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Triangle presentations and tilting modules for SL;; ;

Corey Jones

Abstract. Triangle presentations are combinatorial structures on finite projective geometries
which characterize groups acting simply transitively on the vertices of a locally finite building
of type An—i (n > 3). From a type An—1 triangle presentation on a geometry of order g, we
construct a fiber functor on the diagrammatic monoidal category Web(SL,,) over any field k
with characteristic p > n — 1 such that ¢ = 1 mod p. When k is algebraically closed and n
odd, this gives new fiber functors on the category of tilting modules for SL,,.
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1. Introduction

The purpose of this paper is to build new fiber functors on the category of tilting
modules for SL,, from combinatorial structures called triangle presentations, which
arise in the theory of affine buildings. Recall that affine buildings are a class of
simplicial complexes which provide a geometric context for the study of semisimple
algebraic groups over non-Archimedean local fields [4]. An important family
of examples are the type A,_; Bruhat-Tits buildings associated to the groups
PGL(n, K), where K is a field with discrete valuation v. The group PGL(n, K)
has a canonical action on its building which is transitive on vertices. It is natural
to study discrete subgroups I' < PGL(n, K) whose action on the vertices is simply
transitive. In this case, the building can be recovered as the flag complex of the
Cayley graph of I' with respect to a set of generators which map any fixed vertex to
its nearest neighbors.

There is an abstract characterization of such I" in terms of triangle presenta-
tions [5, 8]. Triangle presentations are defined as purely combinatorial structures
on finite projective geometries (Definition 2.4). A group I' admits a type-rotating
action on an abstract locally finite An_i building which is simply transitive on the
vertices if and only if it admits a triangle presentation of type /Kn_l [S, Theorem 2.5].
Triangle presentations may thus be viewed as combinatorial manifestations of the
local structure of buildings in type A.
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In this paper we establish a connection between the rich combinatorics of triangle
presentations and type A representation theory. The category PolyWeb(GL,) is
a diagrammatic symmetric monoidal category defined over an arbitrary field k
which yields a presentation for the category of polynomial representations of GL,
when k is algebraically closed [2, Definition 4.7, Remark 4.15]. In this paper we
consider a monoidal quotient of this category which we call Web(SL,,), obtained
by adding an isomorphism from the determinant object in PolyWeb(GL,) to the
monoidal unit object and imposing certain compatibility conditions with the crossing
generator (Section 3.2). When n is odd and k algebraically closed, the idempotent
completion of Web(SL,') is equivalent to the category of SL, tilting modules
Tilt(SL,) (Remark 3.4).

Recall a fiber functor on a linear monoidal category is a monoidal functor! to
the category of finite dimensional vector spaces. The main result of this paper is
Theorem 4.2, which we summarize as follows:

Theorem 4.2. Given a triangle presentation S of type An_iona finite projective
geometry of order q, for any field k of characteristic p > n — 1 with ¢ = 1 mod p,
we construct a fiber functor Web(SL,,) — Vec. When n is odd and k algebraically
closed, these define fiber functors on Tilt(SL,,).

Our construction yields an infinite family of fiber functors on Tilt(SL,) for a
fixed n and k. To our knowledge, these are the first examples of fiber functors
on Tilt(SL,), n > 3, with the interesting property that the underlying dimensions of
the vector spaces assigned to objects are strictly larger than their usual dimension.?
Indeed, for a fixed n field k with characteristic p, there are infinitely many primes
q¢ = 1 mod p, and thus infinitely many triangle presentations with which we can
build our fiber functors. The linear dimensions of the vector spaces assigned by
our functors to the defining representation, for example, are given by [n],, where ¢
is the order of the triangle presentation. This increases with ¢, and thus the linear
dimension of these vector spaces can be arbitrarily large.

Recall a solution to the (parameter independent, quantum) Yang—Baxter equation
consists of a vector space V' and an isomorphism RVQV VRV satisfying the
equation

(R®1y)o(ly ®R)o(R®1y) = (1y@R)o(R®1y)o(ly®R) inEnd(V ® V ® V).

Solutions to this equation have played an important role in statistical mechanics
and the theory of quantum groups [15]. In the latter context, they typically arise
as g-deformations of the standard solution P, which swaps the order of the tensor
factors. By considering the image of the crossing morphisms from Web(SL,,)
under our (non-braided) fiber functor, we obtain new involutive (1’?2 = idygy)

'Our fiber functors are not necessarily braided.
2For n = 2, there are many examples of this type, e.g. from a vector space V' whose dimension is 2
mod p, together with a non-degenerate anti-symmetric bilinear form.
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solutions of the Yang—Baxter equation in positive characteristic. Our solutions
can be interpreted as “positive characteristic deformations” of easy solutions in
characteristic O (Remark 2.11 and Section 4.1).

Our study of triangle presentations was inspired by and is closely related to [25],
which uses A, triangle presentations to construct the first examples of genuinely
quantum discrete quantum groups with property (T). Given a triangle presentation T,
if one considers the linear maps defining our functors over C, they no longer satisfy
the SL,, relations hence do not give a fiber functor of Web(SL,,). In this setting, we
can upgrade our vector spaces to Hilbert spaces by asserting the basis elements IT
be orthonormal. Then these maps generate a rigid C*-tensor subcategory of finite
dimensional Hilbert spaces. By Tannaka—Krein—Woronowicz duality this yields a
corresponding compact quantum group. In the n = 3 case, it is easy to see from
the definitions that this is precisely the compact quantum group Gy introduced
in [25, Definition 5.1] associated to . Another way to understand this connection is
to say the planar algebra introduced in [25, Section 7] (which makes sense over Z)
describing Rep(Gy) satisfies the SL3 web relations in when reduced modulo p
dividing g — 1.

We briefly describe the outline of the paper. In Section 2, we cover background
material including finite projective geometries, buildings, triangle presentations and
examples. No knowledge of buildings is required to read this paper, but we include
some basic definitions and discussion for the interested reader in Section 2.2. In
Section 3 we describe the relevant web categories and some basic results concerning
their diagrammatics. In Section 4, we construct the functors and then discuss basic
properties of the resulting Yang—Baxter solution R. The main technical part of the
paper is the proof of Lemma 4.1. This involves a combinatorial case analysis, and
makes full use of all the axioms of triangle presentations.

Acknowledgements. We would like to thank Pavel Etingof, Aaron Lauda, Victor
Ostrik, David Penneys, and Sean Sanford for useful comments and discussions. This
research was supported by NSF Grant DMS-1901082.

2. Preliminaries: Projective geometry, buildings, and triangle presentations

Here we recall some basic definitions and results about finite projective geometries,
buildings, and triangle presentations. As triangle presentations can be defined purely
as a combinatorial structure on a finite projective geometry, background in the theory
of buildings in not necessary to read this paper. However, we include here the basic
definitions, since the connection between triangle presentations and groups acting on
buildings is their raison d’étre.

2.1. Finite projective geometry. Finite projective geometries are examples of in-
cidence geometries. They consist of a finite set of points P, a finite set of lines L,
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and an incidence relation between points and lines. For a comprehensive general
reference on incidence geometries, we refer the reader to the notes [19].

A finite projective geometry of projective dimension # is an incidence geometry
satisfying the following axioms (called the Veblen—Young axioms, for example [19,
p.- 127]):

1 For every two distinct points p,q € P there is a unique line p V ¢ incident with
both p and g.

There exists three non-collinear points.
Every line is incident with at least 3 points.

The maximum length of a chain of (non-empty) subspaces is n + 1.

O N N V)

Every line incident with two sides of a triangle but not incident with its vertices
must be incident with the third side of the triangle.

Here subspace is a collection of points such that for any two points the line containing
them is also in the collection (we consider singleton sets of points subspaces). In
the definition of chains of subspaces, we assume inclusions are proper and do not
count & as a subspace.

Given a subspace V, we can define the algebraic dimension to be the largest k so
that there exists a chain of proper inclusions of (proper) subspaces

WWeWnc-- SV SV,

while the projective dimension is given by k — 1. Directly from the definitions we
see the projective dimension of the entire set P is n, and the algebraic dimension
isn + 1. It’s not hard to show that all lines have the same number of points, and the
order ¢ of a projective geometry is defined to be one less than the number of points
on a line.

The terminology ‘“algebraic dimension” stems from the canonical examples of
finite projective geometries. Let V' be a vector space of dimension n + 1 over a finite
field ;. The points in this projective geometry are the 1-dimensional subspaces,
and the lines are 2-dimensional subspaces. Projective geometries arising from a
finite vector space in this way are called Desarguesian, or classical. In this case,
the subspaces of algebraic dimension k are precisely the linear subspaces of V' with
(linear) dimension k. The order in this case is the size of the field g. We note that
projective geometries with projective dimension n > 3 are always classical, while
there are many exotic examples of projective planes (n = 2).

In what follows, we will find it more convenient to index subspaces by their
algebraic dimension rather than their geometric dimension. However, we will
continue to specify algebraic dimension to avoid confusion. Given a projective
geometry, we define I to be the set of subspaces of algebraic dimension &, so that
the set of points is written I1;, the set of lines is I15, etc.
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Let ¢ # 1 be a fixed positive integer. Then for k a positive integer, define

n

q k—1

—1 5
=14+q+q*++q

[klg == — 1

Then set [0]; = 1 and recursively define [k + 1],! := [k + 1]4[k],!. For [ < k the
g-binomial coeflicient is given by

-
PRI
We adopt the conventions

[kl = —kl; and  [—klg! = [klg[—(k = D]g---[=1]qg = (=DF kg,

and then use the same definition for the binomial coefficients with (possibly) negative
integers. The following easy lemma is well known (for example, [19, p. 121]).

Lemma 2.1. For a finite projective geometry of order q and algebraic dimension n
the number of subspaces of algebraic dimension k is [} ] -

For n > 4, since all such geometries are classical this is an exercise in linear
algebra. For n = 3, this is a basic fact about projective planes (for example, [19,
Theorem 6.3]).

Lemma 2.2. For a finite projective geometry of order q and algebraic dimension n
the number of subspaces of algebraic dimension k containing a fixed subspace V of
dimension m is [ 51,

Proof. For n = 3, this again is a basic fact from the theory of projective planes.
Forn > 4, projective geometries are classical, and thus subspaces are linear subspaces
of an n-dimensional vector space W over [F;, whose algebraic dimension is their linear
dimension. The first isomorphism theorem for vector space establishes a bijection
between the intermediate subspaces U, V C U C W, of dimension k, and arbitrary
subspaces of the (n — m)-dimensional quotient space W/V of dimension k — m.
Applying the previous Lemma gives the result. O

Finally, an easy fact we will make frequent use of is if ¢ = 1 mod p, then

(] 1)

2.2. Buildings. Ultimately for our construction we don’t need the full apparatus of
buildings, we only need the combinatorial properties of triangle presentations.
However, the origins of triangle presentations lie in the study of symmetries of
buildings and we believe this geometric context is an interesting aspect of our
construction. Therefore we find it prudent to take a brief detour to discuss buildings
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for the unfamiliar reader. We refer the reader to [1] and [21] for a comprehensive
reference for the topics discussed below.

Buildings, originally introduced by Tits, are a family of highly symmetric
simplicial complexes whose geometric realizations have nice properties. For
semisimple algebraic groups G over non-Archimedean local fields, they play a
role analogous to homogeneous spaces. In particular, such a group admits a
vertex transitive action on its corresponding Bruhat-Tits building, allowing for the
application of geometric methods to study G.

More concretely, buildings are simplicial complexes which are modeled on
Coxeter complexes. Indeed, Coxeter complexes are precisely the degenerate (or
thin) buildings, forming the fundamental pieces of (thick) buildings which will be
of primary interest. Coxeter complexes are simplicial complexes associated to a
Coxeter system (W, S) on which the underlying group W acts in a nice way. As
Coxeter complexes are widely studied throughout mathematics, we neglect to include
definitions but refer the reader to [1, Chapters 2, 3], which is especially useful for the
theory of buildings.

Definition 2.3. If (W, §) is a Coxeter system, a building of type (W, ) is a simplicial
complex A which is a union of subcomplexes called apartments satisfying the
following conditions:

(1) Each apartment is a Coxeter complex of type (W, S).
(2) Any two simplices are contained in a common apartment.

(3) If two simplices S, T are both contained in apartments A, A’, there is an
isomorphism of chamber complexes ¢: A — A’ that fixes S, T point-wise.

A chamber is a maximal simplex. Often in the literature, there is an additional
assumption that the building is thick, which means every codimenion 1 simplex of
a chamber is incident with at least 3 distinct chambers. Otherwise the building is
called thin. Coxeter complexes themselves are precisely the thin buildings.

We are interested in buildings of type An_1, n > 3. The associated Coxeter
complexes are tessellations of Euclidean space by simplices. A large class of examples
are the buildings A’ associated to a field K with discrete valuation v: K — Z. These
are the Bruhat-Tits buildings associated to the group PGL(n, K). We will provide
here an elementary construction following [21, Section 9.2].

Let O = {x € K : v(x) > 0} denote the discrete valuation ring. Pick 7 € O
with v(;r) = 1. Then & generates the unique maximal ideal in ©. In order to obtain
a locally finite building, we assume the residue field O/Om is finite. A lattice in K"
is a free rank n O submodule . C K". We say two lattices L, L’ are equivalent
if AL = L' for some A € K. The vertices of A’ are equivalence classes of lattices.
Two classes will have an edge between them if there exists representatives L, L’
respectively such that 7L € L’ € L. This gives us a graph, and the simplicial
complex A% is defined as the flag complex of this graph. In other words, the
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simplices of A’ are subsets of vertices such that every pair of elements has an edge
between them. These buildings naturally admit an action of PGL(n, K) which is
transitive on the vertices. For n > 4, every An_i building is isomorphic to one of
this form.

Every A1 building admits an essentially unique type function 7 from the set of
vertices to Z /nZ. In the Bruhat-Tits example described above, we set L := 0" C K"
Then any other lattice can be written as gL for some g € GL(n, K). We can define
the type function

r([gLo]) := v(det(g)) modn € Z/nZ,

which is easily seen to be well defined. An automorphism of a building « is said to be
type rotating if there exists a ¢ € Z/nZ such that t(a(v)) = ¢ + 7(v) mod n for all
vertices v of the building. PGL(n, K) acts on Ak by type rotating automorphisms.

One important feature of buildings of type A, is that the collection of vertices
neighboring a given vertex v (the link of the vertex) naturally has the structure of
a type A,—; building, which in turn always carries the structure of a projective
geometry of algebraic dimension n. If the building is locally finite, then this is a
finite projective geometry.

As explained in the introduction, if a connected, locally finite building A admits
an action by a group I" which is simply transitive on the set of vertices, then picking a
vertex v we can identify the vertices adjacent to v with a set of generators for I'. We
can then use the combinatorial axioms of the building to work out a presentation of
the group in terms of these generators. Collecting properties of such a presentation
for arbitrary buildings of type A,_; leads naturally to the definition of a triangle
presentation over a finite projective geometry. First we give some notation and
conventions.

Let IT be a finite projective geometry of algebraic dimension n. We use the

notation
Il := |_| ITg.

1<k=<n
We sometimes abuse notation, and denote the projective geometry simply by II.
For u € II, we also introduce the notation dim(u) for the algebraic dimension of u.
For subspaces u, v € I1, we say u is incident with v, written u ~ v if either u C v
or v C u. The following definition is from [5].
Definition 2.4. Let I1 be a finite projective geometry of algebraic dimension n and
o:I1 — II an involution such that o(I1;) = II,,_x. A triangle presentation of
type Ap_y compatible with o consists of a collection T C TIT x IT x IT satisfying the
following conditions:

1. Foru,v € I, (u,v,w) € § for some w if and only if o (#) and v are distinct and
incident.

2. Foru,v,w € I1, (u,v,w) € T if and only if (v, w,u) € T.
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If (u,v,w) € T, then dim(x) + dim(v) + dim(w) = 0 mod n.
If (u,v,wy) € T and (u, v, w;) € T, then w; = w,.
If (u,v,w) € T, then (c(w),oc(v),o(w)) € T.

If (up,v1,w) € T, (Uz,v2,0(w)) € T and dim(y;) + dim(v;) < n, then there
exists a unique z such that (v,,u1,z) € T and (vy,u2,0(2)) € T.

AR S

Proposition 2.5. Condition 6. in the above definition can be replaced by either of
the following conditions:

6. If (u,v,0(r)),(r,w,o(s)) € T and dim(u) + dim(v) + dim(w) < n, then there
exists a unique ¢ € IT such that (u,7,0(s)), (v, w,o(t)) € T.

6" If (u,t,0(s)), (v,w,o(t)) € T and dim(u) + dim(v) 4+ dim(w) < n, then there
exists a unique r € I1 such that (u, v, o (r)), (r,w,o(s)) € T.

Proof. First we show 6. is equivalent to 6, assuming all the other conditions. If we
perform the substitution

Uur>uy, vevy, reo(w), s—>o(vy), we U

and use 2., then the statements are precisely the same, ignoring the conditions on
the dimensions. Therefore it remains to show the assumptions on dimensions in 6.
and 6., respectively, are equivalent. Under the substitution described above, suppose

dim(u;) + dim(v;) < n
as in 6., then
dim(u) + dim(v) <n and dim(w) + dim(c(s)) < n.
But note
dim(r) = dim(u) + dim(v) and dim(r) + dim(w) + dim(o(s)) = 0 mod n,
and thus dim(w) + dim(o (s)) < n implies
dim(u) 4+ dim(v) + dim(w) = dim(r) + dim(w) < n,

as desired.
Conversely if we suppose

dim(u) 4+ dim(v) + dim(w) < n,
then under the substitution described above we see

dim(o (w)) + dim(u;) = dim(u;) + dim(vy) + dim(u;) < n,
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which immediately implies dim(u) + dim(vy) < n. Also, since
dim(o (w)) 4+ dim(u3) + dim(v,) = 0 mod n

and the sum of the first two terms is less than n, then the whole sum must be 7 hence
the sum of the second two terms is less than n as desired.

We will show 6. implies 6”, assuming the other properties of a triangle
presentation. The other direction of implication is completely analogous. Assume 6’
and let (u,1,0(s)) and (v, w, o (t)) be elements of T with

dim(u) + dim(v) + dim(w) < n.
Then (¢,0(s),u) € T and
dim(v) + dim(w) + dim(o (s)) = n — dim(u) < n,

thus we can apply the hypothesis to the pair (v, w, o (¢)) and (¢,0(s),u) in T (with ¢
playing the role of r in the statement) to obtain a unique r’ such that (v,r’, u)
and (w, o (s),0(r")) are both elements of T. Writing r = o(r’) gives the desired
result. O

Given a triangle presentation 3, we define a group
'y =well |uvw = 1if (u,v,w) € T,uo) =1).

This group will always admit a type-rotating action on a type 11,,_1 building whose
action on the 1-skeleton is precisely the action on the Cayley graph of I'-. Conversely,
any group which acts (in a type rotating way) on a type An_i building admits a
triangle presentation such that the action on the I-skeleton is isomorphic to the
action on its Cayley graph. In this sense, triangle presentations give a combinatorial
characterization of groups acting simply transitively on the vertices of An_i buildings.
We summarize this in the statement of the following theorem due to Cartwright, and
generalizing the earlier results of [8] in the case n = 3.

Theorem 2.6 ([5, Theorem 2.5]). A group I' admits a type-rotating action on a
locally finite thick building of type Ap—1 which is simply transitive on the vertices if
and only if T admits a triangle presentation of type A,_1.

This result motivates the study of triangle presentations, since they provide
combinatorial descriptions of the rich geometric structure of affine buildings. Below
we include some examples.

Example 2.7 (Cyclic planar difference sets). We present a generalization of the
examples [8, pp. 156-157]. These may be known to experts, but we could not find
them in the literature described with this generality. A cyclic planar difference set
consists of a natural number N = g2 4 ¢ + 1 and asubset D C Z /N Z of size g + 1
such that every non-zero element m € Z/NZ may be written m = d; — d, for a
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unique pair (d1,d2) € D x D. Given a cyclic planar difference set, we can define
the structure of an abstract projective plane whose points are the elements of Z /N Z,
and the lines are the translates of D, with a point incident to a line when it is an
element of the set. Cyclic planar difference sets were first studied in [22], where they
were shown to always exist if ¢ = p” for some prime p. General difference sets are
of interest in combinatorial design theory.

Given a cyclic planar difference set D, any translate D + s is also a cyclic planar
difference set. Furthermore, translation by s induces an isomorphism of the associated
projective geometries. A numerical multiplier of a cyclic planar difference set is an
integer ¢ suchthattD = D +s forsomes. If g = p”, then p is a numerical multiplier
for any cyclic planar difference set [14, Theorem 4.5]. However, it is desirable for
us to find D that are invariant under multiplication by p, i.e. the associated s is 0.
We call a cyclic planar difference set standard it ¢ = p” and D is invariant under
multiplication by p.

For any cyclic planar difference set D with ¢ a prime power, we claim there is a
canonical translate Dy = D + s¢ which is standard. First we claim there is a unique
translate Do = D + s¢ such that ZdieDo d; = 0. To see this, set

c = di.
dieD

Then for any s, the sum of the elements in D + s is ¢ + (¢ + 1)s. Since g + 1 is
relatively prime to N = ¢? + ¢ + 1, it is invertible hence

so =—(q + 1)"'¢ mod N.

Furthermore, multiplication by p preserves the property have having 0 sum, hence
this translation is standard.

Now, given a standard cyclic planar difference set D on Z /N Z with ¢ = p", we
will define an n = 3 triangle presentation of order ¢g. Consider the induced projective
geometry with point line correspondence o

Hl = Z/NZ,
Iy :={m + D}mez/NzZ,
o(m):=m+ D, form € I1;.

That o is a bijection follows from the definition of planar difference set. Now, define:

T ={(m,m+d m+(q+1)d) el xy xI; :meZ/NZ, d € D},
T/, = {(0(m3)7 O—(m2)7 O(ml)) : (mlv msy, m3) € T/}’
T =T UT".
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Proposition 2.8. T as defined above is a triangle presentation.

Proof. Note that in the n = 3 setting, Definition 2.4.6. is vacuously true, and 2.4.5.
and 2.4.3. follow directly from the definition of 3. To verify the remaining conditions,
first consider triples in T”. Condition 2.4.1. for this subset follows directly from the
definitions. To prove 2.4.2., consider

(m.m+d, m+(p+1d)eT.
Then to check
(m+d, m+ (g + 1)d, m) e T,

note
m+(q+)d =(m+d)+qd,

and since D is standard gd € 9. This is of the correct form for an entry following
m + d in T’. Furthermore,

m+d)+(q+1)gd =m+ (q*>+qg+1)d =mmod N,

hence the third entry is also of the correct form. Definition 2.4.4. is obvious.

Now for triples in T, Definition 2.4.1. follows from 2.4.1. and 2.4.2. for T’
triples. Similarly, 2.4.2. comes from 2.4.2. for T triples. It remains to show 2.4.4.
But this is equivalent to showing that if (u, v, w), (u’',v,w) € T’, then u = u'.
Suppose

m+d =m+d and m'+ (q+1)d =m+ (qg+ 1)d.

Since ¢ is invertible in the ring Z /N Z, subtracting the equations yields d = d’,
hence m = m’. O
We include some examples:

e Letq = 4 = 22, so the group in question is Z/21Z. A cyclic planar difference set
is givenby D = {0, 1, 4, 14, 16}, this is not invariant under multiplication by p = 2,
but applying the procedure described above gives us the standard set

Do =D + 14 = {14,15,18,7,9}.

e Letqg =7 = p, so the group in question is Z/57Z. A cyclic planar difference set
is given by D = {0, 1, 3, 13, 32, 36, 43, 52}. The associated standard set is given by

Do=D+6=1{6,7,9,19,38,42,49, 1}.

A general family of standard cyclic planar difference sets arises in the context
of field extensions. Let ¢ = p” and consider the finite field F 3 of order q3.
Since Fy € F3, Fy3 naturally carries the structure of a 3-dimensional vector space
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over IF,. The set I1; of lines (which are points in the associated projective space) can
be identified with the group IF;3 JF X, which is a cyclic group of order g2 + g + 1.
Furthermore the structure of the extension gives a I, valued trace on ;3. Note that
while the trace of a single line is undefined, having O trace is a well-defined notion
for 1-dimensional subspaces. Thus we can define

D :={x e I1; : Tr(x) = 0}.

The cyclic group IT; together with D is a standard cyclic planar difference set.

The corresponding triangle presentations in this case were given in [8, pp. 156—
157], where in addition it is shown the corresponding building is isomorphic to the
Bruhat-Tits building of PGL(3, F;((¢))). This class of examples can be generalized
to arbitrary n > 3, showing in particular that there exists triangle presentations for
all prime powers g and all n > 3 associated with groups acting on the Bruhat-Tits
building for PGL(n, F,(¢))) [10].

Example 2.9 ([9]). Here we present an example that does not appear to lie in any
known infinite family. This example is “exotic” in the sense that the corresponding
building is not a Bruhat-Tits building. This example also illustrates the smallest
parameters for which our construction works, namely p = 2, n = 3, g = 3. A
complete classification of triangle presentations with n = ¢ = 3 is given in [9]. We
present here their triangle presentation with label 15.1.

Set ITy := {p;}}2, and 1, := {;}}2,. The involution o is given by

o(po) =lo, o(p1) =13, o(p2)=la o(p3) =1,

o(ps) =lo, o(ps) =lo. o(ps) =1s, o(p7) =1L, o(pg)=1l,
o(po) =1ls, o(pio) =1la, o(pn)=1Is, o(p2)=1I

We now list the triples of T contained in IT; x I1; x IT;. To obtain the triples

in IT, x IT, x IT, we simple apply o and reverse the order to the list. Also we only
include one representative for each cyclic permutation class:

(Po. po. po), (P10, P10, P5),
(P11, P11, Ps), (Po, D1, P4), (190, P4, Pz)’ (po’Ps, p12),

(p1, p3, P5)s (P1, P7. P3),
(p1. p9. Ps), (p2.p7.P3), (P2, 5. p3), (P2, P12, P8).

(P4, P9, P10), (P4, P10, Ps),
(ps, pss P11)s (P6, P9, P7), (P7, P8, P12), (P9, P12, P11)-
From the above data you can work out the lines as sets of points on the

corresponding projective plane. For example, since o(p;) = I3, [3 consists of
the set of points immediately following p; in the list, i.e. /3 = {pa, p3, p7, Po}.
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Example 2.10 (Bruhat-Tits buildings in characteristic 0). The previous examples of
triangle presentations are either non-linear, or have the Bruhat-Tits building of the
local field IF,;((¢)) as their underlying building. In a different direction [20] classifies
all discrete groups which act transitively on the vertices of a Bruhat-Tits building
of dimension at least 4 over a non-Archimedean local field of characteristic 0. In
particular, they classify all simply transitive actions. It turns out there are not too
many, which starkly contrasts with the positive characteristic cases described above.
To our knowledge, explicit triangle presentations for the examples in [20] have not
been written down.

Example 2.11. As described above, A,_; triangle presentations are combinatorial
structures defined over a finite projective geometry of (algebraic) dimension n and
order g. When studying combinatorial structures over projective geometries of
order ¢, it is natural to consider this structure in the degenerate case of ¢ = 1, which
is often interpreted in the context of the field with one element I as envisioned by
Tits [23]. A projective geometry over IF; of algebraic dimension n degenerates to
the collection of subsets of a finite set of size n, with incidence relation coming from
subset inclusion. In this way, combinatorial structures defined on finite projective
geometries of order ¢ often degenerate to familiar combinatorial structures on finite
sets, providing motivation and intuition for the general structure. In this spirit, we
consider the following degenerate triangle presentation.

Fix a natural number n and set X = {0,1,2,3,...,n}. Let II; denote the
collection of subsets of X of size k, and set IT := UZ=1 ITg, the set of proper
subsets. For x € II, we denote by dim(x) the cardinality of x. We have an incidence
relation x ~ Yy if either x € y or y C x. We also have an involution o: IT — II,
o (ITg) = I, 41—k which takes a subset of X to its complement.

Now consider the following subsets of IT x IT x IT:

T/ ={(x,y,z) e 1 x I x I : x, y, z are pairwise disjoint,and x U y Uz = X},
T"={(x,y,2) eI xOxI:(c(z),0(y).0(x)) €T},
T=3T'UT".

Then it is easy to verify that T satisfies all the conditions of a triangle presentation,
except that the incidence relation on IT does not give a projective geometry (it
gives instead a degenerate projective geometry). We will see that nevertheless, the
construction of our fiber functor from Theorem 4.2 does apply to these degenerate
triangle presentations as long as k has characteristic 0, as expected from the [
philosophy.

3. Categories and diagrammatics

In this section, we review some categories that have descriptions in terms of dia-
grammatic generators and relations. This type of description is in the spirit of skein
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theory for planar algebras and knot polynomials [16]. For a general reference on
linear monoidal categories, we refer the reader to [12].

3.1. Polynomial GL, webs. In this section we describe a linear monoidal category
called the polynomial web category for GL, over a field k [2,7]. Our presentation
closely follows [2]. Indeed, in the description below, our presentation is easily
derived as the quotient of Web [2, Definition 4.7] by the monoidal ideal generated
by the identities of objects of weight m, where m > n. If k is algebraically closed,
the monoidal category described below is equivalent to the monoidal category of
polynomial representations of Gl,, which can be equivalently described as the full
subcategory of tilting modules for GL,, generated by wedge powers of the standard
n-dimensional representation (see [2, Remark 4.15]).

Objects in our monoidal category will be sequences of numbers from the set
{1,...,n}. The monoidal product (which we sometimes denote ®) is concatenation
of sequences, and the monoidal unit consists of the empty sequence. To describe
morphisms, we introduce the generating morphisms:

a+b

A Y - X

a-+b

which we call merges (from (a,b) — (a + b)), splits (from (a + b) — (a, b)),
and crossings (from (a, b) — (b, a)) respectively (note we read diagrams bottom to
top). The labels of all strings in generating morphisms must lie in the set {1, ...,n}.
For example if a + b > n, there is no allowed label a + b, hence no merge or split
morphism of that type, though crossings will exist. Morphisms will then be formal
k-linear combinations of vertical and horizontal compositions of these generators,
subject to the following linear relations (cf. [2, Definition 4.7]):

a+b+c a+b+c

N AN

a+b+c a+b+c

a+b

a+b
b a =( u ) )
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b d b d
)
a c a c
We sometimes do not label strings, but in this case unlabeled strings can be
deduced uniquely from the given labels. Also summations aways occur over all
allowable values of the corresponding label (we allow the “empty string” as a string
with label 0 in summations). We call the relations in equations 1 coassociativity
and associativity respectively. We call the relations in Eq. (2) the bigon bursting
relation, and the relation from Eq. (3) the bialgebra relations. Indeed, it follows from
the relations that the crossing generator makes PolyWeb(GL,) into a symmetric
monoidal category. Setting A = EBZ:O a in the additive envelope, then the trivalent
vertices give A the structure of a coalgebra and an algebra. Relation 3 is precisely
the statement that this is a bialgebra internal to PolyWeb(GL,,).
There are many additional relations that follow as consequences of the above.
In particular, the crossing generator is actually redundant. Indeed, a consequence

of the above relations is that the braid can be written in terms of the trivalent
vertices [2, Equation 4.36]:

b a b
>< =) (D" 1 )
a b ' a

b

We can use this to given a presentation for the category PolyWeb(GL,,) purely
in terms relations between trivalent vertices. In particular, we have the following
square-switch relations:

&)

(6)
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Proposition 3.1 ([2, Appendix A]). Consider a monoidal category generated by only
the trivalent merges and splits, with crossing defined as in Eq. (4) satisfying relations
1 and 2. Then relation 3 is satisfied if and only if both square switch relations 5 and 6
are satisfied.

Remark 3.2. There is a standard monoidal functor F:PolyWeb(GL,) — Vec,
described in [2, Theorem 4.14]. Let V = k™. Then the generating object a €
PolyWeb(GL,,) gets sent to A\“ V. The merging trivalent vertex

a+b

A

a b
maps to the canonical surjection ( A* V) ® (A? V) = AP V defined by
Vg, N s AV, @Ujp Aees AVjy > Uy Aoes AUk, ANVjp Ae- AV,

while the split vertex
a b

Y

a+b

is assigned the linear map A**?V — A%V ® A? V defined by

e _ 1)/ .. ...
Vky A AUk B Z (D7 0k ) A Ak ) @ Vg 1y N Ak
ge(Sa+b/Sa XSb)min

where (S;45/Sa X Sp)min denotes a choice of minimal length representatives of left
cosets S;15/Sq X Sp and [(g) denotes the length of an element (with respect to the
usual Coxeter presentation of the symmetric groups). Under these identifications, the
(a,b) — (b, a) crossing is assigned to the isomorphism

(AV) & (AV) = (A& (AY)
given by
vRw > (—)%Pw ®v.

Notice this is not the ordinary braiding on Rep(GL,(k)) which simply permutes
tensor factors, but rather is the symmetric braiding associated to the involutive central
element —Id, € Z(GL,(k)).
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The following proposition is a combination of a remark in [7, p.8] and [3,
Proposition 1], but we include a proof here since we are in a positive characteristic
setting.

Proposition 3.3. For 1 < a,b, < n, if char(k) > c,d, then relations (5) and (6)
follow from (1), (2) and the special case of square switch relations:

a 1 a 1
alﬁ:‘2= }E+1 +(@—1) (7
a 1 a 1 k )
1 a 1 a
2Ma—l I—i—l +(@-1) (8)
1 a 1 a k )

Proof. We can use (29) and (30) to reduce the following diagram in two different
ways:

a 1 b a 1 b
a—1| |b+1 =a+1 |pb=1 +@—b) ©)
al Ly al 1y al g

Now suppose we have 5 withc = 1,d = s and s + 1 < n. Then using 2 and 1,
we have:

s+ PP (10)

a b a b
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Then applying 5 we have:

1
s-1
= +@-b-1-%)
a 1 b
E s—l—l

s+ 1

s(a—b—l—s)) s+1
+
s+1

e

By induction, this gives us the case for d = 1, ¢ < n satisfying ¢ < char(k). An
analogous argument gives us (5) for arbitrary d <n, d < char(k), as well as Eq. (6).
O

a b

3.2. SL, quotients. Given a monoidal category C, a quotient is a dominant mon-
oidal functor € — 9 to some other monoidal category 9. A quotient can thus
be obtained by adding new morphisms to the category C. The category of repre-
sentations of SL, is closely related to the category of representations of GL,. The
obvious difference is that the determinant representation of GL,, restricts to the trivial
representation of SL,,. Therefore we call all categories we obtain from adding an
isomorphism from the object 1 to the empty object in PolyWeb(GL,,) SL,, quotients.

To construct SL,, quotients, we will consider the category PolyWeb(GL,), and
add two new generators and some relations. In particular, we add morphisms:

I and ’I

n

satisfying

ZJ% - "

n n

(the dotted circle simply represents the empty diagram, and is included to avoid
confusion).
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We also would like a compatibility with the crossing generator. There are two
sets of relations we consider:

SL;" relations: >< = ()" A . ><° = (=) ?\ (12)
a n n a

a n n a

SL,, relations: >< = (—1)* / , ><7 = (-1)* \ (13)
7 ?

a n a n n a n a

It was pointed out to us by an anonymous referee that the relations on the right
in (12) and (13) follow immediately from the relations on the left by simply adding
the appropriate crossing beneath the diagram, and using the fact that it is the inverse
of the given crossing. Thus our presentation is redundant. Furthermore, the vertically
reflected versions of the relations in (12) and (13) follow from the given relations
and (11), which will be crucial in our arguments.

Notice that if n is odd, the SL;—L relations agree, but if n is even these relations
are genuinely different. We define Web(SL;") (respectively Web(SL;,)) to be the
category generated by trivalent merges, splits, and crossings as in PolyWeb(GL,)
satisfying the defining relations of PolyWeb(GL,), and in addition isomorphisms
from n to the identity satisfying the above relations. Notice that the crossing in
Web(SL;f) is still a braiding (in the sense of [12, Definition 8.1.1]) when 7 is even,
but when 7 is odd it is not natural with respect to the isomorphism from n to &.

We claim that in either of these cases, the resulting category is rigid. Indeed,
using Eq. (4) we see:

n a n a
n—a
= (-D* (14)
a n a n
a n a n
n—a
= (-D* (15)
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Then using the isomorphism 7 to & and assuming relation (11), its easy to see
the SL,j,E relations can be restated as follows:

n—a n—a
SL;" relations: = (=1)e@+D = (—=1)2¢+D (16)

SL~

n

relations: = (17)

In either case, the category Web(SL,ﬂf) is rigid, where the two-sided dual of the
object a is n — a. The only difference between these categories is whether or not the
merges and splits can be used directly to define duality maps (otherwise, they must
be appropriately normalized by a sign).

Remark 3.4. If the field k is algebraically closed, then the idempotent completion
of Web(SL;") is equivalent to the category of tilting modules for SL,. To see
this, recall the category of tilting modules Tilt(SL,) is equivalent to the idempotent
completion of the full subcategory of Rep(SL,) generated by tensor products of
exterior powers of the defining representation [11]. The fiber functor F from
Remark 3.2 extends to a functor F on Web(SL;F) by picking an arbitrary isomorphism
from the determinant representation (i.e. /\" V) to the trivial representation, and
assigning the new generators in Web(SL,") to this morphism and its inverse. Since
the SL; relation with the crossing will be satisfied, it is clear that this defines a
monoidal functor from Web(SL,) to Tilt(SL,). It remains to show this functor is
fully faithful, which follows in a straightforward way from [2, Remark 4.15]. This
was pointed out to us by Victor Ostrik. We will provide details for the convenience
of the reader.

Let V denote the defining n-dimensional representation of both GL, and SL,.
For an object k = (ki, ..., ks) in Web(SL;"), we denote by V} = ®i_y /\k[ V. For
two sequences k = (ky1,...,ks), m = (mq,...,m;), we claim that the functor F
induces an isomorphism3

Web(SL;")(k,1) — Rep(SLy) Vi, Vin)-

3We adopt the convention that C(a, b) denotes the space of morphisms with source a and target b in
a category C.
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Note that Rep(SL,)(Vk, V1) # 0 implies

t
Zs:ki = ij mod 7.

i=1 j=1
‘We consider the case
Ky t
D k= m;
i=1 j=1

(the other case is completely analogous). Suppose

s t
Zki+l'n: ij
j=1

i=1

for some [ > 0. Setk := (ki,....ks,n,...,n) =k ® n', where we adjoin / entries
to the right of k labeled by n. Then the have the following commutative diagram:

Rep(GLy)(V;, Vin) <—-— PolyWeb(GLy)(k, m)

N ]

Rep(SLu) (V. Vim) ¢—F—— Web(SL;") (k. m)

| |

Rep(SLn) (Ve Vin) <—F— Web(SL")(k, m)

where top right vertical arrow [ is the defining functor from polynomial GL, webs
to SL,, webs and the top left vertical arrow is the restriction functor. The lower left
vertical arrow arises from applying our choice of isomorphism /" V to the trivial
representation to the / extraneous factors of n in k = k ® n' (used in defining our
extension of F to Web(SL,Jlr )), and the lower right vertical arrow arises by applying
the univalent vertex to additional factors of n in Web(SL,). The commutativity of
this diagram follows directly from the definition of F.
The top arrow is an isomorphism by [2, Remark 4.15]. Recall that if

s t
D ki=3 mj.
i=1 j=1
then restriction

res: Rep(GLy) (Vi Vin) — Rep(SLy)(Vk, Vin)

is an isomorphism (this can be easily deduced by writing an arbitrary element of GL;,
as a scalar times an element of SL,). Thus the upper left vertical arrow is an iso-
morphism. The lower vertical arrows are obviously isomorphisms. Hence it suffices
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to show the upper right arrow is surjective, which will imply to the two remaining
horizontal arrows associated to F' are isomorphisms.

Take a diagram D € Web(SL;") (k,m), and for each univalent vertex that appears,
pull it to the far right of the diagram adding an appropriate sign and a crossing when
passing over strings according to the defining SL,}L relation (12). Attach these n-
strands to either the top or bottom boundary of the diagram (depending on which way
the univalent vertex was pointing) so as to not create any critical points in the strings.
This results in a scalar multiple of a diagram D’ € PolyWeb(GL,)(k’, m’), where

k' = (ky,....kg,n,....n) =k ®@n®" and (mi,....mepn,....n) =mQn®"

with r factors of n adjoined to m, and r + [ adjoined to k.
Notice that the map

PolyWeb(GL,)(k,m) — PolyWeb(GL,)(k ® n,m ® n),

obtained by adding a vertical n strand to the right of a diagram is an isomorphism,
since the Web category embeds as a full subcategory of Rep(GL,,) ([2, Remark 4.15])
with n corresponding to the determinant representation, which is invertible. There-
fore, there exists an element D" € PolyWeb(GL,,)(k,m) such that D" ® 1,0, = D’.
Placing univalent vertices on the r right most n-strands shows that the image of D"
in Web(SL, )(k,m) is precisely D. This gives surjectivity of the upper right arrow
as desired.

Remark 3.5. The categories Web(SL;—L) bear some similarities to the quantum SL,,
spiders of [7] (extending Kuperberg’s SL3 spider [18]) at ¢ = %1, though the exact
relationship is unclear. As we’ve seen above Web(SL;") can be naturally interpreted
in the context of representation theory, but a natural interpretation of Web(SL,)) is
less obvious. While we do not provide such an interpretation here, we point out that
for n = 2 these categories are in fact already well known.

We briefly recall the Temperley—Lieb—Jones category with loop parameter § € k,
denoted TLJ(5) (See [17,24] or [6] for a more recent treatment). TLJI(§) is the k-linear
diagrammatic strict monoidal categories generated by cup and cap morphisms,
\_/ and /", satisfying the relations

) = O

When § = 2 € k, it is straightforward to check that the assignment which sends
the single string to 1 and

11

UH\( and /\H&
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extends to an equivalence TLJ(2) = Web(SL,). Similarly for loop parameter
8 = =2 € k, the assignment:

1 1

UI—)Y and /\l—)—}\

1 1

extends to a monoidal equivalence TLI(—2) = Web(SL}").

3.3. Vec(I'). Let I be a group and fix a field k. Then the rigid monoidal category
Vec(I') is the category of finite dimensional I"-graded vector spaces over k. Objects
are finite dimensional vector spaces with a I"-grading and morphisms are linear maps
that respect the grading.

For two objects

V=€BV, W=€BW,

gel gerl

the monoidal product has /# graded component

VW) =P Ve ® Wy,
gel

This direct sum is finite since only finitely many components of each vector space
are non-zero. The associator is inherited from Vec. This category is rigid, with
(Vg)* = (V*)o—1 with evaluation and coevalution inherited from Vec. The forgetful
functor Forget: Vec(I') — Vec simply forgets the grading of the underlying vector
spaces.

Simple objects in Vec (I') are isomorphic to a copy of k graded by elements
g € I', denoted k. If gh = k, then the definition of the monoidal product gives
us canonical 1somorph1sms )L n- kg ® kp — kg, defined by the linear extension
of lg ® I, = 1gp. We draw these isomorphisms and their inverses as trivalent
Vertlces labeled by group elements:
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That these are mutually inverse means A’;,h oyi’h = 1y and yi’h OA'];',h =1 ®1y,
graphically depicted by the relations:

gh
= , h g = (19)

g h g h a+b

These isomorphisms satisfy the associativity conditions given by the following
diagrams (and ignoring vector space associators):

g h k g h k ghk ghk
h

;h</ _ \% ’ i%\ = />h< (20)

ghk ghk g h k & h k

Now, let § be a triangle presentation, and I' = I'y.

Definition 3.6. An isomorphism yy” or A in Vec(T') is a triangle morphism
ifu,v,w € Il and (u,v,0(w)) € 7.

Remark 3.7. Using the graphical calculus for Vec(I'), we can now give a natural
interpretation to Definition 2.4.6. Let u,v,w, p,q € Il be generators of I', and
suppose (u,v,0(p)), (p,w,0(q)) € T. Thenuv = p and pw = g, so we have an
isomorphism in Vec(I")

(4" ® 1) 0 y2 ¥ Ky — ky @ ky ® Ky 1)

The associativity condition in Vec(I") above tells us there is an element of the
group g = uv € I' so that

0" ®ly) oyl = (lu ®yy") oy, ~. (22)

What Definition 2.4.6. (or rather, its equivalent conditions from Proposition 2.5) tells
us is that if dim(#) + dim(v) < n and dim(p) + dim(w) < n, we can choose g € I1
so that yg' and y,® are triangle morphisms, i.e. (u, g, 0(q)), (v,w,o(g)) € T.

4. The functor

Let T be a triangle presentation of type Xn_l on a projective geometry IT of order g.
We introduce the notation

Sap :={(u.v,w) €T 1u ell,, vell}.



Triangle presentations and tilting modules for SLox 41 25

If (u,v,w) € Sypthenw € I,,_,_pifa+b <nandw € y,_4pifa+b >n
(note a + b # n). Now, define the objects in Vec(I")

Vo = @ku forO <a <n,

uell,

Ve =ki.

We will define a monoidal functor from Web(SL,)) — Vec(I') by assigning
the generating objects a — V, and the monoidal unit @ +— k;. The generating
morphisms are mapped to linear maps between tensor powers of the V, as follows:

a+b
Fora +b <n, A > D A Va® Ve Vars,  (23)
a b (u,v,0(wW))ET, p
n
a n—a uell,
(24)
a b

Fora + b < n, Y - @ Vi Vars = Va ® Vp, (25)

w,w,0(m)eT, p

a+b
a n—a
Y > P WV Va® Ve, (26)
uell,
n
T > idg: V, = kg — ki, 7)
n
n
l o idge kg = kg = Vi, 28)

where A and y are triangle morphisms in Vec(I"), defined in 3.6. We will show these
assignments extend to a functor from Web(SL, ) — Vec(I") when the characteristic
of the field satisfies the appropriate conditions. First we have the following Lemma
which is the main technical part of the paper.
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Lemma 4.1. If char(k) = p satisfies ¢ = 1 mod p, the following special cases of
the square switch relation are satisfied by the morphisms (23)—(26) defined above in
the category Vec(I").

a 1 a 1
a—1 2 = a+1l +(@-1) (29)
a 1 a 1 a 1
1 a 1 a
2 a—1 = a+1l +@-1) (30)
1 a 1 a 1 a

Proof. We prove (29). Let LHS and RHS denote the linear operators in End(V, ® V1)
defined by the left-hand and right-hand side of Eq. (29), respectively. For (z,u) €
I, x IT; let

LHSC®u) = »  LYlw®nv,
(w,z)ell, xI1;
RHS(z ® u) = Z RY W ®v.

(w,z)ell, xI1;
We will show L3 = R3;/ in cases.

Corner cases. First we consider corner cases. The case @ = 1 is trivial. Suppose
a = n. Then since V,, = k,

n—1
L =dulir € T~ ol =i [
q

where the last equality uses Lemma 2.2. As ¢ = 1 in k, this reduces to n — 1.
Thus L}Z = §y=yn — 1. Since the morphism defined by the first diagram on the

right-hand side vanishes, we immediately see R}z = $y=y n — 1 as desired.

Now assume 1 < a < n.

Case 1: z # w. In this case, the morphism described by the two parallel vertical on
the right-hand side contributes 0 to R,’f, ». From a simple examination of the diagram
on the left and the remaining diagram on the right we compute:
lev’;lv = |{(p,q,r,s) €M1 xITp x ITy x Iy :
(z.0(r),0(p)). (r.u,0(q)), (p.s.0(w)), (s,v,0(q)) € T},
Rlzu,;,{v = |{pl € Ha+1 : (Zv u, O—(p/))v (w’ v, O—(p/)) € 3-}|
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We can interpret the elements (p, ¢, r,s) and p’ counted on the right-hand side
of the above equalities as counting labellings of the diagrams below, such that each
vertex corresponds to a triangle morphism:

w v w v
s

p q and P
r

z u z u

We first claim that z # w implies both L;; and R7;; are at most 1.

For L, Definition 2.4.4. implies that at ¢, r, s are determined by p (if they exist).
Furthermore, (z,0(r),o(p)), (p.s,o(w)) € T implies z and w are both incident
with p (Definition 2.4.1. and 2.4.2.), so p < z Nw. But z # w implies z N w is a

proper subspace of both z and w, so dim(z N w) < a. However,
dim(p) =a —1,

and so dim(z N'w) > a — 1, and thus we must have p = z N w. Hence p is uniquely
determined. Hence L7 ;; = 1if dim(z N w) = a — 1 and corresponding ¢, r, s exist,
and 0 otherwise.

For R, note that such a p’ (if it exists) is an (@ + 1)-dimensional subspace
containing z and w, and since z # w, we must have p’ = z 4+ w (where by the latter
we mean the subspace generated by z and w). Therefore R} ;, either takes the value
0 or 1, as desired.

We will now show R3; # 0 implies Ly ; # 0 (which by our above argument
implies they must both be 1). If R, # 0 then p’ = z + w has dimension a + 1.
But

a + 1 =dim(z + w) = dim(z) 4 dim(w) — dim(z N w),

which implies dim(z N w) = a — 1, hence z N w € I1,—;. Therefore there exists
r,s € [Ty such that (z Nw,r,0(z)),(zNw,s,o(w)) € T.
Assume a < n — 1. Then we can apply Proposition 2.5 to the pairs

zNw,ro(z), z,u,0(z4+w))eT
and zNw,s, o)), (w,v,0(z+w))eT
to obtain unique ¢, x such that

(r,u,0(q)), zNw,q,0(z+w))eT
and (s,v,0(x)), zNw,x,0(z+w))eT,

respectively. But by Condition 4. in the definition of triangle presentation, ¢ = x so
we have that the triples

(z,o(r),o(zNw)), (ru.0(q), (zNw,s,o(w)), (s,v.0(q))

are elements of T hence Ly, # 0.
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If a = n — 1, then the assumption Ry; # 0 implies ¥ = o(z) and v = o(w).
Since z # w, z + w is the entire space so we must have dim(z N w) = n — 2. Then
setting ¢ = o(z Nw), p = z Nw gives Ly # 0 in this case.

Now, we will show L7;, # 0 implies R7;] # 0. Again, assume 1 <a <n — 1.
Then we must have z N w € I1,_1, so there exists r,s € I1;,g € I, so that the
triples

(z.o(r).o(zNw)), (r.u.a(g), (zNw.s,o(w)), (s.v.0(q))
are elements of 3. Our goal is to show z + w lies in I1,4; and that the triples
(z,u,0(z +w)), (w,v,0(z + w))
are elements of T .
Notice z N w € I1,_; implies
dim(z + w) = dim(z) + dim(w) —dim(z Nw) =2a —a+1=a + 1,
which is our first criteria. Let k, [ € I1; be the unique elements so that
(z,k,0(z +w)), (w,l,o(z+w)eT
(which exist by Definition 2.4.1.). Then applying Proposition 2.5 to the pairs
(zNw,r,o(z)), (z,k,0(z+w)) €T
and zNnw,s, o)), (w,l,o(z+w))eT,
there are unique ¢, & € I, such that
(r,k,o(t)), cNw,t,o(z+w))eT
and (s,l,o(h), zNw,h,o(z+w))eT.

But Definition 2.4.4. gives t = h and hence ¢ is incident with both r and s.
The assumption z # w implies r # s. Since r, s are 1-dimensional and not equal,
t = s+ r. g € I, is also incident with both s and r and so g = s +r = t.
Therefore, k = u and ! = v, and (z,u,0(z + w)), (w,v,0(z + w)) € T.

If @ = n — 1, we repeat the same argument, except we see directly k = o (z2),

[ = o(w), and we have directly t = h = o(z N w) = ¢q, without needing to apply
Proposition 2.5. This concludes Case 1.

Case 2: z = w. In this case, each of the conditions L3 # 0 and R;; # 0
independently imply v = u. Thus if v # u, both coeflicients are 0. We assume
v = u and calculate:

R — a—1 o(z)~u,

o a o0(z) ~u,

LZZ =lrell:(z,o(r),o(p)),(r,u,a(q)) € T for some p,q € I1},
=|{rell;:o@()~o(z)and o(r) ~ u}|.
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If 0(z) ~ u, then since dim(u) = 1, this implies o(z) N u = {0}, and thus
0(z) + u is an (n — a + 1)-dimensional subspace, and an (n — 1)-dimensional
subspace o (r) is incident with both ¢ (z) and u if and only if it contains o (z) + u.
Thus it suffices to count the number of (n — 1)-dimensional subspaces containing a
given (n — a + 1)-dimensional subspace, which by Lemma 2.2 is

P
a—2|"
q
which in k is equal to @ — 1, as desired.
If 6(z) ~ u, then u < 0(z), and thus an (n — 1)-dimensional subspaces incident

to both 0(z) and u if and only if it contains the (n — a)-dimensional subspace o (z).
Using Lemma 2.2, this is
[ - ]
a—1|"
q

which in k reduces to a. This concludes the proof of (29).

The argument for (30) has the same basic structure as the argument we have just
given for (29), so we leave it to the reader. O
The following is our main result.

Theorem 4.2. Suppose k has characteristic p > n — 1 and ¢ = 1 mod p. Then
linear maps defined in (23)—(28) satisfy the relations (1), (2), (5), (6), and (17), and
hence define a monoidal functor Web(SL,) — Vec(I') which, composing with the
Jorgetful functor to Vec, yields a fiber functor.

Proof. The coassociativity and associativity relations from Eq. (1) follow from
Proposition 2.5 via Remark 3.7. The rigid version of the SL;; relation from Eq. (17)
follows directly from the fact that o is an involution. To verify the bigon bursting
relation from Eq. (2), note by the uniqueness of Definition 2.4.4., we have

a+b

a+b
which, evaluated at u € I1,4p, is simply
K, w,om)) €T :(v,w) € My xp}tu=[{w e :o0(w) ~aou)} u.

However, o (1) has dimension n —a — b and o (w) has dimension n — b, so we need
the number of (n — b)-dimensional subspaces of an n-dimensional space containing
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a fixed (n — a — b)-dimensional space o (1). By Lemma 2.2 this is

|:a+b}
a 9,
q

but in k this reduces to the usual binomial coefficient, which gives (2). It therefore
remains to prove the square switch relations (5) and (6). The special cases with
1 <c¢,d < n—2follow from Lemma 4.1 above, combined with Proposition 3.3. So
it remains to verify the cases with ¢ or d equalton — 1.

We consider Case (5) with d = n — 1, the other 3 cases being similar. In this
case, we must have a = n, b = 1, and thus the relation reduces to:

c+1 n—c c+1 n—c

= -1- 31

Using the SL,; relations (11) and 17 this equation becomes:

c+1 n—-c c+1 n—-c

Fi H o
1 1

To verify this, let z € TI{,w € M.y and u € II,_., and let Ly"" and R}
denote the coefficient of the basis element w ® u of the image of the vector z under
the left-hand and right-hand sides of the equations (as in the proof of Lemma 4.1).
Then

w1 Goo)ow) e T,
2o (zoow),o(w) ¢7T,
RWY — I (o(w),z,o0(m) €T,
z 0 (oc(w),z,o(m)) ¢7T.
Thus, LY = RY"" by cyclic invariance (Definition 2.4.2.). O

Remark 4.3. It is straightforward to verify the above construction applied to the
degenerate (¢ = 1) triangle presentations of Example 2.11 works in characteristic 0.
We call these fiber functors standard. Note that even when 7 is odd so that

Web(SL;) = Web(SL,}),
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the fiber functors defined by these degenerate triangle presentations are not the usual
ones arising from the forgetful functor

Web(SL;") — Vec,

as described above (Remark 3.4). They have a purely combinatorial flavor. They do
preserve the classical dimensions of objects.

4.1. Image of the crossing. Even though the crossing generator in the category
Web(SL,)) is not a braiding in general, it still satisfies the Yang—Baxter equation
(since it is a braiding in the non-full subcategory PolyWeb(GL,)). Our functors
do not map this crossing to the usual factor swapping permutation (or any signed
twistings of this) and are significantly more complicated in general. Therefore the
image of the crossing of any object with itself yields interesting solutions to the
(quantum) Yang—Baxter equation which are in addition involutive (their square is the
identity), which to our knowledge are typically studied in the context of set-theoretical
solutions to the Yang—Baxter equation [13]. We will provide a description of the
image of the braid as a linear map. First recall:

1 1 1 1 1 1

Let T be an n = 3 triangle presentation over a projective plane I1 = IT; U II5.
Let (u,v), (z,w) € I1; x I1;. We write (u,v) &~ (z, w) if there exists s € [1; with
(u,v,s),(z,w,s) € T. Note such an s is unique if it exists.

To get a feeling for this relation consider the setup from Example 2.7, and let
D C Z/NZ denote a standard planar difference set. Then form,n € Il = Z/NZ,
o(m) ~ n if and only if n —m € D. Then (m,n) ~ (m’,n’) if and only if the
following equation linear is satisfied:

m+(q + D(m—n)=m'+ (g -+ Him" —n).
We can explicitly write R in terms of ~ as follows:

Z z@®w o(u)~w,

3 _ )~
R(u®v) = (C0 %0

U@V o(u) ~ v.

Notice that the summation has exactly ¢ non-zero terms when o (1) ~ v and only one
non-zero term otherwise. If we picked an ordering on the basis vectors IT; x IT;, then
the associated matrix would be sparse: each column either has —1 on the diagonal
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or exactly ¢ off diagonal terms. There are (¢ + ¢ + 1)? columns, so the density (or
ratio of non-zero matrix entries to all entries) is less than ¢ /(¢% + g + 1)2. It would
be interesting to engage in a systematic study of these solutions.

In the introduction, we claimed our solutions were “positive characteristic”
deformations of easy solutions. We interpret this to mean that, when applied to the
degenerate triangle presentation of Example 2.11, we should obtain a well known,
boring solution to the Yang—Baxter equation. To describe these solutions, let V'
be a vector space, and let B := {vq,...,v,}. Let €1,€5 € {£}. Then we can
define R, ¢, (V1 ® v2)

é61,52(01 ® v2) = €12 ® vy vy # vy,

€01 @ Uy V] = Vj.

R4 4 and R__ are the standard swap solution P and its negative. Clearly, R2= idygy.
To see that this is in general solution, it is well known that R satisfies our version of
the Yang—Baxter equation if and only if R := P o R satisfies the “scattering matrix”
version of the equation:

R12R13R23 = Ry3R13R12,

where the pair of subscripts denote which factors the operator R € End(V ® V) acts
onin V' ® V ® V. But in our case, each R;; is diagonal with respect to the basis
B x B x B, so the equation is satisfied. Applying our construction to the degenerate
triangle presentation for n = 3 and a = 1 yields R_. In our positive characteristic
examples, verifying the Yang—Baxter directly relation is much less trivial.
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