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ARTICLE INFO ABSTRACT

Keywords: In seismic modelling, fault planes are normally assumed to be flat due to the lack of data which can constrain
Fault morphology fault morphology. However, incorporating 3D fault morphology is important for modelling several phenomena,
Clustering

for example calculating mainshock induced stress changes. We utilize a data-analytical method to unveil the 3D
rupture morphology of faults using unsupervised clustering techniques applied to earthquake hypocenters in
seismic sequences. We apply this method to the 2009 L’Aquila seismic sequence which involved a My 6.1
mainshock on April 6th. We use a dataset of about 50,000 relocated events, mostly microearthquakes, reaching
magnitude of completeness equal to 0.7. Clustering distinguishes the earthquakes as occurring in three main
clusters along with other minor fault segments. We then represent the morphology of the main Paganica fault
system (responsible for the largest mainshock) using splines. This method shows promise as a step toward
robustly and quickly obtaining 3D rupture morphologies where earthquake sequences have been monitored. The
3D model is presented interactively online, and the processing is presented in an interactive Jupyter Notebook

L’Aquila earthquake sequence

(https://bit.ly/2MnCFdj).

1. Introduction

The 3D morphology of fault planes is generally unknown at depth
due to the lack of information which can constrain them. We present an
approach where we use machine learning to find the 3D morphology of
faults based on the spatial distribution of aftershocks in seismic se-
quences. We apply this method to model the Paganica fault system
which was the source of the April 6th, 2009 My 6.1 mainshock of the
thoroughly monitored L’Aquila seismic sequence in the central Apen-
nines, Italy (Scognamiglio et al., 2010).

This approach to automating the inversion of 3D fault morphology
can be useful in many ways. Inaccuracies in fault morphology can
interfere with earthquake source inversions, resulting in less realistic
slip distributions (Ragon et al., 2018) and affecting coulomb stress cal-
culations and aftershock forecasts (Kaven and Pollard, 2013; Mildon
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et al., 2016; Verdecchia et al., 2018; Mancini et al., 2019). In addition,
the morphology of faults influences dynamic stress (e.g. Pelties et al.,
2012; Galvez et al., 2014; Zhang et al., 2014), earthquake magnitude
and location (Barka and Kadinsky-Cade, 1988; Zielke et al., 2017),
tsunami generation (Moore et al., 2007), and other phenomena. Along
megathrusts (e.g. the My 7.8 2015 Gorkha earthquake, Hubbard et al.,
2016) the determination of the 3D morphology of slabs and faults has
been taken into account (Qiu et al., 2016; Landry and Barbot, 2018).
This can provide information on locked zones (Avouac, 2008; Avouac
et al., 2015), which are crucial to understand as they can promote
intense seismicity. For the major subduction zones of the Earth, it has
been shown that curvature influences earthquake rupture area and
magnitude (Bletery et al., 2016). Ultimately, progress toward automatic
and objective fault reconstruction is an important task in seismology.
A variety of methods are used to estimate fault morphology. Active
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source seismology is used to build high resolution fault models (e.g. Lohr
et al., 2008; Rge et al., 2014). This is the case, among others, of the low
angle Altotiberina normal fault in the northern Apennines (Italy) for
which 3D morphology was obtained by merging seismic imaging,
borehole analysis, geologic maps, and field surveys. Unfortunately, the
costs of active source seismology and drilling make this a difficult op-
tion. Fault geometry can also be illuminated from passive source
methods. For example, modelling of seismic waves trapped in low-
velocity damage zones can provide information on fault geometry
(Peng et al., 2003; Ben-Zion et al., 2003; Calderoni et al., 2012).

The distribution of foreshocks and aftershocks can also provide in-
formation on fault morphology. Analysts can attribute earthquakes to
their source faults by visual inspection of earthquake locations and
surfaces can be fit to the aftershocks to model these faults (e.g. Carena
et al., 2002). The combination of hypocenter interpretation along with
various other data types (e.g. fault traces, borehole data, geodetic data,
geologic cross-sections) has been used to construct 3D geologic models
of faults associated with the L’Aquila sequence (Lavecchia et al., 2012;
Lavecchia et al., 2017; Castaldo et al., 2018) and the 2016 Amatrice/
Visso/Norcia sequence (Lavecchia et al., 2016; Tung and Masterlark,
2018). While these methods are successful, they involve qualitative and
subjective elements which influence the results based on the analysts’
background. Moreover, it is not quickly reproducible, particularly in
quasi real-time as a seismic sequence evolves.

On the argument of automation and fast, reproducible data analysis,
machine learning is becoming increasingly useful in Earth science (Kong
et al., 2019; Bergen et al., 2019). Some examples include determining
earthquake magnitudes (Mousavi and Beroza, 2019), analyzing lab
quakes (Rouet-Leduc et al., 2017), and picking phase arrivals (Zhu and
Beroza, 2019). Machine learning includes supervised learning which
requires pre-labeled data for training, and unsupervised learning where
no pre-labeled data is required for training. Clustering is one application
of unsupervised machine learning. If data points are distributed in
distinct groups, clustering finds these groups and labels each datum
according to which group it belongs to (e.g. Omran et al., 2007; Joshi
and Kaur, 2013).

There have been several applications of clustering in Earth Science.
For example, it has been applied to earthquake relocation (Trugman and
Shearer, 2017), investigation of earthquake processes and precursors
(Dzwinel et al., 2003; Dzwinel et al., 2005; Yuen et al., 2009), and
distinguishing dominant faulting patterns in focal mechanism data-sets
(Rietbrock et al., 1996; Custodio et al., 2016). Hypocenter locations
have been clustered to establish seismic zones for probabilistic seismic
hazard analysis (Weatherill and Burton, 2009; Ansari et al., 2015;
Novianti et al., 2017; Hall et al., 2018; Scitovski, 2018).

Clustering has also been used to investigate fault geometry based on
hypocenter information (Ouillon et al., 2008; Ouillon and Sornette,
2011; Wang et al., 2013). In these cases, clusters were distinguished by
fitting them with a series of planes. The RANdom SAmple Consensus
(RANSAC) algorithm, which fits a model to the dominant trend in data
while attempting to reject outlier data (Fischler and Bolles, 1981), has
also been used to find faults in hypocenter data and to model them with
3D surfaces (Kaven and Pollard, 2013; Skoumal et al., 2019). Ultimately,
clustering has the capability to automatically identify groups of hypo-
centers common to fault zones to aid in inverting fault morphology in a
quick and objective fashion.

Here, we present an approach based on the unsupervised machine
learning technique clustering which can automate fault identification
using hypocenter locations. We apply our clustering-based method to
the L’ Aquila seismic sequence in the central Apennines (Italy) which was
particularly well monitored with over 50,000 high-resolution relocated
aftershocks identified throughout 2009 (Valoroso et al., 2013). This
large amount of data is well suited for data-driven techniques. Further,
the fault morphologies associated with this sequence are relatively
simple, making this a good region to test fault morphology inversion
algorithms.
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1.1. 2009 L’Aquila seismic sequence

The faults associated with the L’Aquila seismic sequence have been
thoroughly studied (Figs. 1 and 2; e.g. Lavecchia et al., 2012; Valoroso
et al., 2013). The L’Aquila sequence activated a dominantly south-west
dipping normal fault system about 50 km long. Aftershocks are broadly
associated with the ~N140° striking Paganica fault system, the ~N150°
striking Campotosto (Gorzano) fault, and a cluster near the Cittareale
village. The mainshock occurred in the Paganica fault system, which is
composed of several enechelon faults extending approximately from the
SE end of the San Demetrio fault system through the Mt. Stabiata Fault.
The Cittareale cluster is composed dominantly of several NW-SE striking
and NE dipping faults, as well as a SW dipping fault likely associated
with the Montereale fault system.

Chiaraluce (2012) provided a review of the 2009 L’Aquila sequence
(Fig. 1), which began in approximately January 2009. The foreshocks
included a My 4.0 earthquake on March 30th before the April 6th M,,
6.1 NW-SE striking and SW dipping mainshock (Chiaraluce et al., 2011).
Southeast of the mainshock, on April 7th, a My 5.4 aftershock occurred
on a ~NE dipping fault with a non dip-slip component (rake of ~58°: see
Fig. 1 for focal mechanisms of large events) (Scognamiglio et al., 2010;
Valoroso et al., 2013). Campotosto fault seismicity included a My 5.0
event on April 6th and My 5.0 and 5.2 events on April 9th, which were
dominantly dip slip, SE to SSE striking, and SW to WSW dipping
(Scognamiglio et al., 2010). These events occurred on the shallower,
steeply dipping portion of the listric Campotosto fault which appears
kinked at its base where seismicity abruptly changes to low dip
(Chiaraluce, 2012). A My 4.4 event occurred later on June 22nd, 2009
beneath this kink, on the gently dipping portion of the Campotosto fault
with nodal planes showing dip of 88° or 14° (Valoroso et al., 2013). On
June 25th, a My 3.5 (Scognamiglio et al., 2010) earthquake occurred
within the Cittareale cluster. This seismic cluster is approximately the
northward extent of the L’Aquila sequence.

Varying terminology has been used to describe the fault system that
we focus on. Many refer to the fault as the “L’Aquila fault system” (e.g.
Chiaraluce et al., 2011), and many others use variations on the “Mt.
Stabiata — Paganica — San Demetrio fault system” (e.g. Boncio et al.,
2010; Lavecchia et al., 2012). The mainshock occurred on the L’Aquila
normal fault system, most precisely on the portion corresponding in the
field to the Paganica fault (Chiaraluce, 2012). Essentially the Mt. Sta-
biata, Mt. Castellano, Colle Enzano, Paganica, and San Demetrio faults
can be viewed as part of the same semi-continuous fault system (Fig. 1;
Civico et al., 2017). However, it must be recognized that the relationship
between outcropping faults and hypocenters can be complex (e.g. Tondi,
2000), and our goal is to more generally model the morphology of the
fault zone where it was either coseismically activated by the mainshock
or is continuous with the coseismically activated portion of the fault
zone. For this reason, and to emphasize the relation of the modelled fault
to the mainshock, we call the system the “Paganica fault system” to
emphasize the importance of the mainshock.

2. Methods

The aim of the proposed method is to use aftershock locations to
invert for fault morphology in an objective, automated way. For this
method, it is first necessary to group aftershocks according to the faults
they occurred on. Then the 3D morphology of a specific group of af-
tershocks can be inverted using splines (Virtanen et al., 2020). The
reader is referred to the Supplementary Jupyter Notebook which pre-
sents the methods and results interactively (https://bit.ly/2MnCFdj).

The first step is to apply clustering to hypocenters. Then, hypocenter
clusters can be associated with source faults (similar to Ouillon et al.,
2008). Note that because this method relies on the occurrence of
earthquakes, faults which are not activated or are only partially acti-
vated will not be fully accounted for. To increase the quality of the re-
sults, we run two iterations of clustering: one with spectral clustering


https://bit.ly/2MnCFdj

B. Brunsvik et al.

y«&

J Ve
Y/
7y o

,3,7( *,'
/“ W AVE

Tectonophysics 804 (2021) 228756

Fig. 1. Map view of seismicity of the L’Aquila seismic
sequence. Hypocenters are from Valoroso et al.
(2013). Fault traces and surface ruptures are modified
from Boncio et al. (2010) and Valoroso et al. (2013).
Fault and fault system names discussed in the text are
labeled (names do not refer to city locations). Normal
fault dip directions are indicated by barbs. Focal
mechanisms are plotted for events with My > 5 in
addition to the My 3.5 event in the Cittareale area
(Scognamiglio et al., 2010).

(Von Luxburg, 2007), and another with Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) (Ester et al., 1996). Finally, after
clusters of hypocenters are categorized according to their source faults,
we focus on specifically the Paganica fault system for which we inter-
polate a continuous 3D surface.

We use the earthquake catalog of Valoroso et al. (2013), which is
publicly available (Valoroso et al., 2020). The catalog was generated by
applying STA/LTA event detection, applying an automated phase arrival
picking procedure, removing duplicate events, cross-correlating records
of event pairs, and finally applying the double-difference relocation al-
gorithm hypoDD (Waldhauser and Ellsworth, 2000). Based on 95%
confidence intervals obtained from a bootstrap analysis, the authors
estimated mean location errors of 0.087, 0.178, and 0.039 km in the
vertical and two horizontal directions, respectively.

2.1. Application of clustering to identify faults

The machine learning clustering approach attempts to find re-
lationships in data based on their similarity. In our case, where the lo-
cations of different earthquakes are sufficiently close, clustering can
recognize that these earthquakes occurred on the same fault. If the
earthquakes are sufficiently distant from each other, clustering can

recognize that the earthquakes occurred on different faults. Several
challenges arise using this approach. Where faults intersect, hypocenters
of different faults can be close to each other and clustering algorithms
can be blind to this. Further, aftershock location inaccuracy is inevitably
present due to imperfect knowledge of crustal 3D velocities and elastic
properties. Thus, hypocenters tend to erroneously appear between
multiple faults, and to which fault these hypocenters belong to is un-
clear. To mitigate this, clustering is done in two iterations; first with a
spectral method, and second with DBSCAN.

During the first clustering iteration, we used the spectral clustering
algorithm of Scikit-Learn (Pedregosa et al., 2011). Von Luxburg (2007)
provided an overview of spectral clustering. Spectral clustering is
appropriate because it works well for non-convex clusters (a cluster is
non-convex when a line drawn between two points can escape the
cluster, such as hypocenters belonging to a curved fault). We first
compute the similarity matrix between points which defines clustering
weights according to the distance between hypocenters: s;; = exp (— ||
Xj — Xsz/thz), where x; and x; are the positions of the ith and jth hy-
pocenters, and ¢ is the width of the gaussian kernel. Then, the normal-
ized Laplacian matrix is constructed: L = D — W. W is the weighted
adjacency matrix of each point. We use W = s. The degree matrix D is a
diagonal matrix containing the degrees of the weight vector d; = = yw;,



B. Brunsvik et al.

East ( ’9,77)

Tectonophysics 804 (2021) 228756

w

o
Vertical (Km)

20

Fig. 2. Simplified schematic of the dominant hypocenter clusters involved in the L’Aquila sequence. Seismic activity occurred dominantly in a cluster about the
Paganica fault system (including from the Mt. San Franco fault through the San Demetrio faults), the Campotosto cluster, and the Cittareale cluster (consisting of

conjugate faults in part corresponding to the Montereale fault system).

j- Then, the first k eigenvectors u;, ..., ux of L are computed to construct
U € RV, Finally, in k-dimensional space, the n points within U are
assigned labels using k-means.

For the spectral clustering application, we used only the 542 earth-
quakes with My, > 2.3 (Table 1). This helps to remove small aftershocks
that blur the distinction between different faults. It also makes the
memory demanding spectral clustering algorithm more manageable.
Spectral clustering, like many other clustering algorithms, requires prior

Table 1

Parameters and properties for the two clustering methods. M, is the minimum
magnitude of events used for that step; we also report the number of remaining
earthquakes. We report the number of clusters. This was specified as a parameter
for the Spectral clustering step only, while the number of clusters reported for
DBSCAN was a result of the method. Eps and MinPts are specified parameters for
the DBSCAN step only, and o is specified for Spectral clustering only. f is the
stretching factor which was applied to hypocenters prior to applying DBSCAN.
dx1 and dx2 describe the horizontal and vertical spacing of nodes for the spline
inversion.

Method Spectral DBSCAN Splines
Mmin 2.3 None

Number of earthquakes 542 51,339

Number of clusters 3 9

Eps 2 km

c 2 km

MinPts 80

f 5

dx1 5668 m

dx2 2544 m

knowledge of the number of clusters. We choose k = 3, corresponding to
the Paganica, Campotosto, and Cittareale clusters (Table 1). Note that
this choice of k = 3 only applies to the spectral clustering step: the
number of clusters found during the later application of DBSCAN will be
independent. Finally, we choose ¢ = 2000 m (Table 1). However, for
1250 m < ¢ < 4300 m, the results vary only negligibly. This spectral
clustering step separated the hypocenters into three dominant clusters
(Fig. S1).

Before applying the second clustering iteration, we modify the hy-
pocenter data to enhance fault like trends. Using the 396 hypocenters which
were preliminarily identiffed as corresponding to the Paganica fault system
using spectral clustering, we solve for a least squares distance best fft plane.
The positions of all 51,339 hypocenters, which includes those outside of
the Paganica cluster, were then stretched by a factor f = 5 in the di-
rection normal to the best fit plane (Table 1). f is chosen to enhance
planar trends in the hypocenters, particularly those matching the
Paganica fault’s strike and dip. This preliminary operation only mini-
mally influences hypocenters close to the fault surface identified by the
best fit plane, while deviations of earthquakes far from this surface are
amplified. With these Paganica fault-like planar trends more pro-
nounced and bias from deviant earthquakes reduced, clustering algo-
rithms are much more successful at both recognizing the full extent of
faults and keeping neighboring faults separate. This step also reduces the
problem that some groups of hypocenters may lie along the same fault,
but there are so few hypocenters between these groups that clustering
algorithms normally find them as separate clusters. This spatial modi-
fication also allows for the use of less computationally expensive clus-
tering methods.
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Once DBSCAN is applied during a later step, the results for the
Paganica fault system can be closely matched without applying f given
careful tuning of other clustering parameters (Fig. S2). However,
without applying f, we observe that clustering will be less successful
when considered over the entire seismic sequence. For example, for f =
1, we find no combination of DBSCAN parameters which both work well
for the Paganica fault while simultaneously distinguishing the Campo-
tosto fault from the Mt. San Franco fault. For f > 5, we do not observe
further improvement to clustering.

2|
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With preparatory data operations completed, the final clusters can be
generated using DBSCAN (Ester et al., 1996; Pedregosa et al., 2011;
Schubert et al., 2017). Intuitively, DBSCAN finds dense clusters of points
which are separated by regions of low point density. The two important
parameters are MinPts and Eps which essentially control the number of
points in clusters and the width of clusters, respectively. DBSCAN relies
on the distinction of core points, border points, and noise. A point p is
considered a core point if there are greater than MinPts points g with dist
(p,q) less than Eps. Such points q are considered direct density-reachable

Fig. 3. Also available interactively online
(see supplementary material or at htt
ps://bit.ly/3k7ykqg). Looking northwest
(a) and southwest (b). Final results from
clustering hypocenters from the L’Aquila
seismic sequence. Spectral clustering was
first used to find three primary clusters.
DBSCAN was then used on all hypocenter
location data. The gray dots were consid-
ered by DBSCAN to be noise. Three hypo-
center clusters are colored according to
potentially affiliated geological fault traces:
the Paganica fault, Campotosto fault, and
Mt. San Franco fault. We plot the individual
Paganica fault trace as green, though our
Paganica cluster represents Paganica fault
system including faults between the Mt.
Stabiata and San Demetrio faults. The Cit-
tareale cluster, containing several faults, is
colored brown. Other clusters were found
for which we do not consider their rela-
tionship to known fault outcroppings, and
these are colored randomly. (For interpre-
tation of the references to colour in this
figure legend, the reader is referred to the
web version of this article.)

—&— Paganica
—&— Paganica - San Demetrio
—&— Campotosto
—&— C(Cittareale

Mt. San Franco
—&— Mt. Stabiata

Mt. Castellano - Colle Enzano
—&— Surface rupture

Noise
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from p and are thus established as part of the same cluster. A point g that
does not qualify as a core point, but with dist(p,q) < Eps, is considered a
border point in the same cluster as the core point p. A point p, is
considered density reachable from each core point p; in the chain py,ps...
pn if each core point in the chain is direct density reachable to the core
point before it; that is, if p; 1 is direct density-reachable from p; for 1 < i
< n — 1. Note that p, itself can be either a core point or border point.
This allows for the growth of clusters by density reachability where all
density reachable points from the core point p are part of the same
cluster. A point q with dist(pjq) > Eps to all core points p; is considered
noise. Thus, a cluster is composed of core points p and their density
reachable border points g. We empirically found that Eps = 2 km and
MinPts = 80 (Table 1) are good choices for the Paganica fault system.
However, based on a grid search of Eps and MinPts, the DBSCAN clus-
tering results for this fault are only negligibly sensitive to Eps and MinPts
(Fig. S3).

The result of DBSCAN is that hypocenters are grouped and estab-
lished as clusters (Fig. 3). Then, we identify the hypocenter clusters
according to which previously geologically identified faults they most
closely correspond to (Fig. 3). We discuss the relationship of geologically
identified faults and hypocenter clusters in the results section.

Tectonophysics 804 (2021) 228756
2.2. Inversion of Paganica fault system morphology model

Hypocenters within individual clusters can next be spatially inter-
polated to find a best fit 3D fault surface. Although we identified several
hypocenter clusters, this work focuses on modelling the morphology
only of the Paganica fault system. Assuming the aftershocks in the
Paganica hypocenter cluster are distributed in a damage zone and are
approximately symmetric about the Paganica fault system surface
(Valoroso et al., 2013), a least squares best-fit surface will represent the
average rupture location and thus closely resemble the fault surface.

We interpolated the hypocenters of the Paganica cluster using
splines. We choose splines because high-order polynomials tend to suffer
from unrealistic oscillations between interpolated data whereas splines
can converge to a solution using stable, low-order polynomials (e.g.
Fornberg and Zuev, 2007). The spline algorithm constructs a piece-wise
polynomial which is continuous and smooth. To apply splines, we
choose a coordinate system that is defined by the best fit plane to the
Paganica hypocenter cluster where x;’ faces along strike to the south-
east, Xo’ faces down dip along the fault plane, and x5’ faces the hanging
wall, normal to the fault plane (Fig. 4). We use 4th order bivariate B-
splines (Prautzsch et al., 2002; Virtanen et al., 2020) defined over the
region 0 < x3 < 15.2 km and 0 < x3 < 34.0 km which contains all
identified Paganica hypocenters. We distribute throughout the plane a

a Aftershock Position 1000
o o o
004 ° ° ° 750
2.5 B O o 500
E
€ | P
~ 5.0 o 9 o 250 c
g =
o
g 75{ ° ©° ° 0 £
& &=
S g
g— 10.0 1 o o o —250 §
1]
a
12.54 ° o o —-500
15.04 o o ° -750
o o o
0 5 10 15 20 25 30 35 ~1000
NW Base Strike distance (km) SE Base
b Surface Position
1000
Mt. Castellano o o o o
0.04 - Colle Enzano ° ° °
J Paganica 750
- San Demetrio
2.5 | === Mt. Stabiata o o o 500
= Paganica E
= o Knots =
£ 5.0 2 2 250 ¢
. ©
] =
= £
& 751 © ° ° 0 g
] &
i g
& 10.04 o o o =250 §
°
o
1251 © ° ° =500
1504 o S ~750
o o o o o o o
, ' : ' T —1000
0 5 10 15 20 25 30 35
NW Base Strike distance (km) SE Base

Fig. 4. (a) 2D representation of the aftershocks that were part of the Paganica fault cluster, and (b) the surface that interpolates them. Position is shown on the best-
fitting plane to the hypocenters where strike distance corresponds to x;’. The y axis corresponds to distance along dip, not depth, and corresponds to x»'. Colour
represents distance in meters from the best fitting plane on which spline knots were distributed (distance in x’3). Selected fault traces are shown as their projection
onto the same plane. The viewing angle is such that the viewer looks northeast and down.
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grid of nodes with spacing of dx; = 5668 m, and dx; = 2544 m (Fig. 4;
Table 1). In order to have 4th order splines defined through the fault
model, exterior nodes must also be used; these are distributed at dis-
tances of ' dx; and % dx; outside of our fault model (Fig. 4). However,
the style of exterior nodes implementation is not important for our re-
sults. Finally, the spline coefficients are inverted using least squares to
minimize the distance between the hypocenters and the spline surface.
The resulting splines indicate the best fit fault surface model of the
Paganica hypocenter cluster (Fig. 4).

3. Results

The final clusters, the results of DBSCAN, can be seen in Fig. 3. Nine
clusters were recognized; among these, the Paganica, Campotosto, and
Cittareale clusters are most clearly represented. Of the 51,339 events,
29,367 were clustered as part of the Paganica fault system, 9588 on the
Campotosto fault, and 5384 in the Cittareale cluster. We also find a
cluster between the Paganica and Campotosto faults which appears to
correspond to the secondary Mt. San Franco fault and Capitignano fault
(part of the Montereale fault system) according to the interpretation of
Lavecchia et al. (2012).

The general correspondence between these clusters and the poten-
tially associated geologically mapped fault traces can also be seen in
Fig. 3. Although the Paganica fault is our primary focus, and clustering

Tectonophysics 804 (2021) 228756

parameters were chosen for optimal performance on the Paganica
cluster, we describe other clusters briefly.

Although the hypocenters identified as the Campotosto fault main-
tain a depth of at least 4.5 km, they show a close association to the
Gorzano fault trace (e.g. Lavecchia et al., 2012; Castaldo et al., 2018).
First, the dip of the hypocenters shows relatively good alignment with
the fault trace, as noted by Chiaraluce et al. (2011). Further, the
apparent strike of the hypocenters in the Campotosto cluster varies
along strike, matching well with the fault trace (Fig. 3b), supporting a
connection between them. Similarly, Castaldo et al. (2018) modelled a
fault connecting these hypocenters and the fault trace. Clustering was
also successful at identifying both the shallow and steeply dipping
portions of the listric Campotosto fault (Valoroso et al., 2013) as the
same feature. The correspondence of the Mt. San Franco fault and the
mapped surface trace is less clear. For example, the strike of the hypo-
center distribution is ~N140°, while the strike of the overall surface
trace varies from ~N140° to ~N100°. The Cittareale cluster accurately
contains the June 25th M, 3.5 event. This cluster contains a group of
faults, and is actually dominated by NE dipping, antithetic faults. The
SW fault appears to align with the Montereale Fault system NW of the
Mt. San Franco fault.

The separation between major faults and more scattered and inde-
pendent aftershocks (referred to as noise and rejected by the DBSCAN
algorithm) appears successful. However, sets of faults antithetic to and
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Fig. 5. Also available interactively (see supplementary material or online at https://bit.ly/3k7ykqg). Interpolated fault surface compared to locations of hypocenters
in our Paganica fault system model. We plot the individual Paganica fault trace as green, though our Paganica fault model represents the whole Paganica fault system
including faults between the Mt. Stabiata and San Demetrio faults. The perspectives are such that (a) views northeast, (b) views northwest, (c) views southeast, and
(d) views southwest. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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intersecting the Paganica cluster contained very dense aftershocks and
these were not distinguishable from the Paganica fault through clus-
tering with our chosen parameters. In particular, there are three faults at
the south-east portion of and antithetic to the main Paganica fault model
which were too closely connected to the Paganica fault to be distin-
guished (Fig. 5). As reported in Ouillon et al. (2008), allowing the
number of clusters to increase separates hypocenters which belong to
the same fault, while having less clusters tends to lump hypocenters of
different faults together. In general, the choice of clustering parameters
involves a trade-off between capturing the full seismogenic portion of a
fault within a single cluster versus separating out the minor fault splays
(Fig. S3). Another example of this trade-off is illuminated where the
fault which hosted the My 5.4 aftershock was considered mostly noise
due its low aftershock density, despite hosting a large earthquake. Using
focal mechanisms with manual hypocenter interpolation, Lavecchia
et al. (2017) instead modelled this and nearby aftershocks as occurring
on an east dipping fault.

The 3D Paganica fault surface that best fits the clustered hypocenters
can be seen in Figs. 4 and 5. The modelled fault surface has a length of
~20 km at the shallow edge of the fault. This is longer than what is often
used for modelling the mainshock (often between 12 km and 17 km: see
reviews of Chiaraluce, 2012; Vannoli et al., 2012), and longer than
geologically measured deformation (e.g. Boncio et al., 2010; Vannoli
etal., 2012). However, this length is consistent with evidence suggesting
that the Paganica-San Demetrio fault system essentially acts as a SW
dipping normal fault system extending approximately 19 km (Calderoni
etal., 2012; Civico et al., 2015; Civico et al., 2017). The northwest tip of
our fault model extends beneath mapped surface ruptures (Boncio et al.,
2010) of the fault system including at the Mt. Castellano-Colle Enzano
faults and the similarly striking portion of the Mt. Stabiata fault. The NW
shallow edge of the fault model is where the Mt. Stabiata fault transi-
tions to E-W striking. This contrasts slightly with the models of Lav-
ecchia et al. (2012, 2017), where the E-W striking portion of the Mt.
Stabiata fault is also combined into their Paganica fault system models.
The fault surface extends SE to the termination of the San Demetrio
fault. This same SE fault extent agrees with other Paganica fault system
models (e.g. Lavecchia et al., 2012; Civico et al., 2017). Ultimately, our
fault model extent is coherent with the radiography of the seismogenic
Paganica fault and with mapped faults as discussed in Chiaraluce (2012)
and Valoroso et al. (2013) based on the same dataset. However, a
notable difference is that our fault model extends ~34.0 km along strike
at its base. This is because a group of aftershocks at the NW termination
of our fault model lies in alignment with but coherently with the more
traditionally established Paganica fault system hypocenters (Figs. 3 and
5).

The fault surface extends to about 10 km depth which is the
maximum depth of the hypocenters (Valoroso et al., 2013). The width of
the fault (along dip) is 15.4 km, which is similar to values often used to
model the mainshock (about 11 km - 17 km, see Chiaraluce, 2012).
These are also similar dimensions to those of the 3D model of Lavecchia
et al., (2012): 15 km along dip and maximum depth of 10.5 km.

Visually speaking, the surface is smooth and does not deviate greatly
from a plane. It shows curvature similar to other 3D fault models
generated with similar methods in other locations (Carena and Suppe,
2002; Kaven and Pollard, 2013) and for the Paganica fault system
(Lavecchia et al., 2012; Lavecchia et al., 2017; Castaldo et al., 2018).
The basic plane from which the surface is built (where x3° = 0), which
indicates the average geometry of our Paganica fault model, has a strike
and dip of N143° and 42.6°, respectively. This is in close agreement with
(Lavecchia et al., 2012), whose 3D reconstruction suggested a strike of
~N140° and dip of ~45°. A compilation of 9 previous L’Aquila main-
shock models shows values of strike between N133° and N144° with an
average of N137°, and values of dip between 47° and 56° with an
average of 52° (Chiaraluce, 2012). The focal mechanism of the main-
shock shows a strike and dip of N135° and 55°. Measurements of surface
ruptures strike dominantly N130°-N140° (Boncio et al.,, 2010;
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EMERGEO Working Group, 2010).

Approximately southeast of documented Paganica fault surface
ruptures, the model wavers as it interacts with the more complex dis-
tribution of hypocenters. Here, moving upward, the dip abruptly flattens
at about 3 km in depth (Fig. 5b). This flattened portion of the fault model
is likely responsible for the lower-than-average dip of our Paganica fault
system model. The shallow, low dip portion of the fault model is likely
not truly associated with the Paganica fault system, but is possibly
associated with the Gran Sasso fault to the east (Chiaraluce et al., 2011).
The apparent continuity of these low dipping hypocenters with those of
the Paganica fault system is the reason clustering identifies them as one
fault surface. The incorporation of fault traces during clustering could
help to produce fault models which are more consistent between hy-
pocenter depths and fault traces along the entire length of faults,
although automation of such a procedure is outside the scope of this
paper.

We note specifically two locations on the Paganica fault system
model where issues in the interpolation might have arose; (i) near the
south-east edge of the fault where there are conjugate faults intersecting
the Paganica fault (Fig. 5b), and (ii) at the north-west edge of the fault
where there were few aftershocks for interpolation (Fig. 4, 5a).

Regarding problem (i), because the clustering did not distinguish
between some conjugate planes that were closely connected to the
Paganica fault system, the surface interpolation is slightly shifted by
these conjugate fault hypocenters (Fig. 5b). Because the hypocenters
were widely distributed near the fault in the direction normal to the fault
(the aftershocks deviate from the 3D surface by ~600 m on average),
small variation in the fault surface does not conflict with the hypocenter
distribution. It is thus likely not a problem that the surface is shifted
slightly in this location. Ultimately, manual fault model construction
models did not suffer from this problem (Lavecchia et al., 2012; Lav-
ecchia et al., 2017; Castaldo et al., 2018).

Regarding problem (ii), although the splines were inverted with
regularly distributed knots, the hypocenters which were used to find the
knot parameters were distributed unevenly. Particularly at the upper
NW corner of the fault, interpolation was done where few hypocenters
were available. The spline parameters in this location are thus under-
constrained. To address this problem, we applied a convex hull to the
hypocenters. We only report the portion of our fault model that is within
this polygon.

To evaluate the accuracy of our 3D fault model, we compared its
orientation to the orientation of all 3422 available earthquake focal
mechanisms (Chiaraluce et al., 2021; Fig. 6). This comparison is quan-
tified as the angle between the normal vectors at the fault surface model
and the normal vectors of the aftershock focal mechanisms. From the
focal mechanisms, both the fault planes and auxiliary planes are used.
We compare this angular mismatch result for our 3D fault model with a
planar model of Cirella et al. (2012). For both our 3D fault and for the
planar model, there is alignment at two primary peaks of 20° and 90°
which correspond to the fault and auxiliary planes of the focal mecha-
nisms, respectively (Fig. 6b). Because earthquakes with greater magni-
tude tend to involve larger rupture area and greater slip, we test the fault
surface to focal mechanism alignment weighted according to the
magnitude. While a weight of 32 M would be more consistent with the
moment and energy released from an earthquake, the results would be
completely dominated by the largest earthquake. We thus choose 10 ™ as
a weight to be consistent with the My, My, and Mg scales. The weighted
results are also shown in Fig. 6b, where instead of plotting a histogram of
each angular mismatch, we plot a normalized histogram of each angular
mismatch weighted by 10™. Focal mechanism to fault plane orientation
agreement improves with this weighting scheme. Note that we do not
include the focal mechanism of the My 6.1 mainshock in the weighted
analysis because its high magnitude and weight would make it dominate
the orientation results, and the alignment of our fault model created
from aftershocks compared to the mainshock orientation is only of
secondary importance.
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Fig. 6. Angular mismatch between the normal vectors of the interpolated fault surface and the normal vectors of the available earthquake focal mechanisms. (a)
Angular mismatch compared to location of hypocenters in the cluster that corresponds to the Paganica fault. Earthquake locations are plotted according to their
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as a weight.
4. Discussion and conclusions

There is a need to develop and improve algorithms which can find
the 3D morphology of faults. The primary purpose here is to explore a
new algorithm to do so which is fast and objective and to investigate the
utility of machine learning for this purpose. We used successive itera-
tions of clustering to construct a quantitative model of the fault seg-
ments associated with the L’Aquila seismic sequence. The approach,
based on a combination of spectral and DBSCAN clustering, provides
several advantages. The method can be applied in only a few seconds on
a standard laptop, saving time in the case of analyzing a seismic
sequence in real time, while it is also objective in its determination of
faults. In this way, it provides advantages over the high-resolution op-
tions of manual fault interpolation. It is advantageous over planar
clustering approaches in that it estimates the continuous first order

geometry of a fault zone. Curved faults, for instance the listric Campo-
tosto fault, can thus be represented with one cluster (Fig. 3). Using
planar clustering, a curved fault would instead be represented with
several disconnected planes (e.g. Wang et al., 2013) which complicates
modelling the rupture of a mainshock along its entire extent. Our
approach is further advantageous over algorithms which cluster based
on the distribution of points around each cluster’s average point, such as
k-means, which would find diffuse clouds of seismicity that are suitable
for methods which are not dependent on fault morphology (Weatherill
and Burton, 2009).

4.1. Parameter choice

Although the algorithm is objective, the parameter choices (Table 1)
require care as these can have important influences on the results. The
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reader can experiment with different parameter choices in the Supple-
mentary Jupyter Notebook.

For our application of DBSCAN, the choice of Eps, MinPts, and f re-
quires human supervision. By decreasing f, DBSCAN incorporates hy-
pocenters which are more widely distributed about faults and it tends to
group multiple faults together. However, by changing MinPts and Eps to
reflect different values of f, similar results to our final clusters can be
ultimately obtained. We showed an example of our Paganica cluster and
fault using f = 5 (Figs. 3-5) and f = 1 (Fig. S2). Fig. S3 shows the in-
fluence of Eps and MinPts on the Paganica hypocenter cluster.
Increasing MinPts increases the tendency to reject potential clusters as
noise, resulting in fewer and smaller clusters, and specifically reducing
the number of hypocenters in the Paganica cluster. Increasing Eps in-
creases the tendency for hypocenters to be clustered together, poten-
tially merging faults together, and increasing the number of hypocenters
in the Paganica hypocenter cluster. We performed a grid test to quantify
the influence of Eps and MinPts (Fig. S3). Variations of the parameters
about our chosen values did not impart important changes to the
Paganica cluster which consistently had approximately the same 29,367
hypocenters. Because of this, the parameters do not necessarily need fine
tuning as a wide variety of parameters produce similar results.

The choice of spectral clustering parameters is slightly less crucial
here, as it is primarily used for preliminary data operations which are
designed to make DBSCAN clustering more successful. The spectral
clustering step requires prior knowledge of the number of major hypo-
center clusters. We chose three based on visual inspection and trial and
error; increasing the number of clusters broke the Paganica fault up
along strike which could also be acceptable based on several other
Paganica fault system models having smaller distance along strike (e.g.
Vannoli et al., 2012). ¢ was tuned manually to maintain maximal sep-
aration between the three dominant clusters (Fig. S1). However, for
1250 m < 6 < 4300 m, the results varied only negligibly.

4.2. Implications for fault structure

We identified key hypocenter clusters in part according to which
geologically identified fault segment they most closely correspond to.
However, there are important differences between the hypocenter
clusters and faults. Clustering will be blind to portions of faults which
were never activated. Thus, the true maximum extent of a fault can be
greater than indicated by the hypocenter clusters. Similarly, for separate
faults which are coherent with each other in space and shape, clustering
may indicate these as being the same fault. This is why our fault model is
longer at its base than most other fault models, at ~34.0 km. Clustering
does not discriminate in accordance with fault identification made
geologically at fine scales, but rather identifies coherent hypocenters.
While this may not be desirable for recognizing geological structures on
fine scales, it can be more appropriate for modelling earthquakes where
rupture is not confined to a single fault plane (e.g. Tondi, 2000; Civico
et al., 2017).

We tested the quality of the interpolated Paganica fault surface
through several approaches. One approach was to find how well the
interpolated fault surface matches the orientation of the earthquakes
that it interpolates (Fig. 6). When comparing the match of aftershock
orientations to our 3D model and a 2D model (Cirella et al., 2012), there
does not appear to be an improvement moving from the planar model to
our 3D surface. This is probably due to the fact that the L’Aquila
mainshock ruptured on a relatively planar fault segment. Faults with
more curvature, such as the Campotosto fault, will likely show more
certain improvement by incorporating 3D morphology.

While ideally the aftershock orientations should have matched the
3D fault surface model well, when comparing the mismatch with each
aftershock weighted equally, the aftershock orientations only mildly
agree with either the planar model or 3D model (Fig. 6). However, when
the magnitude of aftershocks (10M) is used as a weight, the match be-
tween aftershocks and the 3D Paganica fault model increases. This
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suggests that larger earthquakes are more closely aligned with their fault
surface and/or the focal mechanisms of smaller events are more poorly
constrained. Another plausible reason could be that some aftershocks
may have been associated with conjugate faults instead of the main fault
surface (Fig. 5b). There may be more unnoticed, smaller conjugate faults
as well.

However, the misalignment between the fault model and focal
mechanisms may have implications for the structure of the fault. Fault
structures can become very complex with damage zones involving
various scales and patterns (Peacock and Sanderson, 1991; Valoroso
et al., 2014), and aftershock clusters often occur at the most complex
regions of a fault surface where damage zones are the most extreme
(Sibson, 1989; Kim and Sanderson, 2008; Michele et al., 2020). Not only
damage zones, but also the complexity of fault connectivity provides a
means for aftershocks to rupture in directions and locations not in
agreement with the main fault surface. One model for fault growth re-
quires several smaller faults to link together, for instance through the
breaching of relay ramps, in order to form larger faults (Childs et al.,
2009). This results in complex rupture geometries. Relay ramps allow
for a fault to be connected by many discontinuous faults at small and
large scales. Relays have indeed been observed on surface expressions of
the Paganica fault (Roberts et al., 2010). Faults can also be connected by
extensional steps and contractional steps (Kim et al., 2004). The tips of a
fault can be particularly complex as well. Where fault displacement dies
out at the tips of faults, displacement tends to end in splays (Kim et al.,
2004). Splaying has been observed in the Paganica fault geologically
(Cinti et al., 2011) and seismically (Chiaraluce et al., 2011). Given these
issues, and that we are modelling a fault zone as a single 3D surface, we
expect discontinuous sections of the fault zone to contain aftershocks
which align poorly to the main fault surface.

4.3. Future directions

This approach could aid in seismic hazard assessment. Most models
of stress transfer that address aftershocks in the L’Aquila seismic
sequence rely on flat fault models (e.g. Serpelloni et al., 2012). However,
the 3D morphology of the mainshock as well as any recipient faults will
influence this stress and earthquake interaction, influencing the devel-
opment of earthquake sequences (Mildon et al., 2016; Kaven and
Pollard, 2013). Our 3D fault model can be used as the basis for a 3D
mainshock geometry, and the slip distribution can be inverted using
geodetic or waveform data (e.g. Kaven and Pollard, 2013; Castaldo et al.,
2018). This approach may illuminate important foreshock-mainshock or
mainshock-aftershock interactions that are otherwise not clear.

This method can be applied to other seismic sequences. The L’ Aquila
sequence itself is just one part of a larger extensional fault system that
has experienced several recent seismic sequences extending over more
than 150 km. This includes the 1979 Umbria sequence, the 1997 Col-
fiorito sequence, and the 2016 Amatrice/Visso/Norcia sequence. Other
locations where seismicity is thoroughly monitored, for instance
throughout California, could be good sites to apply this technique.
Further, applying this method to faults in developing seismic sequences
could help illuminate locked zones where a region of a fault experiences
seismic quiescence but is surrounded by an active portion of the fault
(Avouac et al., 2015).
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