Geophysical Journal International

Geophys. J. Int. (2020) 220, 682702 doi: 10.1093/gji/ggz423
Advance Access publication 2019 September 26
General Geophysical Methods

A concise python implementation of the lattice Boltzmann method
on HPC for geo-fluid flow

Peter Mora “,! Gabriele Morra “? and David A. Yuen*

L College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2 Department of Physics, School of Geosciences, University of Louisiana at Lafayette, LA 70504, USA. E-mail: gabrielemorra@gmail.com
3 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA

4 Department of Big Data, School of Computer Science, China University of Geosciences, Wihan 430074, China

Accepted 2019 September 24. Received 2019 August 31; in original form 2019 April 4

SUMMARY

The lattice Boltzmann method (LBM) is a method to simulate fluid dynamics based on
modelling distributions of particles moving and colliding on a lattice. The Python scripting
language provides a clean programming paradigm to develop codes based on the LBM,
however in order to reach performance comparable to compiled languages, it needs to be
carefully implemented, maximizing its vectorized tools, mostly integrated in the NumPy
module. We present here the details of a Python implementation of a concise LBM code, with
the purpose of offering a pedagogical tool for students and professionals in the geosciences
who are approaching this technique for the first time. The first half of the paper focuses on
how to vectorize a 2-D LBM code and show how if carefully done, this allows performance
close to a compiled code. In the second part of the paper, we use the vectorization described
earlier to naturally write a parallel implementation using MPI and test both weak and hard
scaling up to 1280 cores. One benchmark, Poiseuille flow and two applications, one on sound
wave propagation and another on fluid-flow through a simplified model of a rock matrix are
finally shown.

Key words: Permeability and porosity; Geomechanics; Non-linear differential equations;
Numerical approximations and analysis; Numerical modelling; Wave propagation.

1 INTRODUCTION

This paper aims to provide a clean Python high performance implementation for the lattice Boltzmann method (LBM) to model fluid
flow in geosciences. This method involves simulating the Boltzmann Equations on a discrete lattice—an approach that solves the Navier—
Stokes Equations in the macroscopic limit (Frisch ez al. 1986; Chen & Doolen 1998)—rather than modelling the Navier—Stokes equations
themselves. A complete treatise of LBM covering all facets can be found in (Succi 2001). In recent years, the LBM has been applied to
various geophysical problems. This includes the study of viscoelastic waves (Xia et al. 2017), the study of flow in porous media (Keehm
et al. 2004; Guo et al. 2014), the study of imbibition in porous structures (Zheng & Wang 2018), the study of dissolution and precipitation
in porous media (Kang et al. 2003; Huber ef al. 2014), the study of reactive flow in porous media (Kang et al. 2010), the study of plumes
and convection in the mantle (Mora & Yuen 2017, 2018a,b), the study of melting with convection (Huber ef al. 2008) and the study of
reactive transport (Huber ef al. 2008; Parmigiani et al. 2011). In the following, we will review briefly the LBM prior to presenting the
implementation.

The LBM allows fluid dynamics to be modelled by simulating the movement and collision of particle distributions on a discrete lattice
in 2-D or 3-D. LBMs have their origins in lattice gas automata (LGA) in which particles move and collide on a discrete lattice representing a
simplified discrete version of molecules moving and colliding in a gas. LGA were first proven by Frisch et al. (1986) to yield the Navier—Stokes
equations in the macroscopic limit. These initial LGA models were unconditionally stable and conserved mass and momentum perfectly.
However, they were computationally expensive with averaging needed over space to obtain the macroscopic equations and furthermore, costly
calculations were required to evaluate the collision term. Since the initial LGA models, the method has been extended to model distributions

682 © The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

http://orcid.org/0000-0001-5347-446X
http://orcid.org/0000-0002-0787-6107
mailto:gabrielemorra@gmail.com

Concise python implementation of the LBM on HPC 683

Cs C, Cg
A
C3 | « % > Cy
Y
Cy Cs
Ca

Figure 1. The D209 lattice.

of particles moving and colliding on a lattice. In these LBMs, one is solving the classical Boltzmann equation on a discrete lattice. An efficient
method to calculate the collision term via relaxation was proposed by Bhatnagar, Gross and Krook (BGK, Bhatnagar et al. 1954), but only
more recently has this been applied to the LBM, enabling efficient algorithms to be developed (e.g. Higuera & Jimenez 1989; Qian et al. 1992;
Chen & Doolen 1998), and accurate pressure and velocity boundary conditions to be derived (Zhuo & He 1997). Because of the advancement
of parallel computing, since the late 1990’s, research and applications of the LBM have exploded (see Huang et al. 2015; Kriiger ez al. 2017,
for a review).

In particular, numerous studies have been conducted of thermal convection (e.g. Shan 1997; He et al. 1998; Guo et al. 2002; Wang et al.
2013; Arun et al. 2017). Multiphase methods have been developed as well, such as Shan & Chen (1993), and this remains a highly active
research field (Huang ef al. 2015; Xie et al. 2017; Di Ilio et al. 2017).

The LBM has been applied to many disciplines of computational science and engineering, due to how well it can be scaled up on high
performance computing (HPC) clusters. Recently developed massively parallel software are the Multiphysics WaLBerla (Feichtinger at al.
2011) able to model 10'? nodes on Petascale computers, the non-uniform grid implementation reaching up to a trillion grid nodes illustrated
in (Schornbaum & Riide 2016), the widely used Palabos (Lagrava et al. 2012), OpenLLB (Heuveline & Latt 2007), LB3D (Groen et al. 2011),
all of them showing excellent performance on HPC. In this work, we illustrate an example of parallel implementation in 2-D, tested up to
1280 cores, only in Python, for pedagogical purposes and for specific applications in geosciences.

This paper provides the details of a technical implementation of the LBM using the Python language(Van Rossum ez al. 2007; Lutz
2013). The goal of this manuscript is to provide geo-scientists and non-experts in parallel programming, with all the details necessary to write
their own fast and scalable implementation of the LBM, using only NumPy, the fundamental package with built-in vectorized operations
on N-dimensional array objects (Morra 2018) and mpidpy, the most commonly used package with the bindings for the Message Passing
Interface for Python, (Dalcin et al. 2011). Details on how to optimize every segment of the code are described throughout the paper in
order to deliver scientists with simple and clear instructions on how to write their own vectorized scalable parallel LBM code using only
Python.

2 NUMERICAL SIMULATION METHODOLOGY

The LBM involves simulating particle number densities moving and colliding on a discrete lattice. In one time-step, the particle number
densities can move by one lattice spacing along the orthogonal axes, or along diagonals, followed by modification of the number densities at
the lattice nodes due to collision. We use the standard notation in LBM denoted DnQOm for a simulation in D = n dimensions, and with O
= m velocities on the discrete lattice. In the following, we restrict ourselves to 2-D and use the D209 lattice Boltzmann lattice arrangement
shown in Fig. 1. In this lattice, we define £, (X,) as the number density of particles moving in the «-direction where the O = 9 velocities are
given by

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

684 P. Mora, G. Morra and D.A. Yuen

¢, = [(0,0),(1,0),(0, 1), (—1,0),(0, —1),(1,1), (=1, 1), (= 1,—=1), (= 1, 1)]". This choice means that ¢, is the zero velocity vector
and so represents stationary particles, and ¢, = —c¢, ;> fora = (1, 2, 5, 6) are the velocities in the eight directions show in Fig. 1. The lattice
is unitary so the lattice spacing and time step are Ax = Ar = 1.

The LBM involves two steps: (a) streaming (movement) and (b) collision of a distribution function. If we wish to model thermal convection
or thermal-chemical convection, we just model additional distribution functions, representing the energy and the chemical component (e.g.
Luo & Girimaji 2002; Arcidiacono ef al. 2007; Bartlett 2017). In this paper, we focus on the technical aspects of implementing the
LBM using Python. We therefore model a single distribution function, £, representing the mass density of particles moving and colliding
in the «-direction on the discrete lattice. The evolution equation encompassing the two steps of moving (streaming) and colliding is
given by

fo(X+ e ALt + At) = fo(X, 1) + AfI(X, 1), @)

where AfS(x, t) is the collision term and represents the redistribution of particle number densities at lattice site (x, #) due to collisions. The
collision term can be calculated exactly, but this is computationally expensive and as such, is rarely done. Alternatively, the collision term can
be calculated by the BGK method (Qian ez al. 1992; Chen & Doolen 1998), in which case the distributions relax to the equilibrium distribution.
The BGK method is computationally efficient and gives satisfactory results provided the distributions are not too far from equilibrium. The
BGK collision term is given by

Afy(x,1) = (%) (&% 1) = falx,2)), 2

where f9(x, t) is used to denote the equilibrium distribution of f, (X,). It should be noted that since the simple single relaxation time BGK
collision term given by eq. (2) was proposed, more accurate and stable multiple relaxation time methods have been developed (Lallemand
& Luo 2000; d’Humieres et al. 2002). The equilibrium distribution is obtained by a Taylor expansion about the Boltzmann distribution
given by

i o (c —u)?
Su) = W@(p (‘ SRT >, 3)

where D is the number of dimensions. Taking the Taylor’s expansion of /*/, we obtain

. _ 0 c? ccu l(e-uw? 1w
A e T <_2RT> (1 T ' Y2 RTy Eﬁ) : @

Noting that the speed of sound is given by ¢, = ~/RT, and that on the D209 lattice we have ¢, = ~/RT = ¢/+/3 where ¢ = Ax/At = 1 is the
lattice speed, we obtain the equilibrium distribution on the lattice of

S0, 1) = pu, [1 3w+ (e,) - %uz]

= PWqy [cl + ca(ey - u) + cs(ey - u)2 + C4u2] .)
In eq. (2), the value of 7,is a relaxation time which relates to the kinematic viscosity v, through
T, = v /(c2At) +0.5. (6)

In eq. (5) for the equilibrium distribution, the weighting scalars w, are given by wy = 4/9 for « = 0 (stationary particles), w, = 1/9 for
a = (1, 2, 3, 4) (particles travelling along the two Cartesian axes), and w, = 1/36 for @ = (5, 6, 7, 8) which are the particles travelling
diagonally.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 685

The macroscopic properties, density p and velocity u relate to the distribution function f, through

px.1) = D fulx, 1), (7)
and
P(x.1) = pu(x.0) =) fulX. 1)ea. (8)

where p = p(Xx, ?) is the macroscopic density, P(x, 7) is the momentum density, R is the universal gas constant, and D is the number of
dimensions. In the following, we restrict ourselves to two dimensions (D = 2) and we use units such that R = 1.

3 AVECTORIZED PYTHON IMPLEMENTATION

3.1 Initializing Python and MPI

Every Python program begins with the loading of the packages of relevance to the particular code being developed (Langtangen et al. 2006).
Implementation of the vectorized version of the code will only use the numerical Python library NumPy (McKinney 2012) and the graphical
libraries of Python to plot the results: MatPlotLib(Hunter 2007):

import numpy as np
import matplotlib.pyplot as plt

Next, we need to set an array, ai [], that contains pointers to opposite directions and an array, c [], that contains the lattice velocities,
and ,w [], the weights associated with each of the nine lattice velocities. Refer to Section 2 for a precise formulation. We use the NumPy
module to define the arrays explicitly:

¢ = np.array(lf(o,oJ1, ri,o1y, r-i,o01, fo,11, I10,-11, [1,17,
[_11_1]1 [11_1]1 [_111]]) # nght to left
ai = np.array([0, 2, 1, 4, 3, 6, 5, 8, 71)

na = 9 # Number of lattice velocities

D =2 # Dimension of the simulation

w0 = 4.0/9.0

wl = 1.0/9.0

w2 = 1.0/36.0

w = np.array([w0,wl,wl,wl,wl,w2,w2,w2,w2])

Finally, we need to define physical quantities associated with the relaxation time. This can be done based on a non-dimensional time
step dt and lattice spacing dx equal to 1. Using a constant viscosity value in the entire domain and based on eq. (6), the relaxation time and
constants ¢y, ...c4 of eq. (5) can also be computationally defined:

dt = 1; dx = 1; S = dx/dt
cl = 1.0

c2 = 3.0/(Sx*2)

c3 = 9.0/(2.0%S*%4)

c4

-3.0/(2.0%xS*x%2)

Initialize the relaxation time
nu_f = 0.1 # Viscosity
tau_f = nu_f * 3./(Sxdt) + 0.5

Next, we must initialize the size of the domains, the number of time steps, and the arrays that we will use. When using NumPy, unlike
standard Python, arrays need to be allocated, using the np.zeros() or np.ones() commands, defining their type (Int, Float, etc.). This allows
the NumPy routines to quickly access the arrays in a vectorized form and greatly speeds the calculations. The type is generically defined as

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

686 P. Mora, G. Morra and D.A. Yuen

float, and will be set to either 32 bit or 64 bit float, depending on the architecture of the machine. The size of the grid is nxxnz. For this
implementation, we initialize nine arrays £, £ _stream, £_eqg, Delta_f, rho, u, Pi, u2, cu:

nt = 100 # Number of time steps
nx = 101 # X—-axis size
nz = 101 # Z—-axis size

Initialize arrays

f = np.zeros((na,nz,nx),dtype=float)
f_stream = np.zeros((na,nz,nx),dtype=float)
f_eq = np.zeros((na,nz,nx),dtype=£float)
Delta_f = np.zeros((na,nz,nx),dtype=float)
rho = np.ones((nz,nx),dtype=£float)
u = np.zeros((D,nz,nx),dtype=float)
Pi = np.zeros((D,nz,nx),dtype=float)
u2 = np.zeros((nz,nx),dtype=float)
cu = np.zeros((nz,nx),dtype=float)

To run an example simulation, it is necessary to initialize the density and velocity. We assume for this simple demonstrative example
that there are no obstacles and that the media is homogeneous, and we will show how to add internal heterogeneities. Here the density is
stored in rho and because the initial speed in the medium u is assumed to be zero, the function £ will depend on the density only, with
the appropriate weights. We consider here a point source located in the right of the domain, however the initial density can be modified in
any way.

Initialize the density

rho_0 =1.0 # Density
rho *= rho_0
rho[nz//2,3*xnx//4] = 2xrho_0

for a in np.arange (na):
fla] = rho * wl[a]

Before running a simulation for nt time steps, a last step is necessary, which is the creation of a vector of indexes. This is a key
passage for running a vectorized simulation. This array of indexes will allow us to apply an instruction in the nine directions of the
LBM algorithm and in every nxxnz point in a vectorized manner, greatly speeding the streaming calculations by about two orders of
magnitude:

indexes = np.zeros((na,nx*nz),dtype=int)

for a in range (na):
xXArr = (np.arange(nx) - cl[a]l[0] + nx)%nx
zArr = (np.arange(nz) - clal[l] + nz)%nz
xInd, zInd = np.meshgrid(xArr, zArr)
indTotal = zIndxnx + xInd
indexes[a] = indTotal.reshape (nx*nz)

where the array c [] that contains the lattice velocities is embedded in a general index indTotal [] of dimension nax(nxxnz). This
architecture of indexes is what allows us to vectorize the Python version of the kernel of the LBM algorithm.

The Python time loop requires four steps:

. Imposing the Boundary Conditions (periodic in this example)

. Calculating the streaming term for £

. Calculating the macroscopic velocity term u and the new density rho
. Calculating the equilibrium distribution £_eq, based on u and rho

WD A W N =

. Calculating the collision term Delta_f and add itto £

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 687
The entire loop requires only 20 lines of code:
for t in np.arange (nt+l):

(1) periodic BC
f[0:na,0:nz, 0] = f£f[0:na,0:nz,-2]
f[0:na,0:nz,-1] = £f[0:na,0:nz, 1]

(2) streaming term

for a in np.arange(na):
f new = f[a].reshape (nxxnz) [indexes[a]]
f_streaml[a] = f_new.reshape(nz,nx)

f = f_stream.copy ()

(3) macroscopic properties: rho and u
rho = np.sum(f, axis=0)

Pi = np.einsum(’azx,ad->dzx’,f,c)
ul0:D]=Pi[0:D]/rho

(4) Equilibrium distribution
u2 = ul0]xul[0]+ulll+ull]
for a in np.arange (na):
cu = clal[0]xul0] + clal[l]*ull]
f_eglal] = rho x wla] » (cl + c2xcu + c3xcux*2 + cdxu2)

(5) Collision term
Delta_f = (f_eq - f)/tau_f
f += Delta_f

We note the following important observations:

1. The 1indexes array created above has been used in the definition of the new collision term
f new = f[a].reshape (nx'nz) [indexes[a]]. Here two reshape () instructions are used to change shape to the f ar-
ray, but these do not consume any computing time, as they only refer to the internal structure of this array. This is explained in more detail in
(Morra 2018, chapter 3).

2. Ifin the instruction £ = f_stream.copy (), copy () would be absent, then £ would point to the memory allocated for £_stream,
which then would be modified.

3. In the instruction P1 = np.einsum(’azx,ad->dzx’,f,c) we used the function np.einsum (). This powerful tool allows
one to perform any tensorial product, with any high-dimensional array, at the speed of the underlying C optimized code.

4. The instruction u2 = ul0]*ul0]l+ull]l*ul[l] could be written wusing the Einstein summation function
np.einsum(’ijk,ijk->jk’, u, u) or by exploiting the linear algebra library of NumPy np.linalg.norm(u, axis=0)*"2,
but that would not accelerate the code. In the same way cu = cla] [0]*ul0] 4+ cl[a]l [1]*ull] could be written as
np.einsum(’j,jkl->k1l’,cla],u) but it would not accelerate the code. For both cases the vectorization of NumPy is
equally fast.

5. Separating the instructions Delta_f = (f.eq - f£)/tau.fandf += Delta_f helpsto avoid issues with the allocations of the
NumPy array £.

3.2 Key tools for optimizing the kernel

To illustrate where vectorization plays a role, we show how to write the unoptimized version of the streaming step:

for a in range (na):
for x in range (1,nx-1):
x_xa = (x - c[all0] + nx)%nx
for z in range (nz):
z za = (z - c[al[1l] + nz)%nz
f_stream[a][z][x] = flallz_zal[x_xa] # Streaming
step

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

688 P. Mora, G. Morra and D.A. Yuen

A user might also want to add a level of complexity by implementing regions where waves can penetrate, and others that do not vibrate,
either with absorbing or non absorbing BC. If the impenetrable regions are called ‘solid’, and a solid array defines where flow is allowed
(zero) and where it is not allowed (one), then the streaming step becomes

for a in range(na):
for x in range(l,nx-1):

x_xa = (x - cl[a][0] + nx)%nx
for z in range(nz):
z_za = (z — cl[al[l] + nz)%nz

if solid[z_za] [x_xa]:

f streamf[a]l[z]([x] = flail[al]llz] [x] # Bounce-back BC
else:

f_stream[a] [z][x] = flallz_zal[x_xa] # Streaming step

where the 1D array denoted ai [] that was defined previously contains pointers to the opposite directions of flow of the number densities.
Use of this pointer array allows so called ‘bounce-back’ boundary conditions to be applied to solid regions, which is equivalent to a zero-slip
boundary condition at the edges of solids.

The code above for the streaming step works but it is extremely slow due to its explicit loops and the i £ statement. The reader can test
this implementation and will find a decrease in speed of about two orders of magnitude relative to the optimized streaming step specified
below. The same experiment can be done with all the other steps, which have been initially written in this unoptimized manner, and then
vectorized.

The optimized streaming step with bounce-back boundary conditions is written as:

for a in np.arange (na) :

f_new = fla].reshape(nx*nz) [indexes[a]]
f_bounce = flai[a]] #bounce back
f_stream[a] = solid[a]xf_bounce + (l-solid[a])*f_new.

reshape (nz, nx)

where the array solid [a] is a Boolean array that is set to True if the adjacent point in the a-direction is a solid region of the model
where particles cannot penetrate, and to False if the adjacent point is a fluid region of the model. Here we exploited the equivalency in
Python between 0 and 1 and False and True, respectively.

4 PERFORMANCE OF THE SERIAL CODE

Performance in Python depends on the libraries employed, and by how well optimized its most computationally intensive parts are (see Morra
2018). In particular it is possible to use Just in Time (JiT) compilation on certain routines or functions, and accelerate the code to speeds
of 10 per cent slower, or even closer, to standard compiled codes (Behnel e al. 2011). Standard vectorization, however, as illustrated in the
optimizations employed in the implementation shown in this work, already allows one to accelerate the code from non-vectorized Python by
one order of magnitude or more.

We have also performed tests on different computing architectures, in particular, on (i) a MacBook Air with two cores in one 1.3 GHz
Intel i5 processor, 8 GB of memory and on (ii) a home PC with 24 processor 2.7 GHz Xeon and 63 GB of memory, for the serial code. For
the parallel implementation, we describe later tests using a computer cluster.

For a standard matrix product calculation, we found that on the MacBook Air, the fully vectorized Python version described here was
1.8 times slower than the default compiled (-O) C equivalent, and 3.7 times slower than the fully optimized supported optimization (-O2) of
C. On the same machine, by using the Just in Time calculation (Smith 2015) we found that the Python and the compiled C (standard, with -O
optimization) where closer, with a gap of less than 10 per cent.

On the PC we found that the vectorized Python was only 10 per cent slower than the (-O) standard compiled version in C, while using
the fully optimized (-O2) compilation C was 3.2 times faster than vectorized Python. When using Just in Time compilation on Python, this
was about 10 per cent slower than regular (-O) C.

Overall we observe that Python represents a reasonable compromise between performance and usability. Although it can never completely
match the performance of C, and is systematically less efficient than the best optimized compiled codes, code development in Python is very
clear and easy to write, allowing fast development and debugging. We therefore recommend it for developing new HPC algorithms.

5 PARALLEL VERSION

In the following, we present the algorithm and the Python parallel implementation of the LBM. In our implementation the calculations are
performed on the slave nodes, while the master node sends and receives data, and creates output files.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 689

Region1l |Region2 | Region3 Region N

— S S—

Bil) PN

_'_I

P2 Slave nodes contain

regions plus overlap

P3

Figure 2. The domain decomposition showing the physical domains modelled in each processor.
5.1 Domain decomposition

The first task of developing an MPI code is to determine how the physical domain maps onto slave nodes. The simplest way is to divide the
physical domain into vertical strips. We will assume that the x-axis is longer than the z-axis and choose strips parallel to the z-axis.

Since in the LBM only nearest neighbor communications are needed, in the striped domain decomposition, the portion of data on the
slave nodes that has to be communicated covers only a single unit in width. As an example, we show in Fig. 2 the spatial decomposition
onto slave nodes and in Fig. 2 the expanded view of a two node problem with nx = 11. The first slave node has 6 units of space plus the
two overlapping edges, and the second slave node has 5 units of space plus the two overlapping edges. Each domain is a constant size which
equalizes work between processors, so the second domain has one empty column. Allowing for the one unit overlap of each domain, each
slave node therefore contains seven columns.

5.1.1 Effect of choice of domain decomposition

In order to solve a problem with MPI, one needs to subdivide the problem into domains which are each solved on a processor. The choice
of how to subdivide the problem into domains affects the amount of communication required by the algorithm. Here, we derive the formulas
for the amount of communication per processor for a domain composition over the x-axis only, and over both the x- and y-axes, and compare
these choices. We then generalize to the case of 3-D.

In the following, for simplicity we assume that the calculations are made over a square grid (2-D case) or cubic grid (3-D case) of size
nP. We denote the number of dimensions of the calculations as D and the number of dimensions for the domain decomposition as d.

Consider first, a 1-D domain decomposition (d = 1) in a 2-D domain (D = 2). In this case, the amount of communication per processor
denoted C(d, D) is proportional to twice the size of the grid

Cd=1,D=2) = 2n,)

where the factor of 2 is due to having two sides to the domains. Hence, the communication cost per processor is proportional to the length of
the y-axis for a problem that divides the x axis onto the 7, processors.

Now, we calculate the communication cost for the 2-D problem (D = 2) decomposed into square domains spanning onto the 7, processors
(d = 2). The area of each domain is given by

A = nz/np.
Hence, the length of each side of the domain is given by
L =,/n?*/n, = nfD_lmn.

In this case, the communication cost is proportional to four times the length of the square domains. The factor of 4 is due to there being two
sides of each domain along each of the two dimensions. Hence, the communication cost is proportional to

Cd=2,D=2)=4L = 4n,”"’n, (10

One observes that the domain decomposition over d = 1 dimensions is less costly by a factor of 2 relative to the d = 2 dimensional domain
decomposition, but more costly by a factor of n}/ 2. Hence, for small problems (eg. n, ~ 1), the d = 1 dimensional domain decomposition
is less costly by up to a factor of 2, while when n, > 1, the d = 1 dimensional domain decomposition becomes more costly than the 2-D
domain decomposition (d = 2) by a factor of /n - The number of processors when the two domain decompositions are equally efficient can
be calculated by solving

n = 2n;1/2n,

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

690 P Mora, G. Morra and D.A. Yuen
which yields a crossover point at
C(1,2) = 2n = C(2,2) = 4n,'’n = n, = 4. (11)

In other words, for small cases with n, < 4, the 1-D domain decomposition is most efficient, but the 2-D domain decomposition rapidly
becomes much more efficient for cases of n, > 4, and tends towards being more efficient by a factor of /7, /2.

Next, we consider the communication cost for a 3-D problem. The cases for a 1-D and 2-D domain decompositions (d = 1, 2) are already
covered by the - example above, aside from an additional factor of » required to calculate the area of domains (i.e. the area of the side of
domains is given by L x n where L is the length of the domains on the x—y plane, and the factor # is the length of domains over the z axis).
Namely, we have the communication cost for the case of D = 3 for 1-D and 2-D domains (d = 1, 2) given by

Cc(1,3) = 202, (12)
and
C(2,3) = 4n’n, ', (13)

Next we consider the case of a 3-D problem (D = 3) decomposed into 3-D cubes (¢ = 3). The volume per processor is given by

so the length of the sides of the domains is given by

3\ 173
n

L = <—) = n;l/Sn.
np

The area of sides of the domain cubes is L?, and each face of the cubes must be communicated (6 faces of a cube), so the communicational
cost is proportional to

6L% = 6n’n,*. (14)

The above formulae can be generalized to work for all of the above cases (i.e. d = 1, ..., 3, D = 2, 3). The generalized equation for
communication costs is given by

C(d, D) = 2dnP~Vn{=0/1, 15)
Hence, the communication cost for a 3-D problem (D = 3) using a 3-D relative to a 2-D domain decomposition (d = 3 relative to d = 2) is
given by
C€(3,3) 3m,’ 3

(3.3 _ 2 = Zpols, (16)
CG.2) am,? 2"

As for the previous 2-D case (D = 2) for 1-D and 2-D domain decompositions (d = 1,2), for a small number of processors (rn, ~ 1), the
relative cost of the d = 2 domain decomposition is faster by a small factor (3/2). And as the number of processors increases, the d = 3 domain
decomposition is faster by a factor of n},/ 8 (n, > 1). The crossover point where the d = 3 domain decomposition becomes more efficient than
the d = 2 decomposition is given by

e 3 3\°
n, 2(5):>np: 3 ~ 11. (17)

The generalized equation for the crossover when it becomes more efficient to use a d-dimensional domain decomposition compared to a (d
— 1)-dimensional decomposition can be solved by setting C(d, D)/C(d — 1, D) to unity. Hence, we have

crossover d d<d7 1)
n =|—- .
! @d-1

In other words, once the number of processors exceeds 1, = 11, the 3-D domain decomposition is more efficient than a 2-D domain
decomposition, and is much more efficient than a 1-D domain decomposition. We conclude that it is most efficient to use a domain
decomposition over all axes (i.e. d = D). However, to simplify the example and Python coding in this didactic paper, we use a 1-D domain
decomposition in the following 2-D examples. Also, we find that communication costs are small relative to other parts of the LBM algorithm.
A future paper is planned on the implementation of the parallel 3-D LBM for convection.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 691

5.2 Initializion of MPI

Besides loading the numerical Python library, we have here to load the MPI libraries, and initialize them in order to know the number of
nodes (size) and on which node (rank) the software is presently running:

from mpidpy import MPI

comm = MPI.COMM_WORLD

size = comm.Get_size ()

rank = comm.Get_rank ()

Next, we must initialize the size of the domains. Let us suppose that the size of the grid is nxxnz. We then partition the grid as even
widths along the x-axis as is possible. Hence, we will have that the number of domains is nr=nx/nx_i where nx is the total size of the
x-axis, and nx_1 is the size of'a domain which must include the overlap of the adjacent domains. The size of nx_i can be therefore calculated
using:

nx_1i = (nx+(size-1)x2)//(size-1)

while (nx_i-2)*(size-1)<nx: nx_i += 1

nxi = nx_1i - 2 ;

which first estimates the size of nx_i and then updates it to ensure the entire x-axis can fit into the (size-1) slave nodes. Note that
in the above, nxi is the size of the domain exclusive of the two overlap columns.

Next, we need to calculate how many slave processors out of the total number of (size-1), can be used to model the entire domain
of size nx. This is achieved as follows:

nr = nx//nxi

dnx = nx%nxi

if dnx > 0: nr += 1
nr += 1

where if dnx >0, then dnx is the width exclusive of the overlap columns of the final (nr-1)th active slave node. In the above, nr
denotes the rank or total number of processors that are active including the master node. Hence, processor 0 is the master node and processors
1 through (nr-1) are slave nodes.

It should be noted that due to the fact that we divide the domain into integer widths that are located on an integer number of processors,
sometimes the (nr-1)th node may only span dnx<nxi columns of physical space. Furthermore, the number of nodes to span the physical
space may be less than the number of processors being used, that is (nr-1) < (size-1). This is unavoidable but means that sometimes for
a given number of processors, these cannot all be used to model the (nr-1) regions of space that span the total physical space. If we denote
mx as an array specifying the size exclusive of overlap of each of the (nr-1) active slave nodes, we have:

mx = np.zeros(size,dtype=int)

for r in range(nr): mx[r] = nxi

if dnx > 0: mx[nr-1] = dnx

5.3 Initializing the model in the domains

In Python, arrays are only allocated and not deallocated because the Python Runtime, through the garbage collector, automatically deallocates
the arrays through evaluating when they are not used anymore and therefore deallocates them when required. This is one of the advantages
that makes developing Python codes easier.

Let’s look now at how to allocate and set the values of arrays on the master node and on the slave nodes. In the following, we utilize
rank=0 as the master node on which we initialize the model in the entire model space, and utilize rank> 0 to specify each domain of the
domain decomposition. Thus, the density p (specified as RHO), the velocity u (specified as U), and the definition of the non deformable parts
of the model (specified as SOLID) in the entire 2-D space of size nz x nx can be initialized on the master node with the following:

nx = 1001

nz = 251

if rank == 0:

SOLID np.full ((nz,nx), False)
RHO = np.ones((nz,nx))
U np.zeros ((D,nz,nx))

where in the above, we specified first the size of the rectangular box where we run the simulations as, for example, nx = 1001 and nz = 251.

Once all of the variables that span the physical space are initialized on the master node (i.e. rank=0), namely, the density denoted RHO
and the velocity denoted U, one must send the nth domain of RHO and U to the nth node (i.e. rank=n). The following code segment achieves
the process of sending each domain of space to the appropriate node and sets an array Solid [a] which defines whether the adjacent point
in direction « is solid or fluid. Subsequently, we specify routine put_rho_u () which puts the density and velocity onto nodes, and mention

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

692 P. Mora, G. Morra and D.A. Yuen

put_solid () which similarly puts the solid array SOLID onto the nodes as array solid, where SOLID is True in solid regions of the
model, and False in fluid regions.

put_rho_u()
put_solid()
for a in np.arange (na):
for z in np.arange (nz) :
for x in range(nx_1i):
if solid[_z_za_[allz]l][_x_xa_J[a]ll[x]]:
Solid[a][z] [x] = True
else:
Solid[a]l [z] [x] = False

Note that in the present implementation, the blocks sent using MPI are large (the entire interior of each domain associated with each
processor). This delegates the effort of optimizing the MPI communication to the mpi4py library. An alternative would be to send the
columns of each domain one by one. This choice is machine and problem-dependent.

In the Python code shown in this paper, uppercase RHO and U are respectively used to denote the density and velocity on the master
node (rank=0) and lowercase rho and u are, respectively, used to denote the density and velocity on the slave nodes (rank>0). Note that
the routine put_rho_u () also initializes the number densities denoted £ using the equilibrium distribution shown in eq. (5), exactly as was
done in the serial version:

def put_rho_u():

if rank == 0:
for r in np.arange(l,size): #iterate through the nodes
x0=(r-1) *nxi fmemory chunk

send densities to all nodes
tmpRho = RHO[O:nz,x0:x0+mx[r]].copy ()
comm. Send ([tmpRho, MPI.FLOAT],dest=r)

send velocities to all nodes
tmpU = U[0:D,0:nz,x0:x0+mx[r]].copy ()
comm. Send ([tmpU.MPI.FLOAT],dest=r)

if rank > 0 and rank < nr:
receive densities at the node "rank"
tmpRho = comm.Recv (source=0)
rho[0:nz,l:mx[rank]+1]=tmpRho

receive velocities at the node "rank"
tmpU = comm.Recv (source=0)

ul0:D,0:nz,l:mx[rank]+1]=tmpU

initialize the distribution function £

u2 = np.einsum(’ijk,ijk->3k’, u, u)
for a in np.arange(na):
fla] = rho » w[a] * cl
cu = np.einsum(’1i,1ijk->jk’, clal, u)

for d in np.arange (D) :
fla]l] += wla]lx(c2xc[a]l[d]l*u[d] + c3*cux*2 + c4dxu2)

The routine put _solid () is written similarly, but taking into account that it is a Boolean array.

5.4 Communication of Python objects
MPI for Python supports two types of communication.

1. A pickle-based communication of generic Python objects, using standard commands send (), recv (), becast (). This option
is very easy to use, as it does not require any type or object size specification. In order to send buffer objects, the receiving array must be
sufficiently large. This option is the slowest, as it is not designed to be optimized for NumPy arrays.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 693

2. A dedicated communication of buf fer-1ike objects. This is designed to be based on the same commands as the pickle-based
commands, but with a capitalized first letter of the commands, for example Send (), Recv (), Bcast (), Scatter (), Gather (). In
this case, the data types must be specified in both the sending and receiving commands, for example MPI . INT and MPI . FLOAT.

Because of its greater efficiency and specific design for NumPy arrays, we use buffer-1like instructions in the following (i.e.
commands with capitalized first letters).

When designing the parallel implementation of a parallel code, one has to choose between Point-to-Point and Collective communication.
While for very large problems, it is more efficient to use the Collective options (e.g. Broadcasting, Scattering) we prefer to present here an
implementation based on Point-to-Point instructions. This is based on (i) the observation that the Communication Costs are minimal compared
to the Computing Time, at least up to about 1000 processors, for which we made our tests and (ii) the greater flexibility of a Point-to-Point
implementation, which allows one to send blocks of different sizes for domains that are not a simple multiple of the number of cores.

Another design choice is between blocking and non-blocking instructions. Blocking commands block the program until the data have
been sent to the destination node, and the buffer is available again. This approach is easier to use, but it implies a greater role played by the
local MPI implementation. On some Systems, MPI may save the data freeing immediately the buffer, on others instead the data have to first
reach the destination. We tested both blocking and non-blocking communication and found comparable performances on the Beowulf system
on which we performed our tests. On some systems non-blocking communication might be required. In this case it will be necessary to use
ISend () and IRecv () to send and receive data, and the Wait () call to check whether the communication has finished. In Section 6,
we show that the time required for communication is several orders of magnitude less than the total computing time, which implies that
blocking instructions are sufficient. For larger system, however, a more sophisticated non-blocking implementation might be required. For
pedagogical and simplicity reasons, we also believe that the present implementation is more suitable to help the reader who is new to parallel
programming.

5.5 Getting the edges of each domain in MPI

Each slave node contains a segment of physical space plus an edge from adjacent slave nodes to the left and right to allow the near-
est neighbor communications needed for the LBM streaming step. The standard Python command to send an edge to an adjacent slave
node is of form comm.send (edgeR, dest=dest_node) for the right edge, and comm. send (edgelL, dest=dest_node)
for the left edge. For each signal being sent, there must be a command to receive the message from each slave node of form
edge = comm.recv(source = source._node)

The above are the standard Python commands, valid for any data type. However, we show here the faster, vectorized commands designed
for NumPy arrays. The instruction differs because it starts with a capital letter (Send instead of send, and Recv instead of recv), and
because it exploits the declaration of the variable type (MPI . FLOAT in this case). Here follows the Python code needed to send the two edges
of each slave node to the right and left, and to receive these two edges from the adjacent nodes.

def get_edges():

if nr == 2: # 1if there is only one slave cpu
if rank == 1:
f[0:na,0:nz,0] = £[0:na,0:nz,mx[1]]

f[0:na,0:nz,mx[1]+1] = £[0:na,0:nz, 1]
else: # any other number of slave cpus
if rank > 0 and rank < nr:
edgeR = np.zeros(nz)

edgel = np.zeros(nz)
rr = rank+l if rank<nr-1 else 1 #right block
rl = rank-1 if rank>1 else nr-1 #left block

for a in range(na) :
comm.Send ([(f[a,0:nz,mx[rank]]).copy (), MPI.FLOAT
] ,dest=rr)
comm.Send ([(f[a,0:nz,1]).copy (), MPI.FLOAT],
dest=rl)

comm.Recv (edgeR, source=rr); fla,0:nz,mx[rank]+1] =
edgeR[0:nz]
comm.Recv (edgel, source=rl); f[a,0:nz,0] = edgeL[0:
nzj
Notice the instruction copy () after the slice of the array £ () : this allows reallocating that slice into a contiguous array, which is
necessary when using the fast communication features. Note how the right and left edges use two different allocations for the array, as for

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

694 P. Mora, G. Morra and D.A. Yuen

Regions of physical
space

f
Copy right edge of P2 to P1 |

| Copy left edge of P2 to P1 |

Processor 1 m Processor 2

— A)

’ Copy right edge of P1 to P | | Copy left edge of P1 to P2 |

Figure 3. An enlargement of a domain decomposition showing two physical domains modelled in two processors and the circular boundary conditions.

every slave node they have to be stored separately. This also helps accelerate the synchronization (left and right edges are sent first together,
and then received together) and therefore improves the code performance (Fig. 3).

5.6 Setting the boundary conditions

In the examples shown in this paper, we specify a simple model of a porous solid rock matrix (Torquato 2013), and simulate (i) the flow from
the left to the right of the model due to a density (and hence pressure) difference at the left and right boundaries and (ii) the propagation of a
wave front through the matrix, where the grains are assumed rigid, and are therefore reflective for the incoming wave.

The following code shows the Python implementation that sets simplified left and right boundary conditions by using the left and
right density to calculate the zero velocity equilibrium distributions. It should be noted that setting of accurate pressure or velocity boundary
conditions is much more involved (Zhuo & He 1997) and is not shown here where the main purpose is to show the Python implementation of the
core LBM. As the left boundary is located on node 1 (i.e. rank=1) and the right boundary is located onnode (nr-1) (i.e. rank= (nr-1)),
we require no MPI communication step to set the densities at these boundaries. For approximate general boundary conditions at any location
in space, a code similar to the put_rho_u () routine using the equilibrium distribution to set the number densities can be written (see
Section 5.3), although again, it should be noted that accurate pressure or velocity boundary conditions require a more detailed treatment
(Zhuo & He 1997):

def put_rho_boundaries (rho_left, rho_right):

if rank == 1:

x = 0

f[0:na,0:nz,x+1] = np.outer(w[0O:nal,rho_left*np.ones(nz))
elif rank == nr-1:

x = mx[rank]

f[0:na,0:nz,x+1] = np.outer(w[0:na], rho_right*np.ones(nz))

Although the gain is minimal, by calling this routine only once for each loop of the simulation, we vectorize the assignment and compacted
it into one line of code for each case. Notice how the float rho_left and rho_right are mapped to an array through np . ones (nz) in
order to match the dimensionality of the boundary. The np . outer instruction represents an outer product, which allows two 1-D arrays to
be combined into one 2-D array.

5.7 Getting the density for plotting

In order to plot the results, which is managed from the master processor, one must get the density from the slave processors
back to the master processor. The following Python code gets the density from slave processors back to the master processor. This

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 695

25 T T T T

20

15 - :

10 + ® x g

Speedup
[]
x
»®

0 5 10 15 20 25
nodes

(=]

Figure 4. The speedup as a function of processor with up to 24 processors (o = 1001 x 1001 case, x = 101 x 101 case).

operation is vectorized using NumPy arrays (McKinney 2012) and uses the associated vectorized MPI instructions from it mpidpy
(Dalcin et al. 2011).

def get_rho():
if rank > 0 and rank < nr:
comm.Send ([rho,MPI.FLOAT],dest=0)
if rank == 0:
for r in range(l,nr):
tmp = np.zeros((nz,l+mx[rank]+1))
comm.Recv (tmp, source=r)
x0=(r—-1) »nxi
RHO[O0:nz,x0:x0+mx[r]] = tmp[0:nz,l:1+mx[r]]

6 PARALLEL PERFORMANCE

The parallel code was benchmarked on two different machines. One home system running up to 24 processor 2.7 GHz Xeon with 63 GB
of memory. On this machine, the Python version was V2.6.6, installed on Linux Centos V 6.6. Fig. 6 shows the speedup as a function of
processor for a 2-D model of sizes 101 x 101 and 1001 x 1001 (Fig. 4).

A second test was performed on the Queen Bee 2 Beowulf Cluster, a 1.5 Petaflop peak performance cluster containing 504 compute
nodes with over 10 000 Intel Xeon processing cores, 56 Gb/sec (FDR) InfiniBand 2:1 and 1 Gbs™! Ethernet management network. We tested
the code on 1, 2, 4, 8, 16, 32, 48 and 64 nodes, corresponding to 20, 40, 80, 160, 320, 640, 960 and 1280 processors, respectively. Given the
size of the computing tools, we tested the model with an increasing number of computing points. We ran 5000 timesteps on a grid of size
20000 points on the z-axis and (Ncpys — 1)#25 on the x-axis, where N¢pys is the number of processors. With this choice of parameters, the
problem size increases linearly with the number of cpus, ranging from 20 000 x 475 points on 20 processors up to 20 000 x 31975 (over 600
millions computing points) on 1280 processors. To use Ncpys — 1 as a parameter was due to the fact that the domain is divided among all the
processors except the first (master core).

Fig. 5 shows the speedup as a function of the number of processors on the Beowulf cluster for both the weak scaling illustrated above
and strong scaling of a problem of 20 millions computing points (10 000 x 2000) (Numrich 2018) (Chapter 6). The plots for the speedup are
shown in log—log scale (left) and allow the scaling to be estimated over several orders of magnitude in numbers of processors. On the right,
we show the normalized performances on linear-linear scale (i.e. the speed divided by the number of processors normalized by the smallest
case, 20 cpus). Weak scaling results are shown as dots and are based on the numbers shown in Table 1. The scaling is perfectly linear up to
960 processors, and shows a slight decrease in performance for the case of 1280 cpus. The results for the strong scaling problem are more
complex. We observe a threshold number of cpus above which the solver scales linearly with the number of processors, which varies with
the problem size. For 20 millions computing points, the threshold is at about 200 cpus. This behavior is likely related to the size of the cache
involved into handling the large arrays in the MPI implementation.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

P. Mora, G. Morra and D.A. Yuen

696

Downloaded from https://academic.oup.com/gji/article/220/1/682/5574400 by guest on 29 June 2021

‘sAe1re o31e[o) o[puey A[1odoid 0y oyoeo y3noud
10U ST 2197} ‘s10552001d JO Toquinu Ia[[ews © 10, "087 03 dn sndo (91 woiy Apresury Suress syre)s opod oy (0007 X 000 01) sturod Sunndwoo suor[[Iur (7 103 9sBO ST U] "SI10853001d JO JOqUUNU 21} 0) SSI[PILFI AZIS
wolqold owes o°1 ‘Surress Suong J0J dwes Y moys sjo[d o) Wwopoq oy} uQ ‘s10ssa301d (g7 | 10J AJU0 9s8a10IP SIS B S9AIsq0 AU “(sndo () apou duo 10J | Jurwunsse sAem[e ‘duewriofiod pazijeuriou 3y jo 1o[d
Teour—Ieaul] :[oued puey-1ysu dog, -oseos Surfeos yeop, oY) 1oJ dnpoads o Jo j01d So[-30] :[oued puey-}yoy dog, ‘s10ssa001d (g7 03 dn s10s59901d JO T0qUINU Sns1oA s3uI[eog pue dnpeadg Suong pue Jeop| S dIn3L

sndd jo uaquinN sndd jo JaquinN
0021 0001 008 009 (o]0} 4 00¢ 0 0T 20T
L L : : :) L 00) L
Buijeds Jeaulq |ed13LJodY| [00T
9p0oD uoyiA
poD Uoylkd @ e Lzo
[
® lvo
3
w 0T m
90 m e
3 S
® (go”
6 F 0T
e e a Lot ul|eds Jeauly |ed13aJody] ——
° Puljeos Jeaurq |edialoay] ——
apoD uoyikd @
1
Buijeds Huouls pazijewloN buouys - dnpaads
snd> jo JaquinN sndd jo JaquinN
00zt 0001 008 009 00 002 0 0T 20T
L L : : :) 00) L
buijess Jeaurq |ed13alody] ——
9p0D uoyA
poouopkd e | ..
Fv'0
o
g H
90 m g
2 S
(1]
F8'0
[}
e ® e e g8 |01
Buijeds Jeaulq |edalody] ——
9poD UOYIAd @
1
Buljeas dyeapn pazijewloN Jeap - dnpaads

Concise python implementation of the LBM on HPC 697

Table 1. Timing table for the weak scaling test of the parallel code, broken down to its detailed components. Times are in percentage of the total time, for the
weak problem described in the test (size growing proportionally to the number of processors). The performance remains stable from 20 up to 1280 processors,
with only a slight decrease in performance at 1280 processors, due to an increase in the time taken by the computational steps of the algorithm, mainly Collision.

Get edges Put rho bound Stream Macro Equilibrium Collision
Cpus (per cent) (per cent) (per cent) (per cent) (per cent) (per cent)
20 0.002 0.002 30.936 15.655 34.244 19.162
40 0.001 0.001 30.776 15.625 34.316 19.280
80 0.001 0.001 30.752 15.611 34.202 19.432
160 0.001 0.001 30.890 15.547 34.215 19.346
320 0.001 0.001 30.636 15.562 34.328 19.471
640 0.002 0.002 31.099 15.477 34.528 18.892
960 0.001 0.002 30.894 15.570 34.194 19.339
1280 0.001 0.001 30.785 14.811 32.689 21.713
Communication vs. Calculation time cost Absolute Computing time (20000 x 25 x (Ncpus-1) points x 5000 steps)
10° 4 °
3251 g @ ° ¢ ° °
g 10-1 1 3 300
£ 107 o 2 ®e © ° ° °
_8 —— Communication $ 2754
5 S N Stream o ® Stream
g 1074 — Macro g 2501 @ Macro
S —— Equilibrium = ® Equilibrium
k3 Lo-3 |~ Collision 22257 o collision °
c k| . =
"§ —— Total Time g 200 1
freg 10+] O 1,5 @@ [] [] ° °
-~ 1501 e o ° ° ° °
(') 2(')0 4(')0 6(')0 8(')0 10'00 12'00 (') 2(')0 4(')0 6(')0 8(')0 10'00 12'00
Number of cpus Number of cpus

Figure 6. Performance for the parallel code, broken down in its parts, the four computational steps (Stream, Macro, Equilibrium and Collision), and the
combined cost of the two communications steps (Communication).

To understand the role of each component of the code on the performance, we compiled a detailed table with the broken down computing
time for the two communications necessary at every step (get_edges() and put_rho_boundaries()), and of the four computing steps—(1)
streaming, (2) calculation of the macroscopic properties p and u from the number densities f,, (3) calculation of the equilibrium number
densities /¢ and (4) calculation and addition of the collision term Af?. The four computing steps are respectively denoted Stream, Macro,
Equilibrium and Collision. The exact timing for all of these steps for all the simulations for all the parallel tests are shown in Table 1. The
most important observation is that the time required for all the communications is several orders of magnitude smaller than the computing
time, meaning that the algorithm that we present is not prone to deadlocks or slow down for any number of processors. This can be
appreciated clearly in the left-hand part of Fig. 6 where the times of the two communication steps are combined into one. This log-linear plot
illustrates the orders of magnitude difference between computing and communication times, and demonstrates that communication costs are
negligible.

A more detailed look at the computing times, on the right of the Fig. 6, finally shows that the slight decrease in performance at 1280
processors is due mainly to an increase in the computing time of the Collision step, and in part to the other three computing steps. Overall,
the communication is optimal enough for practical uses and also for the large problems considered here.

7 APPLICATIONS

The code has been benchmarked with Poiseuille flow, a common test in the geodynamic literature (Gerya 2009). Fig. 7 shows that the
numerical solution matches the analytical solution on the entire domain. Towards the edges, the kink is due to the bounce-back Boundary
Conditions which are at half way between lattice sites (not exactly at lattice sites).

Simulations with this code have been performed for acoustic wave propagation and for fluid flow, both in a simplified solid rock matrix
made up of circular grains and grain clusters. The matrix used for the fluid flow simulation is shown in Fig. 8 (left), and the matrix used for
the wave propagation simulation is shown on the same figure, to the right.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

698 P Mora, G. Morra and D.A. Yuen

Velocity profile

0.004 A
0.003 A
>
|
0.002 A
0.001 A
—— Numerical solution
0.000 ® Analytic solution
T T T T T
—-20 -10 0 10 20
X

Figure 7. Benchmark results for the Poiseuille flow.

Solid matrix
0
Solid matrix

0

25
50

50
100

75
150

N 100
N 200
125 250
150 300
175 350
400

200

0 25 50 75 100 125 150 175 200
X

Figure 8. Two simplified rock matrices showing the solid region in red, and fluid region in blue. The matrix on the left is used for the porous flow simulation
example, while the one on the right is used for the wave propagation example.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 699

|u| (t=5000)

25

50

75

N 100

125

150

175

200

Figure 9. The fluid speed after 5000 time steps in the simulation showing the fluid pathways through the rock matrix.

For the fluid-flow dynamic simulations, we have set the density of the fluid in the pore space to unity, with the left and right boundary,
respectively, having a non-dimensional density of 1.01 and 0.99, respectively. These values have been chosen so that the differential density is
a very small compared to the absolute magnitude. The result for speed of the fluid in the simulation after 5000 time steps is shown in Fig. 9.

It is well known that acoustic waves can propagate inside fluids in a porous medium (Lighthill 1978). The second simulation example for
acoustic wave propagation is a simplified case of waves inside fluids of a porous medium. The results of the acoustic propagation simulations
are shown in Fig. 10, where a wave propagates from an initial point in nz/2, 3/4xnx. The wave front requires about 330 steps on a resolution
of 401 x 401 to cross the entire domain and interact with the propagating wave front through periodic boundary conditions. Snapshots of
fluid density in the simulation in this figure are shown up to time step 400.

8 CONCLUSIONS

The LBM is a flexible computational tool that allows, among other things, one to calculate wave propagation and fluid flow in complex
strongly heterogeneous media. We show how a code developed entirely in Python displays exceptional performance, only inferior to the best
optimized compiled C, if carefully written in a vectorized form (Morra 2018), and with the use of Just in Time compilation for selected
functions. Compared to C and Fortran, however, Python is easier to write (Guttag 2013), to understand, and to debug.

We also developed an MPI parallel implementation and verified that it achieves approximately linear speedup up to 24 processors on
a single node of a home computer, and more relevantly for scientific applications, that it scales linearly up to at least 1280 processors on
a Beowulf cluster. We therefore recommend using Python, NumPy, JiT and mpidpy for developing scientific high performance computing
software.

Scientific problems in geosciences that can be efficiently tackled with the LBM include fluid flow and wave propagation in porous
media, thermochemical mantle convection, magma dynamics and volcanic eruptions. We will start off with classical 3-D mantle convection
problems (e.g. Rabinowicz ef al. 1990). Assuming that the computational time continues to scale efficiently up to 10 thousand processors on
a comparable cluster to the one we used for benchmarking (10 000 Xeon processing cores, connected with 56 Gb/sec (FDR) InfiniBand 2:1),

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

700 P. Mora, G. Morra and D.A. Yuen

rho (t=20)

0.008

r0.006

- 0.004

0.002

0.000

rho (t=180) 0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

rho (t=320)

0.00035

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

X 0.00000

Figure 10. Snapshots showing propagation of a wave front in a fluid with solid inclusions in the model. The algorithm captures the complexities of strong

scattering from the inclusions and superposition of waves.

rho (t=100)

rho (t=260)

rho (t=400)

0.00200

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

Concise python implementation of the LBM on HPC 701

it will be possible to model a lattice size of 10° points (1, 000%) in about 3 minutes per 10 000 time steps. And if memory is sufficiently large,

a lattice size of 10'2 points (10 000%) could be calculated in about 48 hr per 10 000 time-steps. Tests on larger computing facilities are planned

and will be the topic of a follow up publication.

ACKNOWLEDGEMENTS

D.A. Yuen would like to thank National Science Foundation,s geochemistry and CISE programs for support. G. Morra would like to thank
the Board of Regents of Louisiana for support through the RCS project LEQSF(2014-17)-RD-A-14 and the Louisiana Optical Network
Infrastructure (LONI) that provided the cluster for the test runs, through the project loni Ilbm01. D.A. Yuen and G. Morra would like to thank
Matthew G. Knepley for the stimulating discussions on parallel scaling. The authors would like to thank the reviewers, C. Huber and C.

Thieulot for helpful suggestions that improved the paper.

REFERENCES

Arcidiacono, S., Karlin, I., Mantzaras, J. & Frouzakis, C., 2007. Lattice
Boltzmann model for the simulation of multicomponent mixtures, £/zys.
Rev. E, 76, 046703.

Arun, S., Satheesh, A., Mohan, C., Padmanathan, P. & Santhoshkumar, D.,
2017. A review on natural convection heat transfer problems by lattice
Boltzmann method, J. Chem. Pharm. Sci., 10(1), 635-645.

Bartlett, S., 2017. A non-isothermal chemical Lattice Boltzmann Model in-
corporating thermal reaction kinetics and enthalpy phase changes, Com-
putation, 5(37), doi:10.3390/computation5030037.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S. & Smith, K.,
2011. Cython: the best of both worlds, Comput. Sci. Eng., 13(2), 31-39.

Bhatnagar, PL., Gross, E.P. & Krook, M., 1954. A model for collision
processes in gases. I. Small amplitude processes in charged and neutral
one-component systems, /ys. Rev., 94(3), 511.

Chen, S. & Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows,
Ann. Rev. Fluid Mech., 30(1), 329-364.

Dalcin, L.D., Paz, R.R., Kler, PA. & Cosimo, A., 2011. Parallel distributed
computing using python, Adv. Water Resour., 34(9), 1124-1139.

d’Humieres, D., Ginzberg, 1., Krafczyk, M., Lallemand, P. & Luo, L.S., 2002.
Multiple-relaxation-time lattice Boltzmann models in 3D, P/il. Trans. R.
Soc. Lond., 360,437-451.

Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G. & Succi, S., 2017. Hy-
brid lattice Boltzmann method on overlapping grids, Phys. Rev. E, 95(1),
013309.

Feichtinger, C., Donath, S., Késtler, H.,G6tz,J & Ride, U., 2011. HPC de-
sign software for computational engineering simulations, /. Comput. Sci.,
2(2), 105-112.

Frisch, U., Hasslacher, B. & Pomeau, Y., 1986. Lattice-gas automata for the
Navier-Stokes equation, Phys. Rev. Lett., 56(14), 1505.

Gerya, T., 2009. Introduction to Numerical Geodynamic Modelling. Cam-
bridge Univ. Press.

Groen, D., Henrich, O., Janoschek, F., Coveney, P. & Harting, J., 2011,
Lattice-Boltzmann methods in fluid dynamics: turbulance and complex
colloidal fluids, in Juelich Blue Gene/P Extreme Scaling Workshop 2011,
Juelich Supercomputing Centre.

Guo, Z., Shi, B. & Zheng, C., 2002. A coupled lattice bgk model for the
Boussinesq equations, /nt. J. Numer. Methods Fluids, 39(4), 325-342.
Guo, J., Xing, H., Zhiwei, T. & Muhlhaus, H., 2014. Lattice Boltzmann
modeling and evaluation of fluid flow in heterogeneous porous media

involving multiple matrix constituents, Comput. Geosci., 62, 198-207.

Guttag, J.V,, 2013. Introduction to Computation and Programming Using
Python, MIT Press.

He, X., Chen, S. & Doolen, G.D., 1998. A novel thermal model for the lat-
tice Boltzmann method in incompressible limit, J. Comput. Phys., 146(1),
282-300.

Heuveline, V. & Latt, J., 2007. The OpenLB project: an open source object
oriented implementation of lattice Boltzmann methods, /nt. J. Modern
Phys. C, 18, 627-634.

Higuera, FJ. & Jimenez, J., 1989. Boltzmann approach to lattice gas simu-
lations, EPL (Europhys. Lett.), 9, 663 doi:10.1209/0295-5075/9/7/009.
Huang, H., Sukop, M. & Lu, X., 2015. Multiphase Lattice Boltzmann meth-

ods: Theory and Application, John Wiley & Sons.

Huber, C., Parmigiani, A., Chopard, B., Manga, M. & Bachmann, O., 2008.
Lattice Boltzmann model for melting with natural convection, /nzl. J. Heat
Fluid Flow, 29(5), 1469-1480.

Huber, C., Shafei, B. & Parmigiani, A., 2014. A new pore-scale model for lin-
ear and non-linear heterogeneous dissolution and precipitation, Geochim.
Cosmochim. Acta, 124, 109—-130.

Hunter, J.D., 2007. Matplotlib: a 2D graphics environment, Comput. Sci.
Eng., 9(3), 90-95.

Kang, Q., Zhang, D. & Chen, S., 2003. Simulation of dissolution and precip-
itation in porous media, J. geophys. Res.: Solid Earth, 108(B10), 2505—
2515.

Kang, Q., Lichtner, P. & Janecky, D., 2010. Lattice Boltzmann Method for
reactive flows in porous media, Adv. Appl. Math. Mech., 2, 545-563.

Keehm, Y., Mukerji, T. & Nur, A., 2004. Permeability prediction from thin
sections: 3D reconstruction and Lattice-Boltzmann flow simulation, Geo-
phys. Res. Lett., 31, L04606.

Kriiger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen,
E.M., 2017. The Lattice Boltzmann Method: Principles and Practice,
Springer International Publishing.

Lagrava, D., Malaspinas, O.,Latt. J. & Chopard, B., 2012. Advances in
multidomain lattice Boltzmann grid refinement, J. Comput. Phys., 231,
4808-4822.

Langtangen, H.P, Barth, T.J. & Griebel, M., 2006. Python Scripting for
Computational Science, Vol. 3, Springer.

Lallemand, P. & Luo, L.S., 2000. Theory of the lattice Boltzmann method:
Dispersion, dissipation, isotropy, Galilean invarience, and stability, P/ys.
Rev. E, 61(6), 6546—6562.

Lighthill, J., 1978. Waves in Fluids, pp. 501, Cambridge Univ. Press.

Luo, L.S. & Girimaji, S., 2002. Lattice Boltzmann model for binary mix-
tures, Phys. Rev. E, 66, 035301.

Lutz, M., 2013. Learning Python: Powerful Object-Oriented Programming,
O’Reilly Media, Inc.

McKinney, W., 2012. Python for Data Analysis: Data Wrangling with Pan-
das, NumPy, and IPython, O’Reilly Media, Inc.

Morra, G., 2018. Pythonic Geodynamics, Springer.

Mora, P. & Yuen, D.A., 2017. Simulation of plume dynamics by the lattice
Boltzmann method, Geophys. J. Int., 210(3), 1932—-1937.

Mora, P. & Yuen, D.A., 2018a. Simulation of regimes of convection and
plume dynamics by the thermal Lattice Boltzmann Method, Phys. Earth
planet. Inter., 275, 69-79.

Mora, P. & Yuen, D.A., 2018b. Comparison of convection for Reynolds and
Arrhenius temperature dependent viscosities, Fluid Mech. Res. Int., 2(3),
99-107.

Numrich, R.W., (2018). Parallel Programming with Co-Arrays: Parallel
Programming in FORTRAN. Chapman and Hall/CRC.

Parmigiani, A., Huber, C., Bachmann, O. & Chopard, B., 2011. Pore-scale
mass and reactant transport in multiphase porous media flows, J. F/uid
Mech., 686, 40-76.

Qian, Y., d’Humiéres, D. & Lallemand, P., 1992. Lattice BGK models for
Navier-Stokes equation, £PL (Europhys. Lett.), 17(6), 479.

Rabinowicz, R., Ceuleneer, G., Monnereau, M. & Rosemberg, C., 1990.
Three-dimensional models of mantle flow across a low-viscosity

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

http://dx.doi.org/10.1103/PhysRevE.76.046703
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1098/rsta.2001.0955
http://dx.doi.org/10.1103/PhysRevE.95.013309
http://dx.doi.org/10.1016/j.jocs.2011.01.004
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1002/fld.337
http://dx.doi.org/10.1016/j.cageo.2013.07.019
http://dx.doi.org/10.1006/jcph.1998.6057
http://dx.doi.org/10.1142/S0129183107010875
http://dx.doi.org/10.1016/j.ijheatfluidflow.2008.05.002
http://dx.doi.org/10.1016/j.gca.2013.09.003
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.4208/aamm.10-m10S02
http://dx.doi.org/10.1016/j.jcp.2012.03.015
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1103/PhysRevE.66.035301
http://dx.doi.org/10.1093/gji/ggx279
http://dx.doi.org/10.1016/j.pepi.2018.01.003
http://dx.doi.org/10.1017/jfm.2011.268
http://dx.doi.org/10.1209/0295-5075/17/6/001

702 P. Mora, G. Morra and D.A. Yuen

zone: implications for hotspot dynamics, Earth planet. Sci. Lett., 99,
170-184.

Schornbaum, F. & Riide, U., 2016. Massively parallel algorithms for the
lattice Boltzmann method on nonuniform grids, SIAM J. Scient. Comput.,
28(2), C96-C126.

Shan, X., 1997. Simulation of rayleigh-bénard convection using a lattice
Boltzmann method, P/ys. Rev. E, 55(3), 2780.

Shan, X. & Chen, H., 1993. Lattice boltzmann model for simulating flows
with multiple phases and components, P/ys. Rev. £, 47(3), 1815.

Smith, K.W., 2015. Cython: A Guide for Python Programmers, O’Reilly
Media, Inc.

Succi, S., 2018. The Lattice Boltzmann Equation: For Complex States of
Flowing Matter, eds Succi, Sauro & Succi, S., Oxford Univ. Press.

Torquato, S., 2013. Random Heterogeneous Materials: Microstructure and
Macroscopic Properties, Vol. 16, Springer Science & Business Media.

Van Rossum, G. et al., 2007. Python programming language, in USENIX
Annual Technical Conference, Vol. 41, p. 36.

Wang, J., Wang, D., Lallemand, P. & Luo, L.-S., 2013. Lattice Boltzmann
simulations of thermal convective flows in two dimensions, Comput.
Math. Appl., 65(2), 262-286.

Xia, M., Wang, S., Shou, H., Shan, X., Chen, H., Li, Q. & Zhang, Q., 2017.
Modelling viscoacoustic wave propagation with the lattice Boltzmann
method, Scient. Rep., 7, 10169.

Xie, C., Raeini, A.Q., Wang, Y., Blunt, M.J. & Wang, M., 2017. An im-
proved pore-network model including viscous coupling effects using di-
rect simulation by the lattice Boltzmann method, Adv. Water Resour:, 100,
26-34.

Zheng, J., Ju, Y. & Wang, M., 2018. Pore-scale modeling of spontaneous
imbibition behavior in a complex shale porous structure by pseudopo-
tential lattice Boltzmann method, J. geophys. Res.. Solid Earth, 123,
9586-9600.

Zhou, Q. & He, X., 1997. On pressure and velocity boundary conditions for
the lattice Boltzmann BGK model, Phys. Fluids, 9(6), 1591-1598.

120z aunr gz uo 3sanb Aq 00%255/289/1/0zZ/a1o1e/I[B/Wwod dno olwapede//:sdly woly papeojumoq

http://dx.doi.org/10.1016/0012-821X(90)90080-H
http://dx.doi.org/10.1103/PhysRevE.55.2780
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1016/j.camwa.2012.07.001
http://dx.doi.org/10.1038/s41598-017-10833-w
http://dx.doi.org/10.1016/j.advwatres.2016.11.017
http://dx.doi.org/10.1029/2018JB016430
http://dx.doi.org/10.1063/1.869307

