.1d) with initial condition X0 to be any function X ∈
L∞ (

[0, T ] , H2
(
T
3
))

with ∂t X ∈ L∞ (
[0, T ] , L2

(
T
3
))

for which (1.1a)–(1.1d) is
satisfied almost everywhere in (0, T ) × T

3 and such that X (0) = X0.

Theorem 5.2 (Bootstrap instability). Let η∗ be as in Proposition 3.10 and assume that
(2.7) holds. There exists θ, δ > 0 and Z0 ∈ L2

(
T
3, R3 × R

3 × R
3×3

)
such that for all

0 < ι < δ if we define TI := 1
η∗ log

θ
ι

then there exists a strong solution X = (u, ω, J ) ∈
L∞ (

[0, TI ] , H4
(
T
3
))

of (1.1a)–(1.1d) with pressure p ∈ L∞ (
[0, TI ] , H4

(
T
3
))

and
initial condition X (0) = Xeq + ιZ0 such that

∣
∣
∣
∣X (TI ) − Xeq

∣
∣
∣
∣
L2 > θ

2 .

Proof. The crux of the argument is to compare three timescales: the instability timescale
TI , the linear-dominance timescale TL , and the smallness timescale TS . We will show
that at times living in both the linear-dominance and the smallness timescale (i.e. times
anterior to both TL and TS) two key estimates hold, namely (5.1) and (5.2). This will
allow us, by way of contradiction, to show that the instability timescale is the shortest
of the three. It will thus follow that instability occurs while the dynamics are dominated
by the linearization and while we are in the small energy regime.

We begin by recalling appropriate notation from previous results. Let (u0, ω0, a0) =:
Y be as in Proposition 3.13 and note that without loss of generality we may assume that

||Y ||L2 = 1. Define Z0 := (u0, ω0, J0) where J0 =
(
02×2 a0
aT
0 0

)

. Let δ0 be as in the

small energy regime (c.f. Definition 4.2), let CS := CS
( η∗
2

)
as in Proposition 3.12,

let CN be as in Proposition 4.5, let ψ := 2η∗ such that CB := C (ψ) and δB are as in
Proposition 4.17, and let δlwp be as in TheoremA.3 with δlwp being chosen small enough
so as to ensure that L � η∗.



984 A. Remond-Tiedrez, I. Tice

We can now define the appropriate small scales θ and δ, which in turn will later allow
us to precisely define the timescales. Let

θ = 1

2
min

(

δ0, δB,
1

C
, ||Z0||L2

(
δlwp

||Z0||H4

)η∗/L
)

,

δ = 1

2
min

(

1, δlwp,
θ

||Z0||H4
,
(

CB

(
||Z0||2H4 + 4

)
θ
)−1/2

,
1

2Cθ

)

,

and let 0 < ι < δ.
By our local well-posedness result (see Section A and Corollary A.6 in particular)

there exists TE > 0 and a unique strong solution Z ∈ L∞ (
[0, TE ] ; H4

(
T
3
))

of (4.1)
with pressure p ∈ L∞H4 and initial data Z (0) = ιZ0. Note that our local existence
result (Theorem A.3) tells us moreover that the solution Z may be continued as long as
Z remains in an open H4-ball of radius δlwp. We may thus without loss of generality
assume TE to be the maximal time of existence of the solution in the sense that TE :=
sup

{
T > 0 : Z exists on [0, T ] and sup0�t<T ||Z (t)||H4 < δlwp

}
. Expanding out the

definition of the notation in (4.1) we see that X := Xeq + Z is a strong solution of
(1.1a)–(1.1d) with initial condition X (0) = Xeq + ιZ0.

We may now define the timescales. We define TL :=
sup

{
0 < t < TE : ||ω̄ (t)||L2 + ||a (t)||L2 � 2ιeη∗t

}
, TI := 1

η∗ log
θ
ι
, and TS :=

sup
{
0 < t < TE : ||Z (t)||H4 < θ

}
. Note that TL � 0 since ||Z (0)||L2 = ι, that TS � 0

since ||Z (t)||H4 = ι||Z0||H4 < θ , and that TS, TL � TE
Step 1: Since θ � δB we deduce from Proposition 4.19 that if t � min (TL , TS) then

||Z (t)||2H4 � CB ι2
(
||Z0||2H4 + 4

)
e2η∗t . (5.1)

Now we apply the Leray projector to eliminate the pressure and write (4.1) in the
reduced form ∂t Z = LZ + Ñ (Z), where Ñ := PD−1N . More precisely we apply P and
observe that P̄B = B and hence PL = L. Indeed this follows from the observation that
on one hand, for k �= 0, ˆ̄

P (k) =
(

I − k⊗k
|k|2

)
⊕ I3 ⊕ I2 = I − projVk

and the fact that,

since B̂k acts on C
8/ Vk , it follows that projVk

◦B̂k = B̂k , whilst on the other hand, for

k = 0, we have that P̂L (0) = I3 (since constant vector fields are divergence-free) and
hence P̂ (0) = id.

We can thus apply the Duhamel formula to obtain

Z (t) − etLZ (0) =
ˆ t

0
e(t−s)L Ñ (Z (s)) ds

which can be estimated, when t � min (TL , TS), using the fact that θ � δ0, Proposi-
tion 3.12, the fact that the Leray projector is bounded on L2, the inequality

∣
∣
∣
∣D−1

∣
∣
∣
∣ �√

max (1, 2/ν), and Proposition 4.5 to yield, for C := 2
η∗

max (1, 2/ν) CSCN CB
(||Z0||2H4 + 4

)
,

∣
∣
∣

∣
∣
∣Z (t) − etLιZ0

∣
∣
∣

∣
∣
∣
L2

� Cι2e2η∗t . (5.2)

Step 2: Now we show that TI = min (TI , TL , TS), using the key estimates (5.1)
and (5.2). First suppose for the sake of contradiction that TL = min (TI , TL , TS). By
definition of TL ,

||ω̄ (TL)||L2 + ||a (TL)||L2 = 2ιeη∗TL . (5.3)
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Now note that (5.2) applies since TL � TS and thus it follows from Proposition 3.13 and
the choice of Z0 that ||Z (TL)||L2 �

(
1 + Cιeη∗TL

)
ιeη∗TL < 2ιeη∗TL , where we have

used that TL � TI and hence Cιeη∗TL � Cιeη∗TI = Cθ < 1. This contradicts (5.3)
and hence the linear-dominance timescale TL is not the smallest of the three timescales
considered.

Now suppose for the sake of contradiction that TS = min (TI , TL , TS). By definition
of TS ,

||Z (TS)||H4 = θ. (5.4)

Since TS � TL we may use (5.1) and since TS � TI we have that e2η∗TS � e2η∗TI = θ .
Putting these two facts together tells us that ||Z (TS)||2H4 � CB ι2

(||Z0||2H4 + 4
)
θ2 < θ

which contradicts (5.4). Therefore the smallness timescale TS is not the smallest of the
three timescales considered. We thus deduce that TI = min (TI , TL , TS).

Step3:Finallywe show that ||Z (TI )||L2 > θ
2 . Since TI is smaller than both TL and TS

(and hence smaller than TE ) we may use (5.1) and (5.2), as well as Proposition 3.13, the
choice of Z0, and the fact that ιeη∗TI = θ to see that

∣
∣
∣
∣X (TI ) − Xeq

∣
∣
∣
∣
L2 = ||Z (TI )||L2 �

ιeη∗TI − Cι2e2η∗TI = θ (1 − Cιθ) > 1
2 . 
�
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Appendix A: Local Well-Posedness

In this section we prove the local well-posedness of (1.1a)–(1.1d). This is done in two
steps: we prove local existence in the small energy regime in Theorem A.3 and we prove
uniqueness within a broader class of solutions in Theorem A.5. Notably, this uniqueness
result makes no smallness assumption and only requires that the unknowns belong to
appropriate Sobolev spaces.
A key step on the way to our local existence result is to prove that the nonlinearity is

sufficiently regular.We do this below in LemmaA.1wherewe prove that the nonlinearity
is analytic.

Lemma A.1. (Analyticity of the nonlinearity) Let 0 < δ � δ0 for δ0 as in the small
energy regime. For every s > 3

2 , N : Hs+2 ∩ H4
δ0

→ Hs is analytic (as a mapping from

Hs+2 to Hs). Moreover the Lipschitz constant of N on Hs+2 ∩ H4
δ0

→ Hs approaches
zero as δ ↓ 0.

Proof. The two key observations are that (i) we may write N (Z) =
P
(

m
(

J J−1
eq

)
, Z ,∇Z ,∇2Z

)
for some polynomial P and that (ii) m is analytic (recall

thatm is defined inDefinition 4.1). Indeedm can bewritten as a geometric series, namely
m (A) = ∑∞

i=0 (−1)i Ai for every A ∈ B, where B is defined in Definition 4.1.
Using Lemma B.19, the fact that Hs is a continuous algebra when s > 3

2 , and the
fact that polynomials are analytic, it follows that we may write N = F

(J 2Z
)
for

some function F : dom F ⊆ Hs → Hs which is analytic on its domain (i.e. where it
is well-defined), where J 2Z := (

Z ,∇Z ,∇2Z
)
. The last observation we need is that

J 2
(

Hs ∩ H4
δ0

)
⊆ dom F . This holds since, if Z = (u, ω, J ) ∈ Hs+2 ∩ H4

δ0
for δ0
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as in the small energy regime, then by Lemma 4.4 we know that J �→ m
(

J J−1
eq

)
is

well-defined, and hence analytic. Since J is a bounded linear map from Hs+2 to Hs it
is also analytic, and so we may conclude that N : Hs+2 ∩ H4

δ0
→ Hs is analytic as a

map from Hs+2 to Hs .
Finally, note that the polynomial P above is at least quadratic in

(
Z ,∇Z ,∇2Z

)
and

that therefore DN (0) = 0. In particular it follows that the Lipschitz constant of N on
balls of vanishingly small radii approaches zero, as claimed. 
�
Remark A.2. See [Whi65] for a brief and clean summary of basic results regarding
analytic functions between Banach spaces.

With Lemma A.1 in hand we may now prove our local existence result.

Theorem A.3 (Local existence and continuous dependence on the data). There are
universal constants ρ, δlwp, C > 0 such that for any Z0 = (u0, ω0, J0) ∈ H4 with
∇ · u0 = 0,

ffl
T3 u0 = 0, and ||Z0||H4 < δlwp, there exists a time of existence Tlwp > 0,

there exists Z = (u, ω, J ) ∈ L∞H4 with (u, ω) ∈ L2H5, ∂t Z ∈ L∞H2 ∩ L2H3, and
∂t J ∈ L∞H3, and there exists p ∈ L∞ H4 ∩ L2H5 with average zero such that u is
divergence-free and has average zero, (u, p, ω, J ) solves

∂t DZ = L̃Z + �(p) + N (Z) a.e. in
(
0, Tlwp

)
and Z (0) = Z0 in H4− 1

4 , (A.1)

and the estimates

||Z ||L∞ H4 + ||(u, ω)||L2H5 + ||∂t Z ||L∞ H2∩L2H3 + ||∂t J ||L∞ H3 � C ||Z0||H4 (A.2)

and
||p||L∞ H4∩L2H5 � C ||u||2L∞ H4∩L2H5 (A.3)

hold. Moreover we have the lower bound Tlwp � 1
ρ
log

δlwp
||Z0||H4

.

Proof. We proceed via a standard Galerkin scheme and thus omit the fine details of the
proof here. A key point is that everything we need to know about the nonlinearity for
the purpose of this local well-posedness result is obtained in Lemma A.1.
We now proceed in five steps. In Step 1 we eliminate the pressure via Leray projection,
in Step 2 we prove local well-posedness for a sequence of appropriate approximate
problems, in Step 3 we obtain uniform bounds on these approximate solutions, in Step
4 we pass to the limit via a compactness argument, and in Step 5 we reconstruct the
pressure.
First we recall some notation from earlier results which is required to define the

smallness parameter δlwp. Let δ0 be as in the small energy regime, let δ = δ
( 1
2

)

be as in Proposition 4.17, and define C2 := max (1, λ, ν)max (1, 2/ν). Then take
δlwp := 1

3 min (δ0/C2, δ).
Step 1: Leray projection eliminating the pressure.
Recall that we denote the Leray projector by PL and that we write P = PL ⊕ I3⊕ I3×3.

Upon applying P to (A.1) we thus see that (noting that PZ = Z since ∇ · u = 0 and that
P and L̃ commute since they are both Fourier multipliers): ∂t DZ = L̃Z + PN (Z).
Step 2: Local well-posedness of a sequence of approximate problems.

LetVn :=
{

Z ∈ L2
(
T
3;R3 × R

3 × R
3×3

) ∣
∣ Ẑ (k) = 0 if |k| > n and ∇ · u = 0

}
, let

Un := Vn ∩ H4
δ0/2

where Hα
R denotes the open ball around zero of radius R in Hα , and

let Pn be the orthogonal projection onto Vn defined by P̂n (k) = 1 (|k| � n).
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We approximate the system obtained after Leray projection in Step 1 by

∂t DZn = L̃Zn + PnPN (Zn) and Zn (0) = Pn Z0. (A.4)

In order to use standard finite-dimensional ODE theory we write (A.4) as

∂t Zn = Fn (Zn) and Zn (0) = Pn Z0 (A.5)

for Fn = D−1
(L̃ + PnPN

)
. It follows from Lemma A.1 that Fn is analytic from H4

δ0
to

H2, and since Un is a subset of H4
δ0
and P ◦Pmaps onto Vn we deduce that Fn maps Un

to Vn .
We may now apply standard ODE theory, which tells us that if we pick an ini-

tial condition Z0 = (u0, ω0, J0) ∈ H4 which satisfies ∇ · u0 =,
ffl
T3 u0 = 0, and

||Z0||H4 < δlwp then there exists a maximal time of existence Tn > 0, a unique
Zn ∈ C∞ ([0, Tn) ;Un) solving (A.5), and the following blow-up criterion holds: for
any T > 0 if sup0�t�T ||Zn (t)||H4 < δ0

2 then T � Tn .
Step 3: Uniform bounds on the approximate solutions.
To obtain uniform bounds it suffices to apply Proposition 4.17 to the approximate

solutions Zn . Since Proposition 4.17 is only applicable in a small energy regime we
must first ensure that ||Zn||H4 remains sufficiently small. We defined T̃n to this effect
below.
Let δu = 1

3 min (δ0, δ), and let T̃n = sup
{
t > 0

∣
∣ ||Zn||H4 � δu

}
. Note that T̃n � Tn

by the blow-up criterion from Step 1. We may now apply a time-integrated version of
Proposition 4.17 (with ε = 1

2 ) to obtain

1

2

∣
∣
∣

∣
∣
∣
√

DZn (t)
∣
∣
∣

∣
∣
∣
2

L2
− 1

2

∣
∣
∣

∣
∣
∣
√

DZn (0)
∣
∣
∣

∣
∣
∣
2

L2
+
ˆ t

0
D (un, ωn) (s) ds

�
ˆ t

0

(
1

2
+ C0

)

||Zn (s)||2L2ds (A.6)

and, for k = 1, 2, 3, 4,

1

2

∣
∣
∣

∣
∣
∣∇k

(√
DZn (t)

)∣
∣
∣

∣
∣
∣
2

L2
− 1

2

∣
∣
∣

∣
∣
∣∇k

(√
DZn (0)

)∣
∣
∣

∣
∣
∣
2

L2
+
ˆ t

0

CD

2

∣
∣
∣

∣
∣
∣∇k (un, ωn) (s)

∣
∣
∣

∣
∣
∣
2

H1
ds

�
ˆ t

0
max

(
1

2
, C1

) k∑

i=0

∣
∣
∣

∣
∣
∣∇ i Zn (s)

∣
∣
∣

∣
∣
∣
2

L2
ds (A.7)

where C0, C1, and CD are as in Proposition 4.17. Note that Proposition 4.17 as stated
applies to solutions of ∂t DZ = L̃Z + N (Z) + �(p) whereas Zn satisfies ∂t DZn =
L̃Zn + PnPL N (Zn). Nonetheless, Proposition 4.17 applies to Zn as well since this
theorem relies solely on energy estimates, and in particular, since

´
T3 �(p) · Z = 0

when∇·u = 0 and
´
T3 PnPN (Zn)· Zn = ´

T3 N (Zn)· Zn since Zn belongs to the image
of the projection Pn ◦ P, it follows that the estimate obtained for Z in Proposition 4.17
also holds for Zn .
Summing (A.6) and (A.7) and using the integral form of the Gronwall inequality tells

us that, for any 0 < t < T̃n ,

||Zn (t)||2H4 +
ˆ t

0
||(un, ωn)||2H5 � C2eρt ||Z0||2H4 (A.8)
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where ρ := 2 (1 + C0 + C1)max (1, 2/ν). In particular we deduce from the blow-up
criterion that if we denote by Tlwp the infimum of Tn over n then Tlwp � 1

ρ
log

δlwp
||Z0||H4

.

In otherwordswehave a uniform lower boundon the timeof existence of the approximate
solutions.
Now we obtain bounds on the time derivative ∂t Zn , which are required for the compact-
ness argument in Step 4. Note first that (A.8) tells us that, for C4 = C2eρTlwp ,

sup
n

(
||(un, ωn, Jn)||2L∞ H4 + ||(un, ωn)||2L2H5

)
� C4||Z0||2H4 (A.9)

where L p Hs denote L p
([
0, Tlwp

] ; Hs
)
. Using Lemma A.1 and the boundedness of L̃,

Pn , and P we deduce from (A.9) that, for some C5 > 0,

sup
n

(
||∂t (un, ωn, Jn)||2L∞ H2 + ||∂t (un, ωn)||2L2H3

)
� C5||Z0||2H4 . (A.10)

Finally we improve this bound on ∂t Zn by paying closer attention to the structure of the
PDE (A.4). Specifically: since L̃3 and N3 lose fewer derivatives than L̃ and N do, we
obtain an improved estimate for ∂t Jn :

sup
n

||∂t Jn||2L∞ H3 � C4||Z0||2H4 . (A.11)

Step 4: Passing to the limit by compactness.
By applying Banach–Alaoglu (i.e. the weak-∗ compactness of bounded sets) to the

bounds provided by (A.9), (A.10), and (A.11) we obtain a subsequence of (Zn), which
for simplicity we do not relabel, such that

Zn
∗
⇀ Z in L∞H4, (un, ωn) ⇀ (u, ω) in L2H5, (A.12)

∂t Zn
∗
⇀ ∂t Z in L∞H2, ∂t Zn ⇀ ∂t Z in L2H3, and ∂t Jn

∗
⇀ ∂t J in L∞H3(A.13)

for some Z = (u, ω, J ) ∈ L∞H4 with (u, ω) ∈ L2H5, ∂t Z ∈ L∞H2 ∩ L2H3, and
∂t J ∈ L∞H3. Moreover, it follows from Aubin-Lions-Simon that, passing to another
subsequence which we do not relabel,

Zn → Z in C0H4− 1
4 (A.14)

and that Z ∈ C0H4− 1
4 .

We now pass to the limit. It follows immediately from (A.12) and (A.13) that

∂t DZn
∗
⇀ ∂t DZ and L̃Zn

∗
⇀ L̃Z in L∞H2. (A.15)

To pass to the limit in the nonlinearity we write

PnPN (Zn) − PN (Z) = PnP (N (Zn) − N (Z)) + (Pn − I )PN (Z) := A + B.

Passing to the limit in B is immediate: by weak-∗ lower semi-continuity of the L∞H4

norm we know that sup0�t�T0 ||Z (t)||H4 � δ0
2 < δ0 such that N (Z) is a well-defined

element of L∞H2. In particular, since ||(I − Pn) f ||Hs → 0 for all s � 0 and all
f ∈ Hs , it follows that

||B||L∞ H2 = ||(I − Pn)PN (Z)||L∞ H2 → 0. (A.16)
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Passing to the limit in A relies on the analyticity of thenonlinearity obtained inLemmaA.1:

since Zn → Z in C0H4− 1
4 and since, as observed above, both the sequence (Zn) and its

limit Z lie in H4
δ0/2

, it follows from LemmaA.1 (since 2− 1
4 > 3

2 ) that N (Zn) → N (Z)

in C0H4− 1
4 . So finally:

||A||
L∞ H2− 1

4
= ||PnP (N (Zn) − N (Z))||

L∞ H2− 1
4

� ||N (Zn) − N (Z)||
L∞ H2− 1

4
→ 0.

(A.17)
We conclude from (A.4), (A.15), (A.16), and (A.17) that Z is a strong solution of
∂t DZ = L̃Z + PN (Z). As a consequence we deduce that the conditions ∇ · u = 0 andffl
T3 u = 0 are propagated in time, i.e. they hold for every 0 � t < Tlwp.
Finally we deduce from (A.9), (A.10), and (A.11) and the weak and weak-∗ lower

semi-continuity of the appropriate norms that, for some C > 0,

||(u, ω, J )||L∞ H4+||(u, ω)||L2H5+||∂t (u, ω, J )||L∞ H2∩L2H3+||∂t J ||L∞ H3 � C ||Z0||H4 .

(A.18)
Step 5: Reconstructing the pressure.
The key observation is that since P = PL ⊕ I3 ⊕ I3×3 we may reconstruct p via

I − PL , where I − PL = ∇�−1∇· as per Lemma B.20. More precisely: let p :=
�−1 (∇ · N1 (Z)) and note that p thus defined has average zero. Then, by Lemma B.20,
∇ p = (I − PL) N1 (Z) and hence �(p) = − (I − P) N (Z) such that (A.1) holds.
Finally, since N1 (Z) = − (u · ∇) u and since Hs is an algebra for s > 3/2 we have
that, for s = 3 or 4,

||p||Hs � ||N1 (Z)||Hs−1 = ||(u · ∇) u||Hs−1 � ||u||Hs−1 ||u||Hs .

Combining these estimates with (A.18) yields (A.3). 
�
Remark A.4. It may appear somewhat odd that the initial condition Z (0) = Z0 of

(A.1) holds in H4− 1
4 and not in H4 as one might expect. This is due to the loss of

spatial regularity incurredwhen applying theAubin-Lions-Simon lemma toobtain strong

convergence of the approximate solutions in C0H4− 1
4 . In particular, note that the only

thing which is special about 1
4 is that it sits squarely between 0 and 1

2 and that we
use that

(
4 − 1

4

) − 2 > 3
2 when we leverage Lemma A.1 to pass to the limit in the

nonlinearity in Step 4 of the proof of Theorem A.3. This means that we can actually
show that Z (0) = Z0 in H4−ε for any 0 < ε < 1

2 , since then 4 − ε < 4 such that
Aubin–Lions–Simon applies and (4 − ε)−2 > 3

2 such that wemay still use LemmaA.1.

We now state and prove our uniqueness result. Note that the only assumptions made are
boundedness of appropriate Sobolev norms of the solutions. No smallness assumptions
are made here.

Theorem A.5 (Uniqueness). Suppose that, for i = 1, 2, (ui , pi , ωi , Ji ) are strong
solutions of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ui + (ui · ∇) ui = (∇ · T ) (ui , pi , ωi ) ,

∇ · ui = 0,

Ji (∂tωi + (ui · ∇) ωi ) + ωi ∧ Jiωi = 2 vec T (ui , pi , ωi ) + (∇ · M) (ωi ) + τe3, and

∂t Ji + (ui · ∇) Ji = [�i , Ji ]

on some common time interval (0, T ) which agree initially, i.e. which agree at time t = 0.
If J1 is uniformly positive-definite, pi , ∂t (ui , ωi , Ji ) ∈ L2

T L2, (ui , ωi , Ji ) ,∇ (ui , ωi , Ji ) ∈
L∞

T L∞, and ∂t J1, ∂tω2 ∈ L∞
T L∞, then these solutions coincide on (0, T ).
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Proof. This follows fromsimple energy estimates for the equations satisfiedby the differ-
ence of the two solutions. The difference (u, p, ω, J ) =
(u1 − u2, p1 − p2, ω1 − ω2, J1 − J2) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∂t + u1 · ∇) u = (∇ · T ) (u, p, ω) + f, (A.19a)

∇ · u1 = 0, (A.19b)

(J1 (∂t+u1 · ∇)+ω1 ∧ J1) ω=2 vec T (u, p, ω)+ (∇ · M) (ω)+g, (A.19c)

(∂t + u1 · ∇) J1 = [�1, J1] , and (A.19d)

(∂t + u1 · ∇) J = [�, J ] + h (A.19e)

for
⎧
⎨

⎩

f = − (u · ∇) u2

g = −J∂tω2 − J1 (u · ∇) ω2 − J (u2 · ∇) ω2 − ω1 ∧ Jω2 − ω ∧ J2ω2, and

h = − (u · ∇) J2 + [�, J2] .

We can thus multiply (A.19a), (A.19c), and (A.19e) by u, ω, and J respectively to see
that, for every 0 < t < T ,

ˆ
T3

1

2
|u|2 + 1

2
J1ω · ω +

1

2
|J |2

∣
∣
∣
∣
s=t

−
ˆ
T3

1

2
|u|2 + 1

2
J1ω · ω +

1

2
|J |2

∣
∣
∣
∣
s=0

+
ˆ t

0

ˆ
T3

μ

2
|Du|2 + 2κ

∣
∣
∣
∣
1

2
∇ × u − ω

∣
∣
∣
∣

2

+ α|∇ · ω|2 + β

2
|D0ω|2 + 2γ |∇ × ω|2

=
ˆ t

0

ˆ
T3

f · u + g · ω + h : J.

We can write this energy-dissipation-interaction relation more succintly as E(t)−E(0)+´ t
0 D = ´ t

0 I forI = ´
T3 f ·u+g·ω+h : J . It follows from straightforward application of

the Hölder and Cauchy–Schwartz inequalities that the interactions are controlled by the
energy, i.e. |I| � CE for some constant C > 0. Note that since the two solutions agree
initially we have that E(0) = 0. Therefore the integral version of Gronwall’s inequality
tells us that E(t) = 0 for all 0 < t < T . Since J1 is uniformly positive definite we
deduce that (u, ω, J ) = 0. Finally, since −�p = ∇u1 : ∇uT + ∇u : ∇u2

T = 0, we
conclude that indeed the two solutions coincide. 
�
Putting Theorem A.3 and Theorem A.5 together yields our local well-posedness result,
stated below.

Corollary A.6. (Localwell-posedness) The solution obtained in TheoremA.3 is unique.

Proof. This is immediate since the assumptions ofTheoremA.3 ensure thatTheoremA.5
applies. 
�

Appendix B: Auxiliary Results

Here we record auxiliary results which are used throughout the main body of the paper.
Whilst these results are typically either elementary lemmas or well-known theorems,
they are of interest since they are applicable beyond the scope of this paper.
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Lemma B.1 (Lower bound on the real part of complex square roots). Let x, y ∈ R with
y �= 0 and let α > 0. We follow the convention according to which the square root of
a complex number with non-trivial imaginary part is chosen to have a strictly positive

real part. Then Re
√

x + iy > α if and only if x > α2 − y2

4α2 .

Proof. Let us write
√

x + iy = u + iv for some u > 0 and v ∈ R, such that x = u2 − v2

and y = 2uv. What we wish to prove can then be written as u > α if and only if
u2−v2 > α2− u2v2

α2 . The latter inequality can be rearranged asu2−α2 > − v2

α2

(
u2 − α2

)
.

This can be simplified, using the fact that u + α > 0, to (u − α)
(
1 + v2

α2

)
> 0. This is

indeed equivalent to u > α so we are done. 
�
Lemma B.2. (Similarity of matrices acting on quotient spaces) Let V be a subspace
of Cn and let A, G, and H be complex n-by-n matrices which act on C

n/ V (c.f. Def-
inition 3.1) such that G H = H G = projV ⊥ . Then (1) B := G AH acts on C

n/ V , (2)
A = H BG, and (3) A and B are similar.

Proof. First we show that B acts on C
n/ V . We know that im B ⊆ im G ⊆ V ⊥ and

that V = ker H ⊆ ker B, so it is enough to show that ker B ⊆ V . Let x ∈ ker B. Since
H x ∈ V ⊥, it suffices to show that H x ∈ V as then H x = 0, i.e. x ∈ ker H = V . The key
observation is that since im A ⊆ V ⊥ and since G and H are inverses on V ⊥, we obtain
that A = H G A. It follows that AH x = H G AH x = H Bx = 0, i.e. H x ∈ ker A = V ,
and hence (1) holds.
Nowobserve that in order to prove that A = H BG it is enough to show that H G A = A,

which was done above, and that AH G = A, which we do now. Pick any x ∈ C
n and

write x = x‖ + x⊥ for x‖ ∈ V and X⊥ ∈ V ⊥. Since ker G = ker A = V and since
H G = projV ⊥ it follows that AH Gx = AH Gx⊥ = Ax⊥ = Ax , i.e. indeed AH G = A.
Finally we show that A and B are similar by explicitly finding an appropriate change-
of-basis matrix. Let P be the orthogonal projection onto V , i.e. ker P = V ⊥ and P|V =
id |V . Observe that, since ker B = V = im P and since im B ⊆ V ⊥ = ker P , we may
deduce that B P = P B = 0. Therefore

(H + P) B (G + P) = A. (B.1)

We will now show that G + P and H + P are invertible and (G + P)−1 = H + P ,
from which it follows that (B.1) witnesses (3). Let x ∈ ker (G + P) and let us write
x = x‖ + x⊥ as above. Then 0 = (G + P) x = Gx⊥ + x‖ with Gx⊥ ∈ V ⊥ and x‖ ∈ V ,
and hence we must have Px⊥ = 0 and x‖ = 0. In particular, since ker G = V , we
know that x⊥ belongs to both V and V ⊥ and hence x⊥ = 0, such that x = 0. This
shows that G + P has trivial kernel and is thus invertible. We may deduce in exactly the
same way that H + P is invertible. To conclude we simply compute (H + P)(G + P) =
H G + H P + PG + P2 = H G + P = I. 
�
Lemma B.3 (Bounds on the real parts of the eigenvalues of a matrix using the spectrum
of its symmetric part). Let S and A be symmetric and antisymmetric real n-by-n matrices
respectively. It then holds that min σ (S) � Re σ (S + A) � max σ (S).

Proof. Let us denote by λ+ and λ− the maximal and minimal eigenvalues of S, respec-
tively, let us define M = S + A, and let a + ib, a, b ∈ R, be an eigenvalue of M with
eigenvector x + iy, x, y ∈ R

n . Then, since M (x + iy) = (a + ib) (x + iy) it follows that
Mx = ax − by and My = bx + ay. In particular Sx · x + Sy · y = Mx · x + My · y =
a
(|x |2 + |y|2) where Sx · x + Sy · y � λ+

(|x |2 + |y|2) , and therefore a � λ+. We
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may obtain in exactly the same way that a � λ−, and hence indeed λ− � Re σ (S + A)

� λ+. 
�
Theorem B.4 (Gershgorin disk theorem). Let A be a complex n-by-n matrix and let
Ri := ∑

j �=i |Ai j | for i = 1, . . . , n. Every eigenvalue of A lies in one of the closed disks

B (Aii , Ri ), where i = 1, . . . , n. These disks are called the Gershgorin disks of A.

Proof. Let v be an eigenvector of A with eigenvalue λ. Without loss of generality (oth-
erwise wemay divide v by±||v||∞): vi = 1 for some index i and |v j | � 1 for all indices
j different from i . Now observe that

(Av)i = λvi ⇔ Aiivi +
∑

j �=i

Ai jv j = λvi ⇔ λ − Aii =
∑

j �=i

Ai jv j

and thus |λ− Aii | �
∑

j �=i |Ai j ||v j | �
∑

j �=i |Ai j | = Ri i.e. indeed λ lies in B (Aii , Ri ),
which is one of the Gershgorin disks of A. 
�
Corollary B.5 (Bounds on the imaginary parts of the eigenvalues of a matrix using the
Frobenius norm of its antisymmetric part). Let S and A be symmetric and antisymmetric
real n-by-n matrices respectively. Then |Im σ (S + A)| �

√
n − 1||A||2, where ||A||2 :=√

A : A is the Frobenius norm of A.

Proof. Since S is symmetric, there exists an orthogonal matrix Q and a diagonal matrix
D such that QSQT = D. Therefore Q (S + A) QT = D + Q AQT . In particular, for
Ã := Q AQT , we know that S + A and D + Ã have the same spectrum. Writing D =
diag (λ1, . . . , λn) where the λi ’s are the eigenvalues of S, we may apply Theorem B.4
to deduce that the eigenvalues of D + Ã lie within closed disks centered at λi (since Ã is
antisymmetric and hence all its diagonal entries are equal to zero) andwith corresponding
radii Ri = ∑

j �=i | Ãi j | �
√

n − 1 || Ã||2. The result then follows from the observation

that the eigenvalues λi of the symmetric matrix S are real and the fact that || Ã||22 =
Q AQT : Q AQT = QT Q AQT Q : A = ||A||22. 
�
Lemma B.6 (Bounds on matrix exponentials using the symmetric part). Let M be a
real n-by-n matrix, let S := 1

2

(
M + MT

)
denote its symmetric part, and let σ denote

the largest eigenvalue of S. Then, for every t > 0,
∣
∣
∣
∣et M

∣
∣
∣
∣L(l2,l2)

� eσ t .

Proof. This follows from a simple Gronwall inequality upon noticing that, for any x ∈
R

n , Mx · x = Sx · x . More precisely: pick any x0 ∈ R
n and define x (t) := et M x0 for

every t � 0. Observe that d
dt x (t) = Mx (t) and hence d

dt ||x (t)||22 = 2Sx (t) · x (t) �
2σ ||x (t)||22. Since x (0) = x0, applying Gronwall’s inequality yields that, for every

t � 0,
∣
∣
∣
∣et M x0

∣
∣
∣
∣2
2 = ||x (t)||22 � e2σ t ||x0||22, from which the result follows. 
�

Lemma B.7 (Bounds on matrix exponentials for Jordan canonical forms). For any ma-
trix norm | · | there exists a constant Cn > 0 such that for every complex n-by-n
matrix M in Jordan canonical form, if η := maxRe σ (M) then, for every t � 0,
|et M | � Cn (1 + tn) eηt .

Proof. Since M is in Jordan canonical form it can be written as M = Ja1 (λ1) ⊕ · · · ⊕
Jak (λk) where the λi ’s are eigenvalues of M and Ja (λ) = λIa + Na for (Na)i j =
1 if j = i + 1 and (Na)i j = 0 otherwise, Note that, since Na is an a-by-a matrix
whose only non-zero entries are those immediately above the diagonal, it is nilpotent
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of order a. In particular, note that since the identity commutes with all matrices, it
follows that eJa(λ) = eλeNa , and recall that for any nilpotent matrix N of order q
its matrix exponential is given by a finite sum, i.e. eN = ∑q−1

j=0
1
j ! N j . We can thus

compute the matrix exponential of M to be et M = eλ1t et Na1 ⊕ eλk t et Nak which can be

estimated by |et M | �
∑k

i=1 e(Re λi )t
∣
∣
∣
∑ai

j=0
1
j !
(
t Nai

) j
∣
∣
∣ � eηt (1 + tn) where have used

that polynomials of degree q in a real variable x can be bounded above (up to a constant)
by 1+ xq , and where the constants up to which the inequalities above hold only depends
on n and the choice of the matrix norm. 
�
Corollary B.8 (Bounds on matrix exponentials). Let M be a real n-by-n matrix and let
η :=maxRe σ (M). For any matrix norm | · | there exists a constant C = C (M) > 0
such that, for every t ∈ R, it holds that |et M | � C (1 + tn) eηt .

Proof. This follows from Lemma B.7 since every matrix M is similar to a matrix in
Jordan canonical form. The constant obtained depends on M since the norm of the
matrices used to conjugate M to put it in Jordan canonical form depend on M . 
�
Proposition B.9 (Construction of a semigroup via matrix exponentials as Fourier mul-
tipliers). Let M : Z

n → R
l×l be a family of matrices for which there exists η ∈ R and

CF > 0 such that, for every k ∈ Z
n and every t > 0,

∣
∣
∣

∣
∣
∣et M(k)

∣
∣
∣

∣
∣
∣L(l2, l2)

� CF eηt . (B.2)

For any t � 0 the operator etL defined by the multiplier
(
etL)∧ (k) := et M(k) is a

bounded operator on L2
(
T

n;Rl
)

such that
(
etL)

t�0 defines an η-contractive semigroup,
i.e.
(1) e0L is the identity,
(2) for every t, s � 0, etLesL = esLetL = e(t+s)L,
(3) for every f ∈ L2

(
T

n;Rl
)
, t → etL f is a continuous map from [0,∞) to L2

(
T

n;Rl
)
,

and
(4) for every r � 0,

∣
∣
∣
∣etL∣∣∣∣L(Hr(Tn;Rl);Hr(Tn;Rl))

� CF eηt .

Moreover, let us write v = (
v1, . . . , vp

) ∈ R
q1 × · · · × R

qp , where q1 + · · · + qp = l,
and suppose that there exists α1, . . . , αp ∈ N and CD > 0 such that for every k ∈ Z

n

and every v ∈ R
l ,

|M (k) v|2 � CD

p∑

i=1

〈k〉2αi |vi |2. (B.3)

Then
(5) the domain of the semigroup

(
etL)

t�0 is Hα1 (Tn,Rq1) × · · · × Hαp (Tn,Rqp ) and

(6) its generator is the linear differential operator L with symbol M, i.e. L̂ (k) := M (k).

Proof. The boundedness of etL and (4) follow directly from (B.2). (1) and (2) follow
from the fact that, for any matrix M ,

(
et M

)

t�0 is a representation of the semigroup
(
R�0,+

)
, i.e. e0M = I and et M es M = es M et M = e(t+s)M . To prove that (3) holds it

suffices to show that t �→ etL f is continuous at t = 0. This is immediate since
∣
∣
∣

∣
∣
∣etL f − f

∣
∣
∣

∣
∣
∣
L2

�
∑

|k|�K

|
(

et Mk − I
)

f̂ (k)|2 + (eηt + 1
)2 ∑

|k|>K

| f̂ (k)|2
︸ ︷︷ ︸

=:R f (K )
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where R f (K ) → 0 as K → ∞ since f ∈ L2, and hence, since for any fixed K the
collection

{
t �→ et Mk

}

|k|�K is as finite collection of continuous maps, we indeed obtain

that etL f → f in L2 as t → 0.
Finally, to prove (5) and (6) we proceed as we did for (3). First we note that, by the mean-

value theorem, for every k ∈ Z
n and every t > 0, et Mk −I

t − Mk = ´ 10
(
est Mk − I

)
Mkds.

Therefore, for any f ∈ L2 and any 0 < t < δ, if we write f̂ =
(

f̂1, . . . , f̂ p

)
∈

R
q1 × · · · × R

qp then

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

etL f − f

t
− L f

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

L2

�
∑

k∈Zl

∣
∣
∣
∣

∣
∣
∣
∣

ˆ 1

0

(
est Mk − I

)
ds

∣
∣
∣
∣

∣
∣
∣
∣

2

L(l2, l2)

∣
∣
∣Mk f̂ (k)

∣
∣
∣
2

� C (K , f )
∑

|k|<K

∣
∣
∣
∣

∣
∣
∣
∣

ˆ 1

0

(
est Mk − I

)
ds

∣
∣
∣
∣

∣
∣
∣
∣

2

L(l2, l2)

+ C (η, δ)
∑

|k|>K

p∑

i=1

〈k〉2αi

∣
∣
∣ f̂i (k)

∣
∣
∣
2

︸ ︷︷ ︸
=:H f (K )

.

In particular, if f ∈ Hα1 × · · · × Hαp then H f (K ) → 0 as K → ∞ and thus, since,
for any fixed K ,

{
t �→ et Mk

}

|k|�K is as finite collection of continuous maps, we may

conclude that indeed etL f − f
t → L f in L2 as t → 0. 
�

Theorem B.10 (Rouché). Let � ⊆ C be a connected open set whose boundary is a
simple curve and let f and g be holomorphic in �. If | f − g| < | f | on ∂� then f and
g have the same number of zeros in �.

Proof. See Chapter 4 of [Ahl78]. 
�
Theorem B.11 (Implicit function theorem for mixed real-complex functions). Let f :
O ⊆ C × R

m → C, where O is open, be continuously differentiable in the real sense
(i.e. after identifying C with R

2 in the canonical way) is continuously differentiable. Let
(z0, v0) ∈ O and let us write f = f (z, v) for z ∈ C and v ∈ R

m. If (1) f (z0, v0) = 0
and (2) ∂z f (z0, v0) �= 0 then there exist open sets U ⊆ C × R

m and W ⊆ R
m and

a function g : W → C which is continuously differentiable in the real sense such
that (1) (z0, v0) ∈ U , v0 ∈ W , (2) g (v0) = z0, (3) (g (v) , v) ∈ U for every v ∈ W ,
(4) f (g (v) , v) = 0 for every v ∈ W and

∇vg (v0) = −∇v f (z0, v0)

∂z f (z0, v0)
.

Moreover, if f is more regular, in the real sense, then so is g.

Proof. See Chapter 9 of [Rud76]. 
�
Lemma B.12. (Coercivity implies invertibility and bounds on the inverse) Let B be a
real n-by-n matrix. If B is coercive, i.e. if there exists C0 > 0 such that for every x ∈ R

n,
|Bx | � C0|x |, then B is invertible and

∣
∣
∣
∣B−1

∣
∣
∣
∣
op � 1

C0
.
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Proof. Observe that since B is coercive, it has trivial kernel, and is hence invertible. To
obtain the bound on the operator norm of B−1 simply observe that for every y ∈ R

n ,
|y| = |B B−1y| � C0|B−1y|. 
�
Corollary B.13 (Invertibility and bounds for perturbations of the identity). Let B be a
real n-by-n matrix. If ||B||op < 1 then I +B is invertible and

∣
∣
∣
∣(I + B)−1

∣
∣
∣
∣
op � 1

1−||B||op
.

Proof. The key observation is that I + B is coercive with coercivity constant 1−||B||op.
The result then follows from Lemma B.12. 
�
Lemma B.14. Let A and N be real n-by-n matrices such that N is normal, i.e. N N T =
N T N. Then [A, N ] : N = 0.

Proof. This follows from a direct computation: N A : N = A : N T N = A : N N T =
AN : N and hence [A, N ] : N = AN : N − N A : N = 0. 
�
Proposition B.15 (Korn inequality). There exists CK > 0 such that for every u ∈
H1

(
T
3, R3

)
, ||∇u||L2 � CK

(||u||L2 + ||Du||L2
)
.

Proof. See Lemma IV.7.6 in [BF13]. 
�
Proposition B.16 (Korn–Poincaré inequality). There exists CK P > 0 such that for
every u ∈ H1

(
T
3, R3

)
, ||u||L2 � CK P

(∣
∣
ffl

u
∣
∣ + ||Du||L2

)
.

Proof. This is a consequence of Proposition B.15—see for example Lemma IV.7.7 in
[BF13]—noting that ∇ × u has average zero on the torus. 
�
Lemma B.17. (A div-curl identity on the torus) For any v ∈ H1

(
T
3, R3

)
, it holds that

||∇v||2
L2 = ||∇ · v||2

L2 + ||∇ × v||2
L2 .

Proof. The key observation is that for any w ∈ R
3 and any nonzero k ∈ Z

3, w �→ k×w
|k|

is an isometry on span⊥
k , and hence |w|2 = |projk w|2 + |projk⊥ w|2 = |k·w|2

|k|2 + |k×w|2
|k|2 .

Combining this observation with Parseval’s identity allows us to conclude:

||∇v||2L2 =
∑

k∈Z3

|k ⊗ v̂ (k)|2 =
∑

k∈Z3\{0}
|k|2|v̂ (k)|2 =

∑

k∈Z3

|k · v̂ (k)|2 +
∑

k∈Z3

|k × v̂ (k)|2

= ||∇ · v||2L2 + ||∇ × v||2L2 .


�
Proposition B.18 (Estimates from the Faà di Bruno formula). Let U ⊆ R

n and V ⊆ R
p

be open and let g : U → V and F : V → R
q be k-times differentiable. There exists a

constant C = C (n, p, q, k) > 0 which does not depend on F or g such that, for every
x ∈ U ,

∣
∣
∣∇k (F ◦ g) (x)

∣
∣
∣ � C

k∑

i=1

∣
∣
∣∇ i F (g (x))

∣
∣
∣
∑

π∈Pi (k)

∣
∣∇π g (x)

∣
∣ .

Proof. This estimate follows immediately from the Faà di Bruno formula, which was
first proven in [Arb00] and can be found in a rather clean form in [Har06]. 
�
Lemma B.19 (Post-compositions by analytic functions are analytic). Suppose that F :
R

k → R
l is analytic about zero and let s > n

2 . There exists δ > 0 such that F∗ :
Hs

δ

(
T

n;Rk
) → Hs

(
T

n;Rl
)
, defined by F∗ (G) = F ◦ G for every G ∈ Hs

δ , is
analytic.
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Proof. Let δ = R
Cs

where R is the radius of convergence of F about zero and Cs is the
constant from the continuous embedding Hs · Hs ↪→ Hs and suppose that F (x) =∑∞

i=0 Fi • X⊗i for every x ∈ B (0, R), for some fixed tensorial coefficients Fi . Then
indeed, for every G ∈ Hs

δ , F∗ (G) = ∑∞
i=0 Fi • G⊗i with

∞∑

i=0

|Fi |
∣
∣
∣

∣
∣
∣G⊗i

∣
∣
∣

∣
∣
∣

Hs
�

∞∑

i=0

|Fi | Ci
s ||G||iHs �

∞∑

i=0

|Fi | Ri < ∞.


�
Lemma B.20 (Formula for the Leray projector and its complement). Let PL denote the
Leray projector on the torus. Then PL = −∇ × �−1 ∇× and I − PL = ∇�−1∇·.
Proof. This is immediate since P̂L (0) = I and P̂L (k) = I − k⊗k

|k|2 if k �= 0 and since

k × k × · = |k|2 − k ⊗ k. 
�

Appendix C: Derivation of the Perturbative Energy-Dissipation Relation

In this section we derive the energy-dissipation relation (2.8), which is satisfied by
solutions of (1.1a)–(1.1d). First recall that the Cauchy stress tensor T and the couple
stress tensor M are defined in (2.6). We will write Teq = −κ�eq for the equilibrium
version of the stress tensor. For simplicity we will also write Dt := ∂t + u · ∇ for the
advective derivative. The conservation of linear momentum (1.1a) can then be written
as Dt u = ∇ · T such that multiplying by u yields

d

dt

ˆ
T3

1

2
|u|2 =

ˆ
T3

Dt

(
1

2
|u|2

)

=
ˆ
T3

Dt u · u =
ˆ
T3

(∇ · T ) · u = −
ˆ
T3

T : ∇u.

(C.1)
Similarly, the conservation of angular momentum (1.1c) can be written as

J Dtω + [�, J ]ω = 2 vec
(
T − Teq

)
+ ∇ · M

and hence multiplying by ω − ωeq yields

J Dtω·(ω − ωeq
)
+[�, J ]ω·(ω − ωeq

) = 2 vec
(
T − Teq

)·(ω − ωeq
)
+(∇ · M)·(ω − ωeq

)
.

(C.2)
The right-hand side of (C.2) is dealt with in the usual way:ˆ

T3
2 vec

(
T − Teq

) · (ω − ωeq
)
+ (∇ · M) · (ω − ωeq

)

=
ˆ
T3

(
T − Teq

) : (� − �eq
)− M : ∇ (ω − ωeq

)
. (C.3)

Dealing with the left-hand side of (C.2) requires further rearranging. Using the fact that
the conservation of micro-inertia (1.1d) can be written as Dt J = [�, J ] and adding and
subtracting 1

2 Dt J
(
ω − ωeq

) · (ω − ωeq
)
yields

J Dtω · (ω − ωeq
)
+ [�, J ]ω · (ω − ωeq

) = Dt

(
1

2
J
(
ω − ωeq

) · (ω − ωeq
)
)

+
1

2
Dt J

(
ω + ωeq

) · (ω − ωeq
)
. (C.4)
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The key observation that allows us to conclude is the identity [�, J ] (ω + v) · (ω − v) =
− [�, J ] v ·v for every v ∈ R

3. Combining this identity with Dt J = [�, J ] tells us that

1

2
Dt J

(
ω + ωeq

) · (ω − ωeq
) = −1

2
(Dt J ) ωeq · ωeq = −Dt

(
1

2
Jωeq · ωeq

)

. (C.5)

Finally: combining (C.3), (C.4), and (C.5) yields

d

dt

(ˆ
T3

J
(
ω − ωeq

) · (ω − ωeq
)− 1

2
Jωeq · ωeq

)

=
ˆ
T3

(
T − Teq

) : (� − �eq
)− M : ∇ (ω − ωeq

)
.

Adding this equation to (C.1) yields the energy-dissipation relation (2.8).

Appendix D: The 8-By-8 Matrix M in All Its Glory

In this sectionwe record thematrix Mk in an explicit form.Recall that Mk is introduced in
Sect. 3.2, and iswritten there in a compact formwell-suited to the analysis of its spectrum.
However, in order to compute the characteristic polynomial of M , we employed the
assistance of a symbolic algebra package, and this thus requires providing an explicit
form of the matrix Mk . Mk can be written in block form as

Mk =
⎛

⎝
A B 03×2

BT C D
02×3 E F

⎞

⎠

where

A = − (μ + κ/2)
(
|k|2 I3 − k ⊗ k

)
= (μ + κ/2)

⎛

⎝
−k22 − k23 k1k2 k1k3

k1k2 −k21 − k23 k2k3
k1k3 k2k3 −k32 − k23

⎞

⎠ ,

B = κ

|k|
(
|k|2 I3 − k ⊗ k

)
diag

(
λ−1/2, λ−1/2, ν−1/2

)

= κ
√

k21 + k22 + k23

⎛

⎝

(
k22 + k23

)
/
√

λ −k1k2/
√

λ −k1k3/
√

ν

−k1k2/
√

λ
(
k21 + k23

)
/
√

λ −k2k3/
√

ν

−k1k3/
√

λ −k2k3/
√

λ
(
k21 + k22

)
/
√

ν

⎞

⎠

D = τ

2κ

√

1 − ν

λ

⎛

⎝
1 0
0 1
0 0

⎞

⎠ , E =
(
1 0 0
0 1 0

)

, F = τ

2κ

(
0 −1
1 0

)

and

C = − diag
(
λ−1/2, λ−1/2, ν−1/2

) (
2κ I3 + (α + β/3 − γ ) k ⊗ k + (β + γ ) |k|2 I3

)

diag
(
λ−1/2, λ−1/2, ν−1/2

)

−
(
1 − ν

λ

) τ

2κ
(e2 ⊗ e1 − e1 ⊗ e2)
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such that

C11 = −λ−1
(
2κ + (α + 4β/3) k21 + (β + γ )

(
k22 + k23

))
,

C12 = −λ−1 (α + β/3 − γ ) k1k2 +
τ

2κ

(
1 − ν

λ

)
,

C22 = −λ−1
(
2κ + (α + 4β/3) k22 + (β + γ )

(
k21 + k23

))
,

C21 = −λ−1 (α + β/3 − γ ) k1k2 − τ

2κ

(
1 − ν

λ

)
,

C33 = −ν−1
(
2κ + (α + 4β/3) k23 + (β + γ )

(
k21 + k22

))
,

C13 = C31 = −λ−1/2ν−1/2 (α + β/3 − γ ) k1k3,

C23 = C32 = −λ−1/2ν−1/2 (α + β/3 − γ ) k2k3.
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