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We develop parametric classes of covariance functions on linear net-
works and their extension to graphs with Euclidean edges, that is, graphs with
edges viewed as line segments or more general sets with a coordinate system
allowing us to consider points on the graph which are vertices or points on
an edge. Our covariance functions are defined on the vertices and edge points
of these graphs and are isotropic in the sense that they depend only on the
geodesic distance or on a new metric called the resistance metric (which ex-
tends the classical resistance metric developed in electrical network theory
on the vertices of a graph to the continuum of edge points). We discuss the
advantages of using the resistance metric in comparison with the geodesic
metric as well as the restrictions these metrics impose on the investigated
covariance functions. In particular, many of the commonly used isotropic co-
variance functions in the spatial statistics literature (the power exponential,
Matérn, generalized Cauchy and Dagum classes) are shown to be valid with
respect to the resistance metric for any graph with Euclidean edges, whilst
they are only valid with respect to the geodesic metric in more special cases.

1. Introduction. Linear networks are used to model a wide variety of non-Euclidean
spaces occurring in applied statistical problems involving river networks, road networks
and dendrite networks; see for example, Cressie et al. (2006), Cressie and Majure (1997),
Gardner, Sullivan and Lembo (2003), Ver Hoef, Peterson and Theobald (2006), Ver Hoef
and Peterson (2010), Okabe and Sugihara (2012) and Baddeley, Rubak and Turner (2015).
However, the problem of developing valid random field models over networks is a decid-
edly difficult task. Compared to what is known for Euclidean spaces—where the results of
Bochner and Schoenberg characterize the class of all stationary covariance functions; see
for example, Yaglom (1987)—the corresponding results for linear networks are few and far
between. Even the fundamental notion of a stationary covariance function is, at best, am-
biguous for linear networks. However, the notion of an isotropic covariance function can be
made precise by requiring the function to depend only on a metric defined over the linear
network. Often the easiest choice for such a metric is given by the length of the shortest path
connecting two points, that is, the geodesic metric. Still there are no general results which
establish when a given function generates a valid isotropic covariance function with respect
to this metric. Indeed, Baddeley et al. (2017) concluded that spatial point process models on
a linear network with a pair correlation function which is only depending on shortest path
distance “may be quite rare.”

In this paper we use Hilbert space embedding techniques to establish that many of the
flexible isotropic covariance models used in spatial statistics are valid over linear networks
with respect the geodesic metric and a new metric introduced in Section 2.3. This new metric
is called the resistance metric because it extends the classical resistance metric developed in
electrical network theory. The validity of these covariance models do not hold, however, over
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the full parametric range available in Euclidean spaces. Moreover, we show the results for
the geodesic metric apply to a much smaller class of linear networks and cannot be extended
to a graph that has three or more paths connecting two points on the linear network. This is
in stark contrast to the resistance metric where we show there is no restriction on the type of
linear network for which they apply.

We develop a generalization of a linear network which we call a graph with Euclidean
edges. Essentially, this is a graph (), £) where each edge e € £ is additionally associated to
an abstract set in bijective correspondence with a line segment of R. Treating the edges as
abstract sets allows us to consider points on the graph that are either vertices or points on
the edges, and the bijective assumption gives each edge set a (one-dimensional) Cartesian
coordinate system for measuring distances between any two points on the edge (therefore the
terminology Euclidean edges). The within-edge Cartesian coordinate system will be used to
extend the geodesic and the resistance metric on the vertex set to the whole graph (including
points on the edges). Our objective then is to construct parametric families of covariance
functions over graphs with Euclidean edges which are isotropic with respect to the geodesic
metric and the resistance metric developed below (in fact, our covariance functions will be
(strictly) positive definite). Thereby, a rich class of isotropic Gaussian random fields on the
whole graph can be constructed and inferred via likelihood methods. Finally, we remark that
the validity of these isotropic covariance functions also allows the construction of isotropic
point process models on the whole graph constructed via a log Gaussian Cox process (Mgller,
Syversveen and Waagepetersen (1998), Mgller and Waagepetersen (2004)). We leave this and
other applications of our paper for future work.

1.1. Graphs with Euclidean edges. A linear network is typically defined as the union of a
finite collection of line segments in R? with distance between two points defined as the length
of the shortest path connecting the points. This definition, although conceptually clear, does
have limitations that restrict their application. For example, in the case of road networks:

e Bridges and tunnels can generate networks which do not have a planar representation as a
union of line segments in R2.

e Varying speed limits or number of traffic lanes may require distances on line segments to
be measured differently than their spatial extent.

A graph with Euclidean edges, defined below, is a generalization of linear networks that easily
overcomes the above-mentioned limitations while still retaining the salient feature relevant
to applications, that edges (or line segments) have a Cartesian coordinate system associated
with them.

DEFINITION 1. A triple G = (V, &, {@e}ece), Which satisfies the following conditions
(a)—(d), is called a graph with Euclidean edges:

(a) Graph structure: (), £) is a finite simple connected graph, meaning that the vertex set
V is finite, the graph has no repeated edges or edge which joins a vertex to itself and every
pair of vertices is connected by a path.

(b) Edge sets: Each edge e € £ is associated with a unique abstract set, also denoted e,
where the vertex set VV and all the edge sets e € £ are mutually disjoint.

(c) Edge coordinates: For each edge ¢ € £, if u, v € V are the vertices connected by e,
then ¢, is a bijection defined on e U {u, v} (the union of the edge set ¢ and the vertices {u, v})
such that ¢, maps e onto an open interval (e, e) C R and {u, v} onto the endpoints {e, e}.

(d) Distance consistency: Let dg: V x V — [0, 00) denote the standard shortest-path
weighted graph metric on the vertices of (1, £) with edge weights given by e — e for ev-
ery e € £. Then, for each ¢ € £ connecting two vertices u, v € V, the following equality
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F1G. 1. A Euclidean tree constructed from the linear network of grey lines. The dots represent the vertices.

holds:
dg(u,v) =e—e.

We write u € G as a synonym for u € V U ,¢ e, the whole graph given by the union of V
and all edge sets e € £.

If we consider a linear network | ;7 ¢; consisting of closed line segments ¢; C R? which
intersect only at their endpoints, we can easily construct a graph with Euclidean edges as fol-
lows. Let V be the set of endpoints of the line segments. Let each edge set ¢; € £ correspond
to the relative interior of the corresponding line segment ¢;. Let each bijection ¢,, be given
by the inverse of the path-length parameterization of ¢;. Then conditions (a)—(d) are easily
seen to hold.

Any triple G = (V, &, {@e}ece) for which (V, E) forms a tree graph is automatically a
graph with Euclidean edges given that conditions (b) and (c) hold. In this case G is said to be
a Euclidean tree. Figure 1 shows an example.

If the graph (V, £), associated with a graph with Euclidean edges G, forms a cycle, then G
is said to be a Euclidean cycle. Conversely, if (V, £) forms a cycle graph with edge bijections
{@e}ece, then the resulting triple G := (V, £, {¢e}ece) satisfies the conditions of Definition 1
whenever there are three or more vertices (to ensure there are no multiple edges) and for
every e, € £ the following inequality is satisfied:

(1) Go—e, <Y E-e.

eef

e#e,
The above condition guarantees that no edge spans more than half of the circumference of
the cycle, implying that distance consistency holds for G. Figure 2 illustrates examples of
Euclidean cycles (the two first graphs) and an example of a graph violating both conditions
(a) and (d) in Definition 1 (the last graph) when each ¢, is given by the inverse of path-length
parametrization.

< OO

FIG. 2. The two graphs on the left are Euclidean cycles. However, the right most graph is not a graph with
Euclidean edges.
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FIG. 3. The two diagrams above show a graph with Euclidean edges G which can not be represented as a
linear network in R%. The diagram on the left is drawn in a way that visually preserves edge length but forces an
intersection that does not correspond to a vertex in G (the dashed segment indicates that one edge passes under
the other). The diagram on the right is drawn without nonvertex intersections but requires curved segments that
have length which do not correspond to the lengths determined by the edge bijections for a linear network.

In all of the above examples, we have used spatial curves and line segments to represent the
edges. It it worth pointing out that this is simply a visualization device. Indeed, the structure of
a graph with Euclidean edges is completely invariant to the geometric shape of the visualized
edges just so long as the path length of each edge is preserved. This concept is important
when considering the example given in Figure 3, where the edge represented by the diagonal
line in the leftmost drawing represents a bridge or tunnel bypassing the other diagonal edge
and hence the lack of vertices at the intersection with that edge. Note that it is impossible
to avoid this intersection when lengths of edges are fixed. This implies that this graph with
Euclidean edges cannot be represented as a linear network in R2.

1.2. Summary of main results. This section presents our main theorems explicitly, leav-
ing the proofs and precise definitions for later sections.

Our first contribution is to establish sufficient conditions for a function C : [0, o0) — R
to generate a (strictly) positive definite function of the form C(d(u, v)) where d(u, v) is a
metric defined over the vertices and edge points of a graph with Euclidean edges G; then,
we call G x G > (u,v) = C(d(u, v)) € R an isotropic covariance function and C its radial
profile. We study two metrics, the geodesic metric, dg. g, as defined in Section 2.2, and a new
resistance metric, dr g, as developed in Section 2.3 which extends the resistance metric on
the vertex set, from electrical network theory (Klein and Randi¢ (1993)) to the continuum
of edge points on G. As is apparent from the following two theorems, there are fundamental
differences in terms of the generality of valid isotropic covariance functions when measuring
distances under the two metrics.

In Theorem 1 below, we consider the 7-sum of two graphs with Euclidean edges G; and
G> having only a single point in common, G N Gy = {x¢}. This is defined explicitly in Sec-
tion 3, but the concept is easy to visualize as the merging of G and G; at xo and the concept
easily extends to the case of three or more graphs with Euclidean edges; Figure 4 gives two
graphical illustrations. Further, we need to recall the following definition of a completely
monotonic function, noting there is a distinction, in the literature, between complete mono-
tonicity on [0, co) vs. on (0, 00), the latter being fundamentally related to Bernstein functions
and variograms (see Berg (2008), Wells and Williams (1975)).

DEFINITION 2. A function f : [0, 00) — R s said to be completely monotonic on [0, c0)
if f is continuous on [0, c0), infinitely differentiable on (0, co) and (—1)/ f&)(¢) > 0 over

(0, 00) for every integer j > 0, where f/) denotes the jth derivative of f and f©@ = f.

THEOREM 1. Let C : [0, 00) — R be a completely monotone and nonconstant function:
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FIG. 4. Examples of finite sequential 1-sums of cycles and trees. Left: A 1-sum of two Euclidean cycles. Right:
A sequential 1-sum of four Euclidean cycles and one Euclidean tree.
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(1) If G is a graph with Euclidean edges, then C(dr.g(u, v)) is (strictly) positive definite
over (u,v) €G x G.

(i) If G is a graph with Euclidean edges that forms a finite sequential 1-sum of Euclidean
cycles and trees, then C(dg,g(u, v)) is (strictly) positive definite over (u,v) € G X G.

A consequence of Theorem 1 is that many of the parametric classes of autocovariance
functions used in spatial statistics are (strictly) positive definite with respect to dg g for gen-
eral graphs and with respect to dg.g for graphs which are 1-sums of Euclidean trees and
cycles. Notice, however, this holds only after restricting the parametric range to ensure com-
plete monotonicity on [0, 00), as in the radial functions given in Table 1. To see why the radial
functions in Table 1 are completely monotonic, first note that t — f(B¢% 4 1) is completely
monotonic if o € (0, 1], 8, A > 0 and f is completely monotonic (see equation (1.6) in Miller
and Samko (2001)). Therefore, exp(—p8t*) and (5t* + 1)~¢/% are completely monotonic for
B,& > 0and « € (0, 1] since both exp(—¢) and (¢ 4+ 1)~5/% are completely monotonic. This
establishes the desired result for the power exponential class and the generalized Cauchy class
in Table 1. The complete monotonicity for the Matérn class in Table 1 was proved in Example
2 of Gneiting (2013). Finally, Theorem 9 in Berg, Mateu and Porcu (2008) establishes that
cCt)y=1- (tﬂ/(l + 1) is completely monotonic, whenever gy € (0,1] and g € (0, 1],
which proves the desired result for the Dagum class in Table 1.

In the special case where G is a Euclidean tree with geodesic metric dg, g (u, v), the results
of Theorem 1(ii) can be obtained from existing literature. Indeed, it is well known that the
exponential covariance functions are positive definite (via £; embedding, using Theorem 4.1
in Wells and Williams (1975) and Theorem 3.2.2 in Deza and Laurent (1997)) which implies
that positive mixtures of exponential covariance functions are positive definite with respect
to dg,g(u, v). Now, the results of Schoenberg (outlined in Theorem 8 below) are sufficient to
establish Theorem 1(ii) for this special case.

TABLE 1
Parametric classes of functions C : [0, 00) — R which generate isotropic correlation functions C(dg g (-, -)),
that is, when distance is measured by the resistance metric and C(0) = 1. Note: K denotes the modified Bessel
function of the second kind and order o

Type Parametric form Parameter range
Power exponential C(z) = exp( Bt%) O<a<l1,p>0.
Matérn C@t)= F(a) (ﬂt)"‘ Ky (Bt) O<a< %, B=>0.
Generalized Cauchy C(t)=(Bt% +1)~§/a O<a<l1,B,>0.

Dagum C(z)=[1—(%)¥/“] 0O<a<1,0<t<1,8>0.
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F1G. 5. Examples of forbidden graphs for the exponential class with respect to the geodesic metric.
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The contrasting generality of the range of graphs G applicable in Theorem 1 for (i) versus
(ii) hints at a degeneracy that occurs when modeling covariance functions which are isotropic
with respect to the geodesic metric. The next result, Theorem 2, confirms this degeneracy
by showing that for the geodesic metric, Theorem 1 cannot be extended to the generality
given for the resistance metric. Here, for S = R or S = G, if there exists some 8 > 0 so
that e Pd5.6(.V) ig not a positive semidefinite function over (u,v) € G x G, we say that G
is a forbidden graph (for the exponential class) with respect to the metric dg g. Figure 5
shows examples in case of the geodesic metric. Note that if a forbidden graph is present as a
subgraph of G, then G is forbidden as well.

THEOREM 2. If G is a graph with Euclidean edges for which there exists three distinct
paths connecting two points u,v € G, then G is a forbidden graph for the exponential class
with respect to the geodesic metric.

In Section 2.3 we develop the new resistance metric dr g which is specifically designed to
overcome the restrictions imposed by Theorem 2 for the geodesic metric on general graphs
with Euclidean edges. We construct dg g as the variogram of a canonical Gaussian random
field over G obtained by linearly interpolating a random vector on the vertices constructed
from the graph Laplacian and then add independent Brownian bridges over each edge. While
it is known that the (discrete) effective resistance metric can be expressed as the variogram of
a random vector (see Lyons and Peres (2016) for an excellent exposition), it appears that the
approach given here, namely, using the variogram of a canonical (continuous) random field
to define a (continuum) resistance metric, is new. The advantage of this construction is that it
gives the following key Hilbert space embedding result:

THEOREM 3. [If G is a graph with Euclidean edges, there exists a Hilbert space H and
an embedding ¢ : G — H such that

2) Vdr. g, v) =|ew) — o],

for all u,v € G where dg g is the resistance metric developed in Section 2.3. If, in addition,
G forms a sequential 1-sum of a finite number of Euclidean cycles and trees, then the above
result also holds for the geodesic metric dg g.

In some sense, the construction of dg g in Section 2.3 and the proof of Theorem 3 are the
most important results of this paper. Once they are established, many of the results in this
section follow almost immediately from well-known consequences of Schoenberg’s work in
the context of embeddings; see, for example, Wells and Williams (1975) or Jayasumana et al.
(2013).
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The next two theorems illustrate the scope of the results given above. In particular, The-
orem 1(i) gives sufficient conditions for (strict) positive definiteness over all graphs with
Euclidean edges G. This does not preclude a less stringent sufficient condition that holds for
a subcollection of graphs with Euclidean edges. For example, consider the case where G has
a single edge connecting two vertices. Then both dg ¢ and dg g are equivalent to the Eu-
clidean metric on a compact interval [0, c] C R and, as such, contain a much richer collection
of positive definite covariance functions than those established in Theorem 1. A less trivial
example can be obtained by restricting G to be a Euclidean tree as in the next two theorems.

THEOREM 4. Let G be a Euclidean tree with m leaves, where m > 3. Then C(dg.g(u, v))
and C(dg.g(u, v)) are positive semidefinite over (u, v) € G x G whenever C: [0, 00) — R is
given by

3) c)= /O iy (1) A (),

where w is a finite (positive) measure on (0, 00) and wy(t) is defined by
'(n/2)
Jal((n—1)/2) 1

with Q,(t) = F(n/2)(2/1‘)(”_2)/2J(,1,2)/2(t) and J,(t) denoting the Bessel function of the
first kind and order v.

o0
wn(t) = Q, (02 ™2 (v — 1)) 2 dy

The proof of the above result, given in Section 4, follows directly by the work of Cambanis,
Keener and Simons (1983) once it is established that Euclidean trees with m leaves can be
embedded in R"/21 with £; metric and dg g = dg.g on Euclidean trees (cf. Proposition 4
below). This £1 embedding result can also used in combination with Theorem 3.2 of Gneiting
(1998a) to give a simplified criterion for the conclusion of Theorem 4.

THEOREM 5. Let G be a Euclidean tree with m leaves, where m > 3. If C: [0,00) = R
is a continuous function such that C @Im/21-2) s convex and lim; _, oo C(¢) = 0, then both
C(dg.g(u,v)) and C(dr g(u, v)) are positive semidefinite over (u,v) € G x G.

Finally, we notice that Theorem 4 shows that covariance functions on Euclidean trees may
attain negative values, and, at the very end of Section 5, we give an example of a parametric
family of covariance functions whose support can be made arbitrary small.

1.3. Outline for the remainder of the paper. Details of the geodesic metric and resistance
metric over graphs with Euclidean edges, along with their theoretical properties used in sub-
sequent sections, are given in Section 2. The resistance metric dg g is defined constructively
as the variogram of a certain random field over G, analogous to a Wiener process on R. This
construction has the advantage that it establishes the Hilbert space embedding result almost
immediately (utilizing a theorem of Schoenberg). The difficulty, however, is in showing that
dg.g is indeed an extension of the classical effective resistance on any finite subgraph and
is invariant to the graph operations of splitting and merging edges (cf. Proposition 3 below).
The invariance result is important since it implies the resistance metric is, in some sense, in-
trinsic to the minimal graph structure of G. The addition or removal of unnecessary vertices
along an edge leaves dg g unchanged. Proofs of these theoretical properties rely heavily on
Hilbert space methods and are deferred to the Appendix.

Sections 3 and 4 contain the proofs of all the results summarized in Section 1.2 and fol-
low relatively easily given the results in Section 2. The Hilbert space embedding stated in
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Theorem 3 is proved first in Section 3. The remaining four theorems summarized in Sec-
tion 1.2 are proved in Section 4. Finally, in Section 5 we establish constraints, depending
on the graph structure of G, for features of any radial profile which generates an isotropic
covariance function with respect to either metric—resistance or geodesic.

2. The geodesic and resistance metric on G. In this section we develop the geodesic
and resistance metric over graphs with Euclidean edges. The geodesic metric, developed in
Section 2.2, is easily constructed once a concrete notion of a path is defined. The resistance
metric, in contrast, requires decidedly more work and is developed in Section 2.3.

2.1. Notation and terminology. LetG = (V, &, {@e}ece) be a graph with Euclidean edges.
To stress the dependence on G, write V(G) =V and £(G) =&. If u, v € V(G) are connected
by an edge in £(G), we say they are neighbours and write u ~v. If u € e € £(G), we let u, u
denote the neighbouring vertices which are connected by edge e and ordered so that u cor-
responds to ¢ and u corresponds to e. When u € V(G), we define u = u = u. The distinction
between u, u and ¢, € can be seen by noting that ¢,e € R but u, u € V(G).

Lete € £(G) and I C (e, e) be a nonempty interval. Then, ¢, Y(I) is called a partial edge,
its two boundaries correspond to the two-point set ¢, ' (T \ 1), where T is the closure of I
and 77 is the open interior of 7, and its length is given by the Euclidean length of 7. Thus the
edge e is also a partial edge, and its length is denoted len(e).

Two partial edges are called incident if they share a common boundary in G. A path
connecting two distinct points u,v € G is denoted p,, and given by an alternating se-
quence ui, €1, U2, €3, ..., Uy, €y, Uyy1, Where uy, ..., u,4+1 € G are pairwise distinct, u; = u,
Uy+1 =v,and ey, ey, ..., e, are nonoverlapping partial edges such that each e; has boundary
{ui, ui+1}. Moreover, the length of p,, is denoted len(p,,) and defined as the sum of the
lengths of eq, €2, ..., e,.

2.2. Geodesic metric. For a graph with Euclidean edges G, the geodesic distance is de-
fined for all u, v € G by

“) dg,g(u, v) = inf{len(puv)},

where the infimum is over all paths connecting u and v. Using the consistency requirement
given in Definition 1(d), the following proposition is easily verified.

PROPOSITION 1. If G is a graph with Euclidean edges, then dg g(u, v) is a metric over
u, v € G satisfying the following:

e Restricting dg.g to V(G) results in the standard weighted shortest-path graph metric with
edge weights given by len(e).

e dg g is an extension of the Euclidean metric on each edge e € £(G) induced by the bijection
@e. That is, dg,g(u, v) = |@.(u) — . (v)| whenever u,v € e € £(G).

2.3. Resistance metric. The resistance metric typically refers to a distance derived from
electrical network theory on the vertices of a finite or countable graph with each edge repre-
senting a resistor with a given conductance; see, for example, Jorgensen and Pearse (2010)
and the references therein. By definition, the resistance between two vertices u and v is the
voltage drop when a current of one ampere flows from u to v. For a graph with Euclidean
edges G, there are two reasons why it is natural to consider an extension of the resistance
metric, defined on just the vertices and edge conductance given by inverse edge length, to the
continuum of edge points and vertices of G. The first reason is purely mathematical; the re-
sulting metric solves the degeneracy problem found in Theorem 2. Second, resistance may be
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a natural metric for applications associated with flow and travel time across street networks.
For example, the total inverse resistance of resistors in parallel is equal to the sum of their
individual inverse resistances; correspondingly, multiple pathways engender better flow.

In developing this extension we take a somewhat nonstandard approach and define a metric
over G with the use of an auxiliary random field Zg with index set G. The resulting metric is
then defined to be the variogram of Zg:

5 dr.g(u,v) :=var(Zgu) — Zg(v)), u,vegq.

Propositions 2 and 3 below show that dr g does in fact give the natural extension of the
electrical network resistance metric; dg ¢ evaluated on any additional edge points will result
in the same metric that would be obtained on the resulting discrete electrical network.

Before presenting the formal construction of Zg and our results, we give a brief outline.
The form of Zg will be defined as a finite sum of independent zero-mean Gaussian random
fields:

(©) Zow):=Z,)+ ¥ Zew), ueg.
ec&(9)

The field Z,, is characterized by a multivariate Gaussian vector (Z,(v); v € V(G)) whose
covariance matrix is related to the so-called graph Laplacian in electrical network theory;
this vector is linearly interpolated across the edges so that Z, (u) is defined for all points
u € G. For each e € £(G), the random field Z, is only defined to be nonzero on edge e
and Z,(u) = B.(¢.(u)) if u € e or u is a boundary point of e, where B, is an independent
Brownian bridge defined over [e, €]. Although the construction of Z¢ appears ad hoc, we will
show that the variogram of the resulting random field Zg results in the continuum extension
of the resistance metric found in electrical network theory.

2.3.1. Construction of Z,,. The random field Z,, is constructed via analogy to electrical
network theory and using the following ingredients. We view each edge in G as a resistor
with conductance function ¢ : V(G) x V(G) — [0, co) given by
1/dg.g(u,v) ifu~w,

7 V)=
@ c(u, v) 0 otherwise.

Let RV denote the vector space of real functions . defined on V(G); when convenient,
we view /i as a vector indexed by V(G). Also, let u, € V(G) be an arbitrarily chosen vertex
called the origin; this is only introduced for technical reasons as explained below. Define
L :V(G) x V(G) — R as the function/matrix with coordinates

14+c(uy,) ifu=v=u,,
(8) L(u,v)=1cu) ifu=v#£u,,
—c(u,v) otherwise,

where c(u) :=) , c(u,v) =3 ,-, c(u, v) corresponds to the sum of the conductances asso-
ciated to the edges incident to vertex u. Obviously, L is symmetric, and a simple calculation
shows that for z, w € RV,

1
) 2" Lw = z(uo)w(u,) + 3 > (z) — z())e@, v)(wn) — w(v)),
u~v
so z' Lz =0 if and only if z(#) =0 for all u € V(G). Thus, L is (strictly) positive definite
with (strictly) positive definite matrix inverse L~!. Notice that the matrix L is similar to what
would be called the “Laplacian matrix” from electrical network theory; see, for example,
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Kigami (2003) and Jorgensen and Pearse (2010), except that L has the additional 1 added at
(4o, u,). The role of the origin u, is to make L (strictly) positive definite, but the resistance
metric will be shown to be invariant to this choice and have the correct form (see Proposition 2
below).

Now, the random field Z,, is simply defined by linearly interpolating a collection of Gaus-
sian random variables associated with the vertices V(G): Let vy, vy, ..., v, denote the vertices
in V(G), and define Z,, at these vertices by

(10) (Z 1), .., Zp(w)" ~N(0, L7h).
To define the value of Z, (u) at any point u € G, we interpolate across each edge as follows:
1D Zyw)=(1-dw)Z,(w) +du)Z, @),

where d(u) denotes the distance of u from u as a proportion of the length of the edge con-
taining u, formally given by

de.gu,u)/dc g, u) ifu¢V(9),

12 du) =
(12) @) 0 otherwise.

Notice that the covariance function R, (u, v) := cov(Z,(u), Z,,(v)) can be computed explic-
itly. For any u, v € G,

Ry (u,v) =dw)d@)L ™' @, 0) +[1 —dw][1 —d)]L™ (u, v)
(13) +d)[1 —dW)]L™ @, v) + [1 — dw)]d ()L™ (u, ).

2.3.2. Construction of Z,. The definition of Z, in the previous section used explicitly
an analogy to electrical network theory. So, it should come as no surprise that the variogram
of Z, gives something related to the resistance metric. However, this will only be true at
the vertices. What we want is the electrical network property to hold for all points of G
without the necessity of recomputing the matrix L for additional edge points. By simply
adding Brownian bridge fluctuations over each edge, this turns out to give the right amount
of variability.

To formally define a Brownian bridge process over each edge ¢ € £(G), we use the edge
bijection ¢, which identify points on e with points in the interval (e, ¢) C R. For all ¢ € £(G),
let B, denote mutually independent Brownian bridges, which are independent of Z,, where
B, is defined on [e, €] so that B.(e) = B.(e) = 0. For any u € G, we define

Be(pe(n)) ifuce,
0 otherwise.

(14) Ze(u) = {
Letting R, (u, v) = cov(Z.(u), Z,(v)), we have for any u, v € G,

[d(u) Ad() — d(u)d(v)]dG,g(g, u) ifu,vee,
0 otherwise.

(15) Re(u,v)={

Note that the covariance function Rg for the random field Zg, defined in (6), satisfies

(16) Rg(u,v)=R,(u,v)+ Y  Re(u,v), u,vegq.
ec&(G)
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2.3.3. Properties of dg,g and dr.g. The following Proposition 2 shows that dg g is in-
deed the extension of the classical effective resistance on electrical networks and is invariant
to the choice of origin u,, (used in the construction of L in (8)). Further, Proposition 3 shows
that dg g is invariant to the addition of vertices and removal of vertices with degree two.
Finally, Proposition 4 characterizes dg ¢ via an associated infinite dimensional reproducing
kernel Hilbert space. The proofs of the propositions are given in Appendix A.2.

PROPOSITION 2. For a graph with Euclidean edges G, dg. g is a metric, it is invariant
to the choice of origin u, and it simplifies to the classic (effective) resistance metric over the
vertices when G is considered to be an electrical network with nodes V(G), resistors given by
the edges e € £(G) and conductances given by 1/len(e) for e € £(G).

An important property of the geodesic metric on graphs with Euclidean edges is that dis-
tances are, in some sense, invariant to the replacement of an edge by two new edges merging
at a new degree two vertex. This is illustrated in Figure 2, where it is clear that geodesics are
the same for the left-most graph and the middle graph (when the edge lengths are scaled so
the circumferences are equal), regardless of the fact that the left-most graph has more vertices
and edges.

Perhaps surprisingly, this important property also holds for dgr g. To state the result, we
need to be precise about what it means to add a vertex on an edge and, correspondingly,
remove a degree two vertex (merging the corresponding incident edges). The operations will
be generically referred to as splitting and merging. For u € e € £(G), define the partial edges
uu = {(pg_l(t) te <t <@ (u)} and uu = {gog_l(t) 1 e (u) <t < e}, and partition e = {uu} U
{u} U {uu}. Then, the operation of splitting an edge ¢ € £(G) at u € e results in a new graph
Gspiit With Euclidean edges which is obtained by adding u to V(G) and replacing e € £(G)
with new edges uu and uu. The operation of merging two edges ey, e; € £(G), which are
incident to a degree two vertex v € V(G), results in a new graph with Euclidean edges Gmerge
simply obtained by removing v from V(G) and replacing e1, e; € £(G) with the single merged
edge given by e; U {v} U es.

Clearly, G, Gmerge and Ggpiit are equal as point sets. It is also clear that the geodesic metric
is invariant to splitting edges and merging edges at degree two vertices in the sense that

dg,g(u,v) =dg g (u,v)

for all u, v € G whenever G’ is obtained from G by a finite sequence of edge splitting opera-
tions and edge merging operations which meet at a degree two vertex. The following theorem
shows this property also holds for the resistance metric.

PROPOSITION 3. For a graph with Euclidean edges G, the resistance and geodesic met-
rics, dr.g and dg.g, are invariant to splitting edges and merging edges at degree two vertices
(so long as the resulting graph satisfies the conditions of Definition 1).

Propositions 2 and 3 show that dg g is the appropriate extension of the classic resistance
metric over finite nodes of an electrical network to the continuum of edge points over a graph
with Euclidean edges. The next proposition, also analogous to results from electrical network
theory, illustrates how multiple pathways between points of G lead to a reduction of dg g
compared with dg g.

PROPOSITION 4. For any graph with Euclidean edges G, we have

17) drgu,v) <dggu,v), u,veg,
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with equality if and only if G is a Euclidean tree. If G is a Euclidean cycle with circumference
w = Zeeg(g) len(é’), then

d L v)2
(18) AR, v) = do.g(u, v) — GGV g,
w

The fact that dg g(u, v) = dg.g(u, v), if and only if G is a Euclidean tree, suggests that
dr.g can be viewed not only as an extension of the vertex (effective) resistance as established
in Proposition 2 but also as an extension of dg g on trees to general graphs. Instead of ex-
tending the shortest path property of the geodesic metric, the resistance metric extends the
validity of the covariance models given in Theorem 1, from dg ¢ on trees to dg g on general
graphs (noting that Theorem 2 implies both properties cannot be simultaneously extended to
general graphs).

Notice that the quadratic term in (18), for the Euclidean cycles, explicitly quantifies how
multiple paths leads to a reduction in (effective) resistance. Moreover, (18) can be rearranged,
using the fact that w = len(p,,) + len(p,,) where p,, denotes the shortest path from u to v
and p,, denoting the longer path connecting u to v, to obtain

dr.g(u, v) = (len(puy) " +len(F,y) ") 7.

In particular, dg g(u, v) is a function of both path lengths, strictly smaller than each, com-
bined through what is called parallel reduction in electrical network theory.

We remark that (18) allows us to write any covariance model C(dg g(u, v)) on a Euclidean
cycle G in terms of the geodesic metric dg,g. Combined with Theorem 1, we conclude that
C(t — 1?/w) is strictly positive definite on the circle of radius w/(27) for every nonconstant
completely monotonic function C : [0, co) — R. These results can be compared with the
literature on isotropic autocovariance models on the circle. For example, in the case C(¢) =
exp(—pt) the positive definiteness of the autocovariance exp(—p(t — t%/(2m))) with respect
to the geodesic distance on S! agrees with the conclusions of Pélya’s theorem on the circle
(see, e.g., Theorem 4 in Gneiting (1998b)).

Our final result on the resistance metric, although stated last and verified in Appendix A.1,
gives the above three propositions as near corollaries and does so by characterizing the repro-
ducing kernel Hilbert space of functions over G which is associated to the Gaussian random
field Zg (see, e.g., Wahba (1990)). To state the result, we need some notation for functions
defined over G. For f : G — R and e € £(G), we let f, : [e¢, €] — R denote the restriction of
f to e and be interpreted as a function of the interval [e, e]. If f, has a derivative Lebesgue al-
most everywhere, we denote this by f;; recall that the existence of f; is equivalent to absolute
continuity of f,.

DEFINITION 3. For a graph with Euclidean edges G and an arbitrarily chosen origin
u, € V(G), let F be the class of functions f : G — R which are continuous with respect to
dg,g and for all e € £(G), f. is absolutely continuous and f] € L?([e, ]). In addition, define
the following quadratic form on F:

(19) (f, 8)F = f(uo)guo) + Z /efé(t)gé(t)dt-
ecf(9) "¢

PROPOSITION 5. Let G be a graph with Euclidean edges with origin u, € V(G). Then,
the space (F,(-,-)r) is an infinite dimensional Hilbert space with reproducing kernel
Rg(u, v), given in (16), and resistance metric dr g(u, v), given in (5), satisfying

(20) dr.g(u,v) = sup{(f) — F@)2: | flF <1},
feF

(2D Rg(u,v) =1+ {drg(u,u,) +drgv,uy) —dgr,gu,v)}/2,
forallu,veg.
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Notice that (21) illustrates how the additional 1, added to c¢(u,) in (8), translates to the
dependence of Rg(u, v) on u,. This was done to ensure the invertibility of L but the effect
of which is canceled in the variogram of Zg. Moreover, (21) also illustrates the connection
with classic Brownian motion on R. For example, if G has vertices 0 and 1 connected by a
single edge e = (0, 1), ¢, is the identity, and up = 0, then Propositions 4 and 5 show that
Rg(u,v) =1+ (lu] + |v| — |u — v|)/2 which, up to an overall constant, is precisely the
covariance function of Brownian motion.

3. Hilbert space embedding of dg,g and dg g. This section proves the key Hilbert
space embedding result given in Theorem 3. For this we first need to recall a theorem by
Schoenberg (1935, 1938a) on relating Hilbert spaces and positive definite functions and es-
tablish a new theorem on embedding 1-sums of distance spaces. Since they hold for arbitrary
distance spaces the exposition of both of these results are kept as general as possible.

Recall that (X, d) is called a distance space if d(x,y) for x,y € X is a distance on X,
that is, d satisfies all the requirements of a metric with the possible exception of the triangle
inequality. Let Range(X,d) = {d(x,y) : x,y € X}.

DEFINITION 4. Let (X, d) be a distance space and g : Range(X, d) — [0, 0co) a func-
tion. Then, (X, d) is said to have a g-embedding into a Hilbert space (H, || - ||z), denoted

(X, d) N H, if there exists a map ¢: X — H which satisfies
g(d(x,y) = o) — o 4

id
for all x, y € X. The special case when g is the identity map is denoted (X, d) S H.

The following fundamental theorem shows the connection between Hilbert space embed-
dings and positive semidefinite functions; it follows from Schoenberg (1935, 1938a). This
turns out to be an extremely useful tool, both for constructing positive semidefinite functions
and for proving the existence of Hilbert space embeddings.

THEOREM 6. Let (X,d) be a distance space and xo an arbitrary member of X. The
following statements are equivalent:

id
@D (X,d) & H for some Hilbert space H.
(ID) d(x,x0)% + d(y, x0)% —d(x, y)2 is positive semidefinite over x,y € X.
(IIl) For every B > 0, the function exp(—Bd(x, y)?) is positive semidefinite over x,y € X.
(IV) The inequality ZZ,/:] Cijd(Xk,Xj)2 < 0 holds for every x1,...,x, € X and cy, ...,
cn € R for which Y} _, ck =0.

It is common (in Wells and Williams (1975), e.g.) to call any distance space (X, d), which
satisfies condition (IV), a distance of negative type. In the geostatistical literature, however,
if d satisfies (IV), then d? is said to be a generalized covariance function of order 0. In
particular, for any random field Z, condition (IV) is a necessary property of the variogram
d(u,v)? =var(Zu) — Z(v)).

The last concept needed to show Theorem 3 deals with the notion of the 1-sum of two
distance spaces (Deza and Laurent (1997)). This operation allows us to construct new distance
spaces (which are root embeddable) by stitching multiple root-embeddable distance spaces
together.
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DEFINITION 5. Suppose (X1,d;) and (X2, d>) are two distance spaces such that X| N
X5 = {xo}. Then, the 1-sum of (X1,d;) and (X3, d>) is the distance space (X U X»,d)
defined by

di(x,y) if x,y € Xy,
(22) d(x,y) = 1da(x,y) if x,y € Xo,
di(x,x0) +da(xg,y) ifx e X;andye Xs.

The key fact about 1-sums, for our use, is summarized in the following theorem. We omit
the proof and simply note that it can be found in Deza and Laurent (1997) (Proposition 7.6.1)
with slightly different nomenclature.

THEOREM 7. Suppose (X1,d1) and (X2, ds) are two distance spaces such that X1 N
X2 = {xo}. If (X1,d}) Q/> Hi and (X;, d>) <l/> H, for two Hilbert spaces H| and H», then

there exists a Hilbert space H such that (X1U X»,d) ‘l/> H where (X1U X»,d) is the 1-sum
of (X1,dy) and (X3, d2).

We are now ready to prove Theorem 3, from Section 1.2, on the Hilbert space embedding
of dR7g and dc;,g.

PROOF OF THEOREM 3. Suppose G is a graph with Euclidean edges. By (5) we trivially
have

d(u,v)> = var(Zg(u) — Zg(v)),

where d(u, v) := \/dg g(u, v). The fact that d(u, v)? is a variogram implies that condition
(IV) holds (from Schoenberg’s result stated in Theorem 6). Since (I) <= (IV), we have that

id
G, d) <5 H for some Hilbert space H and, hence, (G, dg.g) ¢/> H, as was to be shown.
For the geodesic metric, first assume G forms a tree graph. In this case Proposition 4

implies dg,g = dr.g and, therefore, (G, dg.g) cl/> H by the corresponding result for dg g.
Second, assume G forms a cycle graph (such as the left two graphs of Figure 2). For some
constant A > 0, there clearly exists a metric isometry between (G, Adg.g) and the unit circle
S! equipped with the great circle metric dsi1. Since exp(—pBdsi (x, y)) is positive semidefinite
over S! x S! for all B > 0 (see Gneiting (2013), e.g.), the function exp(—pBdg,.g(u, v)) is
positive semidefinite over G x G for all B > 0. Now, setting d := ,/dg.g, the equivalence

id
() <= (1) in Theorem 6 implies (G, d) S H , hence (G,dg.g) ¢/> H for some Hilbert
space H. Finally, for the general result where G is a 1-sum of cycles and trees, we simply use

Theorem 7 to conclude that (G, dg.g) <l/> H for some Hilbert space H. [J

4. Isotropic covariance functions with respect to dg,g and dg g. In this section we
prove all the results stated in Section 1.2, with the exception of Theorem 3 proved in the
previous section. In some sense many of the proofs of these results follow easily from Theo-
rem 3 and the seminal work of Schoenberg and von Neumann (Schoenberg (1938a, 1938b),
von Neumann and Schoenberg (1941)) connecting metric embeddings, Hilbert spaces and
completely monotonic functions (see also Gneiting (2013)), but we review the necessary re-
sults for completeness. The following result characterizes completely monotonic functions on
[0, 00) as positive mixtures of scaled exponentials (see Theorems 2, 3 and 3’ in Schoenberg
(1938b)).
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THEOREM 8. The completely monotonic functions on [0, 00) are precisely those which
admit a representation f(t) = fooo e 1% du(o), where 1 is a finite positive measure on [0, 00).
Moreover, if H is a Hilbert space and f is a nonconstant completely monotonic function on
[0, 00) then f(||x — y||%{) is (strictly) positive definite over (x,y) € H x H.

COROLLARY 1. [IfC :[0, 00) — R is a nonconstant and completely monotonic function
and (X, d) is a distance space which satisfies

(X,d)f;/> H,

where H is a Hilbert space, then C(d(x,y)) is positive semidefinite over (x,y) € X x X.
If, in addition, d(x,y) =0< x =y for all x,y € X, then C(d(x,y)) is (strictly) positive
definite over (x,y) € X x X.

Corollary 1 follows easily from Theorem 8§ since, if (X, d) d) H for some Hilbert
space H, then there exists a map ¢: X — H for which d(x,y) = |lp(x) — <p(y)||12q for
all x,y € X. Then, for a nonconstant and completely monotonic function C we have
Cd(x,y) =C(lex) —e(y) ||%I) which is positive semidefinite, via Theorem 8. If, in ad-
dition, d(x,y) =0 < x =y for all x, y € X, then ¢ maps one-to-one onto its range which
implies that C(d(x, y)) = C(lle(x) — go(y)||%1) is strictly positive definite. This establishes
Corollary 1.

Now, we turn to the proofs of the remaining four theorems stated in Section 1.2: Theorems
1,2,4 and 5.

PROOF OF THEOREM 1. Suppose G is a graph with Euclidean edges, and let C :
[0, 0c0) — R be a nonconstant and completely monotonic. The metric properties of both dg g
and dg g imply that dg g(u,v) =04 u=v and dgrg(u,v) =0< u =v forall u,v € G.
Theorem 1 now follows immediately from Theorem 3 and Corollary 1. [J

PROOF OF THEOREM 2. By uniformly scaling dg g and possibly selecting new vertices
on G by edge splitting operations (Proposition 3), one can obtain six vertices uy, ..., ug on G
which have the following geodesic pairwise distance matrix where 0 <t <r < 1:

0 t 1 r+1 1 t+1

t 0 11—t r—t+1 t+1 1

6 _ 1 1—1¢ 0 r 2t t
{dG’g(u”u])}i»jZI_ r+1 r—t+1 r 0 r r+t
1 t+1 2t r 0 t

t+1 1 t r+t t 0

corresponding to the following subgraph:

1-t

TARE T

® ® Ug ®u,
r

A
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The values 2¢, 2r and 2 represent the lengths of the three paths connecting vertices u3
and us, ordered smallest to largest. Notice that in the case t = r = 1, one has u3 = us5 which
implies the graph shown above will only have 5 distinct vertices. Forming the matrix X =

3de.g(ui, u) +de.gur, uj) — d g (ui, u)}e ;_, gives

t t t 0 t
t 1 1 1—1¢ 1
X=1t 1 r+1 1 1
0 1I—¢ 1 1 1
t 1 1 1 r+1

Setting & = (—1, —£,&,—1, )T, we have 7 S& = £(r& — 21), 50 T S <O when 0 < £ <
2t /r, implying that c(u;, u ;) = %(dqg(ui, up)+dg,guj,uy) —dg,g(ui,u;)) is not positive
semidefinite over {uy, ..., ue}. Then, Theorem 6 gives the existence of a 8 > 0 such that
exp(—pBdg.g(u, v)) is not positive semidefinite over {u1,...,ug}. U

PROOF OF THEOREMS 4 AND 5. Let G be a Euclidean tree with m leaves where m > 3.
Setn =[5, and let (R", d1) denote the usual £ metric space so that dy(x, y) = >/ |x; —
yi| for x, y e R,

id id
First, we show that (G, dg g) & (R",dy) and (G, dr,g) &5 (R", dy). By well-known prop-

erties of tree graphs, (V(G), dg.g) <1—d> (R™, dy); see, for example, Proposition 11.1.4 in Deza
and Laurent (1997). To extend this embedding from V(G) to all points 1n g it will be suffi-

cient, by Theorem 3.2.2 in Deza and Laurent (1997), to show (U4, dg.g) C—> (R"*, dy) for any
finite subset &/ C G. Since (U UV(G), dg.g) is also isometric to a tree graph with m leaves,

id
we have that U/ UV(G), dg.g) & (R", dy). This implies that (U, dg,g) embeds into (R", d1),
via restriction, as was to be shown. Now, since G is a Euclidean tree, Proposition 4 implies

dg.g = dr.g. Therefore, we also have (G, dr.g) cg (R", dy).
Second, Theorem 3.1 of Cambanis, Keener and Simons (1983) 1mphes C (di(x,y)) is

positive semldeﬁmte over x, y € R", thus proving Theorem 4 by (G, dg.g) & (R"*, dy) and
(G.dr.g) <—> (R", dy). Finally, Theorem 3.2 in Gneiting (1998a) establishes Theorem 5. [

5. Restricted covariance function properties. The restriction on the parameter « in
Table 1 agrees with results for similar families of covariance functions for isotropic random
fields on the d-dimensional sphere S¢ (Gneiting (2013)). This may be no surprise since a
Euclidean cycle is similar to the circle S!: in fact, all the covariance functions in Table 1 of
Gneiting (2013) for the circle can be adapted when G is a Euclidean cycle. Below, Corollary 2
shows that the restriction is, in general, also needed when considering a Euclidean tree G,
noting that if G has maximum degree n < 0o, then G has a star-shaped subgraph with n + 1
vertices and n edges. Moreover, Corollary 3 shows that there are some quite severe limitations
on the kind of covariance function that are valid for arbitrary Euclidean trees (and thus also
arbitrary graphs with Euclidean edges).

In the following we only consider Euclidean trees. Then, by Theorem 4 dg g = dr. g, and
we use d. g as a common notation for the two metrics.

PROPOSITION 6. If Z is a random field on a Euclidean tree G which contains a
star-shaped tree subgraph S, with n + 1 vertices and n edges, and &, p > 0 are num-
bers so that var(Z,(u) — Z,,(v)) = ,éd.’g(l/t, v)& + o(d.g(u,v)) when d. g(u,v) — 0, then
a <log(2n/(n —1))/log(2).
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PROOF. Let ug be the vertex in S,, with degree n, and consider the variogram d (u, v)? =
var(Z(u) — Z(v)). By Theorem 6, C(u, v) = d(u, ug)> + d(v, uo)> — d(u, v)* is positive
semidefinite over S, x S,. Fori =1, ..., n and € > 0 sufficiently small, let u;  be the point
on the ith edge which has d. g distance € from ug. The assumption on var(Z(u) — Z(v))
implies

d (e, u0)* = Bd. g, u0)® + o(d. g (uic. uo)) = Pe® + o(e%),
d(uie,uje)’ =Bd guie,uj ) +o(d guic uje))=p2%* + o(e%)
when i #£ j. Let ¥, be the n x n covariance matrix with (i, j)th entry
(Ze)ij =Ctic,uje)=PB2—2%e" + B29€%5;; + o(e%),
then
Te = B2 291,17 + B2%e% T, + o(e%) A,

where [, is the n x n identity matrix, 1, is the vector of length n with each coordinate equal
to 1 and A is some n x n matrix not depending on €. Now,

0 < det(Te) = 2" det((2'7% — 11,17 4 I, + 0(1)A)
— ann&en&((zlf& _ 1)7’[, + 1) +0(6n&)

Consequently, (2'"% — n+1> 0, as was to be shown. [

COROLLARY 2. Let C be one of the functions given in Table 1 but with a outside the
parameter range, that is, o > % in case of the Matérn class and a > 1 in case of the other
three classes. Then, there exists a Euclidean tree G so that C(d. g(u, v)) is not a covariance
function.

PROOF. Suppose Z, is a random field on a Euclidean tree G, which contains a star-
shaped graph S,, with n 4 1 vertices and n edges, with an isotropic covariance function with
radial profile C and @ > 0.

If C is in the Matérn class, let

ﬁ(x+1*|(¥*1|1ﬂ(|a . ll)zlafl\fol
al' (o) )

By L’Hospital’s Rule, equation 24.56 in Spiegel (1968) and equation 9.6.9 in Abramowitz
and Stegun (1969),

var(Z(u) — Z(v))
dguv—-0 d g(u,v)®
200 = et (B g (e, ) Ko (Bd. g (u, v))
= lim =
d.gu,v)—~>0 d.g(u,v)¥
a+1

d=a+1—|a—1|, g =

= li L a—a+l g .
4.6 u)—0 T(@)29 & g, v) a—1(Bd.g(u,v))

i ﬂa+lf\a71|lﬂ(|a _ 1|)2|a71|7(x
= m

d.g(u,v)* eti-le=ll = g,
d.gu,v)—0 al’(a) (. v) p

Hence, Proposition 6 applies, and, letting n — o0, we obtain & < 1 or equivalently o < %,
thus proving the assertion.
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If C is in one of the other three classes, it follows directly from L’Hospital’s Rule that
the requirement of the variogram var(Z,(#) — Z,(v)) of Theorem 6 is satisfied for & =
o when 8 = 28, in case of the power exponential class, and B = 2B&/a, in case of the
generalized Cauchy or the Dagum class. Letting n — oo in Proposition 6, we get that o < 1,
thus completing the proof. [J

PROPOSITION 7. Suppose (u,v) — C(d.g(u,v)) is a covariance function on a Eu-
clidean tree G containing a star-shaped tree subgraph S, with n > 2 edges of length larger
than or equal to to > 0. For all t € (0, ty], we have

C( C(1)? — C(0)?
23) O _can<co, O _cocan.
n—1 n—1
PROOF. Denote ey, ..., e, the edges of S, and u, 4 their common vertex. Let ¢ € (0, #g)

and u; € e; suchthatd. g(u,q1,u;)=tfori =1,...,n. Notethatd g(u;,u;)=2tfori, j=
1,...,nand i # j. Let ¥ denote the (n + 1) x (n 4+ 1) matrix with the (i, j)th entry equal to
C(d.g(u,', Mj)), that is,

co ifi=yj,
i j=1CQt) ifi#jandi,j<n+1,
C(t) otherwise.

As X is a covariance matrix, its principal minors are nonnegative determinants; these are of
the form det(X;) with k € {1, ...,n} or det(E,’() with k € {2, ...,n + 1}; here, X} denotes a
k x k submatrix of X with the same rows and columns removed and where the (n + 1)th row
and column have been removed, and ¥, is defined in a similar way but where the (n + 1)th
row and column have not been removed. It is easily verified that

det(Zp) = (C(0) — C20)*Hk — HC@1) + C(0))

for k =1,...,n, and hence either 0 < C(0) = C(2t) or both C(0) > C(2¢) and (k —
1)C(2t) + C(0) > 0, implying the first inequality in (23), where we have let k = n to ob-
tain the highest lower bound. Moreover,

det(}) = {C(0) — C2)} 2 C(0)* + (k —2)C21)C©0) — (k — 1)C(1)?)

fork=2,...,n+1, and so either |C(r)| < C(0) = C(2t) or both C(0) > C(2¢) and C(0)* +
(k—2)C(21)C(0)— (k—1)C()* >0, implying the second inequality in (23), where we have
used k =n + 1 to get the highest lower bound. [

COROLLARY 3. A function (u,v) — C(d. g(u, v)) which is a covariance function on all
Euclidean trees has to be nonnegative and, furthermore, either have unbounded support or

fulfill C(t) =0 forall t > 0.

PROOF. Letting n — oo and ty — oo, the first inequality in (23) implies nonnegativity
of C, and the second inequality in (23) implies C (0)C(2r) > C(¢)? for all ¢ > 0. Thus, if for
some #; > 0 and all ¢t > #; we have C(2t) =0, then C(¢) = 0 for all ¢ > ¢, from which it
follows by induction that C(¢) =0 forall > 0. O

To illustrate the scope of the covariance function restrictions given above, it is instructive
to consider the variogram suggested on page 205 in Okabe and Sugihara (2012) in connection
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to linear networks. If there is a corresponding isotropic covariance function, its radial profile
is given by

Bo+B1B2 ift=0,
CH)y=1B1(Bo—1) ifO0O<t=<po,
0 ifr> pa,

where Bo, B1, B2 > 0 are parameters. As this function has bounded support, by Corollary 3
this cannot be a valid covariance function on an arbitrary graph with Euclidean edges (or an
arbitrary linear network). However, as remarked in the paragraph proceeding Theorem 4, this
does not preclude the positive definiteness of C(¢) on a particular fixed tree graph. Indeed,
Theorem 5 can be invoked to imply that when G is a Euclidean tree with m > 3 leaves, then
C(1)* is positive semidefinite (with respect to dr. g = dg.g) for any o > 2[m /2] — 1.

APPENDIX: PROOFS

A.1. Proof of Proposition 5. To verify Proposition 5, recall Definition 3. We use the
notation /4 for an indicator function which is 1 on a set A and O otherwise. We need the
following lemmas:

LEMMA 1. (F, (-, -)F) is an inner product vector space, with metric || f |7 := +/{f, f)F
given by

(24) 1F=fw?+ Y [ i
ecf(G) "¢

PROOF. From (19) we obtain (24). Note that ( f, f)r = 0 implies both f(u,) =0, and,
forany e € £(G), f, is almost everywhere constant on e. The continuity requirement of f € F
then implies (f, f)7r =0< f =0. Finally, (-, -)  is clearly symmetric, bilinear and positive
semidefinite over f € F. [

For f € F,u € G and e € £(G), define

—(1— - _ )@ = fu) ifuee,
fu@) = (1—dw)f@ +dw) f @), Jer@) =4, otherwise.,

where d(u) is defined in (12). It will be convenient to denote the operations f — f,, and
f — fe, with operator notation &, : F — F and &, : F — F given by &, f = f, and
Pef = fe,r. In addition, the inner product (-, -) 7 restricted to the function spaces &, F and
2, F will be denoted (-, ), = (-, ) Fl 5, 7x 7, and (-, Ye.r = (-, ) Fl o, 7,7

LEMMA 2. If G is a graph with Euclidean edges, then for all e € £(G), &), and &, are
mutually orthogonal projections and F is a direct sum:

(25) F=2,F& @ Z.F.
e€f(9)

PROOF. This is straightforwardly verified as soon as it is noted that &2, and &, are
selfadjoint operators which follows from the fact that

. fe(@) — fe(e)

(26) [(fi)e] (1) = lene) * ¢€ E(9), 1€ (e ). =
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LEMMA 3. Let G be a graph with Euclidean edges with vertices V and edges &£. Also,
let:

e (RY,(-,-)1) denote the finite dimensional Hilbert space with inner product given by
(zyw)r =z" Lw as in (9);

e H, denote the infinite dimensional Hilbert space of absolutely continuous functions f :
le,e] — R such that ' € LZ([g, e]) with boundary condition f(e) = f(e) =0, and with
inner product (f, g)H, := ff f(@)g'(¢)de.

Then, we have the following:

(A) (PuF, (-, ) is a finite dimensional Hilbert space which is isomorphic to (RY,
(-,-)1) and has reproducing kernel R, (defined in (13)). Its inner product has simplified
form forall f,g € P, F:

(fe(@) — fe(e))(8e(€) — ge(e))

len(e)

27) (f.8)u=fuo)guo) + Y _

ecf

(B) Foreache € £, (PoF, (-, )e.r) is an infinite-dimensional Hilbert space which is iso-
morphic to (H,, {-, -) u,) and has reproducing kernel R, (given by (15)). Its inner product has
simplified form for all f, g € P,F:

(28) <ﬂg»1=/’ﬂamxnw.

(©) (F, (-, -)F) is an infinite-dimensional Hilbert space which is isomorphic to RV ®
Qce He and has reproducing kernel Rg (given by (16)). Its inner product has simplified
form forall f, g e F:

(29) (f.8)F={(fus &+ D (fers8erder

ecE

PROOF. (A): There is a bijective correspondence between z € RY and fu € &, F which
simply corresponds to interpreting z as the values of f, on the vertices of G. Then,

fu)=(1—dW))z(w) +dw)z(m) Yueg,
z(v) = fu(v) Yvel.

The bijection also preserves inner product because if w € RY corresponds to gu € PuF,
then

_ | « ) —z()(wu) — w))
(z, w)r = z(uo)w(uo) + 3 MEW do o, ) (by (9))
1 - -
gt + 3 ) = 0510~ gyt0)

= <f;u gu)u (by (26)),

where the above sums are over adjacent u, v € V. This establishes (27) and that (&, F,
(-, *)u) is isomorphic to (RY, (-, -)). It then remains to show that the reproducing kernel of
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(RY, (-,-)1), namely L~!, is in bijective correspondence with R,,. Indeed, for each u € G,
fu) =[P, fulw) (since - = 2,,)

(1 —d@) fu@) +dw) f,. ()

(1 —d @)z () +d(u)z@@)

(1—d@)(z, L7 ¢, w), +d@)(z, L7, m),

(e, (1 =d@)L™ C,w) +d@L™' ¢ 0),,

=Ry (-,u)

(30)

where the function Ry (-, u) is a member of RY. By (13) we can simply linear interpolate
Ry (-, u) to find the corresponding member in &2, F as follows:

(I1=d)Rr(.u) +d()RLG u) = Ry (-, u).
Therefore, by (30)

fu(u) = (Za RL(, u)>L = (f;u Ru(‘v u)),y

where the second equality follows by the fact that inner products are preserved under the
bijective correspondence. This completes the proof of (A).

(B): Let e € £. Note that H, is equal to the constrained space {f € J7, : f(e) = 0}
where 7, :={f € C([e,e]): f' € L?([e,e]), f(e) =0} corresponds to the Cameron—Martin
Hilbert space (using inner product (-, -) y,) with reproducing kernel (s — e) A (t — e). There-
fore, by Saitoh (1997) page 77, the subspace (H,, (-, -)u,) is also a Hilbert space with repro-
ducing kernel given by

(s—e)—e) _
RTEVTY .

(31) Ro(s,t) i =(s—e)A(t—e)— <s,t <e.

e —e

Clearly, f € H, and f,, € &, F are in a bijective linear correspondence by the relation

Jer(u) = f(@e())Ie(u). By (15)

R if
(32) Ro(u.v) = e((/)e(u),(Pe(U)) 1 Mav.e&
0 otherwise.

Finally, for fe,, ger € . F with corresponding f, g € H,, we obtain (f, ,, ge.rle.r =
(f,8)H,,and so

(fers ReCo V), ={f2 ReC, o))y, = [ (0e(0)) = fer (V).

Thereby, (B) is verified.
(C): This follows immediately from Lemma 2 and (A)-(B). U

PROOF OF PROPOSITION 5. Lemma 3 establishes that Rg is the reproducing kernel for
(F, (-, )r). Since Rg is also the covariance function of Zg, we have that (F, (-, -)r) is the
RKHS associated to Zg (see Wahba (1990)). To prove (20), we use standard Hilbert space
arguments to show

(33) var(Zg(u) — Zg(v)) = sup ((f@) = fF@)*:IfIlF<1)

the left-hand side being the definition of dg g(u, v). Let u, v € G with u # v, and f € F with
| fll= < 1. Use the reproducing property of Rg along with the Cauchy—Schwartz inequality
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to obtain
(f @) = f@)* =(f. R 1) = Rg (-, v)]
< |Rg(,w) = Rg (-, )| 3
= Rg(u,u) 4+ Rg(v,v) —2Rg(u, v)
=var(Zgu) — Zg(v)).
Note that the function f, € F defined by

fo(w) = (Rg(w, u) — Rg(w, v))/|Rg(-,u) = Rg(-,v)| £

has norm || f, || = 1 and satisfies

(folw) = fo(v))* = var(Zg () — Zg(v)).

This proves (33) and, hence, (20).

To show (21), notice that the definition of inner product on JF, in (19), implies that
(f, 1) = f(u,) where 1 denotes the member of F which has constant value 1 over all
points on G. Now, the reproducing kernel property of Rg implies (f, 1)r = (f, Rg(:, uo)) F
for all f € F. Therefore, Rg(-, u,) =1 and hence Rg(u, u,) = 1 for all u € G. Finally, notice

dr,gu,uo) = Rg(u,u) + Rg(uo, o) —2Rg(u, uo) = Rg(u,u) — 1,
which gives
dr.gu,v) = Rg(u,u) + Rg(v,v) —2Rg(u, v)
=2+drg(u,u,)+drg(v,u,) —2Rg(u,v).

This proves (21), as was to be shown. [

A.2. Proofs of Propositions 2,3 and 4. We start by verifying Proposition 3, as it is used
to prove Proposition 2.

PROOF OF PROPOSITION 3. Since the operation of merging two edges at a degree two
vertex v is the inverse of splitting the resulting edge at v, it will be sufficient to show that G’
is isometric to G under the resistance metric when G’ is obtained from G by splitting edge
ecf@)atuce.

Let ¢ and e, denote the partial edges formed by splitting e € £(G) at u € e such that
e; = e. Since the sets G and G’ are identical, their corresponding spaces of functions F and F’
as given in Definition 3 are identical; however, G and G’ induce different inner products on F,
denoted (-, -) 7 and (-, -) 7 split, respectively. By Proposition 5, dg g and dg g are completely
determined by their inner products ( f, g) 7 split and ( f, g) 7. Therefore, we may suppose that
both G and G’ use the same origin u, in their respective inner products. Then, for any f, g €
F, the difference between the two inner products is

(fv g)]" - <f7 g)}',split
= [ rwgwar— [ gL og, o - [ gLog,0d

since the splitting operation on e € £(G) at u € ¢ only affects the term corresponding to
e in (19). By Proposition 5, to show dgr g = dr ¢/, it will be sufficient to show (f, g)r =

(f, &) F.splie forall f, g € F.
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For any f € F and ¢ € [e, €], define
J1(0) = fe(O) e, o) (D), J2(0) = fe() 1,21 (D).

Both fi and f> are almost everywhere differentiable and satisfy f{, f; € L*([e, 2]). More-
over, for any f, g € F, the fact that f{(r)g5(t) £ 0 and f ()8 () £ 0 implies that
e
e

[ g = [0+ ol + o)

- / " lngl @ di + / " Bgh()dr.

Note that for Lebesgue almost all numbers ¢, f, (t) = f|(t) if t € [e;, e1] and f; (1) = f5(2)
if t € [e,, €2] (and similarly for g.,, g.,). Therefore,

e el e
[ riwgwa=[" fwgwd+ [ 1L og, o
e €] €
which implies ( f, g) 7 split = ( f, &) 7, as was to be shown. [J

PROOF OF PROPOSITION 2. In the literature on resistance networks and metrics (see,
e.g., Jorgensen and Pearse (2010), Kigami (2003)), given a conductance function c (i.e., a
symmetric function associated to all pairs of adjacent vertices), the (effective) resistance dis-
tance between u, v € V(G) is defined by

deft(u, v)

(34) 1
= sup {(Z(”) —z2()*: 3 3 clur, un)(z(ur) — z(2))* < 1}
ZERV(g) ui~up
(this is one of several equivalent definitions; cf. Theorem 2.3 in Jorgensen and Pearse (2010)).
To relate defr and dg g, recall (20) and that we have defined ¢ by (7). Also, by Lemma 3, each
f € F has an orthogonal decomposition f = f, + > ,ce(g) fe.r Where

2 2 2
1A= 11 fully + S M ferlls,
e€&(9)

and f, ,(u) = fe.r(u) =0 for all u, v € V(G). Therefore, if u, v € V(G), the term (f(u) —
f (v))? in (20) simplifies to (f (1) — f (v))? and hence the supremum can be taken over f €
JF such that ||fe,,||g’, =0 for all e € £(G). By Lemma 3(A), when u, v € V(G), dr.g(u, v) is
equal to

(Lfule@ = [fule(e)? - 1}‘

len(e) -

sup {(£0 = £u )+ futu)?+

fe%tf eeg(g)

Since the constant functions are all members of &7, F, we can subtract f,(u,) from each
fu € Z,F and easily see that the supremum above can be taken over all f € &2, F which
satisty f, (u,) = 0. It is now easily seen that

deft(u, v) =dp.gu,v), u,veV().

This also establishes that dg ¢ does not depend on the choice of origin and that dg g is
a metric on V(G) (see, e.g., Jorgensen and Pearse (2010), Lemma 2.6), and hence by the
splitting operation on edges (Proposition 3) dg g is a metric on G as well. [J
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PROOF OF PROPOSITION 4.  Proposition 2 and the theory of electrical networks imply
(35) drgu,v) <dgg(u,v), u,veV(G),

with equality if and only if G is a tree graph (see, e.g., Jorgensen and Pearse (2010), Lemma
4.3). The fact that dr g and dg g are invariant to splitting edges (by Proposition 3) implies that
(35) extends to any additional finite collection of edge points. Thereby, (17) of Proposition 4
is verified, where the if and only if follows, since the tree property of G is also invariant to
edge splitting.

To show (18), suppose G is a Euclidean cycle with circumference w. Let u, v € G be
arbitrary and s € G be the polar opposite of the midpoint of the geodesic path connecting u
to v. By a sequence of edge splits and merges, we may construct a new graph G’, equaling G
as a point set, but with vertices {u, v, s} and edges connecting u ~ v, v ~ s and u ~ s with
corresponding edge lengths dg g(u, v), dg.g(v, s) and dg g(u, s), respectively. Notice that
the L matrix for G’, constructed via (8), has a particularly simple inverse given by

crt+c —C1 —C2
L™= —C1 c1+c3 —C3

—C2 -3 otca+l

—1

5 b+ c b+ci+c b

b b b

1(b+61+03 b+ b)

where ¢; :=1/dg,g(u,v), c2 :=1/dg g(u,s) and c3 := 1/dg.g(v, s) are the edge conduc-
tances of G’ and b := c1cz + c1¢3 + ¢2¢3. Now, since u, v € V(G'),

dr.g(u,v) =L (w,u)+ L™ (v, v) — 2L (u, v)

_b+C1+C3 +b+C1+C2 _2b+C1
B b b b

dg,g(u, v)*
= dg.g(u,v) = ="

which, along with the fact that dg g (4, v) = dg g (1, v) by Proposition 3, completes the proof
of (18). O
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