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Abstract: We study a three-dimensional, incompressible, viscous, micropolar fluid with
anisotropic microstructure on a periodic domain. Subject to a uniform microtorque,
this system admits a unique nontrivial equilibrium. We prove that this equilibrium is
nonlinearly unstable. Our proof relies on a nonlinear bootstrap instability argument
which uses control of higher-order norms to identify the instability at the L* level.

1. Introduction

1.1. Brief discussion of the model. Micropolar fluids were introduced by Eringen in
[Eri66] as part of an effort to describe microcontinuum mechanics, which extend classical
continuum mechanics by taking into account the effects of microstructure present in the
medium. For viscous, incompressible continua, this results in a model in which the
incompressible Navier—Stokes equations are coupled to an evolution equation for the
rigid microstructure present at every point of the continuum. This theory can be used
to describe aerosols and colloidal suspensions such as those appearing in biological
fluids [Mau85], blood flow [Ram85,BBR+08, MKO08], lubrication [AK71,BL96,NS12]
and in particular the lubrication of human joints [SSP82], liquid crystals [Eri66,LR04,
GBRT13], and ferromagnetic fluids [NST16].

We postpone a more thorough discussion of the model until Sect. 2 and here provide
only a brief overview sufficient to state the main result. The variables needed to describe
the state of a micropolar fluid at a point in three-space and time are as follows: the fluid
velocity is a vector u € R3, the fluid pressure is a scalar p € R, the microstructure’s
angular velocity is a vector @ € R, and the microstructure’s inertia tensor is a positive
definite symmetric matrix J € R3*3. We study homogeneous micropolar fluids, which
means that the microstructures at any two points of the fluid are equal up to a proper
rotation. In turn, this means that the microinertia tensors at any two points of the fluid are
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equal up to conjugation. Note that the shape of the microstructure determines the inertia
tensor, but the converse fails in the sense that the same inertia tensor may be achieved
by differently shaped microstructure.

We restrict our attention to problems in which the microinertia plays a significant
role, and so in this paper we only consider anisotropic micropolar fluids for which the
microinertia tensor is not isotropic, i.e. J has at least two distinct eigenvalues. In fact, we
study micropolar fluids whose microstructure has an inertial axis of symmetry, which
means that the microinertia J has a repeated eigenvalue. More concretely: there are
some physical constants A, v > 0 which depend on the microstructure such that, at
every point, J is a symmetric matrix with spectrum {X, A, v}. This is in some sense the
intermediate case between the case of isotropic microstructure where the microinertia
has a repeated eigenvalue of multiplicity three and the “fully” anisotropic case where
the microstructure has three distinct eigenvalues.

The equations of motion related to these quantities in the periodic spatial domain
T3 =R3/2n 7)3, subject to an external microtorque te3, read:

u+Ww-Vyu=paAu+xVxw—Vp on (0, T) x T3, (l.1a)
V-u=0 on (0, 7) x T3, (1.1b)
JOwo+w-Vo)+w x Jo

=kVxu—2ko+@—7)V(V-0)+7Aw+1ez on (0,T) x T3, (1.1c)
J+w-V)J =[Q,J] on (0, T) x T3, (1.1d)

where [ -, -] denotes the matrix commutator, i, k, &, and y are physical constants
related to viscosity, T denotes the magnitude of the microtorque, and €2 is the 3-by-3
antisymmetric matrix identified with w via the identity Qv = w x v for every v € R3.

We have chosen to consider the situation in which external forces are absent and
the external microtorque is constant, namely equal to te3 for some fixed T > 0. Note
that the choice of e3 as the direction of the microtorque may be made without loss of
generality since the equations are equivariant under proper rotations, in the sense that if
(u, p, ®, J) isasolution of (1.1a)~(1.1d) then, forany R € SO (3), (u, p, Rw, RIRT)
is a solution of (1.1a)—(1.1d) provided that the external torque 7e3 is replaced by TRe3.

There are two ways to motivate our choice to have no external forces and a constant
microtorque. On one hand, it is reminiscent of certain chiral active fluids constituted of
self-spinning particles which continually pump energy into the system [BSAV17], as
our constant microtorque does. On the other hand, this choice of an external force—
external microtorque pair is motivated by the dearth of analytical results on anisotropic
micropolar fluids. It is indeed natural, as a first step in the study of non-trivial equilibria of
anisotropic micropolar fluids, to consider a simple external force—external microtorque
pair yielding non-trivial equilibria for the angular velocity w and the microinertia J. The
simplest nonzero such pair is precisely our choice of (0, Te3).

Let us now turn to the aforementioned equilibrium. Due to the uniform microtorque,
the system admits a nontrivial equilibrium. At equilibrium the fluid velocity is quiescent
(teqg = 0), the pressure is null (p.,;, = 0), the angular velocity is aligned with the
microtorque (weq = 5.€3), and the inertial axis of symmetry of the microstructure is
aligned with the microtorque such that the microinertia is Jo, = diag(i, A, v).

Physically-motivated heuristics (which again we postpone until Sect. 2) suggest that
the stability of this equilibrium depends on the ‘shape’ of the microstructure. The heuris-
tics suggest that if the microinertia is inertially oblong, i.e. if A > v, then the equilibrium
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(a) This rigid body is inertially oblong if h? > 672. (b) This rigid body is inertially oblate if h? < 612

Fig. 1. Two rigid bodies with uniform density which possess an inertial axis of symmetry

is unstable, and that if the microinertia is inertially oblate, i.e. if v > A, then the equi-
librium is stable. This nomenclature is justified by the fact that for rigid bodies with an
axis of symmetry and a uniform mass density, the notions of being oblong (or oblate),
which essentially means that the body is longer (respectively shorter) along its axis of
symmetry than it is wide across it, and being inertially oblong (respectivelly inertially
oblate) coincide. Examples of inertially oblong and oblate rigid bodies are provided in
Fig. 1. This paper deals with the instability of inertially oblong microstructure. In future
work we will study the stability of inertially oblate microstructure.

1.2. Statement of the main result. The main thrust of this paper is to prove that if the
microstructure is inertially oblong, then the equilibrium is nonlinearly unstable in L. A
precise statement of the theorem may be found in Theorem 5.2, but an informal statement
of the result is the following.

Theorem 1.1 (L instability of the equilibrium). Suppose that the microstructure is iner-
tially oblong, i.e. suppose that A > v, and let Xey = (Ueq,Weq, Jeqg) =
O, ﬁeg, diag(A, A, v)) be the equilibrium solution of (1.1a)-(1.1d). Then X4 is non-

linearly unstable in L2.

Here the notion of nonlinear instability is the familiar one from dynamical systems:
there exists a radius § > 0 and a sequence of initial data {Xg w2 > converging to X, in
L2, such that the solutions to (1.1a)—(1.1d) starting from XB exit the ball B(X,4, d) in
finite time, depending on .

Note that in Theorem 1.1 the pressure has disappeared from consideration. This is
because the pressure plays only an auxiliary role in the equations and may be eliminated

from (1.1a) by projecting onto the space of divergence-free vector fields.

2. Background, Preliminaries, and Discussion

2.1. Micropolar fluids. To the best of our knowledge, the anisotropic micropolar fluid
model has not been studied in the PDE literature, so our aim in this subsection is to
provide the reader with a brief overview of the model and its features. We emphasize
that it is a natural extension of the Navier—Stokes model, as it follows from the same
principles of rational continuum mechanics. We refer to [Eri99,Eri01] for a complete
continuum mechanics derivation of the micropolar fluid model, and we refer to [L.uk99]
for a thorough discussion of the mathematical analysis of isotropic micropolar fluids.
Throughout this discussion we will take the domain under consideration to be the (nor-
malized) torus T> = R3 / (27Z)3 and we will let T € (0, +00] denote our time horizon.
For the sake of brevity, in this subsection we will commit the usual crime of assuming
all quantities are “sufficiently regular” to justify the written assertions.
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Fig. 2. A depiction of how a subset 29 € T3 of the micropolar continuum behaves under the flow of 1 and Q.
Q (1) = n (t, Qo) is the image of ¢ under the flow of n and y € Q¢ is a point in €( at which the micropolar
continuum has microinertia Zy. At the point x = 7 (¢, y) the microinertia is Z (¢, y) = Q (¢) Zo Q' (t) since
the microinertia transforms as a 2-tensor under the flow of the microrotation Q

Just as rational continuum mechanics begins with the postulation that there exists
some flow map n : (0, T') x T3 — T3 which describes the motion of the continuum, the
micropolar theory posits the existence of an additional (Lagrangian) microrotation map
Q:(0,T) x T3> - SO (3) which describes the rotation of the microstructure present
at every point in the continuum. The pair (1, Q) thus provides a complete kinematic
description of a micropolar continuum as illustrated in Fig. 2.

A word of warning: there are two ways to define the microrotation map and we have
chosen here the convention that Q is absolute. Indeed, one may either define Q to be
the rotation of the microstructure with respect to its immediate environment, in which
case Q would be equal to the identity when the micropolar continuum undergoes rigid
motions such as rotations, or one may define Q to be the identity at time = 0 and to be
the absolute rotation underwent by the micropolar continuum thereafter. We choose the
latter convention. In order to illustrate the physical interpretation of the microrotation
map Q, Table 1 contrasts the motions obtained for various simple expressions of 7 and
0

Analogously to how the flow map 1 is more conveniently characterized by its Eulerian
velocity u, the microrotation map Q is characterized by its Eulerian angular velocity
where

u(t, -) = dn(t, )on(t, ) and w(r, -) = vecd, Q(r, -)QT (1, ) on(r, )~
and {
(vecM); = §8aibMab for any 3-by-3 matrix M. (2.1)

Recall that the Levi-Civita symbol ¢;j; is defined to be the sign of the permutation
which maps 1 — i,2 +> j,and 3 +— k. Note that here, since Q € SO (3) we know that
Q1) = 30007 () o 77(t)_l is antisymmetric, and hence we may use the standard
identification of a 3-by-3 antisymmetric matrix A withavectora = vec A viaAv = axv
for any v € R?, where x denotes the usual cross product in R3.

The derivation of the equations of motion for a micropolar continuum begins by
postulating the conservation of mass, the balance of linear momentum, and the balance
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Table 1. Three explicit examples of the motion of a micropolar continuum with the same initial configuration.
These motions are chosen to be similar to emphasize that the microrotation Q is an absolute rotation. The figures
shown correspond to cross-sections perpendicular to e3, each colored arrow is a depiction of the orientation
of the microstructure at that point, yq is some point in the micropolar continuum, and R = ¢; @ ¢] —e] @ 2
corresponds to a (counter-clockwise) rotation by /2 in the plane perpendicular to e3

Configuration at time ¢t = 0

Case 1 Case 2 Case 3
n(t.-) e —yo) (o) I
Q(ty) etft I et
u (t, ) Rz Rz 0
%V X u(t, ) e3 e3 0
w(t,x) es3 0 €3

0 €3
Configuration at time t = 5 . -

of angular momentum. For micropolar continua the angular momentum is the sum of
the macroscopic angular momentum, obtained from the fluid velocity u and a choice
of reference point in space, and the microscopic angular momentum Jw. Additionally,
micropolar fluids conserve microinertia, which means that the Lagrangian microinertia
Z(t, ) = Jon(t, ) satisfies Z(t, -) = Q(t, -)Z(0, -) 0T (¢, -). Differentiating in
time yields 0,7 = [8, QQT, Z], where [-, -] denotes the matrix commutator. We may
rewrite this in Eulerian coordinates as

hJ+w-V)J=1[Q,J]. (2.2)

Note that a microinertia is physical when its spectrum {A, A2, A3} satisfies A; <
% 23:1 Aj = % tr J fori = 1, 2, 3. This comes from the fact that we may compute the
microinertia tensor of a rigid body of mass M from the covariance matrix V of its mass
distribution via J/ = M ((tr V) I — V). The condition above on the eigenvalues of J is
then equivalent to requiring the physical condition that V be positive semi-definite.

For incompressible continua with constant density the conservation of mass reduces

to the divergence-free condition
V.u=0. (2.3)

Using (2.2), the conservation of linear and angular momentum then respectively take
the form
u+w -Vyu=vV-T+f 2.4)

and

@r+u-Vy(Jo)=J o+ u-V)Io)+wo x Jo=2vecT +V -M+g (2.5)
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where T is the Cauchy stress tensor which expresses the internal forces exerted by
the continuum on itself, M is the couple stress tensor which expresses the internal
microtorques exerted by the continuum on itself (and on its microstructure), and where
f and g are the external forces and microtorques acting on the continuum, respectively.

To close the system we continue along the path of rational mechanics which produces
Navier-Stokes and postulate that some constitutive equations hold which determine the
stresses 7 and M in terms of the velocity u, the angular velocity w, and the pressure
p. Analogously to how a Newtonian fluid is defined as a continuum for which the
stress tensor is given by T = ulDu — pI, a micropolar fluid is defined as a micropolar
continuum for which

1
T=uDu—pI+/cten<5qu—w> and M =a(V-w)l+pD°w+ytenV x w,

(2.6)
where: D denotes the symmetrized gradient defined by Dv = Vv + V!, ten is the
inverse of vec introduced in (2.1) such that ten (v) w = v x w for every v, w € R3, DO
is the trace-free part of the symmetrized gradient defined by DYy = Dv — % (V-v)l,
and u, k, «, B, y are physical constants commonly referred to as fluid viscosities. Note
that, by contrast with classical fluids, the stress tensor T is not symmetric.

The terms in M are analogous to the terms one finds in the viscous stress tensor
for a compressible fluid and have a similar physical interpretation. The most interesting
novelty in the micropolar model is the coupling term « ten (%V X u— a)) It serves to
induce a stress when there is a mismatch between the local rotation induced by the flow
map and the rotation of the microstructure: see Table 1 for some examples. Note that
the coupling term is not symmetric, and so it spoils the usual symmetry enjoyed by the
stress tensor in standard continuum models.

Finally, thermodynamical considerations, and in particular the Clausius-Duhem in-
equality, tell us that the quadratic form given by the dissipation

2

1 _ 2 0 2
-V xu—ow|l+a|V-0| +§|]D) "2y |Vxw|

2

T:(Viu—Q4+M : Vo = %|ID)M|2+2K 2

must be positive-semidefinite, from which it follows that i, «, «, 8, y > 0. Note that in
this paper we require that

4p
u,x,a+?,,3+y>0. 2.7
In particular ¢ and ¥ must be strictly positive but some of «, 8, and y may vanish. More

precisely: if f > O then we allow ¢ = y = 0 and if «, y > 0 then we allow g = 0.
This requirement comes from the fact that

V-M=(+4B/3)V(V-0)+ (B +7) (Aw—V (V- )

where the symbol of VV - is — k|2 proj; and the symbol of A — VV - is —|k|? Projy L,
therefore the contribution of the dissipation coming from M is

(VM) =Y~k ((@+4B/3) Iprojy b + (B + ) Iproji &)
T keZ3
This dissipative term will then control ||Vw||; > precisely when o +48/3, B +y > 0.

Putting (2.2), (2.3), (2.4), and (2.5) together with (2.6) yields (1.1a)—(1.1d) when the
external forces are taken to vanish and when the external microtorques are taken to be
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constant, namely g = te3 for some fixed T > 0. Note also that, for simplicity, we have
defined it = p+«x/2, & =a+4p/3,and y = B+ y in (1.1a)—(1.1d).

It is worth noting that this system is equivariant under Galilean transformations.
More precisely: if (u, p, w, J) is a sufficiently regular solution of (1.1a)—(1.1d) then
Uavg := fa U is constant in time and

0,7)x T3> (1, y) > (u — Uayg, P, @, J) (t, y+ tuavg)

also satisfies (1.1a)—(1.1d). We may therefore assume without loss of generality that u
has average zero at all times. Similarly, since the pressure only appears in the equations
with a gradient, we are free to posit that p has average zero for all times.

2.2. Previous work. Micropolar fluids have been extensively studied by the continuum
mechanics community over the last fifty years and an exhaustive literature review is
beyond the scope of this paper. We restrict our attention to the mathematics literature here,
in which case, to the best of our knowledge all results relate to isotropic microstructure,
where the microinertia J is a scalar multiple of the identity. In that case the precession
term w X Jw from (1.1c) vanishes and the entire equation (1.1d) trivializes. Note that
in two dimensions the micro-inertia is a scalar, and therefore all micropolar fluids are
isotropic.

In two dimensions the problem is globally well-posed, as per [LukO1] where global
well-posedness and qualitative results on the long-time behaviour are obtained. Some
quantitative information on long-time behaviour is also known in two dimensions: for
example, decay rates are obtained in [DCO09]. The situation is more delicate in three
dimensions, which is an unsurprising assertion in the setting of viscous fluids. The first
discussion of well-posedness in three dimensions is due to Galdi and Rionero [GR77].
Lukaszewicz then obtained weak solutions in [Luk90] and uniqueness of strong solutions
in [Lu89]. More recent work has established global well-posedness for small data in
critical Besov spaces [CM12], in Besov-Morrey spaces [FP13], and in the space of
pseudomeasures [FVRO07], as well as derived blow-up criteria [ YualO]. There is also an
industry devoted to the study of micropolar fluids when one or more of the viscosity
coefficients vanishes: we refer to [DZ10] for an illustrative example.

Various extensions of the incompressible micropolar fluid model considered here
have been studied. For example, compressible models [LZ16], models coupled to heat
transfer [Tar06,KLE19], and models with coupled magnetic fields [AS74,RM97] have
all been studied. Again, to the best of our knowledge all of these works consider isotropic
micropolar fluids.

2.3. Equilibria. In this section we describe the two classes of equilibria which arise as
particular solutions of (1.1a)—(1.1d). A critical piece of this description is the following
energy-dissipation relation:

d 1 1 1
I W§|u|2+§J(a)—a)eq)~(w—wgq)—zlweq~weq
? B

—qu—(w—weq) +a|V-w|2+§

1
- —/ B Duf? + 2 ID°w|? + 2y |V x |2,
3 2 2

2.8)
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where recall that w.; = 5-e3. This energy-dissipation relation is obtained by testing
(1.1a) and (1.1c) against u and @ — w,, respectively and integrating by parts. For a full
derivation, see “Appendix C”. With the relation (2.8) in hand we may define two classes
of equilibria.

Definition 2.1. We say that a solution (u, p, w, J) of (1.1a)—(1.1d) is an equilibrium if
o (u, p,w, J) = 0 and we say that it is an energetic equilibrium if (‘li—lé}el = 0 where
the relative energy & is given as in (2.8) by

1 1 1
Erel (U, p,w, J) = / —lul?+=J (a) — weq) : (a) —weq) — =Wy - Weq.  (2.9)
™ 2 2 2

There are two reasons why one might study the energetic equilibria introduced in Def-
inition 2.1: (1) they arise naturally as the stationary points of a Lyapunov functional and
(2) we believe that they play an essential role in characterizing the long-time behaviour
of the system.

We justify (1) now and postpone the justification of (2) until after the identification
of the various equilibria is carried out in Proposition 2.2. Since the relative energy
&rel 1s both non-increasing in time and bounded below we may indeed view it as a
Lyapunov functional. The observation that %é}el < 0 follows immediately from (2.8)
and the boundedness from below of & follows from the fact that the spectrum of the
microinertia J is invariant over time.

More precisely: as described in Sect. 2.1, the conservation of microinertia for a
homogeneous micropolar fluid means that there exists some reference microinertia Jeet
to which J(z, x) is similar at all times 0 < t < T and at every point x € T>. Denoting
by Amax the largest eigenvalue of Jir it follows that the only non-positive term in Eg is
bounded below: —Jwey - Weqg = —Amax|weq |2, and hence & itself is bounded below.

We now identify all of the (sufficiently regular) equilibria which belong to each class
as defined in Definition 2.1. Recall that we are considering a homogeneous micropolar
fluid whose microstructure has an inertial axis of symmetry, which means that there
are physical constants A, v > 0 such that the microinertia has spectrum {X, A, v}. In
particular this microinertia tensor is physical precisely when 21 > v > 0. We will
assume thereafter that strict inequalities hold, i.e. 2A > v > 0. This assumptions means
that the microstructure is not degenerate, in the sense that it corresponds to a genuinely
three-dimensional rigid body (as opposed to a degenerate rigid body which would be
lower-dimensional, e.g. because it is flat in one or more directions).

Proposition 2.2. Let (u, p, w, J) be a sufficiently regular solution of (1.1a)—(1.1d) where
u has average zero.

(D) If (u, p, w, J) is an equilibrium then u = 0, p = 0, © = wWeq = ie& and J =
diag(h, A, v) = Al D v.
2) If (u, p, w, J) is an energetic equilibrium then either it is an equilibrium or u = 0,

Pp=0 0=0wy andJ = e’ﬁRJ_(O)e_’ﬁR @ A where R = (? _01> and where

the spectrum ofj(O) is {\, v}. Here ‘@ denotes the direct sum of two linear operators,
see Sect. 2.7 to recall the precise definition.

In simpler words Proposition 2.2 says that for both equilibria and energetic equilibria
the microstructure rotates in the direction of the imposed microtorque, with one cru-
cial difference: the unique equilibrium corresponds to the inertial axis of symmetry of
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the microstructure being aligned with the microtorque, giving rise to a constant mi-
croinertia, whilst the energetic equilibria consist of an orbit where the inertial axis of
symmetry rotates in the plane perpendicular to the microtorque, giving rise to a periodic
microinertia (with period 47« /7).

Proof of Proposition 2.2. Since equilibria are energetic equilibria we begin by suppos-
ing that (u, p, w, J) is an energetic equilibrium. It follows from the energy-dissipation
relation (2.8) that the dissipation vanishes, i.e.

2
/ E|ID)M|2+2/< p
I 2

Vxu— (a)—a)eq) +a|V-w|2+§
In particular: w is constant and u has constant curl. Coupling this with the fact that u
is divergence-free we deduce that u is harmonic. Since u has average zero, it follows
that u = 0, and hence that p = 0 (recall that we require p to have average zero) and
W= Weq-

1
3 D°w|? +2y|V x w> = 0.

So now we know from (1.1c) that the precession term w X Jo = (i)zeg x Jes

vanishes, and hence J has the block form J = J & J33 for some 2-by-2 matrix J.
The conservation of microinertia (1.1d) now becomes the ODE 9,/ = [ten Weq, J ] =
L [R, J] @ 0 which may be solved explicitly to yield J(r) = ¢'%XJ(0)e ™% * and
J33(t) = J33(0). B _

There are now two cases to consider: either J has a repeated eigenvalue A or J has
distinct eigenvalues A and v. Since e’ wRJ 0y’ 2R is constant in time if and only if
J(0), and hence J(¢), has a repeated eigenvalue, the result follows. O

As the next section suggests, we believe that the global attractors of (1.1a)—(1.1d)
may be characterized in terms of the equilibrium and the orbit of energetic equilibria.
This is summarized in the conjecture below, which is the second reason why energetic
equilibria are worthy of attention.

Conjecture 2.3.(1) Ifthe microstructure is inertially oblong, i.e. . > v, then the orbit of
energetic equilibria identified in Proposition 2.2 is the global attractor of the system
(1.1a)—(1.1d).

(2) If the microstructure is inertially oblate, i.e. .. < v, then the equilibrium identified in
Proposition 2.2 is the global attractor of the system (1.1a)—(1.1d).

We note that attractors have been obtained in previous works in the context of two-
dimensional isotropic micropolar fluids [CCD07,LuT09].

A depiction of the equilibrium and the energetic equilibria configurations of the
microstructure can be found in Fig. 3, where we also label each configuration with its
relevant conjectured long-time behaviour.

2.4. Heuristics for the long-time behaviour. In this section we briefly discuss heuristics
for the long-term behaviour of the system (1.1a)—(1.1d). The central element of the
reasoning that follows is the energy-dissipation relation (2.8). As remarked in Sect. 2.3,
this relation tells us that the relative energy & defined in (2.9) is non-increasing in
time and bounded below. Let us therefore, for the sake of this discussion, assume that
Erel approaches its absolute minimum as time approaches +o0o. In particular this means
that each term in &) approaches its absolute minimum, from which we deduce that u
approaches zero, w approaches w,, (since J is strictly positive-definite at time ¢ = 0
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€3 es3
i €3 es
(b) Globally attracting? (¢) Globally attracting?
(a) Unstable. (d) Unstable?

Fig. 3. Depictions of the microstructure for the equilibrium (a, ¢) and an energetic equilibrium (b, d) corre-
sponding to both the oblong (a, b) and oblate cases (c, d). b, ¢ are conjectured to be globally attracting for the
oblong and oblate cases respectively, d is conjectured to be be unstable for the oblate case, and we prove in
Theorem 1.1 that a is unstable

and hence strictly positive-definite for all time), and —J33 approaches —Amax for Amax
denoting the maximum eigenvalue of J, i.e. Apax = max(A, v).

This last observation is precisely where the dichotomy between inertially oblong and
inertially oblate microstructure comes in. If the microstructure is inertially oblong, i.e.
A > v, then J33 approaches A which means that J must consist of the distinct eigenvalues
A, v, and hence the global attractor is conjectured to be the orbit of energetic equilibria.
If the microstructure is inertially oblate, i.e. v > A, then J33 approaches v and hence J
has repeated eigenvalues equal to A, such that the global attractor is conjectured to be
the equilibrium.

2.5. Heuristics for the origin of the instability. In this section we discuss heuristics for
the origin of the instability of the system (1.1a)—(1.1d). Beyond being helpful heuristics
that physically motivate the instability of the system, the ideas presented below actually
form the core of our proof of the nonlinear instability.

We begin with another energy-dissipation relation, which is associated with the lin-
earization of the problem (1.1a)—(1.1d) about its equilibrium. This relation is

d d 1 5, 1 1 1 T\2 o,
aé'un = T . §|u| + EJeqw cw— R (ﬂ) lal ) = -D (u, w — weq)
(2.10)
where a = (J31, J32) = (J13, J23) and where the dissipation D is given as in (2.8) by

2

D(u,w):/ %|]D)u|2+2/c +a|V~a)|2+§|]D)0a)|2+2y|Vxa)|2.
T3

1
-V x —
) u w

Note that only part of the micro-inertia J appears in (2.10), namely a = (J31, J32) which
corresponds to the products of inertia which describe the moment of inertia about the
e1-axis and ep-axis, respectively, when the microstructure rotates about the e3-axis. This
is due to the fact that, as explained in detail in Sect. 3.1, the linearized problem can de
decomposed into blocks which do not interact with one another. In particular the block
governing the dynamics of u, w, and a is the only block which produces non-trivial
dynamics, and it is this block which gives rise to (2.10).

Since the integrand of &, in (2.10), viewed as a quadratic form on (u, w, a), has
negative directions precisely when the microstructure is inertially oblong, i.e. when
A > v, this suggests that the equilibrium is unstable in that case.

We actually know a little bit more about the instability mechanism. If we denote by
M (k), where k € 73, the symbol of the linearized operator about the equilibrium, then
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(a) Physical parameters: A = 3.2, v = 0.6, u = 4.3, (b) Physical parameters: A = 3.6, v = 1.2, u = 2.4,
k=33 a=09, =68 v=04,7=44. k=04,a=53,0=31~v=177=20.

Fig. 4. An illustration of the fact that the instability is not exclusively due to the zero mode: depending on the
physical parameter regime the eigenvalue with largest real part may or may not occur when k = 0. Here My
denotes the symbol of the linearization of (1.1a)—(1.1d) about the equilibrium

we can compute the spectrum of M (0) explicitly and see that is has exactly two unstable
eigenvalues, which come as a conjugate pair. An important point to note here is that the
only nonzero components of the eigenvectors corresponding to this conjugate pair are
the components corresponding to a and w, which denotes the horizontal components of
w,1i.e. ® = (w1, wy). It is thus precisely a and o that are at the origin of the instability.

This is particularly interesting since M (0) is precisely (up to neglecting its compo-
nents depending on u) the linearization of the ODE

dw
J—t+owxJo=1te; —2kw
dt

dJ

dr 2, J]
about its equilibrium (weq, Jeg) = (55e3, diag (1, A, v)), where here @ and J are only
time-dependent. This ODE describes the rotation of a damped rigid body subject to a
uniform torque, which tells us that instability of the system (1.1a)—(1.1d) stems precisely
from the instability of this ODE.

Finally note that, although this ODE plays a key role in explaining the instability
mechanism, it does not fully characterize it. To understand what we mean by this, recall
that the linearization of the ODE about its equilibrium describes the evolution of the
zero Fourier mode of the linearized PDE. However, the nonzero Fourier modes play a
nontrivial role in the instability mechanism. Indeed numerics show that, depending on
the physical regime, the most unstable mode (i.e. that giving rise to the eigenvalue with
the largest positive real part) may or may not be the zero mode. This is shown in Fig. 4.

2.6. Summary of techniques and plan of paper. Our technique for proving Theorem 1.1
is to employ the nonlinear bootstrap instability framework first introduced by Guo-
Strauss [GS95a], which is not so much a black-box theorem as it is a strategy for proving
instability. In broad strokes, the idea is to construct a maximally unstable solution to
the linearized equations and then employ a nonlinear energy method to prove that this
solution is nonlinearly stable, i.e. the nonlinear dynamics stay close to the linear growing
mode, which then leads to instability.

An essential feature of the Guo-Strauss bootstrap instability framework is that it does
not require the presence of a spectral gap, as is required for other standard methods used
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to prove nonlinear instability (see for example [FSV97]). This is crucial for us since it is
quite delicate to obtain spectral information about the problem at hand, as discussed in
more detail below. In particular, note that Proposition 3.9 tells us that a pair of conjugate
eigenvalues of the linearized operator approach the imaginary axis as the wavenumber
approaches infinity. As an immediate consequence, we may thus deduce that there is no
spectral gap.

In order to implement the bootstrap instability strategy we need four ingredients. The
first is the maximally unstable linear growing mode. This is a solution to the linearized
equations (linearized around the equilibrium) that grows exponentially in time (when
measured in various Sobolev norms) at a rate that is maximal in the sense that no other
solution to the linearized equations grows more rapidly. The second is a scheme of
nonlinear energy estimates that allows us to obtain control of high-regularity norms
of solutions to the nonlinear problems in terms of certain low-regularity norms. This
is the bootstrap portion of the argument. The third is a low-regularity estimate of the
nonlinearity in terms of the square of the high-regularity energy, valid at least in a small
energy regime. Finally, we need a local existence theory for the nonlinear problem that
is capable of producing solutions to which the bootstrap estimates apply. With these
ingredients in hand, we can then prove that the nonlinear solution stays sufficiently
close to the growing linearized solution that it must leave a ball of fixed radius within a
timescale computed in terms of the data.

In Sect. 3 we construct the maximally unstable solution to the linearized equations. A
principal difficulty is encountered immediately upon linearizing: the resulting (spatial)
differential operator is not self-adjoint. This is due entirely to the anisotropy of the
microstructure, and in particular to the term @ x Jw in (1.1c); indeed, in the case of
isotropic microstructure this term vanishes and the linearized operator becomes self-
adjoint. The lack of self-adjointness means we have far fewer tools at our disposal, and
in particular it means that we cannot employ variational methods to find the maximal
growing mode.

Since we work on the torus and the linearization is a constant coefficient problem,
we are naturally led to seek the maximal solution in the form of a growing Fourier mode
solution. This leads to an ODE in C® of the form B,f(k = [;’kf( &, where k € Z3 is the
wavenumber and B € C8*3 is not Hermitian. Without the precision tools associated
to Hermitian matrices, we are forced to naively study the degree eight characteristic
polynomial of Bk, which, due to the appearance of the physical parameters «, 8, v, «,
W, T, A, v, in addition to the wave number k, is an unmitigated mess. Numerics (see
Fig. 4) suggest that for any k € Z3 the spectrum consists of a conjugate pair of unstable
eigenvalues, a zero eigenvalue (coming from the incompressibility condition), and five
stable eigenvalues. However, due to the inherent complexity of By and its characteristic
polynomial, we were unable to prove this, except in the case k = 0.

Failing at the direct approach of simply factoring the characteristic polynomial of B,
we instead employ an indirect approach based on isolating the highest order (in terms
of the wavenumber k) part of the characteristic polynomial and deriving its asymptotic
form as |k| — oo. For this it’s convenient to parameterize the matrices in terms of
k € R3 rather than Z3. Using this idea, the special form of the highest-order term, and
the implicit function theorem, we are then able to prove the existence of an unstable
conjugate pair of eigenvalues, smoothly parameterized by k € R3 in a neighborhood of
infinity. Remarkably, since the neighborhood of infinity contains all but finitely many
lattice points from Z3, we conclude from this argument that for all but finitely many
wavenumbers 53y is unstable. Combining this with anumber of delicate spectral estimates
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and an application of Rouché’s theorem, we are then able to find k. € 73 with the largest
growth rate. From this and a Fourier synthesis we then construct the desired maximal
growing mode.

The lack of self-adjointness is also an issue when we seek to use spectral information

about By to obtain bounds on the corresponding matrix exponential e’ Bi These bounds
are required to obtain the bounds on the semigroup generated by the linearization that
verify that our growing mode is actually maximal among all linear solutions. We only

know that ¢'B* is similar to its diagonal matrix up to a change of basis matrix whose norm
depends on k. Circumventing this issue requires a good understanding of the decay of
the spectrum of the symmetric part of By as k becomes large, and the precise workaround
is discussed at the beginning of the proof of Proposition 3.11.

In Sect. 4 we derive the nonlinear bootstrap energy estimates and the nonlinearity
estimate. Here the primary difficulty is related to rewriting the problem in a way that pre-
vents time derivatives from entering the nonlinearity. If we were to naively rewrite (1.1c)
by writing J 3w = Jegdw + (J — Jeg) 0, and considering the term (J — Jog) 0;w as
a remainder term, then we would then not be able to close the estimates due to this time
derivative being present as part of the nonlinear remainder. Instead we must multiply
(1.1c) by JegJ —I, which solves the time derivative problem but significantly worsens
the form of the remaining terms in the nonlinearity. In spite of this, we are able to derive
the appropriate estimates needed for the bootstrap argument.

We delay the development of the final ingredient, the local existence theory, until
“Appendix A”. Our local existence theory is built on a nonlinear Galerkin scheme that
employs the Fourier basis for the finite dimensional approximations. To solve the result-
ing nonlinear, but finite dimensional, ODE we borrow many of the nonlinear estimates
from Sect. 4.

Section 5 combines the four ingredients to prove our instability result. This culminates
in Theorem 5.2, the main result of the paper. Finally, in “Appendix B” we record a number
of auxiliary results that are used throughout the main body of the paper.

2.7. Notation. We say a constant C is universal if it only depends on the various pa-
rameters of the problem, the dimension, etc., but not on the solution or the data. The
notation @ < B will be used to mean that there exists a universal constant C > 0 such
that o« < CB.

Let us also record here some basic notation for linear algebraic operations. For any
w € R" we denote by P (w) and P, (w) the orthogonal projections onto the span
of w and its orthogonal complement, respectively. More precisely: for any nonzero w,
P (w) = % and P| (w) = I — % whilst P; (0) = 0 and P, (0) = I. For any
v e R?and w € R3 we write w = (wy, wa), W+ = (—wp, wy), ¥ = (v1, v2,0),
and 71+ = (—v2, v1, 0). Finally, let X, X5, Y1, and Y> be normed vector spaces, let
Ly € L(Xy1,Y)),and let Ly, € L (X3, Y). The direct sum of L; and L,, denoted
L1 ® L, is the bounded linear operator from X| x X5 to Y1 x Y5 defined via, for every

(f1, f2) € X1 x X2, (L1 @ L2) (f1, f2) := (L1 f1, L2 f2).

3. Analysis of the Linearization

To begin we record the precise form of the linearization of (1.1a)—(1.1d) about the
equilibrium solution (ueg, Peq, @eq. Jeg) = (0,0, 5e3, diag(x, A, v)) and introduce
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notation which allows us to write the linearized problem in a compact form. Then in
Sect. 3.1 we note that the linearized operator has a natural block structure with only one
block which gives rise to non-trivial dynamics. It is this component whose spectrum
we study in detail in Sect. 3.2. The results from Sect. 3.2 are then used to construct the
semigroup associated with the linearization in Sect. 3.3 and to construct a maximally
unstable solution to the linearized problem in Sect. 3.4.

The linearization is

oru=u+k/2) Au+kV xw—Vp, (3.1a)
JeqOrw = — (a) X JeqWeq + Weg X JWeq + Weq X Jeqw)

+«V X u—2kw+ (¢+B/3—y)VV -0+ (B +y) Aw, and (3.1b)
O = [Qeg. J]+ [, Jeg] (3.1¢)

subject to V - u = 0 which, for X = (v, w, J), D = I3 ® Joy ® IMar3) (Where Ina3)
denotes the identity function on the space of 3-by-3 matrices), A (p) = (=Vp, 0, 0),
and an appropriate linear operator £ can be written more succintly as

DX = LX + A (p) subjecttoV-u = 0. (3.2)

3.1. The block structure. The linearization (3.1a)—(3.1c) can be decomposed into blocks
which do not interact with one another. Notably, only one of these blocks gives rise to
non-trivial dynamics, so we will identify this block before studying its spectrum in
Sect. 3.2. More precisely: writing

J a
I = <aT ./33> ’

the linearization becomes

ou=(U+«k/2) Au+«V xw—Vp, (3.3a)
Jegdrw =kV X u =2kw+(@+B/3—y)VV.-0+(B+y)Aw

o el (TVat

.= v) -6 <2K) at, (3.3b)
da=0—vyat+—al (3.3¢)
2K

— T _
9,J = > [R.J]. and (3.3d)
9;J33=0 (3.3¢)

subject to V - u = 0, where R is the 2-by-2 matrix givenby R = e, ® 1 — e1 ® es.

In particular, if we write ¥ = (u, w,a) and D = I3 @ J.4 ® I then (3.3a), (3.3b), and
(3.3¢) can be written as 3 DY =~/\7 Y + A (p) subject to V - u = 0 for an appropriate
operator M. In particular, since M commutes with the application of the Leray projector
to u it suffices to study 9, DY = MPY, where P := Py & I3 & I, for Py denoting the
Leray projector. Recall that the Leray projector is the projection onto divergence-free
vector fields, which on the 3-torus can be written explicitly as P, = —V x A~ Vx
(see Lemma B.20).
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So finally, for B := D~ M P we have that £ := D_IZ}P’, where P =P, & I5 ®
IMay3), can be written as £ = B @ % [R, -1 0. Note that using this notation we may
write the linearized problem (3.2), after Leray projection, as

X = LX. (3.4)

This is a particularly convenient formulation since it is amenable to attack via semigroup
theory.

What matters for the purpose of the spectral analysis carried out in the following
section is that the equations governing the non-trivial dynamics of the problem can be
written as 9;Y = BY. The punchline is that it suffices to study the spectrum of 5, which
is precisely what we do in Sect. 3.2 below.

3.2. Spectral analysis. In this subsection we study the spectrum of the operator B intro-
duced in the preceding section. Since our domain is the torus it is natural to consider the

symbol B of this operator, which gives a matrix in C8*® for each wavenumber k € Z3.
However, it will be more convenient for us to parameterize these with a continuous

wavenumber k € R?; for each such k we define l%k e C¥*3 according to

By =
—(n+5) kPP (k) ixkx 0
Tot Gickx) PL (k) =2uc Tt — @k T Py (k) — Pk T Py (k) — (1= ) & R —H(E) R
0 (A —v) Ra3 2 R

where P| and P, are as defined in Sect. 2.7, and

0 -1 0 —1 0
R22=R=<(1) _01>,R23=<(l) _01 8),R32=(l 0),andR33=(l 0 0).
0 0 0 0 o0
Note here that we have abused notation by writing ikk x as a place-holder to indicate
the matrix corresponding to the linear map z — ixk X z.

It is somewhat tricky to extract useful spectral information from Bk directly. Instead,
we introduce a sort of similarity transformation My := Qk ék Qk in such a way that M
is a real matrix, i.e. M; € R®*3 for each k € R3, which carries the spectral information
of Bk. Here the matrices Qy, Qx € C3*8 are defined by

Qr =T (k) ® Jelq/z @ sRy and Qi :=T (k) ® 19711/2 © (_f]) Raz.

where T (k) := lII;:\( ifk #0,T (0) :=0,and s := \/72,( Unfortunately, Qy and Qy

are not quite invertible, so this isn’t exactly a similarity transformation. When k # 0,
this is due to the fact that (k, 0, 0) belongs to the kernels of both operators, a fact that is
ultimately related to the divergence-free condition for u, which reads k - &y = 0 on the
Fourier side. In principle we could remove the kernel and restore invertibility, but the
resulting 7-by-7 matrices are less convenient to work with. As such, we will stick with
the 8-by-8 setup and find a work-around for the invertibility issue. Ultimately we will
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prove in Propositions 3.10 and 3.11 that we can gain good spectral information about
My, and it will follow from Definition 3.1 and Lemmas 3.2 and B.2 that the spectrum of
l§k coincides with that of Mj. Note that for all these k-dependent matrices we will write
equivalently My or M (k).

An important observation is that the matrix M; € R®*® may be decomposed into
its symmetric part Sy € R¥*® and its antisymmetric part A € R®*® such that A is
independent of k. More precisely

—(u+ %) kP PL (k) klk|PL (k) Jog' 0
Se=| KklkllegPPL) =260y = alkP e PPy () g = Pk IG P00 1 orn
0 ¢l 0
(3.6)
and
A=0®cR33 BdR2o, (3.7
where
T T T
b= 1—5—,c=(3—1)—,andd=—. (3.8)
A 2k A 2K 2K

Note that My, is written out explicitly in all its gory details in “Appendix D”.

We now turn to the issue of proving that the spectra of By and My coincide. To do
this we will need to use the notion of linear maps acting on quotient spaces. Here we
quotient out by the spaces Vj defined as V) := span {(v, 0,0) | URS R3} as well as, for
any nonzero k € R3, Vi := span (k, 0, 0).

Definition 3.1 (Linear maps acting on quotient spaces). Let A € C"*" and let V be a
subspace of C". We say that A acts on C"/ V if and only if ker A = V andim A € V+,
where V1 is the orthogonal complement relative to the standard Hermitian structure on
C".

We refer to Lemma B.2 for the key property of linear maps acting on quotient spaces
which we will use in the sequel, namely conditions under which two matrix represen-
tations of such maps are equivalent, even when the ‘change of basis’ matrices involved
are not invertible. We now prove that the matrices we are dealing with here do satisfy
the hypotheses of Lemma B.2.

Lemma 3.2. For any k € R3, B'k, Oy, and Qk act on (CS/ Vi and Qy, Qk = Qk O =
proijL.

Proof. First we consider l’;’k for k # 0. Since BZ (k,0,0) = Bk (k,0,0) = 0, where §
denotes the conjugate transpose, we know that im l’g'k C Vi and that V, C ker [;’k, SO we
only have to show that ker l§k C Vik.Lety = (v,0,b) € ker Bk- The third row of (3.5)
tells us that b = Mé and hence

2

A 1. - 2 .
0=DBry-y=—ulkl*lvi]® — 2 Elk xv—0| —alkl*|oy|” — 71kI*10L1%

Therefore & = v, = 0, and hence also b = 0, such that indeed y = (v}, 0, 0) € Vi. So
indeed l”;'k acts on C3/ V.
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Now we consider l%'o, proceeding essentially as we did above for the case k # 0.
Since l’;'(T) (v,0,0) = l%o (v,0,0) =0forany v € IR3 it follows that im éo C Vp and that
Vo C ker l§0. Now let y = (v, 0, b) € ker l’;‘o and observe that, as above, b = MQ_
and that hence 0 = l_)éoy -y = —2k|0|2. Therefore # = 0 and b = 0 such that indeed
y = (v,0,0) € V. So ker l§o C Vp and thus indeed l§0 acts on Cg/ Vo.

We now turn our attention to Q and Qk Since (k, 0,007 Q) = (k,0,0)7 Qk =
(k- T (k))®0®0 = 0 forany nonzerok € R3 and since (v,0,0)- Qo =(v,0,0)- Qo =

v-T(0)® 060 =0, we may deduce that im Q, im Q; C V for all k € Z3. Now

observe that, since Jeq/ and R»; are invertible, we deduce that ker Q; = ker Qk =

(ker T' (k)) ® 0 @ 0. Therefore, since ker T' (k) = span {k} when k is nonzero and since
ker T (0) = R3, we have that indeed ker Oy = ker Qi = Vi forallk € 73, ie. QO and
Oy acton C3/ Vy for all k € Z3.

Finally observe that, since R22 = —1, it follows that QxOx = 0xOx = T (k)* @

2 _ 2 (kx)? .
I3 & I, where T (0) = 0 and T (k)- = “RE = PrOgpanirt for k # 0. Note

that we have used the ¢-§ identity &q4;j€qxs = 6ik8j; — 816 ji to deduce that (kx)2 =
—|k|2projspan{k}l. Soindeed Oy Qi = Qx Ok = prOijL. O

_ We now record how M behaves under transformations of the form k +— —k and k =
(k, k3) — (Hk, k3) for H an orthogonal map. This comes in handy when constructing
the maximally unstable solution in Sect. 3.4.

Lemma 3.3 (Equivariance and invariance of M). Let H be a horizontal rotation, i.e.
H e R3*3 such that H = H ® 1 for some 2-by-2 orthogonal matrix H. We call
H := H ® H & H the joint horizontal rotation associated with H.

(1) M is equivariant under horizontal rotations, i.e. for any k € R3 and any horizontal
rotation H, M (Hk) = HM (k) HT and
(2) M is even, i.e. for any k € R3, M (—=k) = M (k).

Proof. Note that k — Pj (k), P, (k) are both even and equivariant under horizontal
rotations, i.e., for any horizontal rotation H, Py (Hk) = HP (k) H T and similarly for
Py, whilst k +— |k| is even and invariant under horizontal rotations. We can therefore
write

A (k) B (k) 0
Sthy=|Ck) —2«J,'+Dk) ¢l
0 @13 0

forsome A, B, C, D which are equivariant under horizontal rotations and even. It follows
immediately that M is even. Now let H be a horizontal rotation. Since HIpnH =
I, H 132H = I3, and since H commutes with J I one may readily compute that

S (Hk) = HS (k) H HT . Finally, since two- dlmenswnal rotations (i.e. elements of O (2))
commute with one another, A = HAHT and soindeed M is equivariant under horizontal
rotations. O

We now obtain some fairly crude bounds on the spectrum of My in Lemmas 3.5, 3.6,
and 3.7. These bounds are nonetheless essential in the proofs of Propositions 3.10
and 3.11. As a first step in obtaining these bounds we identify the quadratic form asso-
ciated with S, the symmetric part of My, in Lemma 3.4.



964 A. Remond-Tiedrez, I. Tice

Lemma 3.4 (Quadratic form associated with S). For any y = (v,0,b) € R? x R x
R2 = R8 and any k € R3,
( -1/2 9)
I

2
—1/2

1 2
Skyy-y=—plkl*lvi* -2« SkIvL = Jeg 70

2 _
—7 k] ‘( Lq”ze)J +2¢0 - b.

where, for any w € R3, w| := proj, w and w, = (I — projk) w, and ¢ is as in (3.8).
Proof. This follows immediately from the definition of S in (3.6). O

We now use Lemma 3.4 to obtain upper bounds on the eigenvalues of S.

Lemma 3.5 (Spectral bounds on Si). For any k € R3, it holds that max o (S;) <
min (qb, li—i}) where C, = _9%h and ¢ is as in (3.8).

min(&,y) 12)

Proof. Letk e R3andlet y = (v,6,b) € R3 x R3 x R?. By Lemma 3.4

SWy-y < —alk?|(% 1/29)”‘2 PIE|(1520) [ 2085 GO

from which it follows that S (k) y - y < ¢ (10> + |b|?) and hence that max o' (S) < ¢.
Now observe that

2 2
—1/2 ‘( —1/2 ) ) 1/2 ‘
6 k 6 6
2\(Veq )|‘ Pk (Jeg%0) |
[
< Xmln(a, V) k17161, (3.10)
Combining (3.9) and (3.10) tells us that, for k # 0,
L 2P |- Co P Co n_ Co o
Shyy-y < ———I0"+2¢0 - b= — - bl +—=I1bl” < — Iyl
Co Co blk|? |k|? k|2

from which we deduce that max o (S;) < |(li_r2 |

The bounds on S from Lemma 3.5 coupled with elementary considerations from linear
algebra allow us to deduce bounds on the real parts of the eigenvalues of Mj.

Lemma 3.6. (Bounds on the real parts of eigenvalues of My) For any k € R3, and with
¢ as in (3.8), it holds that max Re o (M) < ¢.

Proof. This follows immediately from Lemmas 3.5 and B.3. O

To conclude this batch of spectral estimates we obtain bounds on the imaginary parts of
the eigenvalues of M}, as a corollary of the Gershgorin disk theorem (Theorem B.4).

Lemma 3.7 (Bounds on the imaginary parts of eigenvalues of My). For any k € R? it
holds that max|Im o (My)| < f’.
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Proof. This follows from Corollary B.5 since

AR =2 <c2 +d2) - (%)2 (1—20 (v —21)) < (if

O

‘We now record some useful facts about the characteristic polynomial p of M. Com-
puting p was done by using a computer algebra system, and we thus record My in
“Appendix D in a form which can readily be used for computer-assisted algebraic
manipulations.

Upon computing p we observe that it is a polynomial in k of degree 10 and that it
only depends on even powers of |k| and k3. Therefore we may write

5
p(x, k)= qu (x, k], k3) (3.11)
q=0

where each r, is a polynomial in (x, k|, k3) which is homogeneous of degree 2q in
(k[. k3). In particular:

rs (3, 1K1, k3) = Cox (x2 %) 1kI'" and ry (x, K], ks) = kI° (11 () (612 + 12 (1) K3)

(3.12)
where

i (x) = x2 (—C,,o +Ciix+Cin <x2 + d2)> (3.13)
and

Co= (1 +k/2)* (a0 +4B/3) (B+7)*/ (2D,
Cro=(a+58/3+y) (B+y) (u+K/2>p/(WA), Ca0
=2(a+4B/3) (B+y) (n+k/2)$/(v1),
Cr1=Co1 =2k (W+K/2)(B+y) Qu(a+4B/3) +(n+K/2) (B+7)) /(AP
Cio=(u+k/2)(B+y) Q@+4B/3) (B+y)+ (n+k/2) (0 +5B/3+y) A
+(a +4B/3)v)) /(vA?) and
Caa=2(n+k/2) (B+y) (@+48/3) (B+Y)
+(+k/2) (@ +4B/3) A+ (B+y)v/2)) /(vA?).

The exact dependence of these constants on the various physical parameters is not of
concern here, since all that matters is that all these constants are strictly positive, i.e.
Co, C;,j > Oforalli, j.

We now use Rouché’s Theorem (c.f. Theorem B.10) and our explicit expressions
for the leading factors (with respect to |k|) of the characteristic polynomial p of M
to control the number of eigenvalues remaining within bounded neighbourhoods of the
origin as |k| becomes large. This is stated precisely in Lemma 3.8 below, which is another
ingredient of the proof of Proposition 3.10.

Lemma 3.8 (Isolation of some eigenvalues of M for large wavenumbers). For any

R > 5 there exist K; > 0 such that for any k € R3, if |k| > K then there are precisely

three eigenvalues of My in an open ball of radius R about the origin.
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Proof. Letk € R3 be nonzero, let p (-, k) denote the characteristic polynomial of My,
and let us write s := p — r5 for r5 as in (3.12). The key observations are that rs5 has
precisely three roots in Bg when R > - and that s is lower-order in k than rs. The
result then follows from Rouché’s Theorem since s dominates s for large |k]|.

More precisely, let R > d = 5 and let 75 (x) := Cox (x* +d?) for Cg as in (3.12)
such that rs (x, k) = 75 (x) |k|'°. Since 75 is a polynomial whose roots are away from
0 Bg, since s (x, k) is a polynomial of degree 8 in k, and since d Bg is compact, it follows

that C, := infyp, |F's| > 0 and that C5 := sup % < 00.
x€dBg
k0

So pick K; := ,/g—i and observe that for any k € 73, if |k| > K then, on 0 Bg,

- C
Irs (-, k)| = |75k > CrkIBKF > C—’Kﬂs R =1s (bl (3.14)
S

Since 75 (-, k) has three roots in Bg, namely 0 and j:LK, we may use (3.14) to deduce
from Theorem B.10 that p (-, k) has three roots in Bg. O

In Proposition 3.9 below we use the Implicit Function Theorem to identify the tra-
jectories of some unstable eigenvalues of My when |k| is large. In particular we will see
in the proof of Proposition 3.10 that, combining this result with earlier results from this
section, we may deduce that these eigenvalues are the most unstable eigenvalues of My
for large k. Here we say that an eigenvalue is unstable when it has strictly positive real
part.

Proposition 3.9 (Trajectories of some eigenvalues of M for large wavenumbers). There
exists Kt > 0 and a function z : {k eR3: k| > KT} — C, which is continuously
differentiable in the real sense (i.e. after identifying C with R? in the canonical way),
such that

(1) for every k € R?, if |k| > Kt then
(a) z (k) and 7 (k) are eigenvalues of M (k) and
(b) Rez (k) > 0, and

() z (k) — 5 as |k| — oc.

Proof. Recall that d = ﬁ and let p (-, k) denote the characteristic polynomial of M.

We proceed in three steps: first we define s to be essentially || p ( el 2) (such that
the study of s about zero is equivalent to the study of p about infinity) and verify that
we may apply the Implicit Function Theorem to s about (x, &) ~ (id, 0), second we
deduce from explicit computations of p [namely (3.12)] that, for small nonzero ¢, s has
two roots with strictly positive real parts, and third we write k ~ £~'/2 to turn our result
from step 2 about ¢ ~ 0 into a result about k£ ~ oo which allows us to conclude that, for
large |k|, p has two roots with strictly positive real part.

_ Step 1: Recall [from (3.11) and the preceding discussion] that p only depends on
|k| and k3, so we may write p (x,k) = p (x, |k, k3). Now define, for any x € C

2 (fon-/e)

and any ¢ = (&5, &) € R, s (x,¢8) = |8|?]5 (x, At ), where |- |; denotes

the /! norm. It follows from (3.11) that s (x, &) = 22:0 ug (x,¢) forus_g4 (x,¢) :=
|8|? ry (x e e
b l 9

e Jeh ) . Since the only dependence of r, on k is through (|l€|, kg), i.e. since
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rq (x. k|, k3) = 7y (x, [k|?, k3) for some 7,, we may write r, (x, [k|, k3) = C; (x) @
(&1, k§)®q for some polynomial Cy. In particular, it follows that

8®3
uy (x,8) = Cz (x)  —, uz (x,8) = |g|; Ca (x) @ %

lel

ug (x,€) = lel§ C1 (x), and us (x, &) = |e]] Cp (x)

2
)

such that, for ¢ > 2, uy (x,0) = 0 and both dyu, (x,0) = 0 and Vu, (x,0) = 0.
Moreover we may compute, using (3.12), that

uo (x, €) = Cox <x2 +d2) = uo(x) and u; (x, &) = (11 (x), 12 (x)) - & = ity (¢) .
(3.15)
So finally, for v := 5 — (ug + u1) = —p ltg, we have that s (x, &) = ug (x) +uy (x) -
g+v (x, &) where v (x,0) = 0 and both% v (x,0) = 0and Vv (x, 0) = 0. In particular,
note that s (id, 0) = ug (id) = 0 and that d,s (id, 0) = u, (id) = —2Cod?* # 0.
Step 2: By step 1 we may apply Theorem B.11 to s about id to deduce that there
exists anumber & > 0 and a function w : Bt £ C which is continuously differentiable

in the real sense, where Bfé_ is the intersection of the first quadrant and the /'-ball

of radius &, ie. By, := {(en, €0) | &n. &y > 0and &, + &, < £}, such that w (0) =

id, s(w(e),e) = 0 for every ¢ € B1 & and V,w (0) = % Moreover we
Ciro0+iCy, 1d

may compute from (3.13) and (3.15) that V,w (0) = ( Cro+iCad , such that

ReV.w (0) € R2>0~ It follows that there exists 0 < o < & such that Re w (¢) > 0 for
alle € Bf’a.

Step 3: Pick K7 := 1/4/o0 and deﬁne z via, for every k € R> such that |k| >
Kr, z (k) = w (e (k)) for e (k) := Ik\“ (Ik|?, k3). Note that z is well-defined on
[k e R3: |k| > K7} since, for every kR, [k| > Ky <= |£(k)| =1/lk? < o.
Now observe that, forevery k € R3 suchthat |k|>K7, p (z (k) , k) = 5s (w (e (k)), e (k)

=0, i.e. indeed z (k) is a root of p (-, k) and hence an eigenvalue of Mk Since My is a
matrix with real entries, we may deduce that 7 (k) is also an eigenvalue of M. Moreover
it follows from step 2 above that Re z (k) > O for every |k| > K. Finally, note that
since w (0) = id, since w is continuous, and since ¢ (k) is continuous away from k = 0,
we may conclude that z (k) — id ask — oco. 0O

We now have all the ingredients in hand to prove one of the two key results of this
section, namely Proposition 3.10. This result tells us that there exists a most unstable
eigenvalue of My, i.e. an eigenvalue with largest strictly positive real part.

Proposition 3.10 (Maximally unstable eigenvalues). There exist k. € 73 and w, € C
with strictly positive real part such that

(1) wy is an eigenvalue of M (k) and
(2) for every k € Z3 and every eigenvalue w of M (k), Re w < Re w,.

We define n, := Re wy.

Proof. The key observations are that: (i) by combining Proposition 3.9 and Lemmas 3.6
and 3.7, we can show that for |k| large enough, the eigenvalues whose trajectory can
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iR

N

Fig. 5. A pictorial summary of step 1 of the proof of Proposition 3.10

be obtained via the implicit function theorem in Proposition 3.9 are the most unstable
eigenvalues (i.e those with the largest real part) and that (ii) by Proposition 3.9 we know
that Re z (k) — 0 as |[k| — oo. We prove the first observation in step 1 below, and in
step 2 we use the first step and the second observation to conclude.

Step 1: We show that there exists K, > 0 such that, for every |k| > K, Rez (k) =

max Rew. Pick R > ¢2 + 7d* and note that since R > d = 5; We may pick
weo (M (k)) K

K; = K; (R) as in Lemma 3.8. Let K. := max (K, K7) for K7 as in Proposition 3.9,
let H denote the half-slab {w eC ‘ Rez < ¢, |[Imz| < ﬁd}, and let Bg € C denote

the open ball of radius R about the origin.

Let k € Z3 such that k| > K. By Lemmas 3.6 and 3.7 we know that all the
eigenvalues of M (k) are in H, and by Lemma 3.8 we know that exactly three eigenvalues
of M (k) are in Bg N H. Moreover, by Proposition 3.9 we know that the three eigenvalues
of M (k) in Br N H are precisely O (since M (k) (k,0,0) = 0), z (k), and z(k), for z as
in Proposition 3.9.

In particular, since R > ¢2 + 7d? such that no points in the half-slab H have larger
real parts than all points in Bg N H, it follows that indeed the eigenvalues of M (k) with
largest real part are z (k) and z(k) (Fig.5).

Step 2: We want to show that the supremum

sup max Rew
kezp WET(MK)

is strictly positive and attained. It is clearly strictly positive since for any k € Z* such
that |k| > K it follows from Proposition 3.9 that z (k) is an eigenvalue of M (k) with
strictly positive real part. To see that this supremum is attained, we write for simplicity

s(E):=sup max Rew
keE weo(M(k))

forany E C 73. We thus want to show that s (Z3) is attained. On one hand, by step 1,
the supremum s ({k € Z* : |k| > K.}) is achieved. Indeed, we may pick the eigenvalue
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Z (kerit) of M (kerit) corresponding to any k¢ such that |kcr¢| is equal to the smallest
integer strictly larger than K, which can be written as a sum of squares of integers. On
the other hand the supremum s ({ keZ3: k| <K *}) is attained since it is taken over
a finite set. Since Z is the union of {k € Z* : [k| > K} and {k € Z* : |k| < K.} we

may conclude that the supremum s (Z3) is attained. O

We conclude this section with the second of its two key results: Proposition 3.11.
This result is essential in the construction of the semigroup associated with the linearized
operator. This construction is performed in Sect. 3.3 below.

Proposition 3.11 (Uniform bound on the matrix exponentials). Let n, be as in Propo-
sition 3.10. There exists Cs > 0 such that for every k € 73 and every t > 0,
le'Mk| < Cg (1 + t8) e™!. As a consequence, for every ¢ > 0 there exists Cg (g) > 0

such that for every k € 73 and every t > 0, |et8"| < Cs () em+ot

Proof. Naively, one may seek to use the bound from Corollary B.8 to control e'M*
However, this bounds only holds up to a constant dependent on k. To circumvent this
issue, we observe that alternatively one may bound e'™* using its symmetric part (as
per Lemma B.3). Coupling this observation with the fact that we have an upper bound
which decays as |k|~ for the spectrum of S, namely Lemma 3.5, we see that for
sufficiently large |k| the exponential '™« grows at most like e!. It thus suffices to
use Corollary B.8 for the finitely many modes with non-large |k|, in which case the
dependence of the constant on k is harmless.

More precisely: let Kg := g—;’ where Cy is asin Lemma 3.5, write C (k) := C (My)

for C (M) as in Corollary B.8, and let Cg := max (1 ‘max (o (k)) > 0. Then, for
<Ky

< Cor _ n«t and hence, by Lemmas B.3 and 3.5,

every k € Z3,if |k| > Kg then & =
S

Cot

He HL(IZ 12) el? < €™ and if |k| < Kg then by Corollary B.8, the choice of

|/<|2

Cg, and Proposition 3.10

e
from which the first part of the result follows. To obtain the second part we simply use
the fact that polynomials of arbitrarily large degree can be controlled by exponentials

of arbitrarily slow growth, i.e. the fact that for every j € N and every & > 0 there exists
C = C(j,&) > Osuch that, foreveryz > 0,1 +t/ < Ce®’. O

t My

< C k) (1 + t8> emaxRea (M) (1 + zg) el
@y

3.3. The semigroup. In this section we proceed in a standard fashion and use Proposi-
tion 3.11 to construct the semigroup associated with the linearized problem as recorded
after Leray projection in (3.4).

Proposition 3.12 (Semigroup for the linearization). Let n, be as in Proposition 3.10.
For every t > 0 we define the operator e'B on L2 (']I‘3, RS) via the Fourier multiplier
(etB)A (k) := !B for every k € Z3 and we define e'~ as '* := ¢'B e[, ie.
for every (f, J, J33) e L? (T3, Rg) x L2 (’]T3, szz) x L? (T3, ]R), 'L (f, J, J33) =
(e’Bf, et[Q“J’ ]J_, J33).
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Then (etﬁ)zzo is a semigroup on L* and for every ¢ > 0 it is an (1 + €)-contractive
semigroup with domain H> (T3, RG) x L? (T?, R?)x L? (']T3, szz) x L2 (T3, R) =:
© and generator L.

Moreover, for every ¢ > 0 there exists a constant Cs (¢) > 0 such that, for every
p,q,r = 0andeveryt > 0, e'L is a bounded operator on HP°9" .= HP (']I‘3, RS) X
HY (T3, RZXZ) x HT" (’]T3, R) such that for any (f, J, J33) e HPYT,

1€ (£. 7. 033) [fgpar < C3 &) 2O [(£. T J33) [y, where

AT F3) [ o= W10+ 1] g + 11331 -

Finally: the semigroup propagates incompressibility. More precisely: let
Xo = (o, @0, av, Jo. (Js3)o) € L2 (T3, BY) x L2 (T, R?) x L2 (T%, R?)
x1? (T3, R>?) x L2 (T, R)
and let X (t, ) = (u, w,a,J, J33) (t,") = e"chfor allt > 0. If ug is incompressible,

in a distributional sense, then u (t, -) is incompressible for all time t > 0.

Proof. Step 1: We begin by constructing the semigroup e’ B Note that, in this proof, all
matrix norms are norms in £ (l 2, 12). To construct this semigroup we will use Propo-
sition B.9 and must therefore verify that (i) for every ¢ > 0 there exists Cs (¢) > 0

eBe|| < Cy(e) ™+ and that (i)

such that for every k € Z3 and every t > 0,

there exists Cp > 0 such that for every (v, 0,b) € R? x R® x R?, ‘l’;’k (v, 0, b)’ <
Cp ((k)4 (|u|2 + |a)|2) + |a|2). Note that (ii) follows immediately from the expression

provided for B in (3.5). To obtain (i) we note that it follows from Lemmas 3.2 and B.2
that

B! = (QkMiQk)" = QiM} Qy forevery n > 1

whilst é,? = id = projy, +proj v = projy, +0y M,? Qk. Therefore

e'B = projy, + Qe 0y (3.16)

where

ikx

1/2H2
— J +
k| “

2 1 (
+ p—

2
for some Cp, > 0 independent of k. We may thus deduce from (3.16), (3.17), and
Proposition 3.10 that (i) holds.

With (i) and (ii) in hand we apply Proposition B.9 and obtain that e’ B is a semi-
group on L? which is (n« + €)-contractive on all H" spaces, for r > 0, with domain
H* (T3, R® x R?) x L*(T?, R?) and generator B.

Step 2: Now we construct the full semigroup e’ L First observe that, since [S_Zeq , ] is

S (GAARE

Jejil/zHZ) + % (s +s*1) IIRI* < Cp (3.17)

afinite-dimensional linear operator, (e’ [Seq.- ]) - is a semigroup on R?*Z and moreover

=

the domain of (e’ [S2eq. ']) is R?*% and its generator is [Qq, - ] (3.18)

(>
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Moreover, Lemma B.14 tells us that [S_Zeq, . ] is antisymmetric, and thus it follows from

Lemma B.6 that (e’[Qeq' ']) is a contractive semigroup, i.e.

(>

Hef[fzm»']H (3.19)

<1
£(2.2)

From (3.19) and step 1 it follows that L = N g et[Sea- ] @ 1 is a direct sum of
semigroups which are, for every ¢ > 0, (1, + &)-contractive (since contractive semi-
groups are 7)-contractive for any 1 > 0 and since 1 = ¢? is the trivial semigroup, which
is contractive), and is hence (1, + ¢)-contractive itself. Moreover, it follows from the
observation (3.18) and step 1 that the domain and generator of e’ £ are as claimed. Finally
the HP-9" estimates follow immediately from (3.19) and the H" estimates of step 1,
upon observing that since, for each t > 0, e’ [@eq:-]is alinear operator independent of the
spatial variable x, it commutes with partial derivatives and with the Fourier transform.

Step 3: We now prove that incompressibility is propagated. Let us write Y (¢, -) :=
(u,w,a) (t,-). The key observation is that, as a consequence of Lemma 3.2,

3 ((k, 0,0) - ?k) — (k,0,0) - BePy = 0 for every k € Z3. In particular, if V -g & = 0
then indeed

(Veuyt,) =Y (k,0,0)- ¥ ()= Y (k,0,0)- ¥ (0) =V -up=0.

keZ3 keZ3

3.4. A maximally unstable solution. In this section we construct a maximally unstable
solution of the linearized problem (3.4). Recall that (3.4) is obtained from the linearized
problem by Leray projection. In particular, since (3.4) is invariant under the transforma-
tion u +— u+ C for any constant C, the component corresponding to  in this maximally
unstable solution will have average zero (this is as expected in light of the Galilean
equivariance of the original system of equations, as discussed at the end of Sect. 2.1).
Note that, just as Proposition 3.12 is essentially a semigroup version of Proposition 3.11,
Proposition 3.13 below is essentially a semigroup version of Proposition 3.10.

Proposition 3.13 (Maximally unstable solution). Let 1, be as in Proposition 3.10. There
isa smoothfunction Y : [0, 00)xT> — R suchthat8,Y = BY and||Y (t, ')||Hr(T3’R8) =
e™|Y (0, ')||Hr(T3,R8) for every t > 0 and every r > 0. Moreover, if we write
Y = (u,w,a) € R3xR3xR2 thenV-u = 0, and for every t > 0 and every
r=0

e (2, )| gr (13, ®3) = e u (0, Mar (13, ®3)

[l (2, ')||Hr(’J1'3,]R3) = en*tHCl)(Ov ')||Hr('ﬂ*3,]R3), and

lla (¢, ')“H"(’]T3,R3) = e™|a (0, ')”H"(’IF3,R3)'
Proof. Letk, € 73 and w, € C be as in Proposition 3.10 and recall that 1, := Re w.
It follows from Lemma 3.2 and Lemma B.2 that, for any k € 73, Bi and M, are

similar, so in particular w, is an eigenvalue of l§k and thus there exists v, € C8 such
that B (k4) v« = wsvs. Now define, for every + > 0 and every x € T, Y (t,x) =
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: P .
VyeWrFikex 4 view*’ ik where, for any complex number w, we denote its complex

conjugate by w. For a complex matrix A we will write, in this proof only, A" to denote
its entry-wise complex conjugate (and not its conjugate transpose).

Observe that YT = Y and hence Y is real-valued. Note that since Bk = OQrM; Qk
(which follows from Lemmas 3.2 and B.2), since M} has real entries and is even in k
(i.e. M_x = My), and since Q (k)" = Q (—k) and Q ' = O (—k), we obtain that
B (k)T =B (—k) and hence (wl, vl) is an eigenvalue-eigenvector pair for B (—ky).
Therefore

Wt +iks X +wlview;t—ik*-x=8" (ks) v*ew*tﬂ'k*-x +l§ (—ky) view;t—ik*-szY.

(3.20)

Now we argue that u := (Y1, Y2, Y3) is divergence-free. Observe that if k, = 0 then

Y is constant in the spatial variable x € T and thus u is constant and hence divergence-

free. Now consider the case k, # 0. Note that we have proved in Lemma 3.2 that, for

all k € 73, im Bk C Vkl and hence (k, 0,0) - v = 0 for any eigenvector v of B’k. We
may thus compute:

0/ Y =wyvee

Veou= Y kit (k)= (ks 0,0) ¥ (k) + (—ks, 0.0) - ¥ (=ky) = 0. (3.21)
keZ3

Finally, observe thatforany j =1, ..., 8,Y; (t,x) = (v«); ew*”ik*'x+(vl)j et —ikix
and hence, proceeding as above yields

17; @]

2 T

= P 1) 512 1R 17 4 () | (0]) ;17 1R 12 = 2(ka) > [vs] €27
1Y (0,
We can thus conclude that, for u = (Y1, Y3, Y3), w = (Y4, Y5, Yg), and a = (Y7, Y3),

2
— 2! e

2 2 2 2 2 2 2
o (&, e = ™ N (0, ) [ggrs e (7, ) Izgr = e N (0, |3, and |la (2, )|[5r

2 2
= e la (0, )|lgr-

4. Nonlinear Energy Estimates

In this section we perform the nonlinear energy estimates necessary to carry out the boot-
strap instability argument in Sect. 5. First we record the precise form of the nonlinearities
and introduce, in Definitions 4.1 and 4.2, notation used in the remainder of the paper. In
Sect. 4.1 we obtain bounds on the nonlinearity in L. We record the energy-dissipation
relations satisfied by solutions of (1.1a)—(1.1d) and their derivatives in Sect. 4.2. In
Sect. 4.3 we estimate the interaction terms appearing in the relations obtained in the
preceding section. Finally we use the results of Sects. 4.2 and 4.3 in Sect. 4.4 to obtain a
chain of energy inequalities from which we deduce the key bootstrap energy inequality.

Writing the problem compactly using the same notation as that which was used in
(3.2) and defining Z := X — X4 and g := p — p., we may write the original problem
(1.1a)—(1.1d) as

&DZ=LZ+A(q)+N(Z) subjecttoV -u = 0. 4.1)
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For simplicity we will abuse notation in this section and write the components of the
perturbative unknown Z as Z = (u, w, J). This does conflict with the notation used in
Sect. 3 for X. However confusion may be avoided by noting that all the unknowns ap-
pearing in this section are perturbative, i.e. (u, w, J) will always denote the components
of Z. We also abuse notation and, in this section, write p = q.

Using this notation we have that N = (N1, N,, N3) for

Ni(Z)y=—w-Vu, N3(2) =[Q,J]— (u-V) J, 4.2)
and
Ny (Z) = — Jog (- V) 01— (1 + JJ;I‘)_l (X Jw+weg X JOtOX Joqarto X Jweg)
— ) (1 + JJL;II)_I (kV x 1 —2k0+(@—7)V (V- 0) + Ao
— @ X JoqWeq — Weq X JWeq — Weg X Joq) 4.3)
Note that Z being a solution of (4.1) is equivalent to Z being a solution of
%Z=LZ+A(p)+D 'N(Z) subjecttoV-u =0, (4.4)

for £ as in (3.4). The fact that both of these formulations are equivalent is very handy
since (4.1) is particularly convenient for energy estimates whilst semigroup theory may
be readily applied to (4.4).

Definition 4.1. Let 5 := {A e R ‘ Allop < 1} and define m (A) := (I + A)~! for
any A € B. Note that m is well-defined by Corollary B.13.

Definition 4.2 (Small energy regime). Since n = 3 there exists Cyp > 0 such that

[T 1loo < CollJ|| g4 forevery JeH* (T3, R3X3).Wedeﬁn68() = min <% m)

4.1. Estimating the nonlinearity. In this section we record some preliminary results in
Lemmas 4.3 and 4.4 and then estimate the nonlinearity in L? in Proposition 4.5.

First we record for convenience some elementary consequences of the Sobolev em-
beddings. In particular Lemma 4.3 tells us that in the small energy regime Z, VZ, and
V2Z are L*-multipliers, which simplifies many of the estimates below. It is precisely
because the estimates are easier to perform when V2Z is in L™ that we have chosen to
close the estimates in H*.

Lemma4.3. Let Z € H* (T°, R? x R**? x R).

(1) There exists C > O independent of Z such that ||Z|| < + ||VZ|| [~ + ||V22||LOo <
ClIZ]| ga-

(2) For any polynomial p with no zeroth-order term there exists C (p) > 0 such that if
1Z|| g+ < Lthen p (1Z]14) < C (P) [1Z1] 2.

Proof. (1) follows from the Sobolev embedding H? (T?) < L* (T%) and (2) is im-
mediate. 0O
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The result below ensures, when combined with Corollary B.13, that the nonlineari-
ties written in (4.2) and (4.3) are well-defined. Note that the only subtlety in ensuring

that the nonlinearities are well-defined comes from the presence of (I +JJ g1 )_1 =
m (J Je?). This terms owes its appearance to our choice to write (1.1c) in a form such

that the left-hand side is J.,d;w, and not J d;w. The former is more convenient since it
makes it possible to use semigroup theory.

Lemma 4.4. Let 8y be as in the small energy regime (c.f. Definition 4.2). If || Z|| g+ < o
then || 15! < and ||m (1751)]|_ <2.
oo

9]

Proof. 1f || Z|| ¢ < 8 then HJJ;IIHoo < ||J||oo‘

I < collils

-1
I, <

C()S()‘

J‘;f]Hoo < L and hence, by Corollary B.13, Hm (JJe_ql)H <

2 o I-||sug
oo

We now prove the main result of this section, namely the L? bound on the nonlinearity.

<2, O

Proposition 4.5 (Estimate of the nonlinearity). Let 8o be as in the small energy regime
(c.f. Definition 4.2). There exists Cy > 0 such that if ||Z|| g+ < o then ||N (Z)]];2 <
ChIIZI13,.

Proof. Recall that N = (N1, N, N3) is recorded in (4.2)—(4.3). In particular, one im-
mediately obtains that ||Ny|l;2 + [|N3ll2 S ZI2Zl gt S ||Z||§12. Dealing with
N5 is only slightly more delicate. Considering m (J Jejjl) as a fixed L°° multiplier we
see that all terms in N are quadratic or cubic in Z (more precisely: the only cubic term
is —(I +J J;;)il (w x Jw)). We can thus use the generalized Holder inequality as
well as the Sobolev embeddings H' (T3) — L (T3) — L? (T3) for all p € [1, 6]
and H? (T?) < L (T°) to obtain that |[Nall2 < [1Z117, + [1Z]13, < (1+80)
IZI,. o

Remark 4.6. The operator which must be estimated in the bootstrap instability argument
is actually PN (and not merely N as is done in Proposition 4.5 above), where P = P;, &
id @ 1id for P; denoting the Leray projector. However, since P, (k) = proj (spank)t =

I — % for every k € 73, i.e. since P 1 is a bounded Fourier multiplier, it follows that

it is bounded on L2.

4.2. The energy-dissipation identities. In this section we begin by recording the energy-
dissipation relation and then remark on the coercivity of the dissipation.

Proposition 4.7 (The energy-dissipation relation). If Z solves (4.1) then for any multi-
index o € N°

1d 2 )
EEH‘/B(BQZ)HLZ +D(3au, 3aa)) =B (a“a), a“a) +/11~3 N (Z)-9°Z
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where

2 B

+(x|V-w|2+—
2

B (w,a) = (2(A—v)+<i>2> /1T3@J-.a.

Proof. To compute the energy-dissipation relation we take a derivative 9* of (4.1), mul-
tiply by Z, and integrate over the torus. Note that due to incompressibility fT3 %A (p)-
3%Z = [p3 —(V3¥p) - 9%u = 0. Now we compute [ LZ - Z. Observe that for T and

M as in (2.6), if we write T for the trace-free partof T, i.e. T="T+ pl, then we have
that

1
SV xu—o Dw|* + 2y |V x o|*

D (u, w) :=/ B Du|? + 26
3 2

and

/3 (w+k/2) Au+kV X ®) -u
’ﬂ";
+/ KV Xxu—-2ko+@+p/3—y)V(V-0)+(B+y)Aw) - -w
Il

=/ (V.T).u+(2vecf+v-M).w=—/ T (Vu—Q)+M: Vo
T3 ™
=-D(u,w). 4.5)

Moreover, we may compute

) 3 0 0 —wy
Weqg X J, —(i>€1lw x J, co——‘[cf)L and[QJ]—(A—v) 0 0 w
eq eq = 2% s Weq eqW = 2 s s Jeg | = Ol
w2  —w]

such that

/]r3 — (@ X JoqWeq + Weq X JWeq + Weq X Joqw) - @

+/ ([Req, /] +[@ Jeg]) : I = B (@, a) (4.6)
T3

where we have used thatiQeq, J] : J = 0 (c.f. Lemma B.14). Combining (4.5) and

(4.6), we obtain that fT3 LZ-7Z = -D (u,w)+ B (w, a), and hence we may conclude
that

1d 2 ~

SolVP @), = [ e (peez) 00z = | Loz o7z | 0N (2) 52
2 .dt L? T3

T T

= —D (0%, 0%») + B (0% (w) , 0%a) + /1 I*N (Z)-0“Z.
T

O

Besides the interaction term ng 0% N (Z)-0% Z, the only term appearing in the energy-
dissipation relation which does not have a sign is the term B (0%®, 0%a). We refer to
this term as the unstable term since, as detailed in Sect. 2.5 the instability originates
from @ and a. In Lemma 4.8 below we estimate this term in a manner which allows us
to absorb a high-order contribution into the dissipation and leaves us with a lower-order
term which is controlled by the energy.
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Lemma 4.8 (Bounds on the unstable term). For any o > 0 there exists C,x > 0 such
that for any sufficiently regular (w, a) and any nonzero multi-index «,

2

|B (%@, 9%a)| < o] a“*la)Hiz +Cy

8”‘71a‘

L2
where we write « £ 1 := a % e; for some i such that o; nonzero.

Proof. This follows immediately from integrating by parts and applying an ¢-Cauchy
inequality: if we define C :=2 (A — v) + (ﬁ)2 then, for any & > 0,

/ al)l+1(z)l . aﬂl—la
T3

We now prove that the dissipation is coercive, since the velocity u has average zero.

80!—1

2
|B (8“&), aaa)| =C aCH'la)L‘ 2 + C_‘

L2 4¢

<8‘

[’
L2

Lemma 4.9 (Coercivity of the dissipation over linear velocities of average zero). There
exists a constant Cp > 0 such that for every (u, w) € H' ('I['3, R3 x R3), lff u=20
then D (u, @) = Cp (lul% +lol%).

Proof. Since u has average zero, it follows from Propositions B.15 and B.16 that

< D(u,w). 4.7

~

2 2
lul 12 < 11Dul 2,

To see that the dissipation also controls the H! norm of @ we observe that, by (4.7),

2 / 1
+
T 2

2

<D (u, o)+ |ull3, < D, w)

-V xu m S

1
o7, s/w ‘5””“”

whilst, by Lemma B.17, ||Va)||i2 = i3IV -0 + [5]V x o> < D (u, w), such that

< D(u,w). 0O

~

indeed ||o||7,,

Recall that, as detailed in Sect. 2.1, due to the Galilean equivariance of (1.1a)-
(1.1d) solutions of that system can be assumed without loss of generality to have an
Eulerian velocity with average zero. Since u., = 0 it follows that we can assume that
the perturbative velocity u has average zero as well, and hence the coercivity result
proven in Lemma 4.9 applies.

4.3. Estimating the interactions. In this section we introduce notation which makes it
easier to write down the Faa di Bruno formula for the chain rule, use this notation to
record useful bounds on m (defined in Definition 4.1), and finally we estimate the inter-
actions arising from the energy-dissipation relations satisfied by derivatives of solutions
to (1.1a)—(1.1d) in Proposition 4.16.

Definition 4.10 (Integer partitions and derivatives). Let k € N.

eletii >ir > --- 21 > | beintegers such that k = i +ip +- - - +i;. The sequence
(i1, i2, ..., ;) is called an integer partition of k and [ is referred to as the size of that
partition.
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e For 1 < i < k we denote by P; (k) the set of integer partitions of k of size i, and by
P (k) the set of integer partitions of k. In particular note that P (k) = ]_[f=1 P; (k).
elet f : R" — R™ be k-times differentiable. For any 7 = (i, ..., i) € P (k)
(where possibly i, = i, for p # g) we define V” f := Sym (Vilf Q- V”f)

where for any tensor 7" of rank r, (SymT); ;= % > oS Lioth ot

Example 4.11. Examples of integer partitions and derivatives indexed by integer parti-
tions are

e (4 ={3,1), 2,2}

e P(4) ={%,3,1),2,2),2,1,1),(1,1,1, 1)}, and

e VLD f = Sym(V2f@VFfQVf)=Sym(Vf®@V2fQVf)=
Sym(Vf®Vf®V2f).

Remark 4.12. Derivatives indexed by integer partitions, denoted by V7 f, are a conve-
nient shorthand for terms appearing in the Faa di Bruno formula for derivatives of compo-
sitions. Their key property which we will use in estimates is that, for any integer partition

T=0(i1, ..., i), [V f] < ]‘[’j:1 |ViJ f|. For example V1D £| < [V2 ||V fI2.

Having introduced notation for derivatives indexed by integer partitions we now use
it to obtain bounds on derivatives of m in Lemma 4.13 below.

Lemma 4.13 (Bounds on derivatives of m). The function m from Definition 4.1 is smooth
and moreover for every k € N there exists Cy > 0 such that, for every A € B,
|[VEm (A)| < Cilm (A,

Proof. First we observe that it suffices to show that, for d;;m := %,
ij

0ijjmy; = —myimjj. (4.8)

To prove that (4.8) holds, note that for any smooth A : (—1, 1) — B (where B is as in
Definition4.1), $m (A (1)) = —m (A (1)) (& A (1)) m (A (1)). Since we can pick A such
that A (0) and %A (0) are arbitrarily specified, it follows that for any Ag € 25 and any
V e R, Vm (Ag) V = —m (Ag) Vim (A), i.e. indeed 0ijmp = Vmy (e,' ® ej) =
—(m (ei ® ej) m)kl = —mgmj. O

‘We now use the bounds on m we have just obtained to derive bounds on post-compositions
with m.

Lemma 4.14 (Bounds on derivatives of post-compositions with m). Let0 < § < 1 and
consider m from Definition 4.1, which is smooth by Lemma 4.13. For every k € N there
exists Cx.s > 0 such that for every smooth A : T" — R"™", if ||Al|s < 8 then, for
every x € T", |V¥ (m (A)) (1) < Cis Yrepao V7 A ()|, where P (k) and V™ are
defined in Notation 4.10.

Proof. Note thatsince ||A||o, < § < litfollows from Corollary B.13 that ||m (A)|]s <
1—i3. Therefore, by Proposition B.18 and Lemma 4.13,

k
IV m (A) @] < CY IVim(A@)| Y IVFAW®)]

i=1 neP;(k)
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k
<CY ImAE)H Y IVIA )

i=1 meP; (k)

<Crs Y, IVTAWL.
weP(k)

O
Below we specialize Lemma 4.14 to the only case which matters for us, namely the case
ot m (475")-
Corollary 4.15. Let 6o be as in the small energy regime (c.f. Definition 4.2). For every
k € N there exists Cx > 0 such that if ||Z||y+ < So then ’Vk (m (JJJ;)) (x)’ <
C Zﬂep(k) |V7 J (x)|, for almost every x € T°.
Proof. This follow immediately from combining Lemmas 4.4 and 4.14. O

Having obtained good estimates on terms involving m which appear in the nonlinearity
we are ready to estimate the interaction terms.

Proposition 4.16 (Estimates of the interactions). Let 8o be as in the small energy regime
(c.f. Definition 4.2). For every k = 0,1,2,3,4 there exists Cr.x > 0 such that if
|Z|| g+ < 8o then

/z N (2)- Z‘ < CrollZl g4I 2113,
T‘

and

bD

o] =k

/ N (Z)-9°Z

k
2 2
2 : i k+1
<C1'k||Z||H4 ( IHV ZHL2+HV (u’w)‘L2>'
1=

Proof. The nonlinearities are all of one of three types, and so we write N = N1+ Ny + N
for

Nii=— (- Vyu, Jog -Vyw, (-V)J),

Ny := (0, JJe_qlm (JJe_ql) (a) X JoqWeq + Weg X JWeg + Weq X Jeqa)+2/<a))
—-m (JJ;II) (X JO+0 X Jweg +0 X Joqg + weg X Jo), [, J]), and
N = (0, —JJ;m (JJ;II) KV X u+aV (V- o) +7A0), o) .

We first consider the case of « nonzero and so for T € {I, I, IIl} and i = 1,2, 3,4 we
write N7; 1= 37, = Jp *Nr (Z) - 0°Z.

Estimating nonlinearities of type L is fairly straightforward. We expand out ng 0“ N1 (Z2)-
3% Z and use the generalized Holder inequality, putting two factors in L? and putting
the remaining factors in L°° (thanks to Lemma 4.3). For example, writing for simplicity
N1 (Z) = (u - V) Z and considering the case where 3 = 9;;4;, one of the terms that
appears is fW (8i kU V) ViZ - 0;juZ, and it can be estimated in the following way,
which is typical of how nonlinear interactions of type I are handled:

‘/@ (Bijku . V) VIZ - 9ijuZ

<[l o[ vzl |72
L? 00

L2




Instability of an Anisotropic Micropolar Fluid 979

2
L2’

The only subtlety for these nonlinear terms is the fact that when 0% hits VZ in (u - V) Z,
the interaction vanishes due to the incompressibility constraint. Indeed, for any multi-
index «,

+||vz|

3 2
< N2l (HV z||,

1
(u.V)aaz-a“Z=——/ (V-u)|0%Z)* =0.
T3 2 'JT3

This cancellation is essential since we have no dissipative control of J and hence we
would not be able to control interactions involving Va*J (which is a component of
Va*Z). Estimating all the nonlinearities of type I in this manner we obtain:

2
, and
L2

2
2]’

To estimate nonlinearities of type I we proceed similarly, namely applying the gen-
eralized Holder inequality with two factors in L2 and the rest in L. In particular we

|2

2
L2

VLIS HZIgslIVZIG., Nl S 2 s ([|VP 2
L

W2l S 1IZI1 e

vz’ IMal < 11Z azll? 3
, Lal SHZIge L ||V7Z]| L+ V' Z
L? L?

use Lemma 4.4 and Corollary 4.15 to control m (] J;ﬂ) and its derivatives, as well as

the second part of Lemma 4.3 for the terms appearing when applying Corollary 4.15
which are cubic or higher-order. As an illustrative example let us write the nonlinear-
ities of type Il as Ny (Z) = m (J)b(Z, Z) for some bilinear form b and consider

f11‘3 0ijk (m (JJ;})) b(9,Z,Z) - 3;jiZ. This terms appears when 0% = 0;x; and can
be estimated as follows:

’/ 0ijk (m (JJeql»b(alZ,z).a,-jk,Z’

'ﬂ‘3

5/ <|V3J|+|v21||w|+|w|3>|VZ||Z||V4Z|
']1‘3

3
< (|52, 1

VZZ‘

L HIZIELIV ZI ) 1Z1ys

v“z‘

L2
it ([2], +[[v2], 1oz o2

L2

< 4|1 3|7 2|1 2
szt ([7'2]],, +[[e2]], + |[v2]], + 19215 ).

Estimating all terms of type II in this fashion yields, for i = 1,2,3,4, |NMri| <
g 5
1Z e Yooy |V 2] 2
Nonlinearities of type III are the most delicate to estimate due to the presence of
V x u, V(V - w), and Aw. The presence of these terms causes two difficulties

(1) when 0 hits Aw (or V (V - w)) we must integrate by parts since we do not have any
control, even through the dissipation, on viel+24, and

(2) there are precisely two terms in which more than two derivatives of order three or
above appear, terms for which we cannot simply use L2 and L> in the right-hand
side of the generalized Holder inequality. This is easily remedied by more carefully
choosing the L? spaces used, which is done explicitly below.
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Let us write the nonlinearity schematically as Ny (Z) = m (J Jejll) b (Z , Vza)) for
some bilinear form b. Here is how we handle (1) discussed above: for any multi-index «

Ny 1= /T3 m (1751)b(Z, A0) - 070 = - /T3 o (m (171)) b (2. 0:0%0) - 0%
= /T} m (105 ) b (32, 0i9%w) - 9% - /W m (175) b (2, 0:0%0) - 0,00
and hence

Vel S A1V Zlol1 Zl oo + 19 Zl1o) [0 | [[9000| | + 11211 ||V 0

2
2]’

Now we show how to handle (2) discussed above. Both terms under consideration appear
when |a| = 4, and so we write 3* = 9;;;;. Note that we will use Corollary 4.15 to bound

m (JJe;‘ )| above by [V3J| +|V2J||VJ| +|VJ %, but below we will only indicate how

to deal with the first one amongst these three terms (since the last two can be taken care
of by a generalized Hélder inequality using only L? and L°). We have, using the fact
that H' (T3) — L*(T?),

L2

la|+1 2 lal+1
L2

/m(JJ;Il)b(ai,-kz, Aa,w)-a,-,-k,w+/ i (m (1753")) b (Z, 2010) - B0
']1‘3 11*3
g/ |V3Z||V3w||v4w|+||znoo/ IV3IIV30l| V0] +- -

T3 T3

,5/ |V3Z||v3w||v4w|5Hv3zH HV%H
T3 H! H!

V4a)‘

L2

S0zl (|72 + ||| .) [[7*]
L? L?

<12l (|[96 ] +][7]

L2

2)

Estimating all nonlinearities of type III in this fashion yields, fori =1, 2, 3, 4,

2
L2

i j 2 i+1
Wil S 1Z1gs | 3 || 72|, + ][9! @ o)
j=1

Finally we consider the case @ = 0. Using the fact that ng u-V)Z-7Z =0and
that [2, J] : J = 0 (see Lemma B.14) we see that

N(Z)-Z:—/ 1 (JIg) (@ X 040 X T +® X Jog@ +0eq x J0) - ©
T3 T3

+/ J]e;lm (J]e;l) (a) X JoqWeq + Weg X JWeg + Weqg X Jegw + 2w — KV
el
xu —aV (V-w) —yAw) - w.

It thus follows from Lemmas 4.3 and 4.4 that | 3 N (Z) - Z| < ||Z||H4||Z||iz. ]



Instability of an Anisotropic Micropolar Fluid 981

4.4. The chain of energy inequalities. We begin this section by combining the results
of Sects. 4.2 and 4.3 in order to obtain a chain of energy inequalities.

Proposition 4.17 (Chain of energy inequalities). There exist Co, C1, Cp > 0 such that
JoreveryO < e < 1there exists 0 < § (¢) < 1 such that if supo<,; <7 11Z (D)|| 2 < 3 (¢)
and Z solves (4.1) then

ST +D<u w) < ellZIR +Co (118113 +1lall3 )

and, fork =1,2,3,4,

sl (22)]]

k—1
2 2
k k i
o +—2 ’v (u, a))H sHv ZHL2+C12(;HV Z‘ L
1=

Proof. Lete > 0,let Cp and C ¢ be as in Lemma 4.9 and Proposition 4.16 respectively,

let C,; be as in Lemma 4.8 for o := %’, let ny := # {multi-index « : |«| = k}, and pick
. : e Cp

8= 021](124 {80’ Crin’ 4Crx }

First we consider k = 0. Observe that for 2Cy :=2 (A — v) + (i)z,

B (@,a) = 2Cy /T ot a < Co (11612, + llall?,) (4.9)

By Propositions 4.7, 4.16, (4.9), and the fact that § < ﬁ we deduce the energy
inequality for k = 0.
Now we consider k = 1,2, 3,4. For any nonzero multi-index « it follows from
Propositions 4.7 and 4.16 and from Lemmas 4.9 and 4.8 that
2
L2>

Cp
4

k ; 2 2
+CLllZll (D ||V ZHL2+‘ o) L)
i=1

Summing over |@| = k and using that § < min ( 4gll<

1d 2 s
salVB @)+ colls worll < ( .,

80{+1 )
L?

30[7161‘

&
Crng

) we observe that, after

absorbing ||8°‘+1a)| | ;2 and ||Vk+] (u, a))| | ;2 into the dissipation on the left-hand side,

ld k 2 CD k 2
a7 (VP2 [T w el <
> dr ‘ VD L2+ > (u, w) 0 n;Cey

from which the result follows upon taking C| := max (1, n4Cs). O

We now record, in abstract form, a Gronwall-type lemma for chains of differential
inequalities.
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Lemma 4.18 (Chain of Gronwall inequalities). Consider; for k > —1, Ex : [0, 0c0) —
[0, 00). Suppose that there exists C_1,C > 0,0 < 0 < 0y < xp, and ke = —1 such
that for everyt > 0, E_1 (t) < C_1e¥" and everyk > 0

k—1

d
d—Ek () KOE (1)) +C Z E;(2). (4.10)

i=—1

Then, for every 0 < k < kpay, there exist Cy > 0 such that for everyt > 0

k
Er (1) < Ck (C_l +ZEZ- (0)) eV =: Crel. 4.11)

i=0
Moreover: if (4.10) holds for every k > —1 then so does (4.11).

Proof. We induct on &, noting that the base case k = —1 holds by assumptlon Now sup-
pose that “4.11) holds foreveryi = —1, , k — 1. Then, by (4. 10) a (Ek e 9‘) <

C Z 71 E; (t)e™ andhence, integrating1nt1meandus1ng (4.11), where C_1 =C_y,

k—1

k—1
C ~
Ex(t)<E(0)e” +C ) Gf/ CieV= 9>‘ds<<Ek(0)+ - }jc,»)evff
r
i=—1

i=—1

k
<Gy (c_l +> E (0)) eVt

i=0

forsome C; > 0. 0O

We conclude this section by applying Lemma 4.18 to the chain of differential in-
equalities obtained in Proposition 4.17, which yields a bootstrap energy inequality.

Proposition 4.19 (Bootstrap energy inequality). There exists 0 < ép < 1 such thatif Z
solves (4.1) and supg<,; <7 |1 Z (1) || g+ < O then for every y > O there exists C () > 0

such that if there exists Cips > 0 such that Ejys (1) := ||@ (t)lli2 + ||a (t)IIi2 satisfies
Eins (1) < Cinge?" for all t > 0 then, forallt > 0,

1Z 1B < € @) (11Z )1 + Cing) .

2
Proof. Let us define E_| := Ejn, Ex (1) := HV" (\/DZ)HL2 for every + > 0 and
every k > 0, and C := max (Cyp, Cy) for Cp and C| as in Proposition 4.17. Observe that
2
|J 1/2w|2 > v/2|w|?* forany w € R and hence ||Z|| < max (1,2/v) H\/ ZH .Let

¥ > 0and note that we may deduce from Proposition4.17, plckmg &= mm (1, 9/2,¢v/2),
dp = § (¢), and neglecting the dissipation, that for k = 0, , 4 and every t>0

iEk (1) < 1”Ek t)+C Z Ei (1). (4.12)
i=—1
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Now suppose that, for every t > 0, E_j (f) = Eins (t) < Cinse?' =: C_1e¥". Using
Lemma 4.18 we obtain that for k = 0, ..., 4 there exists C; > 0 such that E; () <

Cr (C,l + ZLO E; (0)) eVt Finally, summing over k = 0, ..., 4 we obtain that

4 ~ 2
1Z Ol < max (1,2/v) Y Ex () < (1) (c_1 +||vpz <0>HH4) et
k=0
< max (1,2, 0) € @) (Cins +11Z O] ) "

for some C () > 0, so we may simply pick C () := max (1, A, v) C (¥). O

5. The Bootstrap Instability Argument

In this section we prove our main result using a Guo—Strauss bootstrapping argument.
This technique was introduced by Guo and Strauss in [GS95a], inspired by [GS95b]
and [FSV97]. For a cleanly written and very readable form of the bootstrap instability
argument we refer to Lemma 1.1 of [GHS07].

For the purpose of the theorem below, we define what we mean by a strong solution
of (1.1a)—(1.1d).

Definition 5.1. (Strong solutions) For any Xo € H? (T3) and any 7 > 0 we define
a strong solution of (1.1a)—(1.1d) with initial condition X¢ to be any function X €
L> ([0, T], H*(T%)) with ;X € L* ([0, T], L*(T?)) for which (1.1a)—(1.1d) is
satisfied almost everywhere in (0, T) x T? and such that X (0) = Xj.

Theorem 5.2 (Bootstrap instability). Let 1, be as in Proposition 3.10 and assume that
(2.7) holds. There exists 0,6 > 0 and Zy € L? ('I[‘3, R3 x R3 x R3X3) such that for all

0 <t < éifwedefineT; := % log ? then there exists a strong solution X = (u, w, J) €
L ([0, T;1, H* (T%)) of (1.1a)~(1.1d) with pressure p € L* ([0, T;], H* (T%)) and
initial condition X (0) = X +1Zo such that || X (T1) — Xeg|| ;> > §-

Proof. The crux of the argument is to compare three timescales: the instability timescale
Ty, the linear-dominance timescale 77, and the smallness timescale Ts. We will show
that at times living in both the linear-dominance and the smallness timescale (i.e. times
anterior to both 77 and Ts) two key estimates hold, namely (5.1) and (5.2). This will
allow us, by way of contradiction, to show that the instability timescale is the shortest
of the three. It will thus follow that instability occurs while the dynamics are dominated
by the linearization and while we are in the small energy regime.

We begin by recalling appropriate notation from previous results. Let (u¢, wg, ap) =:
Y be as in Proposition 3.13 and note that without loss of generality we may assume that
[IY|l;2 = 1. Define Zy := (ug, wo, Jo) where Jyp = (OC?Q %O) Let §p be as in the

0

small energy regime (c.f. Definition 4.2), let Cg := Cg ('77*) as in Proposition 3.12,
let Cn be as in Proposition 4.5, let ¥ := 2n, such that Cp := C () and 65 are as in
Proposition 4.17, and let 81wy be as in Theorem A.3 with 81y, being chosen small enough
so as to ensure that L < 7.
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We can now define the appropriate small scales & and §, which in turn will later allow
us to precisely define the timescales. Let

1 . 1 8lwp /L
6 = —min | 8, 65, —, || Zol| 2( )
7 ( C B\ 11Zoll e

5= Lmin(1.5 0 (C <||z 12 +4>9)71/2 !
= — min s y T, [ )
2 M1 Zol ge o U B0 206

andlet 0 <t < §.

By our local well-posedness result (see Section A and Corollary A.6 in particular)
there exists T > 0 and a unique strong solution Z € L™ ([0, Tg]; H*(T?)) of (4.1)
with pressure p € L*°H 4 and initial data Z (0) = (Z. Note that our local existence
result (Theorem A.3) tells us moreover that the solution Z may be continued as long as
Z remains in an open H*-ball of radius Siwp- We may thus without loss of generality
assume Tg to be the maximal time of existence of the solution in the sense that Tg :=
sup {T > 0 : Z exists on [0, T'] and supy,_7 ||Z (1)||y+ < Siwp }. Expanding out the
definition of the notation in (4.1) we see that X := X, + Z is a strong solution of
(1.1a)—(1.1d) with initial condition X (0) = X4 +1Zp.

We may now define the timescales. We define T =
sup {0 <t < Tg : [|@ Iz +lla Ol 2 < 2™}, T; = %log 8 and Ts =
sup{0 < < Tg : [|Z(®)|ly+ < 0}.Note that T, > Osince [|Z (0)||,2 = ¢, that Ts > 0
since ||Z ()|l g+ = | Zollys+ < 6, and that T, Ty, < Tk

Step 1: Since 6 < §p we deduce from Proposition 4.19 that if ¢+ < min (7, Ts) then

1Z (1B < Coi? (11Z0l s +4) € (5.1)

Now we apply the Leray projector to eliminate the pressure and write (4.1) in the
reduced form 0;Z = LZ+ N (Z), where N := PD~'N. More precisely we apply P and
observe that P3 = B and hence PL = L. Indeed this follows from the observation that
on one hand, for k £ 0, P (k) = ( — %) SLpL=1-— projvk and the fact that,
since l§’k acts on C8/ V;, it follows that proj Vi ol§k = ék, whilst on the other hand, for
k = 0, we have that 13L (0) = Iz (since constant vector fields are divergence-free) and
hence P (0) = id.

We can thus apply the Duhamel formula to obtain

t
Z(t)—e’£Z(0)=/ e"9ILN (Z (5)) ds
0

which can be estimated, when ¢t < min (77, Ts), using the fact that 8 < §q, Proposi-

tion 3.12, the fact that the Leray projector is bounded on L?, the inequality ’ D! || <
Jmax (1,2/v), and Proposition 4.5 to yield, for C = %
max (1,2/v) CsCnCs (|1 Zoll7,4 +4),

HZ (1) — etLLZ()HLZ < R, (5.2)

Step 2: Now we show that 7; = min (77, Tr, Ts), using the key estimates (5.1)
and (5.2). First suppose for the sake of contradiction that 7;, = min (77, T, Ts). By
definition of 77,

&> (To)l| 2 + [la (T2 = 2ee™ . (5.3)
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Now note that (5.2) applies since 77, < Ts and thus it follows from Proposition 3.13 and
the choice of Zy that ||Z (Tp)||;2 < (1 + CLe”*TL) 1e™TL < 2™ 7L where we have
used that 77 < 77 and hence Cie™ Tl < Cie™Tt = CO < 1. This contradicts (5.3)
and hence the linear-dominance timescale 77 is not the smallest of the three timescales
considered.
Now suppose for the sake of contradiction that s = min (77, T, Ts). By definition
of T,
NZ (Ts)||gs = 0. (54

Since Ts < T we may use (5.1) and since Ts < 77 we have that 2 Ts L 21 = g,
Putting these two facts together tells us that || Z (Ts)| |%14 < Cpl? (| |Z0||§]4 + 4) 0% <6
which contradicts (5.4). Therefore the smallness timescale T is not the smallest of the
three timescales considered. We thus deduce that T; = min (77, Ty, Ts).

Step 3: Finally we show that || Z (T7)]|;2 > %. Since T; is smaller than both 77, and T
(and hence smaller than Tg) we may use (5.1) and (5.2), as well as Proposition 3.13, the

choice of Zo, and the fact that .e™"! = 6 toseethat || X (T7) — Xeq|,2 = I1Z (T2 =
T — C2e T =6 (1 - Cw) > 1. O

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix A: Local Well-Posedness

In this section we prove the local well-posedness of (1.1a)—(1.1d). This is done in two
steps: we prove local existence in the small energy regime in Theorem A.3 and we prove
uniqueness within a broader class of solutions in Theorem A.5. Notably, this uniqueness
result makes no smallness assumption and only requires that the unknowns belong to
appropriate Sobolev spaces.

A key step on the way to our local existence result is to prove that the nonlinearity is
sufficiently regular. We do this below in Lemma A.1 where we prove that the nonlinearity
is analytic.

Lemma A.1. (Analyticity of the nonlinearity) Let 0 < & < &g for 8o as in the small
energy regime. For every s > % N : H*?N Hgt) — H? is analytic (as a mapping from

H’*2 1o H®). Moreover the Lipschitz constant of N on H*> N H. g‘o — H°® approaches
zero as 6 | 0.

Proof. The two key observations are that (i) we may write N (Z) =
P (m (] Je’ql) ,Z,VZ, VZZ> for some polynomial P and that (ii) m is analytic (recall
that m is defined in Definition 4.1). Indeed m can be written as a geometric series, namely
m(A) = Z?io (—=1)" A" for every A € B, where ‘B is defined in Definition 4.1.

Using Lemma B.19, the fact that H® is a continuous algebra when s > %, and the

fact that polynomials are analytic, it follows that we may write N = F (j 2Z) for
some function F : dom F € H® — H*® which is analytic on its domain (i.e. where it
is well-defined), where 7 27 = (Z . VZ, VZZ). The last observation we need is that

J2 (HS n H§)) C dom F. This holds since, if Z = (u,w, J) € H**2 N HE for &
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as in the small energy regime, then by Lemma 4.4 we know that J +— m (J Jejil) is
well-defined, and hence analytic. Since 7 is a bounded linear map from H**? to H* it
is also analytic, and so we may conclude that N : H*> N H gt) — H?* is analytic as a

map from H**? to H'.

Finally, note that the polynomial P above is at least quadratic in (Z ,VZ, VZZ) and
that therefore DN (0) = 0. In particular it follows that the Lipschitz constant of N on
balls of vanishingly small radii approaches zero, as claimed. 0O

Remark A.2. See [Whi65] for a brief and clean summary of basic results regarding
analytic functions between Banach spaces.

With Lemma A.1 in hand we may now prove our local existence result.

Theorem A.3 (Local existence and continuous dependence on the data). There are
universal constants p, §jyp, C > 0 such that for any Zo = (uo, wo, Jo) € H* with
V-ug =0, fT3 ug =0, and || Zol| g4 < Spwp, there exists a time of existence Tj,, > 0,
there exists Z = (u, w, J) € LY H* with (u, w) € L*H>, 8,Z € L°H> N L?>H3, and
8 J € L®H?3, and there exists p € L°H* N L?>H> with average zero such that u is
divergence-free and has average zero, (u, p, w, J) solves

&DZ=LZ+A(p)+N(Z) ae.in (0, Tywp) and Z (0) = Zg in H* 1, (A.D
and the estimates
NZ|| oo s + 11, )| p2gs + 110: Z1| oo a2 s + 110 oo g3 < CllZollgs (A2)

and
2
||p||L°OH4ﬂL2H5<C||u|| 0o [JANT 2 15 (A3)
L®H*NL“H

‘Slwp
[1Zoll 4

hold. Moreover we have the lower bound T, > % log

Proof. We proceed via a standard Galerkin scheme and thus omit the fine details of the
proof here. A key point is that everything we need to know about the nonlinearity for
the purpose of this local well-posedness result is obtained in Lemma A.1.

We now proceed in five steps. In Step 1 we eliminate the pressure via Leray projection,
in Step 2 we prove local well-posedness for a sequence of appropriate approximate
problems, in Step 3 we obtain uniform bounds on these approximate solutions, in Step
4 we pass to the limit via a compactness argument, and in Step 5 we reconstruct the

pressure.
First we recall some notation from earlier results which is required to define the
smallness parameter Jjwp. Let 8o be as in the small energy regime, let § = § (%)

be as in Proposition 4.17, and define C; := max (1, A, v) max (1,2/v). Then take
Siwp 1= 3 min (8p/ C2, 8).
Step 1: Leray projection eliminating the pressure.

Recall that we denote the Leray projector by Py and that we write P = Py @ I3 ® I3x3.
Upon applying PP to (A.1) we thus see that (noting that PZ = Z since V - u = 0 and that
P and £ commute since they are both Fourier multipliers): ; DZ = LZ + PN (Z).
Step 2: Local well-posedness of a sequence of approximate problems.

LetV, = {Z elL? (’]T3; R3 x R3? x R3X3) | Z(k) =0iflk| >nand V- u = O},let
U, =V, NH gt) s where Hy denotes the open ball around zero of radius R in H%, and
let P, be the orthogonal projection onto V,, defined by ]f"n (k) = 1 (k| < n).
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We approximate the system obtained after Leray projection in Step 1 by
&DZy = LZ, +P,PN (Z,) and Z, (0) = P, Zj. (A.4)

In order to use standard finite-dimensional ODE theory we write (A.4) as
07, =F,(Z,) and Z, (0) =P, Zg (A.5)

for F, = D! (Z +P,PN ) It follows from Lemma A.1 that F,, is analytic from H gt] to

H?Z, and since U, is a subset of Hgt) and P o P maps onto V,, we deduce that F,, maps U,
to V,.

We may now apply standard ODE theory, which tells us that if we pick an ini-
tial condition Zg = (ug, wg, Jo) € H* which satisfies V - uy =, fT3 ug = 0, and
[1Zollg+ < Siwp then there exists a maximal time of existence 7, > 0, a unique
Z, € C* ([0, T,,) ; Uy) solving (A.5), and the following blow-up criterion holds: for
any T > 0if supge, <7 11Zn ()| g+ < % then T < T,

Step 3: Uniform bounds on the approximate solutions.

To obtain uniform bounds it suffices to apply Proposition 4.17 to the approximate
solutions Z,. Since Proposition 4.17 is only applicable in a small energy regime we
must first ensure that || Z, || z+ remains sufficiently small. We defined T,, to this effect
below. _ ~

Let s, = %min (80.8),and let T, = sup {t > O | [|Z,||y+ < 8 }. Note that T, > T,,
by the blow-up criterion from Step 1. We may now apply a time-integrated version of
Proposition 4.17 (with ¢ = %) to obtain

sllvozof, 3]

1
+/ D (uy,, wy) (s)ds
0

"1
< /O (§+co)||zn I ds (A6)

and, fork =1, 2,3, 4,

b () 3 (45 0) [ [ L

t 1 k .
< /() max <§ C1> ; HV’Zn (s)

where Co, C1, and Cp are as in Proposition 4.17. Note that Proposition 4.17 as stated
applies to solutions of ; DZ = LZ + N (Z) + A (p) whereas Z, satisfies 3;DZ, =
LZ, + P,PLN (Z,). Nonetheless, Proposition 4.17 applies to Z, as well since this
theorem relies solely on energy estimates, and in particular, since fw A(p)-Z=0
when V-u = 0and [ PPN (Z,)-Zy = [13 N (Zy)- Z, since Z,, belongs to the image
of the projection IP,, o IP, it follows that the estimate obtained for Z in Proposition 4.17
also holds for Z,,.

Summing (A.6) and (A.7) and using the integral form of the Gronwall inequality tells
us that, forany 0 < ¢ < Tn,

‘ds

2
] ds (A7)
L2

1Zy 015 4+/ 1, @) 1135 < Cae 1| Zol 134 (A.8)
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where p := 2 (1 + Co+ Cy)max (1,2/v). In particular we deduce from the blow-up
Slwj
Zollp 4"
In other words we have a uniform lower bound on the time of existence of the approximate
solutions.

Now we obtain bounds on the time derivative d; Z,,, which are required for the compact-
ness argument in Step 4. Note first that (A.8) tells us that, for C4 = CoePTivp,

criterion that if we denote by Ty the infimum of 7;, over n then Tiy, > log I

sup (”(unva)n, Jn)” Toog4 T [[(uy, w”)||L2H5> < C4||ZO||%.14 (A9)
n

where L? H® denote L” ([0, Tiwp ] ; H*). Using Lemma A.1 and the boundedness of Lz,
P,, and P we deduce from (A.9) that, for some C5 > 0,

sup (||a, (s Ons T 17 oo gy + 1197 (i, %)Hizm) < Csl1Zol 134 (A.10)
n

Finally we improve this bound on 9, Z,, by paying closer attention to the structure of the
PDE (A.4). Specifically: since £3 and N3 lose fewer derivatives than £ and N do, we
obtain an improved estimate for 9, J,:

sup [19: Jn 17 oo 3 < CallZol 134 (A.11)
n

Step 4: Passing to the limit by compactness.

By applying Banach—Alaoglu (i.e. the weak-* compactness of bounded sets) to the
bounds provided by (A.9), (A.10), and (A.11) we obtain a subsequence of (Z,), which
for simplicity we do not relabel, such that

Ko 700 pyd 725
Zy,— Zin L”"H", (u,, w,) = (u,w) in L"H", (A.12)
0 Zn > 8,Zin L°H?, 8, Zy — 8, Z in L2H3, and 9,J, =~ 9,J in L™ HEA.13)

for some Z = (u, w, J) € L°H* with (u, w) € L?H>,8,Z € L*H?* N L?>H3, and
o,J € L*°H 3. Moreover, it follows from Aubin-Lions-Simon that, passing to another
subsequence which we do not relabel,

Z, — Zin COH*1 (A.14)

and that Z € C0H4’%
We now pass to the limit. It follows immediately from (A.12) and (A.13) that

yDZ, > 3,DZ and LZ, -~ L7 in L°H>. (A.15)
To pass to the limit in the nonlinearity we write
PPN (Z,) — PN (Z) = P,P (N (Zy) — N (Z)) + (P, — [)PN (Z) := A + B.

Passing to the limit in B is immediate: by weak-% lower semi-continuity of the L> H*
norm we know that SUP)<< Ty Z ()|l g+ < %0 < 8o such that N (Z) is a well-defined

element of L°H2. In particular, since ||(I —P,) f|lgs — 0 for all s > 0 and all
f € H?, it follows that

[1Bllpoez = I = Pp) PN (Z)|[0 2 — 0. (A.16)
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Passing to the limitin A relies on the analyticity of the nonlinearity obtainedin Lemma A.1:

since Z,, — Zin COH 4-5 and since, as observed above, both the sequence (Z,,) and its
limit Z lie in H§>/2’ it follows from Lemma A.1 (since 2 — 4—1‘ > %) that N (Z,) - N (Z2)

in COH4=1. So finally:

Al oy = BB (Z) =N @I oy SIINZ) =N oy 0.
(A.17)
We conclude from (A.4), (A.15), (A.16), and (A.17) that Z is a strong solution of
DZ = LZ +PN (Z). As a consequence we deduce that the conditions V - # = 0 and
JET3 u = 0 are propagated in time, i.e. they hold for every 0 < ¢ < Tiwp.
Finally we deduce from (A.9), (A.10), and (A.11) and the weak and weak-* lower
semi-continuity of the appropriate norms that, for some C > 0,

@, @, Dl pcogatl(u, @) 2 gs+I10: (u, @, I ||poo g2ap2g3+110: I peo g3 < ClIZoll 4.
(A.18)
Step 5: Reconstructing the pressure.

The key observation is that since P = Py @ I3 @ [3x3 we may reconstruct p via
I — Py, where I — P, = VA™!'V. as per Lemma B.20. More precisely: let p :=
A~ (V - Ni (2)) and note that p thus defined has average zero. Then, by Lemma B.20,
Vp = (I —Pr) Ny (Z) and hence A (p) = — (I —P) N (Z) such that (A.1) holds.
Finally, since Nj (Z) = — (u - V) u and since H® is an algebra for s > 3/2 we have
that, for s = 3 or 4,

pllgs SN (D) s = 1@ - V) ullgs—1 S Hull s lull s
Combining these estimates with (A.18) yields (A.3). O

Remark A.4. It may appear somewhat odd that the initial condition Z (0) = Zg of

(A.1) holds in H*"% and not in H* as one might expect. This is due to the loss of
spatial regularity incurred when applying the Aubin-Lions-Simon lemma to obtain strong

. . . _1 .
convergence of the approximate solutions in COH 4=4.In particular, note that the only
thing which is special about 4—1‘ is that it sits squarely between O and % and that we

use that (4 - }T) -2 > % when we leverage Lemma A.1 to pass to the limit in the
nonlinearity in Step 4 of the proof of Theorem A.3. This means that we can actually
show that Z (0) = Zg in H* ¢ for any 0 < ¢ < %, since then 4 — ¢ < 4 such that

Aubin-Lions—Simon appliesand (4 — &) =2 > % such that we may still use Lemma A.1.

We now state and prove our uniqueness result. Note that the only assumptions made are
boundedness of appropriate Sobolev norms of the solutions. No smallness assumptions
are made here.

Theorem A.5 (Uniqueness). Suppose that, for i = 1,2, (u;, pi, wi, Ji) are strong
solutions of
duj + (ui - Vyuip = (V- T) (ui, pi, wi),
V-u =0,
Ji Qrw; + (u; - V)Yw;i) +w;i A Jiw; =2vecT (uj, pi,w;i)+ (V- M) (w;) +te3, and
O Ji + (ui - V) Ji = [$2;, Ji]
on some common time interval (0, T') which agree initially, i.e. which agree at time t = 0.

If Jy is uniformly positive-definite, p;, d; (u;, w;, J;) € L2TL2, Wi, wi, Ji),V (u;j, w;, Ji) €
LFPL*®, and 3;Jy, 0wy € LT L™, then these solutions coincide on (0, T).
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Proof. This follows from simple energy estimates for the equations satisfied by the differ-
ence of the two solutions. The difference (u, p,w, J) =
(w1 —u2, p1 — p2, w1 — w2, J1 — Jo) satisfies

@ +u;r - VYu=(V-T)(u, p,w)+ f, (A.19a)
V.u; =0, (A.19b)
(J1 @Bs+uy - V) 4wy A J) w=2vecT (u, p,w)+ (V- M) (w)+g, (A.19¢)
0 +uy - V) J1 =[R2, J1], and (A.194d)
@O +uy-V)J =[Q,J]+h (A.19¢)

for

f=—w-Vu
g=—Jowr —J1(u-VYwy —J (uz-V)Ywz — w1 AN Jwy —w A Jhwy, and
h=—w-V)L+[2, h].

We can thus multiply (A.19a), (A.19¢c), and (A.19¢) by u, w, and J respectively to see
that, forevery 0 <t < T,

2

t
1
+// B Dup? + 2¢
0 T3 2 2

-VXxu—w
t
=/ fu+tg-o+h:J.
0 J13

/1| P ino e tap
Lo, b, 1
2 1oty 2

I 5, 1 I 5

— —lul"+-Jiw - o+ =|J|
s=t T3 2 2 s=0
2

+alV- o)+ §|D0w|2 +2y|V x o

We can write this energy-dissipation-interaction relation more succintly as £(t) — £(0) +
fot D= fot TforT = [p3 f-u+g-w+h : J.Itfollows from straightforward application of
the Holder and Cauchy—Schwartz inequalities that the interactions are controlled by the
energy, i.e. |Z| < C& for some constant C > 0. Note that since the two solutions agree
initially we have that £(0) = 0. Therefore the integral version of Gronwall’s inequality
tells us that £(r) = 0 for all 0 < t < T. Since J; is uniformly positive definite we
deduce that (u, w, J) = 0. Finally, since —Ap = Vu; : Vul +Vu : VupT =0, we
conclude that indeed the two solutions coincide. 0O

Putting Theorem A.3 and Theorem A.5 together yields our local well-posedness result,
stated below.

Corollary A.6. (Local well-posedness) The solution obtained in Theorem A.3 is unique.

Proof. Thisisimmediate since the assumptions of Theorem A.3 ensure that Theorem A.5
applies. 0O

Appendix B: Auxiliary Results

Here we record auxiliary results which are used throughout the main body of the paper.
Whilst these results are typically either elementary lemmas or well-known theorems,
they are of interest since they are applicable beyond the scope of this paper.
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Lemma B.1 (Lower bound on the real part of complex square roots). Let x, y € R with
y # 0 and let « > 0. We follow the convention according to which the square root of

a complex number with non-trivial imaginary part is chosen to have a strictly positive
D ginary p 4
2

real part. Then Re /x +1iy > « if and only if x > o — 2

402"

Proof. Letus write /x + iy = u+iv for some u > 0 and v € R, such that x = u? — v?

and y = 2uv. What we wish to prove can then be written as # > « if and only if
w2 > az—”;gz
This can be simplified, using the fact that u + « > 0, to (1 — &) (l + :é) > 0. This is

indeed equivalent to # > o so we are done. 0O

. . 2
. The latter inequality can be rearranged as u> —a® > — %5 (u? — o?).
o

Lemma B.2. (Similarity of matrices acting on quotient spaces) Let V be a subspace
of C" and let A, G, and H be complex n-by-n matrices which act on C"/ V (c.f. Def-
inition 3.1) such that GH = HG = projy .. Then (1) B :== GAH actson C"/ V, (2)
A = HBG, and (3) A and B are similar.

Proof. First we show that B acts on C"/ V. We know that im B C im G C v+ and
that V = ker H C ker B, so it is enough to show that ker B € V. Let x € ker B. Since
Hx € V=, itsuffices to show that Hx € V asthen Hx = 0,i.e.x € ker H = V. The key
observation is that since im A € V- and since G and H are inverses on V1, we obtain
that A = HGA. It follows that AHx = HGAHx = HBx =0,i.e. Hx c¢kerA=V,
and hence (1) holds.

Now observe thatin order to prove that A = H BG itisenough to showthat HGA = A,
which was done above, and that AHG = A, which we do now. Pick any x € C" and
write x = xj +x1 forxy € Vand X, € V<. Since ker G = ker A = V and since
HG = projy . itfollowsthat AHGx = AHGx| = Ax) = Ax,i.e.indeed AHG = A.
Finally we show that A and B are similar by explicitly finding an appropriate change-
of-basis matrix. Let P be the orthogonal projection onto V,i.e. ker P = V' and P|y =
id |y. Observe that, since ker B = V = im P and since im B C VL = ker P, we may
deduce that BP = P B = 0. Therefore

(H+P)B(G+P)=A. (B.1)

We will now show that G + P and H + P are invertible and (G + P)"! = H + P,
from which it follows that (B.1) witnesses (3). Let x € ker (G + P) and let us write
x = x| +x as above. Then 0 = (G + P) x = Gx| + x| with Gx € V!t andx € V,
and hence we must have Px; = 0 and x; = 0. In particular, since kerG = V, we
know that x; belongs to both V and VL and hence x 1 = 0, such that x = 0. This
shows that G + P has trivial kernel and is thus invertible. We may deduce in exactly the
same way that H + P is invertible. To conclude we simply compute (H + P)(G + P) =
HG+HP+PG+P>*=HG+P=1. O

Lemma B.3 (Bounds on the real parts of the eigenvalues of a matrix using the spectrum
of its symmetric part). Let S and A be symmetric and antisymmetric real n-by-n matrices
respectively. It then holds that mino (S) < Reo (S + A) < maxo (5).

Proof. Let us denote by A4 and A_ the maximal and minimal eigenvalues of S, respec-
tively, let us define M = S + A, and let a + ib, a, b € R, be an eigenvalue of M with
eigenvector x +iy, x, y € R". Then, since M (x +iy) = (a +ib) (x + iy) it follows that
Mx =ax — by and My = bx +ay. In particular Sx - x + Sy - y=Mx -x+ My -y =
a (x> +1y|?) where Sx - x + Sy - y < Ay (Jx|* +1y]?). and therefore a < A,. We
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may obtain in exactly the same way thata > A_, and hence indeed A_ < Reo (S + A)
g )\.+. O

Theorem B.4 (Gershgorin disk theorem). Let A be a complex n-by-n matrix and let
R = Zﬁgl |Ajj| fori =1, ..., n. Every eigenvalue of A lies in one of the closed disks

B (Aji, R;), wherei = 1, ..., n. These disks are called the Gershgorin disks of A.

Proof. Let v be an eigenvector of A with eigenvalue A. Without loss of generality (oth-
erwise we may divide v by &||v||o,): v; = 1 for some index i and |v;| < 1 for all indices
J different from i. Now observe that

(Av); = A & Aiivi+ZAijvj=Avi & A—Aj =ZAijUj
J# J#
andthus |A — A;;| < Al < 21#1 |A,]| = R;i.e.indeed A liesin B (A;;, R;),
which is one of the Gersﬁgorm dlSkS of A.

Corollary B.5 (Bounds on the imaginary parts of the eigenvalues of a matrix using the
Frobenius norm of its antisymmetric part). Let S and A be symmetric and antisymmetric
real n-by-n matrices respectively. Then |Im o (S + A)| < «/n — 1||Al|,, where ||Al|, :=
~/ A : A is the Frobenius norm of A.

Proof. Since S is symmetric, there exists an orthogonal matrix Q and a diagonal matrix
D such that QSQT = D. Therefore Q (S + A) 0T = D+ QAQT. In particular, for
A := QAQT, we know that S + A and D + A have the same spectrum. Writing D =
diag (A1, ..., A,) where the A;’s are the eigenvalues of S, we may apply Theorem B.4
to deduce that the eigenvalues of D + A lie within closed disks centered at A; (since A is
antisymmetric and hence all its diagonal entries are equal to zero) and with corresponding
radii R; = Zj#i'Aiﬂ < JVn—1 ||A||2. The result then follows from the observation

. . . ~ 2
that the eigenvalues A; of the symmetric matrix S are real and the fact that ||A||, =

QAQ" : QAQT =0T QAQTQ: A=]lAll}. D

Lemma B.6 (Bounds on matrix exponentials using the symmetric part). Let M be a
real n-by-n matrix, let S := % (M +M T) denote its symmetric part, and let o denote

MHL(]ZJZ) <e

Proof. This follows from a simple Gronwall inequality upon noticing that, for any x €
R", Mx - x = Sx - x. More premsely pick any xo € R” and define x (¢) := ¢'Mx for
every t > 0. Observe that —x (t) = Mx (t) and hence (‘iitllx (t)||2 =25x(t)-x (1) <
20| |x (t)||2. Since x (0) = xq, applying Gronwall’s inequality yields that, for every
r =

2 .
Mxol]; = Ilx ()13 < €2'|x0]13, from which the result follows. O

Lemma B.7 (Bounds on matrix exponentials for Jordan canonical forms). For any ma-
trix norm |- | there exists a constant C, > 0 such that for every complex n-by-n
matrix M in Jordan canonical form, if n := maxReo (M) then, for every t > 0,
le'M| < Cp (1+1") e,

Proof. Since M is in Jordan canonical form it can be writtenas M = J,, (A1) ®--- @
Ja, (Ax) where the A;’s are eigenvalues of M and J, (A) = Al, + N, for (Na)ij =
1if j =i+ 1 and (Ny); = 0 otherwise, Note that, since N, is an a-by-a matrix
whose only non-zero entries are those immediately above the diagonal, it is nilpotent
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of order a. In particular, note that since the identity commutes with all matrices, it
follows that e’«® = ¢*¢Ne, and recall that for any nilpotent matrix N of order g

. . . . . . . 1
its matrix exponential is given by a finite sum, ie. " = 397, ]1‘ NJ. We can thus

compute the matrix exponential of M to be e'™ = e*17¢!Nar @ ¢*t! o' Nar which can be
estimated by [e'M| < Yok, eRerr ‘Z,— i +(tNg,)’ ‘ < e (1 +1") where have used
that polynomials of degree ¢ in a real variable x can be bounded above (up to a constant)

by 1+x7, and where the constants up to which the inequalities above hold only depends
on n and the choice of the matrix norm. O

Corollary B.8 (Bounds on matrix exponentials). Let M be a real n-by-n matrix and let
n:=max Re o (M). For any matrix norm | - | there exists a constant C = C (M) > 0
such that, for every t € R, it holds that |¢'™M| < C (1 +1") e

Proof. This follows from Lemma B.7 since every matrix M is similar to a matrix in
Jordan canonical form. The constant obtained depends on M since the norm of the
matrices used to conjugate M to put it in Jordan canonical form depend on M. 0O

Proposition B.9 (Construction of a semigroup via matrix exponentials as Fourier mul-

tipliers). Let M : Z" — R!*! be a family of matrices for which there exists n € R and
Cr > 0 such that, for every k € 7" and every t > 0,

‘ e
For any t > O the operator ¢~ defined by the multiplier (e’ﬁ)A (k) == eM® jsq
bounded operator on L? (']I‘"; R! ) such that (et L)
ie.

€))] % s the identity,

() foreveryt,s >0, e'Le’t = 8Ll L = (+9L

(3) forevery f € L? (T”; Rl),t — e’Lf is a continuous map from [0, 00) to L? (']I‘”; Rl),
and

fM(k>H < Cpe'. B.2
l:(lz,lz) X CFe ( )

/>0 defines an n-contractive semigroup,
=

(4)f0r everyr 2 5 £||£(Hr(']Tn;Rl);Hr(’]I‘n;Rl)) g CFer]t~
Moreover; let us write v = (vl, cee vp) € R? x --- xR, where g1 +---+¢qp =1,
and suppose that there exists ay, ..., o, € Nand Cp > 0 such that for every k € Z"
and every v € R,
P
IM (k) vl* < Cp Y (k)™ vy 2. (B.3)

i=1
Then
(5) the domain of the semigroup (e’L)t>0 is H*' (T", R%') x --- x H% (T", R4r) and
(6) its generator is the linear differential operator L with symbol M, i.e. L (k) := M (k).
Proof. The boundedness of 'L and (4) follow directly from (B.2). (1) and (2) follow
from the fact that, for any matrix M, (e’ M ) />0 1s a representation of the semigroup
(R>o, +), ie. e = [ and e'MesM = oMM — o(t+9M To prove that (3) holds it

suffices to show that 7 > ¢'F f is continuous at # = 0. This is immediate since

e

< Y A(e 1) ol + (e + 1) 3 1f P
k<K k|>K
—— ———

=R (K)
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where Ry(K) — 0 as K — oo since f € L?, and hence, since for any fixed K the
collection {t > e Mk } k<K is as finite collection of continuous maps, we indeed obtain
that 'L f — fin L% ast — 0.

Finally, to prove (5) and (6) we proceed as we did for (3). First we note that, by the mean-

value theorem, for every k € Z" and every t > 0, ‘M# — M = fol (e”Mk — I) Myds.

Therefore, for any f € L? and any 0 < ¢t < &, if we write f = (fl, ey fp) €
R x --- x R9 then

Ly 2 1 2 .
i il R < / (e”Mk—I)ds Mkf(k)‘z
t 12 reg 1170 L(1%.1%)
1 2
< C(K, f) / S™Me _ 1) ds
|k|2<:1< 0 ( ) L(2,1%)

~ 2
fio| .

14
+C(1,8) Y Y (k)

k|>K i=1

=H[(K)

In particular, if f € H*' x -.. x H% then Hy (K) — 0 as K — oo and thus, since,

for any fixed K, {t > '™ }‘ «<k is as finite collection of continuous maps, we may
X

L
conclude that indeed ¢ [ =/ > ffinL?ast — 0. O

Theorem B.10 (Rouché). Let 2 C C be a connected open set whose boundary is a
simple curve and let f and g be holomorphic in Q. If | f — g| < | f| on 02 then f and
g have the same number of zeros in Q.

Proof. See Chapter 4 of [Ahl78]. O

Theorem B.11 (Implicit function theorem for mixed real-complex functions). Let f :
O C C x R"™ — C, where O is open, be continuously differentiable in the real sense
(i.e. after identifying C with R? in the canonical way) is continuously differentiable. Let
(z0, vo) € O and let us write f = f (z,v) forz € Candv € R™. If (1) f (z0,v9) =0
and (2) 9, f (zo, vo) # O then there exist open sets U € C x R™ and W € R™ and
a function g : W — C which is continuously differentiable in the real sense such
that (1) (zo,vo) € U,vg € W, (2) g (vo) = 20, (3) (g (V),v) € U for everyv € W,
(4) f (g (v),v) =0 foreveryv € W and

_vvf(z()v UO)
azf(ZO:UO) .

Moreover, if f is more regular, in the real sense, then so is g.

va (UO) =

Proof. See Chapter 9 of [Rud76]. O

Lemma B.12. (Coercivity implies invertibility and bounds on the inverse) Let B be a
real n-by-n matrix. If B is coercive, i.e. if there exists Coy > O such that for every x € R”,
|Bx| > Cy|x|, then B is invertible and ||B‘1H0p < CLO
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Proof. Observe that since B is coercive, it has trivial kernel, and is hence invertible. To
obtain the bound on the operator norm of B~! simply observe that for every y € R”,
ly|=1BB~'y| > Co|B~'yl. O

Corollary B.13 (Invertibility and bounds for perturbations of the identity). Let B be a

real n-by-n matrix. If || B||,, < 1 thenI+B is mvembleand“(] + B)~ 1||0,7 < W
op

Proof. The key observation is that / + B is coercive with coercivity constant 1 — [| B||p.
The result then follows from Lemma B.12. O

Lemma B.14. Let A and N be real n-by-n matrices such that N is normal, i.e. NN T —
NTN.Then[A,N]: N =0.

Proof. This follows from a direct computation: NA: N = A: NTN = A: NNT =
AN : Nandhence [A,N] : N=AN:N—-—NA:N=0. O

Proposition B.15 (Korn inequality). There exists Cx > 0 such that for every u €
H' (T, R?), [IVull 2 < Cr (llull 2 + |Dull2).

Proof. See Lemma IV.7.6 in [BF13]. O

Proposition B.16 (Korn—Poincaré inequality). There exists Cxp > 0 such that for
everyu € H' (T3, R3), |lull,2 < Cxp (|f u| +Dull2).

Proof. This is a consequence of Proposition B.15—see for example Lemma IV.7.7 in
[BF13]—noting that V x u has average zero on the torus. 0O

Lemma B.17. (A div-curl identity on the torus) Foranyv € H' (T*, R?), it holds that
VI3, = IV - vl5, + IV x vl

Proof. The key observation is that for any w € R3 and any nonzero k € Z>, w k‘XT‘w

. . . . . 2 2
is an isometry on spani-, and hence |w|? = |proj; w|? + |proj. w|*> = ‘k|ku|)2‘ 'k;{"‘;' :

Combining this observation with Parseval’s identity allows us to conclude:

IVolljo =Y k@Dt PP = > kPD®P= Y k-0 + Y lkx k)P

kezZ3 keZ3\{0} kezZ3 kezZ3

2 2
— IV vl 2, + 11V x vl 2.
O

Proposition B.18 (Estimates from the Faa di Bruno formula). LetU/ C R" andV C R”
beopenandlet g : U — V and F :V — R? be k-times differentiable. There exists a

constant C = C (n, p, q, k) > 0 which does not depend on F or g such that, for every
x el,

VE(Fog) ()| < CZ\V'F(g(x))\ Vg ().
neP;(k)

Proof. This estimate follows immediately from the Faa di Bruno formula, which was
first proven in [Arb00] and can be found in a rather clean form in [Har06]. O
Lemma B.19 (Post-compositions by analytic functions are analytic). Suppose that F :
RY — R is analytic about zero and let s > 5. There exists § > 0 such that F* :
Hj (']I‘";Rk) — H* (']T"; ]Rl), defined by F*(G) = F o G for every G € Hj, is
analytic.
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Proof. Let$ = c% where R is the radius of convergence of F about zero and C; is the

constant from the continuous embedding H* - H® < H*® and suppose that F (x) =
Z?io F; @ X® for every x € B (0, R), for some fixed tensorial coefficients F;. Then

indeed, for every G € H}, F* (G) = Y {2, F;  G® with
o0 o0

o0
SR ]| < DIRICHIGI. < Y IRIR <.
i=0 i=0 i=0

O

Lemma B.20 (Formula for the Leray projector and its complement). Let P}, denote the
Leray projector on the torus. Then P;, = =V x A™'Vx and I —Pp = VA~!V..

Proof. This is immediate since I@’L (0) = I and I@’L k)y=1-— % if k # 0 and since
kxkx-=kP*—k®k O

Appendix C: Derivation of the Perturbative Energy-Dissipation Relation

In this section we derive the energy-dissipation relation (2.8), which is satisfied by
solutions of (1.1a)—(1.1d). First recall that the Cauchy stress tensor 7 and the couple
stress tensor M are defined in (2.6). We will write To; = —k 24 for the equilibrium
version of the stress tensor. For simplicity we will also write D; := 9; + u - V for the
advective derivative. The conservation of linear momentum (1.1a) can then be written
as D;u = V - T such that multiplying by u yields

— —|ul® = D | =lul” ) = Diu-u= (V-T) u=-— T :Vu.
dt T3 2 T3 2 T3 T3 T3
(C.1)

Similarly, the conservation of angular momentum (1.1c) can be written as
JDiw+[R, Jlw=2vec(T —Toq)+V-M
and hence multiplying by @ — w,, yields
JDta)~(a) — a)eq)+[52, J] a)(w — a)eq) = 2vec (T — Teq)~(a) — a)eq)+(V . M)~(a) — a)eq) .

(C.2)
The right-hand side of (C.2) is dealt with in the usual way:

/TBZVGC(T—T“I)~(a)—a)eq)+(V-M)~(a)—a)eq)

=/T3(T—Teq):(Q—Qeq)—M:V(w—a)gq). (C.3)

Dealing with the left-hand side of (C.2) requires further rearranging. Using the fact that

the conservation of micro-inertia (1.1d) can be written as D,J = [€2, J] and adding and
. 1 .

subtracting 3Dy J (@ — weq) - (0 — weq) yields

JD;w - (a)—weq) +[Q,J]w- (a)—weq) = Dy <%J(w—a)eq) . ((u—weq))

+%D[J (w+weq) . (a)—a)eq). (C4
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The key observation that allows us to conclude is the identity [2, J] (0 + v) - (w — V) =
—[2, J]v-vforeveryv € R3. Combining this identity with D;J = [€2, J] tells us that

1 1 1
307 (@0 + weq) - (0 — weq) = =5 (D)) g e = =D (EJweq -a)eq> . (C5)

Finally: combining (C.3), (C.4), and (C.5) yields
d

i (L 70=00): 0= 00) - 370, 0)

:/T3(T—Teq):(Q—szeq)—M:v(w—weq).

Adding this equation to (C.1) yields the energy-dissipation relation (2.8).

Appendix D: The 8-By-8 Matrix M in All Its Glory

In this section we record the matrix M}, in an explicit form. Recall that M is introduced in
Sect. 3.2, and is written there in a compact form well-suited to the analysis of its spectrum.
However, in order to compute the characteristic polynomial of M, we employed the
assistance of a symbolic algebra package, and this thus requires providing an explicit
form of the matrix M. M} can be written in block form as

A B 03x2
My=| BT Cc D
Ox3 E F
where
—k3 — k3 kiks kiks
A=— (u+x/2) <|k|213 —k® k) =u+e/2) | kk B -k kk |,
kiks koks — —k3 — k3

B=2 (|k|213 —k® k) diag (rl/z, a2, u*l/z)

k|
. (k3 +K3) /A —kika /A —kiks/ /v
== —kike/vVA (K +K3) /A  —kak3/\/V
VR B+ —kiks/Vi —koks/VE (B +K3) /v

1 0
p=""71_"1o0 1 E:((l) (1) 8>F:i((1) _01>
2K )\. O 0 2/{
and
C = — diag (,\—1/2, A2, v_1/2> (2;<13 t@+B3— ) k@k+(B+y) |k|213)
diag <)L—1/2’ )L—I/Z’ v—1/2>

(1 U)T(® ® e2)
) o @@ —ea®e
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