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A B S T R A C T   

In seismic modelling, fault planes are normally assumed to be flat due to the lack of data which can constrain 
fault morphology. However, incorporating 3D fault morphology is important for modelling several phenomena, 
for example calculating mainshock induced stress changes. We utilize a data-analytical method to unveil the 3D 
rupture morphology of faults using unsupervised clustering techniques applied to earthquake hypocenters in 
seismic sequences. We apply this method to the 2009 L’Aquila seismic sequence which involved a MW 6.1 
mainshock on April 6th. We use a dataset of about 50,000 relocated events, mostly microearthquakes, reaching 
magnitude of completeness equal to 0.7. Clustering distinguishes the earthquakes as occurring in three main 
clusters along with other minor fault segments. We then represent the morphology of the main Paganica fault 
system (responsible for the largest mainshock) using splines. This method shows promise as a step toward 
robustly and quickly obtaining 3D rupture morphologies where earthquake sequences have been monitored. The 
3D model is presented interactively online, and the processing is presented in an interactive Jupyter Notebook 
(https://bit.ly/2MnCFdj).   

1. Introduction 

The 3D morphology of fault planes is generally unknown at depth 
due to the lack of information which can constrain them. We present an 
approach where we use machine learning to find the 3D morphology of 
faults based on the spatial distribution of aftershocks in seismic se
quences. We apply this method to model the Paganica fault system 
which was the source of the April 6th, 2009 MW 6.1 mainshock of the 
thoroughly monitored L’Aquila seismic sequence in the central Apen
nines, Italy (Scognamiglio et al., 2010). 

This approach to automating the inversion of 3D fault morphology 
can be useful in many ways. Inaccuracies in fault morphology can 
interfere with earthquake source inversions, resulting in less realistic 
slip distributions (Ragon et al., 2018) and affecting coulomb stress cal
culations and aftershock forecasts (Kaven and Pollard, 2013; Mildon 

et al., 2016; Verdecchia et al., 2018; Mancini et al., 2019). In addition, 
the morphology of faults influences dynamic stress (e.g. Pelties et al., 
2012; Galvez et al., 2014; Zhang et al., 2014), earthquake magnitude 
and location (Barka and Kadinsky-Cade, 1988; Zielke et al., 2017), 
tsunami generation (Moore et al., 2007), and other phenomena. Along 
megathrusts (e.g. the MW 7.8 2015 Gorkha earthquake, Hubbard et al., 
2016) the determination of the 3D morphology of slabs and faults has 
been taken into account (Qiu et al., 2016; Landry and Barbot, 2018). 
This can provide information on locked zones (Avouac, 2008; Avouac 
et al., 2015), which are crucial to understand as they can promote 
intense seismicity. For the major subduction zones of the Earth, it has 
been shown that curvature influences earthquake rupture area and 
magnitude (Bletery et al., 2016). Ultimately, progress toward automatic 
and objective fault reconstruction is an important task in seismology. 

A variety of methods are used to estimate fault morphology. Active 
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source seismology is used to build high resolution fault models (e.g. Lohr 
et al., 2008; Røe et al., 2014). This is the case, among others, of the low 
angle Altotiberina normal fault in the northern Apennines (Italy) for 
which 3D morphology was obtained by merging seismic imaging, 
borehole analysis, geologic maps, and field surveys. Unfortunately, the 
costs of active source seismology and drilling make this a difficult op
tion. Fault geometry can also be illuminated from passive source 
methods. For example, modelling of seismic waves trapped in low- 
velocity damage zones can provide information on fault geometry 
(Peng et al., 2003; Ben-Zion et al., 2003; Calderoni et al., 2012). 

The distribution of foreshocks and aftershocks can also provide in
formation on fault morphology. Analysts can attribute earthquakes to 
their source faults by visual inspection of earthquake locations and 
surfaces can be fit to the aftershocks to model these faults (e.g. Carena 
et al., 2002). The combination of hypocenter interpretation along with 
various other data types (e.g. fault traces, borehole data, geodetic data, 
geologic cross-sections) has been used to construct 3D geologic models 
of faults associated with the L’Aquila sequence (Lavecchia et al., 2012; 
Lavecchia et al., 2017; Castaldo et al., 2018) and the 2016 Amatrice/ 
Visso/Norcia sequence (Lavecchia et al., 2016; Tung and Masterlark, 
2018). While these methods are successful, they involve qualitative and 
subjective elements which influence the results based on the analysts’ 
background. Moreover, it is not quickly reproducible, particularly in 
quasi real-time as a seismic sequence evolves. 

On the argument of automation and fast, reproducible data analysis, 
machine learning is becoming increasingly useful in Earth science (Kong 
et al., 2019; Bergen et al., 2019). Some examples include determining 
earthquake magnitudes (Mousavi and Beroza, 2019), analyzing lab 
quakes (Rouet-Leduc et al., 2017), and picking phase arrivals (Zhu and 
Beroza, 2019). Machine learning includes supervised learning which 
requires pre-labeled data for training, and unsupervised learning where 
no pre-labeled data is required for training. Clustering is one application 
of unsupervised machine learning. If data points are distributed in 
distinct groups, clustering finds these groups and labels each datum 
according to which group it belongs to (e.g. Omran et al., 2007; Joshi 
and Kaur, 2013). 

There have been several applications of clustering in Earth Science. 
For example, it has been applied to earthquake relocation (Trugman and 
Shearer, 2017), investigation of earthquake processes and precursors 
(Dzwinel et al., 2003; Dzwinel et al., 2005; Yuen et al., 2009), and 
distinguishing dominant faulting patterns in focal mechanism data-sets 
(Rietbrock et al., 1996; Custódio et al., 2016). Hypocenter locations 
have been clustered to establish seismic zones for probabilistic seismic 
hazard analysis (Weatherill and Burton, 2009; Ansari et al., 2015; 
Novianti et al., 2017; Hall et al., 2018; Scitovski, 2018). 

Clustering has also been used to investigate fault geometry based on 
hypocenter information (Ouillon et al., 2008; Ouillon and Sornette, 
2011; Wang et al., 2013). In these cases, clusters were distinguished by 
fitting them with a series of planes. The RANdom SAmple Consensus 
(RANSAC) algorithm, which fits a model to the dominant trend in data 
while attempting to reject outlier data (Fischler and Bolles, 1981), has 
also been used to find faults in hypocenter data and to model them with 
3D surfaces (Kaven and Pollard, 2013; Skoumal et al., 2019). Ultimately, 
clustering has the capability to automatically identify groups of hypo
centers common to fault zones to aid in inverting fault morphology in a 
quick and objective fashion. 

Here, we present an approach based on the unsupervised machine 
learning technique clustering which can automate fault identification 
using hypocenter locations. We apply our clustering-based method to 
the L’Aquila seismic sequence in the central Apennines (Italy) which was 
particularly well monitored with over 50,000 high-resolution relocated 
aftershocks identified throughout 2009 (Valoroso et al., 2013). This 
large amount of data is well suited for data-driven techniques. Further, 
the fault morphologies associated with this sequence are relatively 
simple, making this a good region to test fault morphology inversion 
algorithms. 

1.1. 2009 L’Aquila seismic sequence 

The faults associated with the L’Aquila seismic sequence have been 
thoroughly studied (Figs. 1 and 2; e.g. Lavecchia et al., 2012; Valoroso 
et al., 2013). The L’Aquila sequence activated a dominantly south-west 
dipping normal fault system about 50 km long. Aftershocks are broadly 
associated with the ~N140◦ striking Paganica fault system, the ~N150◦

striking Campotosto (Gorzano) fault, and a cluster near the Cittareale 
village. The mainshock occurred in the Paganica fault system, which is 
composed of several enechelon faults extending approximately from the 
SE end of the San Demetrio fault system through the Mt. Stabiata Fault. 
The Cittareale cluster is composed dominantly of several NW-SE striking 
and NE dipping faults, as well as a SW dipping fault likely associated 
with the Montereale fault system. 

Chiaraluce (2012) provided a review of the 2009 L’Aquila sequence 
(Fig. 1), which began in approximately January 2009. The foreshocks 
included a MW 4.0 earthquake on March 30th before the April 6th Mw 
6.1 NW-SE striking and SW dipping mainshock (Chiaraluce et al., 2011). 
Southeast of the mainshock, on April 7th, a MW 5.4 aftershock occurred 
on a ~NE dipping fault with a non dip-slip component (rake of ~58◦: see 
Fig. 1 for focal mechanisms of large events) (Scognamiglio et al., 2010; 
Valoroso et al., 2013). Campotosto fault seismicity included a MW 5.0 
event on April 6th and MW 5.0 and 5.2 events on April 9th, which were 
dominantly dip slip, SE to SSE striking, and SW to WSW dipping 
(Scognamiglio et al., 2010). These events occurred on the shallower, 
steeply dipping portion of the listric Campotosto fault which appears 
kinked at its base where seismicity abruptly changes to low dip 
(Chiaraluce, 2012). A MW 4.4 event occurred later on June 22nd, 2009 
beneath this kink, on the gently dipping portion of the Campotosto fault 
with nodal planes showing dip of 88◦ or 14◦ (Valoroso et al., 2013). On 
June 25th, a MW 3.5 (Scognamiglio et al., 2010) earthquake occurred 
within the Cittareale cluster. This seismic cluster is approximately the 
northward extent of the L’Aquila sequence. 

Varying terminology has been used to describe the fault system that 
we focus on. Many refer to the fault as the “L’Aquila fault system” (e.g. 
Chiaraluce et al., 2011), and many others use variations on the “Mt. 
Stabiata – Paganica – San Demetrio fault system” (e.g. Boncio et al., 
2010; Lavecchia et al., 2012). The mainshock occurred on the L’Aquila 
normal fault system, most precisely on the portion corresponding in the 
field to the Paganica fault (Chiaraluce, 2012). Essentially the Mt. Sta
biata, Mt. Castellano, Colle Enzano, Paganica, and San Demetrio faults 
can be viewed as part of the same semi-continuous fault system (Fig. 1; 
Civico et al., 2017). However, it must be recognized that the relationship 
between outcropping faults and hypocenters can be complex (e.g. Tondi, 
2000), and our goal is to more generally model the morphology of the 
fault zone where it was either coseismically activated by the mainshock 
or is continuous with the coseismically activated portion of the fault 
zone. For this reason, and to emphasize the relation of the modelled fault 
to the mainshock, we call the system the “Paganica fault system” to 
emphasize the importance of the mainshock. 

2. Methods 

The aim of the proposed method is to use aftershock locations to 
invert for fault morphology in an objective, automated way. For this 
method, it is first necessary to group aftershocks according to the faults 
they occurred on. Then the 3D morphology of a specific group of af
tershocks can be inverted using splines (Virtanen et al., 2020). The 
reader is referred to the Supplementary Jupyter Notebook which pre
sents the methods and results interactively (https://bit.ly/2MnCFdj). 

The first step is to apply clustering to hypocenters. Then, hypocenter 
clusters can be associated with source faults (similar to Ouillon et al., 
2008). Note that because this method relies on the occurrence of 
earthquakes, faults which are not activated or are only partially acti
vated will not be fully accounted for. To increase the quality of the re
sults, we run two iterations of clustering: one with spectral clustering 
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(Von Luxburg, 2007), and another with Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) (Ester et al., 1996). Finally, after 
clusters of hypocenters are categorized according to their source faults, 
we focus on specifically the Paganica fault system for which we inter
polate a continuous 3D surface. 

We use the earthquake catalog of Valoroso et al. (2013), which is 
publicly available (Valoroso et al., 2020). The catalog was generated by 
applying STA/LTA event detection, applying an automated phase arrival 
picking procedure, removing duplicate events, cross-correlating records 
of event pairs, and finally applying the double-difference relocation al
gorithm hypoDD (Waldhauser and Ellsworth, 2000). Based on 95% 
confidence intervals obtained from a bootstrap analysis, the authors 
estimated mean location errors of 0.087, 0.178, and 0.039 km in the 
vertical and two horizontal directions, respectively. 

2.1. Application of clustering to identify faults 

The machine learning clustering approach attempts to find re
lationships in data based on their similarity. In our case, where the lo
cations of different earthquakes are sufficiently close, clustering can 
recognize that these earthquakes occurred on the same fault. If the 
earthquakes are sufficiently distant from each other, clustering can 

recognize that the earthquakes occurred on different faults. Several 
challenges arise using this approach. Where faults intersect, hypocenters 
of different faults can be close to each other and clustering algorithms 
can be blind to this. Further, aftershock location inaccuracy is inevitably 
present due to imperfect knowledge of crustal 3D velocities and elastic 
properties. Thus, hypocenters tend to erroneously appear between 
multiple faults, and to which fault these hypocenters belong to is un
clear. To mitigate this, clustering is done in two iterations; first with a 
spectral method, and second with DBSCAN. 

During the first clustering iteration, we used the spectral clustering 
algorithm of Scikit-Learn (Pedregosa et al., 2011). Von Luxburg (2007) 
provided an overview of spectral clustering. Spectral clustering is 
appropriate because it works well for non-convex clusters (a cluster is 
non-convex when a line drawn between two points can escape the 
cluster, such as hypocenters belonging to a curved fault). We first 
compute the similarity matrix between points which defines clustering 
weights according to the distance between hypocenters: si,j = exp (− ‖

xi − xj‖
2/2σ2), where xi and xj are the positions of the ith and jth hy

pocenters, and σ is the width of the gaussian kernel. Then, the normal
ized Laplacian matrix is constructed: L = D − W. W is the weighted 
adjacency matrix of each point. We use W = s. The degree matrix D is a 
diagonal matrix containing the degrees of the weight vector di = Σj=1

n wi, 

Fig. 1. Map view of seismicity of the L’Aquila seismic 
sequence. Hypocenters are from Valoroso et al. 
(2013). Fault traces and surface ruptures are modified 
from Boncio et al. (2010) and Valoroso et al. (2013). 
Fault and fault system names discussed in the text are 
labeled (names do not refer to city locations). Normal 
fault dip directions are indicated by barbs. Focal 
mechanisms are plotted for events with MW ≥ 5 in 
addition to the MW 3.5 event in the Cittareale area 
(Scognamiglio et al., 2010).   
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j. Then, the first k eigenvectors u1, …, uk of L are computed to construct 
U ∈ Rn×k. Finally, in k-dimensional space, the n points within U are 
assigned labels using k-means. 

For the spectral clustering application, we used only the 542 earth
quakes with ML ≥ 2.3 (Table 1). This helps to remove small aftershocks 
that blur the distinction between different faults. It also makes the 
memory demanding spectral clustering algorithm more manageable. 
Spectral clustering, like many other clustering algorithms, requires prior 

knowledge of the number of clusters. We choose k = 3, corresponding to 
the Paganica, Campotosto, and Cittareale clusters (Table 1). Note that 
this choice of k = 3 only applies to the spectral clustering step: the 
number of clusters found during the later application of DBSCAN will be 
independent. Finally, we choose σ = 2000 m (Table 1). However, for 
1250 m < σ < 4300 m, the results vary only negligibly. This spectral 
clustering step separated the hypocenters into three dominant clusters 
(Fig. S1). 

Before applying the second clustering iteration, we modify the hy
pocenter data to enhance fault like trends. Using the 396 hypocenters which

were preliminarily identified as corresponding to the Paganica fault system

using spectral clustering, we solve for a least squares distance best fit plane.

The positions of all 51,339 hypocenters, which includes those outside of 
the Paganica cluster, were then stretched by a factor f = 5 in the di
rection normal to the best fit plane (Table 1). f is chosen to enhance 
planar trends in the hypocenters, particularly those matching the 
Paganica fault’s strike and dip. This preliminary operation only mini
mally influences hypocenters close to the fault surface identified by the 
best fit plane, while deviations of earthquakes far from this surface are 
amplified. With these Paganica fault-like planar trends more pro
nounced and bias from deviant earthquakes reduced, clustering algo
rithms are much more successful at both recognizing the full extent of 
faults and keeping neighboring faults separate. This step also reduces the 
problem that some groups of hypocenters may lie along the same fault, 
but there are so few hypocenters between these groups that clustering 
algorithms normally find them as separate clusters. This spatial modi
fication also allows for the use of less computationally expensive clus
tering methods. 

Fig. 2. Simplified schematic of the dominant hypocenter clusters involved in the L’Aquila sequence. Seismic activity occurred dominantly in a cluster about the 
Paganica fault system (including from the Mt. San Franco fault through the San Demetrio faults), the Campotosto cluster, and the Cittareale cluster (consisting of 
conjugate faults in part corresponding to the Montereale fault system). 

Table 1 
Parameters and properties for the two clustering methods. Mmin is the minimum 
magnitude of events used for that step; we also report the number of remaining 
earthquakes. We report the number of clusters. This was specified as a parameter 
for the Spectral clustering step only, while the number of clusters reported for 
DBSCAN was a result of the method. Eps and MinPts are specified parameters for 
the DBSCAN step only, and σ is specified for Spectral clustering only. f is the 
stretching factor which was applied to hypocenters prior to applying DBSCAN. 
dx1 and dx2 describe the horizontal and vertical spacing of nodes for the spline 
inversion.  

Method Spectral DBSCAN Splines 

Mmin 2.3 None  
Number of earthquakes 542 51,339  
Number of clusters 3 9  
Eps  2 km  
σ 2 km   
MinPts  80  
f  5  
dx1   5668 m 
dx2   2544 m  
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Once DBSCAN is applied during a later step, the results for the 
Paganica fault system can be closely matched without applying f given 
careful tuning of other clustering parameters (Fig. S2). However, 
without applying f, we observe that clustering will be less successful 
when considered over the entire seismic sequence. For example, for f =
1, we find no combination of DBSCAN parameters which both work well 
for the Paganica fault while simultaneously distinguishing the Campo
tosto fault from the Mt. San Franco fault. For f > 5, we do not observe 
further improvement to clustering. 

With preparatory data operations completed, the final clusters can be 
generated using DBSCAN (Ester et al., 1996; Pedregosa et al., 2011; 
Schubert et al., 2017). Intuitively, DBSCAN finds dense clusters of points 
which are separated by regions of low point density. The two important 
parameters are MinPts and Eps which essentially control the number of 
points in clusters and the width of clusters, respectively. DBSCAN relies 
on the distinction of core points, border points, and noise. A point p is 
considered a core point if there are greater than MinPts points q with dist 
(p,q) less than Eps. Such points q are considered direct density-reachable 

Fig. 3. Also available interactively online 
(see supplementary material or at htt 
ps://bit.ly/3k7ykqg). Looking northwest 
(a) and southwest (b). Final results from 
clustering hypocenters from the L’Aquila 
seismic sequence. Spectral clustering was 
first used to find three primary clusters. 
DBSCAN was then used on all hypocenter 
location data. The gray dots were consid
ered by DBSCAN to be noise. Three hypo
center clusters are colored according to 
potentially affiliated geological fault traces: 
the Paganica fault, Campotosto fault, and 
Mt. San Franco fault. We plot the individual 
Paganica fault trace as green, though our 
Paganica cluster represents Paganica fault 
system including faults between the Mt. 
Stabiata and San Demetrio faults. The Cit
tareale cluster, containing several faults, is 
colored brown. Other clusters were found 
for which we do not consider their rela
tionship to known fault outcroppings, and 
these are colored randomly. (For interpre
tation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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from p and are thus established as part of the same cluster. A point q that 
does not qualify as a core point, but with dist(p,q) < Eps, is considered a 
border point in the same cluster as the core point p. A point pn is 
considered density reachable from each core point pj in the chain p1,p2… 
pn if each core point in the chain is direct density reachable to the core 
point before it; that is, if pi+1 is direct density-reachable from pi for 1 < i 
< n − 1. Note that pn itself can be either a core point or border point. 
This allows for the growth of clusters by density reachability where all 
density reachable points from the core point p are part of the same 
cluster. A point q with dist(pj,q) > Eps to all core points pj is considered 
noise. Thus, a cluster is composed of core points p and their density 
reachable border points q. We empirically found that Eps = 2 km and 
MinPts = 80 (Table 1) are good choices for the Paganica fault system. 
However, based on a grid search of Eps and MinPts, the DBSCAN clus
tering results for this fault are only negligibly sensitive to Eps and MinPts 
(Fig. S3). 

The result of DBSCAN is that hypocenters are grouped and estab
lished as clusters (Fig. 3). Then, we identify the hypocenter clusters 
according to which previously geologically identified faults they most 
closely correspond to (Fig. 3). We discuss the relationship of geologically 
identified faults and hypocenter clusters in the results section. 

2.2. Inversion of Paganica fault system morphology model 

Hypocenters within individual clusters can next be spatially inter
polated to find a best fit 3D fault surface. Although we identified several 
hypocenter clusters, this work focuses on modelling the morphology 
only of the Paganica fault system. Assuming the aftershocks in the 
Paganica hypocenter cluster are distributed in a damage zone and are 
approximately symmetric about the Paganica fault system surface 
(Valoroso et al., 2013), a least squares best-fit surface will represent the 
average rupture location and thus closely resemble the fault surface. 

We interpolated the hypocenters of the Paganica cluster using 
splines. We choose splines because high-order polynomials tend to suffer 
from unrealistic oscillations between interpolated data whereas splines 
can converge to a solution using stable, low-order polynomials (e.g. 
Fornberg and Zuev, 2007). The spline algorithm constructs a piece-wise 
polynomial which is continuous and smooth. To apply splines, we 
choose a coordinate system that is defined by the best fit plane to the 
Paganica hypocenter cluster where x1’ faces along strike to the south
east, x2’ faces down dip along the fault plane, and x3’ faces the hanging 
wall, normal to the fault plane (Fig. 4). We use 4th order bivariate B- 
splines (Prautzsch et al., 2002; Virtanen et al., 2020) defined over the 
region 0 ≤ x1 ≤ 15.2 km and 0 ≤ x2 ≤ 34.0 km which contains all 
identified Paganica hypocenters. We distribute throughout the plane a 

Fig. 4. (a) 2D representation of the aftershocks that were part of the Paganica fault cluster, and (b) the surface that interpolates them. Position is shown on the best- 
fitting plane to the hypocenters where strike distance corresponds to x1

′. The y axis corresponds to distance along dip, not depth, and corresponds to x2
′. Colour 

represents distance in meters from the best fitting plane on which spline knots were distributed (distance in x’3). Selected fault traces are shown as their projection 
onto the same plane. The viewing angle is such that the viewer looks northeast and down. 
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grid of nodes with spacing of dx1 = 5668 m, and dx2 = 2544 m (Fig. 4; 
Table 1). In order to have 4th order splines defined through the fault 
model, exterior nodes must also be used; these are distributed at dis
tances of ½ dx1 and ½ dx2 outside of our fault model (Fig. 4). However, 
the style of exterior nodes implementation is not important for our re
sults. Finally, the spline coefficients are inverted using least squares to 
minimize the distance between the hypocenters and the spline surface. 
The resulting splines indicate the best fit fault surface model of the 
Paganica hypocenter cluster (Fig. 4). 

3. Results 

The final clusters, the results of DBSCAN, can be seen in Fig. 3. Nine 
clusters were recognized; among these, the Paganica, Campotosto, and 
Cittareale clusters are most clearly represented. Of the 51,339 events, 
29,367 were clustered as part of the Paganica fault system, 9588 on the 
Campotosto fault, and 5384 in the Cittareale cluster. We also find a 
cluster between the Paganica and Campotosto faults which appears to 
correspond to the secondary Mt. San Franco fault and Capitignano fault 
(part of the Montereale fault system) according to the interpretation of 
Lavecchia et al. (2012). 

The general correspondence between these clusters and the poten
tially associated geologically mapped fault traces can also be seen in 
Fig. 3. Although the Paganica fault is our primary focus, and clustering 

parameters were chosen for optimal performance on the Paganica 
cluster, we describe other clusters briefly. 

Although the hypocenters identified as the Campotosto fault main
tain a depth of at least 4.5 km, they show a close association to the 
Gorzano fault trace (e.g. Lavecchia et al., 2012; Castaldo et al., 2018). 
First, the dip of the hypocenters shows relatively good alignment with 
the fault trace, as noted by Chiaraluce et al. (2011). Further, the 
apparent strike of the hypocenters in the Campotosto cluster varies 
along strike, matching well with the fault trace (Fig. 3b), supporting a 
connection between them. Similarly, Castaldo et al. (2018) modelled a 
fault connecting these hypocenters and the fault trace. Clustering was 
also successful at identifying both the shallow and steeply dipping 
portions of the listric Campotosto fault (Valoroso et al., 2013) as the 
same feature. The correspondence of the Mt. San Franco fault and the 
mapped surface trace is less clear. For example, the strike of the hypo
center distribution is ~N140◦, while the strike of the overall surface 
trace varies from ~N140◦ to ~N100◦. The Cittareale cluster accurately 
contains the June 25th Mw 3.5 event. This cluster contains a group of 
faults, and is actually dominated by NE dipping, antithetic faults. The 
SW fault appears to align with the Montereale Fault system NW of the 
Mt. San Franco fault. 

The separation between major faults and more scattered and inde
pendent aftershocks (referred to as noise and rejected by the DBSCAN 
algorithm) appears successful. However, sets of faults antithetic to and 

Fig. 5. Also available interactively (see supplementary material or online at https://bit.ly/3k7ykqg). Interpolated fault surface compared to locations of hypocenters 
in our Paganica fault system model. We plot the individual Paganica fault trace as green, though our Paganica fault model represents the whole Paganica fault system 
including faults between the Mt. Stabiata and San Demetrio faults. The perspectives are such that (a) views northeast, (b) views northwest, (c) views southeast, and 
(d) views southwest. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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intersecting the Paganica cluster contained very dense aftershocks and 
these were not distinguishable from the Paganica fault through clus
tering with our chosen parameters. In particular, there are three faults at 
the south-east portion of and antithetic to the main Paganica fault model 
which were too closely connected to the Paganica fault to be distin
guished (Fig. 5). As reported in Ouillon et al. (2008), allowing the 
number of clusters to increase separates hypocenters which belong to 
the same fault, while having less clusters tends to lump hypocenters of 
different faults together. In general, the choice of clustering parameters 
involves a trade-off between capturing the full seismogenic portion of a 
fault within a single cluster versus separating out the minor fault splays 
(Fig. S3). Another example of this trade-off is illuminated where the 
fault which hosted the MW 5.4 aftershock was considered mostly noise 
due its low aftershock density, despite hosting a large earthquake. Using 
focal mechanisms with manual hypocenter interpolation, Lavecchia 
et al. (2017) instead modelled this and nearby aftershocks as occurring 
on an east dipping fault. 

The 3D Paganica fault surface that best fits the clustered hypocenters 
can be seen in Figs. 4 and 5. The modelled fault surface has a length of 
~20 km at the shallow edge of the fault. This is longer than what is often 
used for modelling the mainshock (often between 12 km and 17 km: see 
reviews of Chiaraluce, 2012; Vannoli et al., 2012), and longer than 
geologically measured deformation (e.g. Boncio et al., 2010; Vannoli 
et al., 2012). However, this length is consistent with evidence suggesting 
that the Paganica-San Demetrio fault system essentially acts as a SW 
dipping normal fault system extending approximately 19 km (Calderoni 
et al., 2012; Civico et al., 2015; Civico et al., 2017). The northwest tip of 
our fault model extends beneath mapped surface ruptures (Boncio et al., 
2010) of the fault system including at the Mt. Castellano-Colle Enzano 
faults and the similarly striking portion of the Mt. Stabiata fault. The NW 
shallow edge of the fault model is where the Mt. Stabiata fault transi
tions to E-W striking. This contrasts slightly with the models of Lav
ecchia et al. (2012, 2017), where the E-W striking portion of the Mt. 
Stabiata fault is also combined into their Paganica fault system models. 
The fault surface extends SE to the termination of the San Demetrio 
fault. This same SE fault extent agrees with other Paganica fault system 
models (e.g. Lavecchia et al., 2012; Civico et al., 2017). Ultimately, our 
fault model extent is coherent with the radiography of the seismogenic 
Paganica fault and with mapped faults as discussed in Chiaraluce (2012) 
and Valoroso et al. (2013) based on the same dataset. However, a 
notable difference is that our fault model extends ~34.0 km along strike 
at its base. This is because a group of aftershocks at the NW termination 
of our fault model lies in alignment with but coherently with the more 
traditionally established Paganica fault system hypocenters (Figs. 3 and 
5). 

The fault surface extends to about 10 km depth which is the 
maximum depth of the hypocenters (Valoroso et al., 2013). The width of 
the fault (along dip) is 15.4 km, which is similar to values often used to 
model the mainshock (about 11 km - 17 km, see Chiaraluce, 2012). 
These are also similar dimensions to those of the 3D model of Lavecchia 
et al., (2012): 15 km along dip and maximum depth of 10.5 km. 

Visually speaking, the surface is smooth and does not deviate greatly 
from a plane. It shows curvature similar to other 3D fault models 
generated with similar methods in other locations (Carena and Suppe, 
2002; Kaven and Pollard, 2013) and for the Paganica fault system 
(Lavecchia et al., 2012; Lavecchia et al., 2017; Castaldo et al., 2018). 
The basic plane from which the surface is built (where x3’ = 0), which 
indicates the average geometry of our Paganica fault model, has a strike 
and dip of N143◦ and 42.6◦, respectively. This is in close agreement with 
(Lavecchia et al., 2012), whose 3D reconstruction suggested a strike of 
~N140◦ and dip of ~45◦. A compilation of 9 previous L’Aquila main
shock models shows values of strike between N133◦ and N144◦ with an 
average of N137◦, and values of dip between 47◦ and 56◦ with an 
average of 52◦ (Chiaraluce, 2012). The focal mechanism of the main
shock shows a strike and dip of N135◦ and 55◦. Measurements of surface 
ruptures strike dominantly N130◦–N140◦ (Boncio et al., 2010; 

EMERGEO Working Group, 2010). 
Approximately southeast of documented Paganica fault surface 

ruptures, the model wavers as it interacts with the more complex dis
tribution of hypocenters. Here, moving upward, the dip abruptly flattens 
at about 3 km in depth (Fig. 5b). This flattened portion of the fault model 
is likely responsible for the lower-than-average dip of our Paganica fault 
system model. The shallow, low dip portion of the fault model is likely 
not truly associated with the Paganica fault system, but is possibly 
associated with the Gran Sasso fault to the east (Chiaraluce et al., 2011). 
The apparent continuity of these low dipping hypocenters with those of 
the Paganica fault system is the reason clustering identifies them as one 
fault surface. The incorporation of fault traces during clustering could 
help to produce fault models which are more consistent between hy
pocenter depths and fault traces along the entire length of faults, 
although automation of such a procedure is outside the scope of this 
paper. 

We note specifically two locations on the Paganica fault system 
model where issues in the interpolation might have arose; (i) near the 
south-east edge of the fault where there are conjugate faults intersecting 
the Paganica fault (Fig. 5b), and (ii) at the north-west edge of the fault 
where there were few aftershocks for interpolation (Fig. 4, 5a). 

Regarding problem (i), because the clustering did not distinguish 
between some conjugate planes that were closely connected to the 
Paganica fault system, the surface interpolation is slightly shifted by 
these conjugate fault hypocenters (Fig. 5b). Because the hypocenters 
were widely distributed near the fault in the direction normal to the fault 
(the aftershocks deviate from the 3D surface by ~600 m on average), 
small variation in the fault surface does not conflict with the hypocenter 
distribution. It is thus likely not a problem that the surface is shifted 
slightly in this location. Ultimately, manual fault model construction 
models did not suffer from this problem (Lavecchia et al., 2012; Lav
ecchia et al., 2017; Castaldo et al., 2018). 

Regarding problem (ii), although the splines were inverted with 
regularly distributed knots, the hypocenters which were used to find the 
knot parameters were distributed unevenly. Particularly at the upper 
NW corner of the fault, interpolation was done where few hypocenters 
were available. The spline parameters in this location are thus under- 
constrained. To address this problem, we applied a convex hull to the 
hypocenters. We only report the portion of our fault model that is within 
this polygon. 

To evaluate the accuracy of our 3D fault model, we compared its 
orientation to the orientation of all 3422 available earthquake focal 
mechanisms (Chiaraluce et al., 2021; Fig. 6). This comparison is quan
tified as the angle between the normal vectors at the fault surface model 
and the normal vectors of the aftershock focal mechanisms. From the 
focal mechanisms, both the fault planes and auxiliary planes are used. 
We compare this angular mismatch result for our 3D fault model with a 
planar model of Cirella et al. (2012). For both our 3D fault and for the 
planar model, there is alignment at two primary peaks of 20◦ and 90◦

which correspond to the fault and auxiliary planes of the focal mecha
nisms, respectively (Fig. 6b). Because earthquakes with greater magni
tude tend to involve larger rupture area and greater slip, we test the fault 
surface to focal mechanism alignment weighted according to the 
magnitude. While a weight of 32 M would be more consistent with the 
moment and energy released from an earthquake, the results would be 
completely dominated by the largest earthquake. We thus choose 10 M as 
a weight to be consistent with the ML, Mb, and MS scales. The weighted 
results are also shown in Fig. 6b, where instead of plotting a histogram of 
each angular mismatch, we plot a normalized histogram of each angular 
mismatch weighted by 10M. Focal mechanism to fault plane orientation 
agreement improves with this weighting scheme. Note that we do not 
include the focal mechanism of the MW 6.1 mainshock in the weighted 
analysis because its high magnitude and weight would make it dominate 
the orientation results, and the alignment of our fault model created 
from aftershocks compared to the mainshock orientation is only of 
secondary importance. 
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4. Discussion and conclusions 

There is a need to develop and improve algorithms which can find 
the 3D morphology of faults. The primary purpose here is to explore a 
new algorithm to do so which is fast and objective and to investigate the 
utility of machine learning for this purpose. We used successive itera
tions of clustering to construct a quantitative model of the fault seg
ments associated with the L’Aquila seismic sequence. The approach, 
based on a combination of spectral and DBSCAN clustering, provides 
several advantages. The method can be applied in only a few seconds on 
a standard laptop, saving time in the case of analyzing a seismic 
sequence in real time, while it is also objective in its determination of 
faults. In this way, it provides advantages over the high-resolution op
tions of manual fault interpolation. It is advantageous over planar 
clustering approaches in that it estimates the continuous first order 

geometry of a fault zone. Curved faults, for instance the listric Campo
tosto fault, can thus be represented with one cluster (Fig. 3). Using 
planar clustering, a curved fault would instead be represented with 
several disconnected planes (e.g. Wang et al., 2013) which complicates 
modelling the rupture of a mainshock along its entire extent. Our 
approach is further advantageous over algorithms which cluster based 
on the distribution of points around each cluster’s average point, such as 
k-means, which would find diffuse clouds of seismicity that are suitable 
for methods which are not dependent on fault morphology (Weatherill 
and Burton, 2009). 

4.1. Parameter choice 

Although the algorithm is objective, the parameter choices (Table 1) 
require care as these can have important influences on the results. The 

Fig. 6. Angular mismatch between the normal vectors of the interpolated fault surface and the normal vectors of the available earthquake focal mechanisms. (a) 
Angular mismatch compared to location of hypocenters in the cluster that corresponds to the Paganica fault. Earthquake locations are plotted according to their 
distance along strike and along dip on the fault surface. Only the best matching angle for each aftershock is used for (a). (b) Histograms showing the number of focal 
planes with any given angular mismatch (top) weighted by 10M (bottom). We show both our 3D fault model (left panels) and the planar model used in Cirella et al. 
(2012) (right panels). Both focal planes of each focal mechanism were included in (b). This results in alignment peaks near 90◦ that correspond with the auxiliary 
planes of focal mechanisms. For the fault planes of the focal mechanisms, alignment peaks are closer to 20◦. Orientation match is improved when using the magnitude 
as a weight. 
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reader can experiment with different parameter choices in the Supple
mentary Jupyter Notebook. 

For our application of DBSCAN, the choice of Eps, MinPts, and f re
quires human supervision. By decreasing f, DBSCAN incorporates hy
pocenters which are more widely distributed about faults and it tends to 
group multiple faults together. However, by changing MinPts and Eps to 
reflect different values of f, similar results to our final clusters can be 
ultimately obtained. We showed an example of our Paganica cluster and 
fault using f = 5 (Figs. 3–5) and f = 1 (Fig. S2). Fig. S3 shows the in
fluence of Eps and MinPts on the Paganica hypocenter cluster. 
Increasing MinPts increases the tendency to reject potential clusters as 
noise, resulting in fewer and smaller clusters, and specifically reducing 
the number of hypocenters in the Paganica cluster. Increasing Eps in
creases the tendency for hypocenters to be clustered together, poten
tially merging faults together, and increasing the number of hypocenters 
in the Paganica hypocenter cluster. We performed a grid test to quantify 
the influence of Eps and MinPts (Fig. S3). Variations of the parameters 
about our chosen values did not impart important changes to the 
Paganica cluster which consistently had approximately the same 29,367 
hypocenters. Because of this, the parameters do not necessarily need fine 
tuning as a wide variety of parameters produce similar results. 

The choice of spectral clustering parameters is slightly less crucial 
here, as it is primarily used for preliminary data operations which are 
designed to make DBSCAN clustering more successful. The spectral 
clustering step requires prior knowledge of the number of major hypo
center clusters. We chose three based on visual inspection and trial and 
error; increasing the number of clusters broke the Paganica fault up 
along strike which could also be acceptable based on several other 
Paganica fault system models having smaller distance along strike (e.g. 
Vannoli et al., 2012). σ was tuned manually to maintain maximal sep
aration between the three dominant clusters (Fig. S1). However, for 
1250 m < σ < 4300 m, the results varied only negligibly. 

4.2. Implications for fault structure 

We identified key hypocenter clusters in part according to which 
geologically identified fault segment they most closely correspond to. 
However, there are important differences between the hypocenter 
clusters and faults. Clustering will be blind to portions of faults which 
were never activated. Thus, the true maximum extent of a fault can be 
greater than indicated by the hypocenter clusters. Similarly, for separate 
faults which are coherent with each other in space and shape, clustering 
may indicate these as being the same fault. This is why our fault model is 
longer at its base than most other fault models, at ~34.0 km. Clustering 
does not discriminate in accordance with fault identification made 
geologically at fine scales, but rather identifies coherent hypocenters. 
While this may not be desirable for recognizing geological structures on 
fine scales, it can be more appropriate for modelling earthquakes where 
rupture is not confined to a single fault plane (e.g. Tondi, 2000; Civico 
et al., 2017). 

We tested the quality of the interpolated Paganica fault surface 
through several approaches. One approach was to find how well the 
interpolated fault surface matches the orientation of the earthquakes 
that it interpolates (Fig. 6). When comparing the match of aftershock 
orientations to our 3D model and a 2D model (Cirella et al., 2012), there 
does not appear to be an improvement moving from the planar model to 
our 3D surface. This is probably due to the fact that the L’Aquila 
mainshock ruptured on a relatively planar fault segment. Faults with 
more curvature, such as the Campotosto fault, will likely show more 
certain improvement by incorporating 3D morphology. 

While ideally the aftershock orientations should have matched the 
3D fault surface model well, when comparing the mismatch with each 
aftershock weighted equally, the aftershock orientations only mildly 
agree with either the planar model or 3D model (Fig. 6). However, when 
the magnitude of aftershocks (10M) is used as a weight, the match be
tween aftershocks and the 3D Paganica fault model increases. This 

suggests that larger earthquakes are more closely aligned with their fault 
surface and/or the focal mechanisms of smaller events are more poorly 
constrained. Another plausible reason could be that some aftershocks 
may have been associated with conjugate faults instead of the main fault 
surface (Fig. 5b). There may be more unnoticed, smaller conjugate faults 
as well. 

However, the misalignment between the fault model and focal 
mechanisms may have implications for the structure of the fault. Fault 
structures can become very complex with damage zones involving 
various scales and patterns (Peacock and Sanderson, 1991; Valoroso 
et al., 2014), and aftershock clusters often occur at the most complex 
regions of a fault surface where damage zones are the most extreme 
(Sibson, 1989; Kim and Sanderson, 2008; Michele et al., 2020). Not only 
damage zones, but also the complexity of fault connectivity provides a 
means for aftershocks to rupture in directions and locations not in 
agreement with the main fault surface. One model for fault growth re
quires several smaller faults to link together, for instance through the 
breaching of relay ramps, in order to form larger faults (Childs et al., 
2009). This results in complex rupture geometries. Relay ramps allow 
for a fault to be connected by many discontinuous faults at small and 
large scales. Relays have indeed been observed on surface expressions of 
the Paganica fault (Roberts et al., 2010). Faults can also be connected by 
extensional steps and contractional steps (Kim et al., 2004). The tips of a 
fault can be particularly complex as well. Where fault displacement dies 
out at the tips of faults, displacement tends to end in splays (Kim et al., 
2004). Splaying has been observed in the Paganica fault geologically 
(Cinti et al., 2011) and seismically (Chiaraluce et al., 2011). Given these 
issues, and that we are modelling a fault zone as a single 3D surface, we 
expect discontinuous sections of the fault zone to contain aftershocks 
which align poorly to the main fault surface. 

4.3. Future directions 

This approach could aid in seismic hazard assessment. Most models 
of stress transfer that address aftershocks in the L’Aquila seismic 
sequence rely on flat fault models (e.g. Serpelloni et al., 2012). However, 
the 3D morphology of the mainshock as well as any recipient faults will 
influence this stress and earthquake interaction, influencing the devel
opment of earthquake sequences (Mildon et al., 2016; Kaven and 
Pollard, 2013). Our 3D fault model can be used as the basis for a 3D 
mainshock geometry, and the slip distribution can be inverted using 
geodetic or waveform data (e.g. Kaven and Pollard, 2013; Castaldo et al., 
2018). This approach may illuminate important foreshock-mainshock or 
mainshock-aftershock interactions that are otherwise not clear. 

This method can be applied to other seismic sequences. The L’Aquila 
sequence itself is just one part of a larger extensional fault system that 
has experienced several recent seismic sequences extending over more 
than 150 km. This includes the 1979 Umbria sequence, the 1997 Col
fiorito sequence, and the 2016 Amatrice/Visso/Norcia sequence. Other 
locations where seismicity is thoroughly monitored, for instance 
throughout California, could be good sites to apply this technique. 
Further, applying this method to faults in developing seismic sequences 
could help illuminate locked zones where a region of a fault experiences 
seismic quiescence but is surrounded by an active portion of the fault 
(Avouac et al., 2015). 
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