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Abstract. This paper concerns the dynamics of a layer of incompressible viscous
fluid lying above a vertically oscillating rigid plane and with an upper boundary given
by a free surface. We consider the problem with gravity and surface tension for horizon-
tally periodic flows. This problem gives rise to flat but vertically oscillating equilibrium
solutions, and the main thrust of this paper is to study the asymptotic stability of these
equilibria in certain parameter regimes. We prove that both with and without surface
tension there exists a parameter regime in which sufficiently small perturbations of the
equilibrium at time ¢t = 0 give rise to global-in-time solutions that decay to equilibrium
at an identified quantitative rate.

1. Introduction.

1.1. Faraday waves. Consider a flat rigid surface in three dimensions, and suppose
that a finite layer of incompressible fluid is deposited on the surface and held there by a
uniform gravitational field. The upper surface of the fluid is free. Suppose that the rigid
lower surface is then oscillated in the vertical direction as indicated in Figure [l
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F1a. 1. A layer of fluid evolves on a vertically oscillating rigid surface.

It was observed by Faraday [9] in the nineteenth century that in certain regions of the
frequency-amplitude parameter space the free surface of the fluid forms standing waves,
and in the complement of this region the free surface remains flat. This phenomenon is
now given the moniker Faraday waves, and the various fascinating patterns formed by
these standing waves have been studied intensively, both experimentally and theoretically.
As such, we will only attempt a very brief survey of the mathematical literature related
to Faraday waves. For a more thorough survey of the literature, especially for the case
of inviscid fluids, we refer to the review by Miles-Henderson [17].

From a mathematical perspective, the linearized problem has been analyzed in the
inviscid case by Benjamin-Ursell [4] and in the viscous case by Kumar [14] and Kumar-
Tuckerman [I5] to determine conditions for the onset of these surface waves, or more
precisely to characterize the stability or instability of the flat interface. In the inviscid
case it is known [4] that the instability mechanism is equivalent to the parametric insta-
bility mechanism of the Mathieu ODE, about which much is known (see, for instance,
McLachlan’s book [I6]). The viscous problem is more complicated and does not reduce
to the Mathieu ODE, but the numerical approximations of [I4] show that instability
regions persist and are qualitatively similar to those in the inviscid case. In the work of
Skeldon-Rucklidge [22] and Westra-Binks-van de Water [28] the tools of weakly nonlinear
analysis were employed to explain the various surface wave patterns observed in exper-
iments. Simulations and numerical studies also have achieved results that agree well
with experiments in various settings: see for instance Périnet-Juric-Tuckerman [I9] and
Qadeer [20]. Faraday waves have also been studied with linear and numerical analysis in
compressible fluids by Das-Morris-Bhattacharyay [8].

Faraday waves have recently experienced a renewed interest since the experimental
discovery of Couder-Protiere-Fort-Boudaoud [6], which showed that Faraday waves cou-
pled with fluid droplets can “walk”. These walking water droplets can further be coupled
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FARADAY STABILITY 547

with other water droplets, and have been shown to exhibit behavior analogous to quan-
tum mechanical phenomena. We refer the reader to the review of Bush [5] for more
details of this line of work.

To the best of our knowledge, there has been no fully nonlinear analysis of the viscous
Faraday wave problem. In particular, there are no results rigorously establishing the
existence of a stable parameter regime. The principal goal in this paper is to prove such
a result and to provide some quantitative estimates for where in the oscillation parameter
space Faraday waves do not occur, i.e., where the flat free interface remains stable.

1.2. Free boundary Navier-Stokes equations in an oscillating domain. We now prop-
erly formulate the problem to be studied in the paper.

1.2.1. Owverview of assumptions. We consider a layer of viscous incompressible fluid
evolving above a flat plane in three dimensions. We assume the fluid is subjected to a
uniform gravitational force field of the form —ges € R3 where g > 0 is a constant and
es = (0,0, 1) is the vertical unit vector. Furthermore, we work in a situation where the
layer of fluid lies on top of a lower boundary that moves in the vertical direction, so that
the vertical component at time ¢ is given by Af(wt) — b where f : T = R/Z — [-1,1]
is a smooth, nonconstant oscillation profile, A > 0 is an amplitude parameter, w > 0
is a frequency parameter, and b > 0 is a constant depth parameter. A typical choice
of the oscillation profile is f(t) = cos(2wt — d) for some § € [0,27). We allow for the
more general profile f in order to highlight that it is the amplitude and frequency of the
oscillation profile that play the dominant role in determining stability. Note in particular
that since f is a smooth function on the torus T, the assumption that it is not a constant
implies that none of its derivatives may vanish identically.

In addition to the above assumption on the external force acting on the fluid, we will
assume three other main features. First, we assume that the fluid is bounded above by a
free surface that evolves with the fluid. Second, we assume that above the free interface
the fluid is bordered by a trivial fluid of constant pressure (for instance, a vacuum).
Third, we assume that the fluid is horizontally periodic so that we can determine its
dynamics by studying a single horizontal periodicity cell. See Figure 2] for a sketch.

vacuum

top boundary
fluid

bottom boundary

I 7

F1G. 2. Cross-sectional side view of the top free boundary and bot-
tom rigid oscillating boundary of a horizontally periodic fluid.
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1.2.2. Fluid domain and boundaries. We introduce the horizontal cross-section ¥ =
(L1T) x (L2T) for horizontal periodicity parameters Ly, Ly > 0, and we assume that
the moving upper boundary of the fluid is given by the graph of an unknown function
7: ¥ x RT — R, so that the moving fluid domain is modeled by the set

Q(t) = {z = (2, 23) € Z x R: Af(wt) — b < 23 < (', 1)}. (1.1)
Note that the lower boundary of Q(t) is the oscillating set
Yp(t) = {z = (2/,23) € B x R: 23 = Af(wt) — b}, (1.2)
while the moving upper surface is
S(t) ={z = (2, 23) € L xR : x5 = 7j(a’, 1)} (1.3)

1.2.3. Equations of motion. For each t > 0, the fluid is described by its velocity
and pressure functions (u,p) : Q(t) — R3 x R. We require that (i,p,7) satisfy the
incompressible Navier-Stokes equations in §(¢) for ¢ > 0:

Ot + 1 - Vi 4+ Vp — pAi = —ges  in Q(t),

divii =0 in Q(t),

i) + 11 017) + 9O = i3 on ¥(t), (1.4)
(Pl — pD@)v = (Pex — 0$H())v  on (t),

o= Awf'(wt)es on y(t).

Here, p1 > 0 is the fluid viscosity, (Da);; = 0;0; + 0;4; is the symmetric gradient of @, v
is the outward-point unit normal vector on X (t), I is the 3 x 3 identity matrix, Poyy € R
is the constant pressure above the fluid, o > 0 is the surface tension coefficient, and

Vi

\/ 1+ |Vil?

is (minus) twice the mean curvature of ¥(t), which models the force of surface tension
on the free interface. The first two equations of ([L4) are the standard incompressible
Navier-Stokes equations, the third is the kinematic transport equation for 7, the fourth is
the balance of stress at the interface, and the fifth is the no-slip boundary condition at the
bottom. The problem is augmented with initial data 7o : & — (=b+ Af(0),00), which
determines the initial domain €, as well as an initial velocity field g : Qo — R3. Note
that the assumption 79 > —b + Af(0) on ¥ means that the upper and lower boundaries
Qo do not intersect and thus Qq is an open set.

We will assume that the constant b > 0 is chosen such that the mass of the fluid,
which is conserved in time due to the incompressibility, is given by

H(7) = div (1.5)

Rewriting this condition in terms of 7 shows that

X =M= / — (Af(wt) —b)]da’ —b|E\—|—/[ (2',t) — Af(wt)]dx’, (1.7)
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FARADAY STABILITY 549

or equivalently
/E[ﬁ(a:’,t) — Af(wh)da’ = 0. (1.8)

1.3. Recasting the problem in the oscillating frame. Here we recast the problem in
the oscillating fluid frame and make some convenient changes of unknowns in order to
simplify further analysis.

1.3.1. Change of coordinates. First, we make a change of coordinates. The above
formulation of the problem is intuitive as an external observer, but it is more convenient
to view the problem from the frame of the fluid itself and fix the moving lower boundary.
As such, we employ the following change of coordinates and unknowns:

(z,t) = u(x',x3 — Af(wt), t) + Awf’ (wt)es,
plx,t) = p(a’, 3 — Af(wt), t), (1.9)
(2’ t) = n(x’,t) + Af(wt).

By plugging the above into (I4]), we obtain the equivalent set of equations

Opti + U - Vi + VP — pAi + Aw? f (wt)es = —ges  in Q(t),

diva =0 in Q(t),

Oui] + UL O 7] + UipBa] = T3 on (), (1.10)
(pI — pDa)v = (Poxt — 09(7)) v on X(t),

u=0 on Xy,

where
Qt)={z=(a",23) e ExR: —b < a3 <q(z',t)},
B(t) ={z = (2, 23) € D x R:az =7q(a’, 1)}, (1.11)
Yy ={z=(a',z3) € xR: 25 =—b},
are the new versions of the domains where the lower boundary is now unmoving and the
upper boundary is now defined by the new graph function 7.
1.3.2. Modifying the pressure. Next, we modify the pressure to remove the term

Aw? f"(wt)es + ges from the first equation and to eliminate Py on the boundary. To
this end we define

]anew = ﬁold - Pext + (g + Awa”(wt))xg (112)

in order to arrive (after dropping the subscript) at the equivalent problem

ou+u-Vu+Vp—pAu=0 in Q(t),

diva =0 in Q(t),

O] + U1 017] + U027 = s on X%(t), (1.13)
(pI — pDu)y = (—oH(7) + (9 + Aw? f"(wt)) 7) v on X(¢),

=0 on Xp.

Note that modifying the pressure in this way is essentially the same trick as subtracting
off the hydrostatic pressure, which has been employed in numerous previous studies of
viscous nonoscillating free boundary problems (see, for instance, the references listed
below in Section [[3]).
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In summary, to go from ([4) to (ILI3) we have made the following changes of un-
knowns:

iz, t) = u(z’, w3 — Af (wt), t) + Aw f'(wi)es,
Pz, t) = p(a’ x5 — Af (wt),t) + Pext — (9 4+ Aw? [ (wt)) (x5 — Af(wt)), (1.14)
(2’ t) = f(x’, t) + Af(wt).
Note that (L8) now becomes

/ (2, t)de’ =0 for t > 0. (1.15)
by
However, for sufficiently regular solutions to (L.I3]) we have that

Oy = - vy/1+ (010)2 + (921)?,

and hence
d
(x t)dz' = / O, t)dz’ —/ a-v= diva = 0. (1.16)
dt (1) S10)

Thus ([[LI5) is satisfied provided that the initial surface function satisfies the “zero aver-

age” condition
1
=0 1.17
- [ m=o (117)

a condition that we henceforth assume. Note, though, that this condition is no real loss
of generality, as it can always be achieved with a coordinate shift via the relation between
the fluid mass M and the parameter b. See, for instance, the introduction of [10] for an
explanation of how the coordinate shift works.

1.4. Steady oscillating solution. Note that U(x,t) = 0, P(z,t) = 0, H(z,t) = 0 is a
solution to the reparameterized system (LI3]) when we set 4 = U,p = P,7j = H. In the
original system, this corresponds to the steady oscillation solution

Uz, t) = Awf (wt)es,
P(z,t) = Pexy — (g + AW f"(wt)) (v3 — Af(wt)), (1.18)
H(z,t) = Af(wt),

and it is easy to check that this indeed satisfies system ([4]) along with the fixed mass
condition M = bL; Ly = b|3|.

We will study the Faraday problem in the reparametrization (LI3), with the aim
of showing that the above steady oscillation solution is asymptotically stable for some
range of the parameters. In order to justify why we might expect such a stability result,
consider the natural energy-dissipation equation associated with (II3]) (for details of the
derivation, see Proposition B]):

d jal? gl plDal” _ 2 .
— — + +oy/1+ Vil = —(Aw* f"(wt)) | 707.
dt \ Jou) 2 s 2 @) 2 >
(1.19)
This identity establishes that the competition between the viscous dissipation (the inte-
gral with p on the left) and power supplied by the oscillation of the plate (the term on
the right) will determine the stability of the system. In particular, it shows that if we
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can absorb the oscillation term with the dissipation, then we should expect stability, and
this is indeed what we will prove. Obviously, the natural dissipation term involves only
the velocity field @ and does not control 7 or 9,7, so to complete our analysis we will
need to introduce a host of auxiliary estimates that provide dissipative control of these
terms.

1.5. Previous work. A brief survey of previous mathematical work on the Faraday
problem was recorded above in Section [[LTl To the best of our knowledge, there are no
rigorous results on the fully nonlinear analysis of this problem, either in the stable or
unstable parameter regimes. However, when f = 0, i.e., when the rigid bottom is not
oscillated, the fully nonlinear dynamics of the free boundary problem ([I3]) and its vari-
ants are well-understood for small data. Nishida-Teramoto-Yoshihara [I8] constructed
global solutions for the problem with surface tension and showed that the solutions de-
cay to equilibrium at an exponential rate. The corresponding problem without surface
tension was handled by Hataya [12], who constructed global solutions decaying at a fixed
algebraic rate, and later by Guo-Tice [10], who constructed global solutions that decay
almost exponentially. Tan-Wang [23] established the vanishing surface tension limit. In
the nonperiodic setting many related results are known; see for instance the work of
Beale [11[2], Beale-Nishida [3], Tani-Tanaka [25], and Guo-Tice [II]. The stability of the
periodic problem without Faraday oscillation has also been studied with more physical
effects included. Gravitational fields with horizontal components, corresponding to slid-
ing along a tilted incline plane, were studied by Tice [26]. The coupling to the MHD
system was studied by Tan-Wang [24]. Remond-Tiedrez-Tice [2I] studied stability with
more general surface forces generated by bending energies.

1.6. Reformulation in a flattened coordinate system. The moving domain (t) is in-
convenient for analysis, so we will reformulate the problem (LI3]) in the fixed equilibrium
domain

Q={r=(2",23) eXxR:-b< a3 <0} (1.20)

We will think of ¥ as the upper boundary of Q and view 7 as a function on ¥ x RT. We
then define

i) := Pij (1.21)

to be the harmonic extension of 77 into the lower half space as in Section [B.2l Then, we
follow a standard approach (see, for instance, [2L[I0L1TL18]20,21],23126]) and flatten the
coordinate domain via the mapping ® : Q x RT — Q(¥)

O(x,t) = (xl,xg,ac3+ﬁ(x’,t) (1+ %”)) (1.22)
Note that ®(-,t) is smooth and extends to Q in such a way that ®(X,¢) = () and
b(Xp,t) = 3y, ie., D maps ¥ to the free surface and keeps the lower surface fixed. We
have
1 0 —AK
=0 1 -BK]|, (1.23)
0 0 K

1 0 0
ve=[0 1 o), A=(ve)'
A B J
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where under the notational convenience b = (1 4 x3/b) we have
A = Oyib, B = 0y1b, J= (1—1—%—1—(%,775), K=J" (1.24)

Note that J = det V® is the determinant of the transformation.
Using the matrix A, we define a collection of A-dependent differential operators. We
define the differential operators V 4 and div 4 with their actions given by

(V.Af)l = .Aijajf, diVA X = Aijani (1.25)

for appropriate f and X. We extend div 4 to act on symmetric tensors in the usual way.
Now write the change of coordinates as

u(z,t) = a(P(z,t),t), p(z,t) = p(®(z,t),t), n(x’,t) = q(a’,t). (1.26)
We then also write
(Daw);; = AiOru; + AjiOgus, Sa(u,p) :=pl — uD 4u, (1.27)
and we define
N = (=011, =027, 1) (1.28)

for the nonunit normal to ¥(¢). In this new coordinate system, the new system of PDEs
([LI3) becomes the following equivalent system:

Oy — ObK 83t +u -V qu + divg Sa(u,p) =0 in Q,

divgu=20 in Q,

on=u-N on X, (1.29)
Sl N = (~a5(n) + (g + Aw? (@) ) N on %,

u=20 on Xp.

2. Main results and discussion.

2.1. Notation and definitions. In order to properly state our main results we must
first introduce some notation and define various functionals that will be used throughout
the paper. We begin with some notational conventions.

Einstein summation and constants: We will employ the Einstein convention of sum-
ming over repeated indices for vector and tensor operations. Throughout the paper C' > 0
will denote a generic constant that can depend on {2 and its dimensions as well as on g,
1, and the oscillation profile f, but not on the parameters o, A, or w. Such constants are
referred to as “universal”, and they are allowed to change from one inequality to another.
We employ the notation a < b to mean that a < Cb for a universal constant C' > 0.

Norms: We write H*(Q2) with k > 0 and H*(X) with s € R for the usual L2-based
Sobolev spaces. In particular H° = L2. In the interest of concision, we neglect to write
H*(Q) or H*(X) in our norms and typically write only ||-||,. The price we pay for this
is some minor ambiguity in the set on which the norm is computed, but we mitigate
potential confusion by always writing the space for the norm when traces are involved.
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FARADAY STABILITY 553

Multi-indices: We will write N* for the usual set of multi-indices, where here we
employ the convention that 0 € N. For o € N¥ we define the spatial differential operator
9% = 071952 ... 9y . We will also write N' ™" for the set of space-time multi-indices

N = {(ag,ay,...,a1) oy €N for 0 <i < k}. (2.1)

For a multi-index o € N'** we define the differential operator 9% = 97007 ... op*.
Also, for a space-time multi-index o € N'**¥ we use the parabolic counting scheme
|a] = 209 + a1 + -+ - + «, appropriate for measuring the regularity of parabolic PDEs
such as the heat equation, in which time derivatives are “worth” two spatial derivatives.
Such a counting scheme for the free boundary Navier-Stokes equations can be found, for
instance, in [I0L1TL21123]26].

Energy and dissipation functionals: Throughout the paper we will make frequent use
of various energy and dissipation functionals, dependent on time. We define these now.
The basic (with bars) and full (no bars) energy functionals, respectively, are defined as

¢

oo 2 2 2
7= > [0%ully + g llo“nllg + o [VOnll; (2:2)
aeNt?
|| <2n
and
5“5_naj2n_laj2 ; 2 S|l
— (e . .
e n+;‘ v 2n—2j+;‘ tp‘Qn—Qj—l—Han”Q"2J+1+||n”2"+;’ Mg 2j 13/
(2.3)
The corresponding basic and full dissipation functionals are
Dpi= Y [[Do“ulf; (2.4)
aeN2
la|<2n
and
n ) 2 n—1 ) 2
DI =D |07l [E
" ”+_Z £t 2n72j+1+z tP 2n—2j
7=0 7=0
n—l 2 2
o 2|0
+jz::o <’ 1l 2n72j71/2+0 ¢l 2n—2j+3/2
n+1 2 ) 5
i 2 2 2 2 2|92
- g T S 1 A R o . o
(2.5)

We will also need to make frequent reference to two functionals that are not naturally
of energy or dissipation type. We refer to these as

2
Fn = ||77H2n+1/2 (2.6)
and

2 2 2 2
K= llullcz ) + lullgs ) + 1pls sy + 0ll5/2 - (2.7)
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2.2. Local existence theory. The main content of this work is deriving a priori estimates
for solutions to ([29]), which we will then combine with local existence theory in order
to construct global-in-time solutions to (L29). In this section we will discuss the local
existence theory needed to make this work, but we will omit a complete proof. Such
an omission is justified by the abundance of similar local existence results based on the
corresponding a priori estimates. We refer, for instance, to the works [10,[1323]27,29].

To state these local existence results, we need to introduce function spaces in which
our solutions exist, as well as compatibility conditions, which give sufficient constraints
on our initial data for constructing solutions using our a priori estimates. Our function
spaces are the following:

oHY(R?) = {v e H (4 R?) 1 v |, = 0},

) ) ] (2.8)
Xp ={u € L*([0,T];0H"(2)) : div 4 u(t) = 0 for a.e. t € [0,T7]},

where the A(t) here is determined by the n : ¥ x [0,7] — R coming from the solution.
We refer the reader to [10}[13}23,27,29] for the compatibility conditions, as they are
simple yet cumbersome to record.

When o > 0 is fixed and positive, we have the following local existence result, similar
to that of [27].

THEOREM 2.1 (Local existence for fixed positive o). Let o > 0 be fixed and positive and
suppose that the initial data (ug,n0) € (oH(;R3) N H2(Q;R3)) x H3(T) satisfy

2 2 2
l[uolly + lImoll5 2 + o IViollz < o0 (2.9)

as well as the natural compatibility conditions associated with n = 1. Then there exist
04, Tx € (0,1) such that if

2 2 2
l[uollz + linolls 2 + o [Vinollz < 0s (2.10)

and 0 < T < T, then there exists a unique triple (u,p,n) that achieves the initial data,
solves ([L29), and obeys the estimates

T
o la 2
s (& (O+F0)+ [ DI i+ 07l S ol Il +o Tl (211

We also consider the vanishing surface tension regime, in which we obtain the following
result by requiring n to be larger [10,[13]23129].

THEOREM 2.2 (Local existence for vanishing o). Let n > 2 be an integer and suppose
that the initial data (ug,n0) € (oH'(Q;R3) N H?™(Q;R3)) x H2"FV/2(X) satisfy oV €
H?"(¥) and

2 2 2
[uolly, + H770H2n+1/2 + || Vnolls, < oo (2.12)

as well as the natural compatibility conditions associated with n. Then there exist
04, Ti € (0,1) such that if

2 2 2
luollan + [110ll20-41/2 + o [ V710ll5,, < 0 (2.13)
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FARADAY STABILITY 555

and 0 < T < T, then there exists a unique triple (u,p,n) that achieves the initial data,
solves (L29), and obeys the estimates

T
o o 7 2 2 2 2
sup (571 (t)+]:n(t))+/0 Dn(t) dt+||atL+1u||(XT)* S ||u0||2n+||770||2n+1/2+0 ||V770||2n .

0<t<T
(2.14)

2.3. Statement of main results. The main result of this paper is the global well-
posedness of the problem and decay of solutions, which establishes the asymptotic sta-
bility of the equilibrium solutions. We begin with the result for a fixed value of surface
tension.

THEOREM 2.3. Fix o > 0. Suppose that initial data (ug,n0) € (oH*(£; R*)NH?(Q;R3?)) x
H3(X) satisfy [luol> + ||no||§/2 + 0 ||Vnoll3 < oo as well as the compatibility conditions
of Theorem 2] There exist constants 7, ko € (0, 1), both depending on o, such that if

luoll3 + lImoll3 5 + o [Vnoll3 < ko and A(w® +w?) < 50, (2.15)

then there exists a unique (within the energy class) solution (u,p,n) that solves (.29
on the temporal interval (0,00) and achieves the initial data. Moreover, there exists
constants A > 0 and Cy, C; > 0, depending on A, w, and o, such that the solution obeys
the estimate

Jsup eMEN(H) + /0 MDY (1)dt £ COEF(0) < O (ol + o3+ [ Vmol3)
o (2.16)

Theorem requires a fixed positive value of surface tension and guarantees that
solutions return to equilibrium exponentially fast in the topology determined by £7.
Our next main result considers the cases ¢ = 0 and ¢ small but positive. We view
the latter as the “vanishing surface tension” regime, as we will employ it to establish
this limit. In these cases we work in a more complicated functional setting that changes
depending on whether ¢ vanishes or not. We introduce this with the following functional,
defined for any integer N > 3 and time ¢ € [0, 00]:

t
Fon(r
G () = sup E5n(r) + / DY (r)dr + sup (14 7)YV 565 5 (r) + sup 2287
0<r<t 0 0<r<t o<r<t 1-+T
(2.17)

where here £7, D7, and F,, are defined by (23], [2.3), and (2.6]), respectively. Note that
the condition N > 3 implies that 2N > N + 2 and that 4N — 8 > 0.
We can now state our second main result.

THEOREM 2.4. Let Q be given by (L20), let N > 3, and define G§y via [ZI7). Suppose
that the initial data (ug,70) € (o H(Q;R3) N H*N (Q; R3)) x HAN+1/2(%) satisfy oV €
HAN (%) and Hu0||iN + ||7]0||A2w+1/2 +o ||V7]0||iN < oo as well as compatibility conditions
of Theorem There exist universal constants 7o, kg € (0,1) such that if
2N+2
||UO||42;N + ||770||z21N+1/2 to anOHZN <Ko, 0< A Z W' <70, and 0 <o <1, (2.18)
=2
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then there exists a unique (within the energy class) triple (u,p,n) that solves the (.29
on the temporal interval (0,00), achieves the initial data, and obeys the estimate

o o 2 2 2
Gon(00) S E5n(0) + Fan(0) < ||u0||4N + ||770||4N+1/2 +o ||V770||4N- (2.19)

In particular, the bound in Theorem [2.4] establishes the decay estimate

&) 5 BT

(2.20)

This is an algebraic decay rate, slower than the exponential rate proved in Theorem
2.3l with a fixed o > 0. Two remarks about this are in order. First, by choosing N
larger, we arrive at a faster rate of decay. In fact, by taking N to be arbitrarily large
we can achieve arbitrarily fast algebraic decay rates, which is what is known as “almost
exponential decay”. The trade-off in the theorem is that faster decay requires smaller
data in higher regularity classes. The second point is that when 0 < ¢ < 1 in the theorem,
it is still possible to prove that £5,, decays exponentially by modifying the arguments used
later in Theorem [T.Jl We neglect to state this properly here because we only care about
the vanishing surface tension limit, and in this case we cannot get uniform control of the
exponential decay parameter A(o) from Theorem 23

Theorems 23] and 4] also guarantee enough regularity to switch back to Eulerian
coordinates. Consequently, the theorem tells us that the steady oscillating solution in
(CI8) remains asymptotically stable with and without surface tension, but that the rate
of decay to equilibrium is faster with surface tension.

Our third result establishes the vanishing surface tension limit for the problem (23]
in the same spirit as the result proved in [23].

THEOREM 2.5. Let © be given by ([20)), let N > 3, and consider a decreasing sequence
{om}5_o € (0,1) such that o, — 0 as m — oo. Let kg, v € (0,1) be as in Theorem
24 and assume that 0 < A Zjﬁ; 2wl < 9. Suppose that for each m € N we have initial
data (ul™, n{™) € ((H (2 R3) N HAN (Q;R3)) x HAN+1/2(X) satisfy Vg € HAV(X)
and ||uol|5y + ||770||421N+1/2 + 0 |[Vio||3y < Ko as well as the compatibility conditions of
Theorem Let (u(™ p™) (™) be the global solutions to (L29) associated to the
data given by Theorem [Z4]l Further assume that

ul™ = ug in HN(Q), n{™ = no in HNTY2(S) and /7, Vi{™ — 0 in H*N (%)
(2.21)
as m — oo.
Then the following hold:
(1) The pair (ug, o) satisfy the compatibility conditions of Theorem 2.2l with o = 0.
(2) As m — oo, the triple (u(™,p("™) 7(™)) converges to (u,p,n), where the latter
triple is the unique solution to (L29) with ¢ = 0 and initial data (ug, 7). The
convergence occurs in any space into which the space of triples (u,p,n) obeying
Gy (00) < oo compactly embeds.
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2.4. Discussion and plan of paper. The strategy of the current paper is similar to
that of [10L26], which proved similar results for related problems with f = 0. As in these
papers, the main focus of this paper is to establish a priori estimates for solutions to
the PDE (L29]), which allow us to prove Theorems 23] and 4] by standard arguments
coupling these estimates with local existence results. The scheme of a priori estimates
developed in this paper is a variant of the nonlinear energy method employed in [10L26]
and is designed to carefully track the dependence on the surface tension o, the oscillation
amplitude parameter A, and the oscillation frequency parameter w in order to optimize
the parameter regime in which we obtain the desired existence and stability theorem. In
the case with fixed surface tension ¢ > 0 we obtain sufficient conditions for asymptotic
stability of the form

AW +w?) S 1, (2.22)

without bounds on A or w individually (see Figure B]). Thus, the Faraday oscillation
system can be stable for arbitrarily large A or w, so long as the other parameter is
sufficiently small for (2Z22)) to hold. In the vanishing surface tension case, we obtain a
similar result, although the trade-off is that more stringent constraints on A and w are

necessary, namely
2N+2

AN WLl (2.23)
=2

We note that although our technique is capable of rigorously identifying a stable regime
in the oscillation parameter space, it tells us nothing about the complement of this set.
The numerics for the linearized problem in [I4] suggest that the complement indeed
contains both stable and unstable components.

A
Aw?+w3)=C

asymptotic stability,
exponential decay

FiG. 3. Bounds on the stability regime with fixed o > 0.

Our strategy for obtaining the a priori estimates is essentially the same nonlinear
energy method as that of [26], so we refer the reader to the introduction of that paper
for a detailed outline and opt for a terse summary here. First, we obtain horizontal en-
ergy estimates by applying horizontal and temporal derivatives to the problem and using
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the basic energy-dissipation structure. It turns out to be convenient to do these esti-
mates in two different forms depending on whether the derivatives involve only temporal
derivatives or a mixture. These estimates are developed in Section [3

The next step in the nonlinear energy method is energy and dissipation enhancement,
where we employ various auxiliary estimates in order to gain control of more quantities in
terms of those already controlled by the horizontal estimates. The main tools are elliptic
regularity for the Stokes problem and elliptic regularity for the capillary problem, both
of which are recorded in Appendix[Al The enhanced estimates are recorded in Section
and are predicated on the various estimates of the nonlinearities presented in Section [l

We combine the above estimates into a scheme of a priori estimates. In Section [6] we
study the cases 0 = 0 and 0 — 0. When coupled with the local existence theory, the a
priori estimates allow us to complete the proofs of Theorems 2.4] and In Section [
we study the fixed surface tension problem and prove Theorem 2.3

3. Evolution of the energy and dissipation. In this section we record the energy-
dissipation evolution equations for two linearized versions of the problem ([[29)): the
geometric form and the flattened form. The former retains the coefficients A and related
terms and is thus tied to the moving geometry of the domain. The latter is constant
coefficient and thus corresponds to a flat geometry. We also record the forms of the
nonlinear forcing terms that appear in the analysis of (L29).

3.1. Geometric form. Suppose that a known pair (u,7) is given and that &, A, N, J,
etc., are given in terms of 7 as in Section The geometric form of the linearization of
(CZ9) for an unknown triple (v, g, () is then:

v — (9))bKd3q +u -V AC +divg Sa(v,q) =¥ in Q,

divgv = U2 in Q,

¢ —v-N =93 on X, (3.1)
Sa(v, )N = (=0 AC + g¢ + VP) N + U* on %,

v=20 on .

Note that the coefficients in this problem are determined by the given functions (u,n)
and that the problem is then linear in the triple (v,q, (). This form of linearized prob-
lem arises from ([29) when we apply a horizontal differential operator, in which case
(v,q,¢) = (0%u,0%p,d*n) and the original pair (u,n) give rise to coefficients in the
resulting linearized problem.

3.1.1. Energy-dissipation. The next result records the energy-dissipation equation as-
sociated to the solutions of (B).

PROPOSITION 3.1 (Geometric energy-dissipation). Let n and u be given and satisfy

{divAu =0 in €, (3.2)

on=u-N onX.
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Suppose that (v,q,() solve [BI), where ®, .4, J, etc., are determined by 7 as before.

Then,
d /|v|2J+/ ANV +/M|DAU|2J
i o 2 . 2 2 T2

:/J(v-\111+q\112)+/(—UAC+9C)\I/3—\I/4-U—\I/5U~N.
Q b

Proof. We take the dot product of the first equation in (BI) with v, multiply by J,
and integrate over {2 to see that

(3.3)

I+II:/\I/1-1;J (3.4)
Q
for

I:/8tv'vJ—(8tﬁ)583v-v+(u~VAv)~vJ and II:/divASA(v,q)~vJ. (3.5)
Q Q

In order to integrate these terms by parts, we will utilize the geometric identity d(JAx)
= 0 (which is readily verified by direct computation) for each i.
To handle the term I, we first compute

ol 7 W0 o [0l Jof?
I:@t T+ —T —8t77b337+uj3k JAjkT = Il+12. (36)
Q Q

Since b = (14 z3/b), an integration by parts, an application of the boundary condition
v = 0 on X, reveals that

2
12:/_"0‘ atJ_(at )ba "U‘ +u 8k <J.A |U| )
Q 2
_ 0007 Jv)? - ‘ Jof? o, -
—/Q_ 9 +T83 (8{[7()) +’U,J8k, J.Ajk;— -I-/E—Tamb
2 2 2
:/ —% (8277 + 03041 ) o (835t ib + 8tn) (Okuy) (.]Ajk%) (3.7)
Q

2 2
v R v
+ ‘/E —%@n + UjJ.Ajk%(eg . ek)

2 2 2
v v v
—/—J—diVAu—i—/—uatﬁ—i—ujJ.Ajku(eyek).
0 2 s 2 2

Now note that JA;x(es - ex) = Nj on ¥ and also we have that u and 7 satisfy ([B.2)), so
the above becomes

2 2
b:/—deivAu—F/ ﬁ(—3t77‘|'u'-/\/):0 (3.8)
o 2 s 2

and hence
o> 7

z:zl+12:at/ (3.9)
Q

so [ is purely just the transport of the quantity |v|2 J along the flow w.
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We begin our analysis of the term I with a similar integration by parts, which reveals
that

II = /QdiV_A Sa(v,q)-vd = /Q.Ajkak (SA(v,q))ij v J = /QUZ-JAjkak (SA(v,q))ij
= / —0k (UiJAjk) (Sa(v, q))ij + / ’UiJAjk (Sa(v, Q))ij (e3-ex)
Q b
=/ — [0k (viJ Aji) — vi0k (J Aji)] (SA(U>Q))ij+/viJAj3 (Sal(v,q)),
Q b
= [ T4k (Salv.a)y + [ (St AT
Q )
:/ —J (V.Av)ij (SA(%CI))U +/ Vi (SA(%‘I))MN’J’
Q )

:/—JS_A(’U,(])IVAU+/SA(U7Q)N'U
Q

:/—J (qdivAv 'U|DA7J‘ ) /SAvq
Q
—/—J(q\Il2 MDAU| ) /SAvq
Q
(3.10)

Now using the third and fourth equations in ([B1]), we rewrite the integral on ¥ as
/ Sa(v, )N v = / [(—oAC+ g¢ + V)N + 0] v
b b

:/( aAC+gC—|—\I/5)J\/'-U+/‘I/4-U

=

/ —0AC + g¢) (9 — ‘P3)+/E\I/4~v+\lf5v~./\/

2
8[/ ‘V(jl g|§|]_/E(_O_AC+QC)\I,3_\II4_U_\I,5U.N
(3.11)

SO on sum, we have

[ 2 Do) gk/aww gl¢)?
II_/Q J(q\lf — |t S +=-

—/ (—oACH+gO) U3 — 0.y — TPy - N
>

(3.12)

Now to see that equation ([B3]) holds, just plug B9) and BI2]) into (B4) and rearrange.

O

3.1.2. Forcing terms. We now record the form of the forcing terms that will appear

in our analysis. Recall that this geometric form of the linearization is responsible for the

highest order time derivatives 97, so we build this into the notation by writing F7" for
the jth forcing term generated by applying 9} to (.29)).
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Applying 0] to the ith component of the first equation results in

OO w) + Y Con |=0f ((OA)BK ) 07~ (D) + 0 (1 Ayu) 97~ ()|

0<4<n

+ Z Cin [65“43"98?4619 (SA(%Z’))H} =0.

0<t<n

561

(3.13)

Then in the above, the first term as well as the terms in the summation corresponding
to £ = 0 gives the left hand side of (B1]), except for the last sum for which we have an

extra term
A0y 0k (Sa(u,p)ij) — AjrOk (Sa(0™u, 0/'p)ij)
= Ajk | — Z an/,l,]Daf_Aatn_éu + ,LL]DA&ZLU
0<i<n
= — jk Z C[n/,L]D)atéAallizu
0<e<n
Thus,
Fi = 7 Cun [0f (00i0K) 0~ (Bsus) — 0 (uy Asi) 07 (D)
0<t<n
+ Y Con [~ 00AO; Ok (Sa(w,p),; + AjeiiDoe a0}~ "u] .
0<t<n

Differentiating the second equation gives
> Condf A0} Ou; =0
0<t<n
so taking all but the ¢ = 0 terms gives
> Condf A7 Opu;.

0<l<n
Differentiating the third equation gives
0u(0rn) — D Cendfu-07 N =0

0<t<n

S0
> Condfu-0p~N.

0<t<n

Finally, differentiating the ¢th component of the fourth equation gives

> Condy " (Salu,p));; O4N;

0<t<n

= Y Cundp ™ (—oh(n) + (9 + AP " (wt)) 1) OIN;

0<t<n

Y Con (=007~ () + 907 n+ 07" (Aw® " (wi)n)) O N;

0<t<n
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so taking away the ¢ = 0 terms and handling 0} (S 4 (u, p)) as before as well as handling
the An term, we get

"= Z Cén |:_8ZI_Z (SA(uvp))ij 85'/\/'] + (/-I/DO‘A@ZI_ZU’)U N]:|

0<t<n

+ 3 Con (—08 D) + 907+ 0 (AW [ (wtyy)) Op N (3:21)

0<t<n
+ (=00 (9(n) — An)) N
and
= 0p (Aw? f" (wt)n) . (3.22)
Note in particular that F>™ is a linear term, different in form from the other nonlinear
forcing terms.

3.2. Flattened form. It will also be useful for us to have a linearized version of (1.29)
with constant coefficients. This version is as follows:

v +div S(v,q) = 61 in Q,

dive = ©2 in Q,

O¢ =v3+ O3 on ¥, (3.23)
S(v,q)es = (oA +g¢ +O°%) e3 +O©* on %,

v=0 on Y.

3.2.1. Energy-dissipation.

PropPosITION 3.2 (Flattened energy-dissipation). Suppose (v, g, () solve ([323)). Then

d V [of? /'Zd gm /M

:/v'@l—i-q@Q—f—/(—0AC+9C)@3—@4-U—@5U3.
Q )

(3.24)

Proof. We dot the first equation of ([B.23)) with v and integrate over 2 to see that

1+H=/v-@1, (3.25)
Q
where
2
I:= / VO = 8t/ ol and I] := / v - div(gl — pDw). (3.26)
Q o 2 Q

To deal with IT we compute

/ v - div(qgl — puDv) = / —(gI — pDw) : Vv + / (g — pDv)es -v =111 + II5. (3.27)
Q Q )

A simple computation gives

IIlz/uID)v Vo —(ql): /|Dv| /qdiv(v)z/ g|]D)U|2—qG)2. (3.28)
Q Q
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Now

II, = / v [(—JAC +gC+0%)es + @4]
b

:/ (—oAC +gC + %) vs + O v
b

(3.29)
= / (=0 AC + gC) (0,¢ — ©°) + 0 v + O3
b
2 2
= 3t l/ J|VC| + M +/ —(—UA<+QC)®3 +@4 'U+@5’Ug.
s 2 2 s
Thus, in sum, we have
2 2
H:at[/ LZC' +—g‘§| +%/ IDo|? —/ CE
= @ @ (3.30)
+ / —(—0AC+ g0)0% + 0" - v + Bv;.
b
The result follows by summing and regrouping. O

3.2.2. Forcing terms. The forcing terms come from rearranging the equation to get
the terms we want—we then designate everything else as forcing terms. Note that we
will take derivatives of the full nonlinear equations in ([L.29]), but to get the corresponding
forcing terms, we may just take derivatives of the forcing terms here since we constructed
our linearization to have constant coefficients. To get the first forcing term, we remark
that the first equation in ([.29]) can be rewritten as

Opu + div S(u,p) = ONbK O3u — u - V qu + (div S(u, p) — div.g Sa(u,p))

. 3.31
= 0bKdsu —u-Vau — divDy_qu — diva_j (pI — D 4u), ( )
and so
Gt = 0bKOsu — u - V qu — divD;_ qu — div4_; (pI — D 4u). (3.32)
The second term is
G? = divi_au; (3.33)

this is a result of simply adding and subtracting the two different types of divergence.
To handle the third equation, rewrite as 9;np = u - e3 + u - (N — e3), and so

G =u- (N —e3). (3.34)
Finally, we similarly write the fourth nonlinear term as
G* = (pI — pDu)(es = N) + (uDa-ru)N + (g1 + Aw’ f" (wt)n) (es = N)

(3.35)
= (=05(n)) (e3 = N) — (=0 (An — H(n))) e
and the fifth error term, which is linear, is written as
G® = AW f" (wt)n. (3.36)

4. Estimates of the nonlinearities and other error terms. In this section we
develop the estimates of the nonlinearities as well as other error terms needed to close
our scheme of a priori estimates.
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4.1. L™ estimates. The next result establishes some key L°° bounds that will be used
repeatedly throughout the paper.

PROPOSITION 4.1. There exists a universal constant ¢ € (0,1) such that if Han/z <4,
then the following bounds hold:
(1) We have that

1
2 2 2 2
1 = e + IV —esllpoe + Al + Bz~ < 5 (4.1)
and
1Ko + Ml S 1. (4.2)

(2) The mapping given by (L22) is a diffeomorphism from € to Q(¢).
(3) For all v € H*() such that v = 0 on X we have the estimate

[l < [ TDac 4 COA= Tl + 17 = 1l) [ o @)

for a universal constant C' > 0.

Proof. Recall that

J-1= % +(03mb, N —eg=(=0n,—0n,0), A= (0i)b, B = (020)b.
(4.4)
Thus, the left hand side of ([#1]) can be bounded above, via Sobolev embedding H?3(Q) <
C*(Q), by ||7)]|5- This is in turn bounded by Inll5,2 by Lemma[B.3l Then ([&2) holds by

the definitions of K and A and (4&1]). To see the second item note that ¥ = T +e3ijb, which
means that if ||7]|,. is sufficiently small, then W is a bijection with positive Jacobian J.
In this case ¥ is a diffeomorphism thanks to the inverse function theorem. For the third
item, first write

Dol = 7 Davf’ = (J = 1) Dof* = J (IDavf* - [Dof?)
= J|Dv)? = (J = 1) |Dv|*> = J (Dgv + Do) : (D40 — Do) (4.5)
— T4+ IT+1I1.

Since the I and I1 terms are already in place, we just need to bound I1I. To do this,
compute

(Dav £Dv),; = (AE 1) 0kvj + (A1) ) Opv; (4.6)
and so

IIT = —J (D v +Dv) : (Dav = Dv) < ||| o M + Il| o |4 = ]| oo Do (4.7)

The L* norms can be bounded by universal constants by ([@.1]) and ([@.2]), so we conclude.
O
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4.2. Estimates of the I forcing terms. We now present the estimates of the F' forcing
terms that appear in the geometric form of the equations [B.]). Estimates of the same
general form are now well-known in the literature [10,[13123l[26], so we will focus primarily
on the terms that have not appeared before.

THEOREM 4.2. Let F7" be defined by BI5), BI7), BI9), B2I). Assume that

E7 < § for the universal § € (0,1) given by Proposition 1] and further suppose that

nH Aw® < 1. Then there exists a polynomial P with nonnegative universal coefficients

such that
1757 g + 1727 lg + o (TE>™) g + 1757 [5 + [|F47ls < Plo)enps (48)
and
|2 < (€2)° (49)
Proof. The estimates
1l + 172 g + o (TE> )|y + 557 [g £ P@)€Ds. [|F>7]|; < (€7)° (4.10)
and
2
> Condp T (AW (wt)n) 7 Ni|| < P(o)ENDS, (4.11)
0<l<n 0

are proved in Theorem 4.4 of [26]. To conclude we then use the bound Znﬂ Awt <1
together with the Sobolev embeddings on ¥ to estimate

|07~ (Aw? " (wt)n) LN

n+1 2 n—~ ) ) (412)
o) (ZAM> (Z ||3l”77||2> 10V, S P(o)EdDE,
=2

m=0

and then we sum over 0 < £ < n to arrive at the desired final estimate. O
4.3. Estimates of the G forcing terms. We now present the estimates for the G* non-
linearities. Define

yn.—Z\

- o

2n—2j5—1 ’ 2n—2j ’ HHQ” 2j—-1/2(%)

H2n—2j+1/2(%))

+HG3!|H2n v TG gy + 0 (16 g sagy + [0G pana(sy )
(4.13)
and

2 .
aﬂal +oia? tG?’H | +]agG
H2n—2j-1/2(x)

L
H2n—2j-3/2(%) :
(4.14)

2n2]2 2n2]1‘

These nonlinearities are the ones generated by elliptic regularity estimates.
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THEOREM 4.3. Let G* for i = 1,...,4 be defined by [3.32), (3.33), (8:34), and ([B.35).

Assume that £ < § for the universal § € (0,1) given by Proposition Bl and suppose
that Z?;l Aw® < 1. Then there exists a polynomial P with nonnegative universal
coefficients such that

Yo S P(0) (EXD; + KF,) (4.15)
and
W, S P(0) (E2€7 + KFy) - (4.16)
Furthermore, in the case that n = 1 and o > 0 is fixed, we have
Wi S P(0)(£7)° (4.17)
and
IG I+ 1625 + 1165 + 196213 + 161} < Plo)ETDE. (438

Note the above is just ); after considering o as a fixed constant, with HG4H1 replacing
the term HG4H3/2.

Proof. The estimates ([{I5]) and ([£I6]) are proved in Theorem 4.2 of [26] but with G*
replaced by G* — (Aw? f” (wt)n)(e3 — N), so to complete the proof of these estimates it
suffices to show that

n—1 ‘
Jj=0

o} (A2 " (wtm)es —N))| S Po) (E9D5 +KF,)  (4.19)

H2n—2j-1/2(%)

and
n—1 2

0] (A" (wtym)(es = V) | < P(0) (€% + KF,) . (4.20)

H2n—2j-3/2(%) ~

j=0
These follow easily from the Leibniz rule and the product estimates of Theorem [B.1]
together with the hypothesis that Z?;l Awt < 1.
The bounds
Wi S

~

P(o)(7)? (4.21)
and

2 2 3112 3112 2 P
NG+ NG, + G252 + 1962 + 167l < Plo)ET DS (4.22)

follow from similar arguments. To complete the proof of ([I8)) it remains only bound
|VGH||2 < P(o)e7 DS (4.23)
To prove ([@Z3)) we first recall that G* can be written as the sum of five terms:
G* = (pI — pDu)(es = N) + (D a—ru)N + (gn + Aw® f" (wt)n) (e3 — N)
— (=o9(n) (es = N) = (=0 (An = H(n))) es.
We will handle each in turn. For the first term we estimate
IV ((es = MYGI = D)5 S D7 [[0%(es = M) (pI — D)

1B]+]v]=1 (4.25)

< Inll3 (1lpll3 + lul3) €75

(4.24)
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We may argue similarly for the second term to see that
IV (=M1 S Inll3 (P53 + llull3) S €7Dy (4.26)
For the third term we use the hypothesis Aw? < 1 to estimate
IV ((gn + Aw? £ (wtyn)(es = N)) |2 < Inll2 Inll3, S £7 D5 (4.27)

For the fourth and fifth terms we expand

—1/2 —3/2
S = (1+190F) " an— (1+190f) T D*Vy -y (4:28)

and
[Vn|®

1
[ —
V14 |Vnl? VI+[Vn 1+ /14 Vn?)
in order to arrive at the estimate
IV (a5 (n)(es = N5+ IV (a(An = 5m)l5 S Inlls o2 IInll%, S ETDT. (4.30)

Combining these, we deduce that (23] holds, which completes the proof of all of the
stated estimates. O
4.4. Estimates on auziliary terms. Our next result provides some bounds for nonlin-

(4.29)

earities appearing in integrals.

PROPOSITION 4.4. Let a € N? with |a| = 2n. Assume that £7 < § for the universal
d € (0,1) given by Proposition Il Then there exists a polynomial with nonnegative
universal coefficients such that

’ / 2°no*G3| < \/EODY + \/DIKF, (4.31)
3
and
o / AJ*n9°G3| < P(o) (\/gngDg + \/DgIC]-'n) . (4.32)
¥

Moreover, when n = 1 and o > 0, we can improve the estimate above to

1
< 1HVT reepe (4.33)

g

o / A G3
b

Proof. The first two estimates are proved in Lemma 3.5 of [13].
For the n = 1 and o > 0 case, we first estimate

JLonomnon G <o 180l G Sl 0767 S VBT 19762
(4.34)
To conclude we use the definition of G® to bound
o 1+
167G, < Wl Wl + Wl Wl S V0 VETDT. (a39)
O
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We define the following auxiliary term which appears in later sections:

1
Hy o= [ =0 'pF>" ] + 5|8fu|2(J —1). (4.36)
Q

The next result provides estimates for this term.

PROPOSITION 4.5. Let H,, be defined as in (£30]), and assume £J < § for the universal
0 € (0,1) given by Proposition Il Furthermore, suppose that Z?:; Aw® < 1. Then

[Hal < (€. (4.37)
Proof. We can bound
Ml < 1077 0l [F27 g 10 e + 5 1T = Ul o 107l - (4.38)
Then we use Proposition 1] and Theorem to estimate
[F2 o 171 < En- (4.39)
Using the Sobolev embedding H3(2) — C*(Q),
1 = Ulpee S lller S Ml s S lnlls e S VER- (4.40)
Therefore
Hal S VE ([198 7 plly VET + 107 ull}) S (€072, (4.41)
as desired. (]

5. General a priori estimates. The purpose of this section is to present a priori
estimates that are general in the sense that they are valid for both the problem with and
without surface tension. The general estimates presented here will be specially adapted
later to each problem to prove different sorts of results.

5.1. Energy-dissipation evolution estimates. Let o € N2 and write

(o

— 1 2 1 2 g 2
E,= | =10° = |go® — Vo~
L= [l [ Fleoral + G vonal,

— 1
Da:/ L poey?
Q 2

for the part of the energy and dissipation responsible for the « derivatives.

(5.1)

Our first result derives energy-dissipation estimates for the time derivative component
of the energy and dissipation functionals.

THEOREM 5.1. Assume that £7 < ¢ for the universal § € (0,1) given by Proposition
T Suppose further that S77) Aw’ < 1. Let a € N'*2 be given by a = (n,0,0),
ie, 0 = 0. Then for £ and D, given by (5.1, there exists a polynomial P with
nonnegative universal constants such that we have the estimate

n+2
%(S_ﬁ%n) +D, < <Z sz> DY + P(0)\/E9DS. (5.2)
(=2
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Proof. We apply Proposition B.Il with (v, q, () = 97*(u, q,7n) to get

d / a?u|2J+/ o \Vopul g lopul® +/ [DAdyul* T
it | o 2 . 2 2 o2

:/J(ﬁfu-Fl’"—i—@fp-Fz’”) (5.3)
Q

+ [ (~onory+gopn Fon — [ PR3 + OO - .
P %

Now we estimate the terms on the right hand side of (&3]). We easily bound the last

term by
n+2

/ Fo" (97 u) -N’
b

/E<Z CZ Aw2+€f(2+f)(wt)an ¢ )(

£=0
(5.4)
To handle the pressure term we first rewrite
d
OpJF>m = — [ 9r tpJF?" — [ 07 tpd,(JF>™). (5.5)
Q dt Jo Q

We then use Theorem to estimate

‘Aaplpat(JF2a") < 07wl [|0e(TE>™)||, S Plo)y/Dg\/EIDS = P(o)\/EIDS,.

(5.6)
Using Theorem [£.2] Proposition 1] and trace theory, we get that
JoPu - Fbm™ — / FAmoomu| < J1ofall, (J[FY| + [[FA™])
0 t . t t 1 || HO || HO (57)
o)/ D3/ EVDg = P(0)/EIDY.
For the rest of the terms, we again use Theorem to estimate
[ onarn+gornFo) < @ opal, + 10t |75 )

0)\/DI\/EODs = P(0)\/EODY.

Next we rewrite some of the terms on the left side of the equations. Proposition .1]
allows us to bound

1 1
—/ DO u|? g/ L \Daoru? 7+ 0 /D7 (5.9)
2 Jo Q2
and
Loon 2 Ioon 2 1 2
/ Lioru? g = / Liony +/ Lomu? (7 - 1), (5.10)
a2 a2 a2
The theorem follows by combining the above estimates and rearranging. O

Our next result provides energy-dissipation estimates for all derivatives besides the
highest order temporal ones.
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THEOREM 5.2. Suppose that £7 < 6 for 6 € (0, 1) given in Proposition 1l Let o € N1+2
be such that || < 2n and ap < n. Suppose further that Z?izl Aw® < 1. Then there
exists a polynomial P with nonnegative universal coefficients such that

n+1
—50 +D, (Z Aw ) DY + P(o (\F o4 DglC]—"n> . (5.11)

Moreover, when n =1 and ¢ > 0 is a fixed constant, we can improve this to
—E‘T—i—’D < A(W? 4 w?) \/8" o (5.12)
Proof. We begin by applying Proposition on (v, q,¢) = 0*(u,p,n) to see that
d— —
—E0+D, = —/ o (Aw2f”(wt)77) 0%us +/ O%u - 9°Gt 4 9*po*G?
dt 5 Q
(5.13)
+ / (—o AN + g0°n) OG> — 9°G* - 0*u.
b

We will now estimate all of the terms appearing on the right side of (5I3]). The first term
is easily bounded using the duality between H/2(X) and H~'/2(X) and trace theory:

/280‘ (Aw? " (wt)n) 0%us

n+1 n—1
< (Z AM) S Ha{n
=2 j=0

n—
2n—2j-1/2 Zo |‘aju3"H2”"2j+1/2(2) (5.14)
J:

n+1 n—1 n+1
Vi ] 4 0
< () VB (S0l ] 5 (5 22
=2 j=0 =2
In order to estimate the remaining terms on the right side of (5.I3]) we will break to cases
based on a.
CASE 1 (Pure spatial derivatives of highest order). In this case we first consider
a € N'*2 with |a|] = 2n and oy = 0, i.e., 0 is purely spatial derivatives of the highest
order. Now write a = 8+ v for |8] = 1. We then use integration by parts and Theorem
A3 to bound the G! term via

0 G| = /aa+5u-mal < Nallgnsr |G ., S Plo)/DO/ESDE T K.
Q Q
(5.15)
To bound the G2 term, compute
/ 0p - 0°G?| < |o°pll, |9°G?, < Po)/DIVEIDS + Ky (5.16)
Q

For the G® term, the —cAd*nd*G> and gd°n terms are handled by Proposition E4l

Finally, to bound the G* term, we have

/ 2°G* - 9w
b

= H8aG4HH71/2(2) ||8°‘u\|H1/2(E) 5 HG4HH%*1/2(E) Hu||2n+1

0)\/D\/EDT + K F,,.

(5.17)

Licensed to Carnegie Mellon Univ. Prepared on Tue Jun 29 13:31:32 EDT 2021 for download from IP 128.2.149.108.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



FARADAY STABILITY 571

Combining the above estimates yields the desired bound for this case. For the n = 1 and
o > 0 case, we can apply the special cases of Theorem [£3] and Proposition [£.4] and the
same computations as above to deduce the result for G', G2, and G2, noting that

P(o)

. (5.18)

P(o)+ Y7

where P denotes different universal polynomials on each side of the inequality. For G*
we can use the same method as for G to get

/ 9°“G* - 0°u
by

CASE 2 (Everything else). We now consider the remaining cases, i.e., either |a| <
2n — 1 or else |a| = 2n and 1 < ag < n. In this case, the G, G2, G* terms may be
handled with Theorem For the G term, we directly compute

S|~ 2d°n+g0%nl|, |0°G?|| < P(0) /D5 /EIDG + KF,.

SGY el S VETD. (5.19)

/ NG 9Py
b

/ (—o AD*N+gd°n) 0°G?
b

(5.20)
We may now combine the two cases to conclude the desired theorem. In the case of
n =1 and o > 0, we can apply the special cases of Theorem [4.3]in the above. O

By combining Theorems [B.1] and we get the following synthesized result.

THEOREM 5.3. Suppose that £7 < ¢ for 6 € (0,1) given by Proposition @Il Suppose
further that E?;l Aw® < 1. Then we have the estimate

n+2
% (€7 +Hn) +Dn S (Z Awf> D) + P(o0) (\/579@5 + DglC]—"n) : (5.21)
£=2

where H,, is defined as in (£30). Moreover, when n = 1 and o > 0, we have

d — — P
p (E7 +H1) + D1 S (Aw® + Aw®)DY + %ME{DT. (5.22)

5.2. Comparison estimates. Our goal now is to show that the full energy and dissi-
pation, &, and D,,, can be controlled by their horizontal counterparts £ and D,, up to
some error terms that can be made small. We begin with the result for the dissipation.

THEOREM 5.4. Suppose that £7 < ¢ for 6 € (0,1) given by Proposition @Il Let V), be
as defined in @IF). If 37 Aw’ <1, then
D < Yo + Dy (5.23)

Proof. We divide the proof into several steps.
STEP 1 (Application of Korn’s inequality). Korn’s inequality tells us that

> Jo*ulli £ D (5.24)

aeN!T?
lal<2n
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Since 0; and J account for all the spatial differential operators on 3, we deduce from
standard trace estimates that

J a, (12 )
S [0 ey 2 10 ulirr20s) S P (5.25)
J=0 a€eN!t?
la]<2n

STEP 2 (Elliptic estimates for the Stokes problem). With (B25]) in hand, we can now
use the elliptic theory associated to the Stokes problem to gain control of the velocity
field and the pressure. For j =0,1,...,n — 1 we have that 8] (u,p,n) solve the PDE

div § (8§u,8§p) =9IG — b, (8§u) in Q,

div (0}u) = 9]G? in Q,

_ ( ' ) ! (5.26)
Ou = 8iu‘2 on X,

Hu=0 on Xy.

We may then apply the Stokes problem elliptic regularity estimates in Theorem to
bound

0F = ully 1707l ; S N5l 4105 ull o2 sy 108~ G [y 10F 7 G2 [, S V4D

(5.27)
The control of 9]~ *u provided by this bound then allows us to control 9] 2u in a similar
manner. We thus proceed iteratively with Theorem with m = 2n — 25 — 1, counting
down from n — 1 temporal derivatives to 0 temporal derivatives in order to deduce that

+ Hvag'p ’ S P(o) (Vn+Dy) . (5.28)

n—2j—-1 "

2
2n—2j+1

n—1

J
> |jor
j=0

STEP 3 (Free surface function estimates). Next we derive estimates for the free surface
function. Consider the dynamic boundary condition on ¥ to write

[(pI — pDu)es] - e3 = [(—oAn + (g + Aw? f"(wt))n)es + G*] - e. (5.29)
Now fort=1,2and j =0,1,...,n—1, apply aiag’ to the above and rearrange to obtain

— oA+ (g + A" (wi)) B0y = — Z 9y (Aw’ f" (wt)) 0;07
0<es; (5.30)
+ (8181{}7 — 2/1638,‘8?&3) — 816£G4 - e3.
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FARADAY STABILITY 573

We then use this in the capillary operator estimate count up from j =0,1,...,n — 1 in
Theorem [AT] and employ (5.27) to see that

+ H (8¢8gp - 2N838i8gu3) ~0,0]G" - ey

< |- Z 0y (Aw? f" (wt)) 0;0°

0<t<j

t77

t 2n—2j5— 3/2

2n—2j5+1/2
2n—2j—3/2

HHQn—Qj—B»/z(Z)

. 2
ol +|

|

WGH

2n—2j5—1 2n—2j5+1

j—1
SZHa(?enHQn 25— 3/2+Hvagp H2n—2j— 1/2(2)
=0

<Y +D.

(5.31)
Recall that 7 has zero integral over ¥ via (LIH]), so by using Poincaré’s inequality, we
also obtain

n—1 . 9 4 n—1 2 . )
8J 2 Haj ‘ 2 ‘ 6181
];)H o 2TL—QJ'—1/2+U ([P 2j+3/2 ;; 2n— 3/2+U th 2n+1/2
SY+D.
(5.32)

Next we estimate 8{ n for j = 1,2,...,n 4+ 1 by employing the kinematic boundary
condition

oty = dlus + 0 G, (5.33)
We first use this and (5.32)) to bound
2 2 2 2 —
||8t77||2n71 S ||u3||H2"*1(E) + HG3HH2"*1(Z) S ||u||2n71/2 + yn 5 yn + Dn (534)
and then multiply by o2 in order to derive the similar estimate

2 2 2
o? H6t77||2n+1/2 < o’ ||u3||H2"+1/2(E) +0? HG3HH27L+1/2(2) (5.35)
2 2 = :
S ||uH2'n,+1 +0° HG3HH%+1/2(2) S Vn+ Dy

Next we use a similar argument to control 97n:

10773, S N0eta T2y H1OG? [y S N0rulz o+ [0 G° |2 sy S Yt D
(5.36)
and

o’ H6t277||2n 32 S G2 e s2(z) T o’ ||8tG3||H2n*3/2(E)

(5.37)
S N0wus )13,y + 0 0G| [3r2nsas) S Vo + D

Licensed to Carnegie Mellon Univ. Prepared on Tue Jun 29 13:31:32 EDT 2021 for download from IP 128.2.149.108.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



574 DAVID ALTIZIO, IAN TICE, XINYU WU, aNnp TAISUKE YASUDA

With control of 927 in hand we can iterate to obtain control of 5‘{ forj=3,4,...,n+1.
This yields the estimate
n+1 9 n+1 ) 2 )
> ot 3o o™
— 2n—2j+5/2 — H2n—2j+5/2(2) H2n—2j+5/2(2)
! ’ (5.38)
n
— J J 3 < D
; H@tu 2n—2j+1 + HatG HHQ"L*23'+1/2(E) S Yo+ Do

Summing the above bounds then shows the following surface function estimate:

|\8t77||§n_1 +0° H3t77||§n+1/2 + ||at277||;n—2 +0° HatQWHEn—wz

n—1 ] 2 ntl .
B Haﬂ
* jzz(:) (H t1 2n—2j+3/2) * ; e

2 . 2 __
+o? |on < Vo + Do
2n—2j—1/2 2n—2j+5/2

(5.39)
STEP 4 (Improved pressure estimates). We now return to (2.29) with (2.39) in hand
in order to improve our estimates for the pressure. Applying &} for j = 0,1,...,n — 1
shows that
dlp = —oAd]n+ gdln + 9] (Aw? f" (wt)n) + 2050 us + &} G* - e. (5.40)
We then use this with (£32]) to bound
”_1].2 <"_1,22 2 2 STE - _
5 [ D » % T 0 2 P A
=0 7=0
Now by a Poincaré-type inequality,
n—1 ] 2 _ n—1 ' 2 ’ 2 _ .
Z‘aﬁpHo ~ ZHV@}?’O—F ’atp’HO(z) S Yt Dn. (5.42)
7=0 7=0
Hence
noloo2 noloo2 2 _
Z‘aip 52‘5519‘ +HV8ip < Vo + D (5.43)
= 2n=2j = = 0 2n—2j—1

STEP 5 (Conclusion). The estimate (B.23]) now follows by combining the above bounds.
([

We now explore the counterpart for the energy.

THEOREM 5.5. Suppose that £7 < ¢ for § € (0, 1) given by Proposition Il Let W, be
as defined in ([@I4). If 22:21 Aw® < 1, then there exists a polynomial P with nonnegative
universal coefficients such that

&7 S P(o) Wa + &) (5.44)

Proof. We divide the proof into several steps.
STEP 1 (Initial free surface terms). To begin, note that

n
2 2
> ol + o IvonlE s Y|
aeN!+2 =0
ol <2n

2

dln (5.45)

—i—aHV@fn

2
2n—2j

2n—2;
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Since 8g 7 has zero integral, we can then use Poincaré’s inequality to conclude that
|
j=0

STEP 2 (Elliptic estimates). Rewrite the flattened equations in ([Z29) as

. 2 n . 2
dn aln ‘3577

S
2n—2j+1 "~ 4

j=0

2 ,
+o HV&?U
2n—2;

2
+ol <Er. (5.46)
2n—2j

2n—2j

Vp — pAu = G — dsu in Q,

dive = G? in Q,

o =uz + G3 on X, (5.47)
(pI — pDu)es = (—ocAn+ gn+ G%es + G* on I,

w=0 on .

Note that in particular (8gu, 8gp, 8{7)) for j =1,2,...,n — 1 satisfy the PDE

Volp — pA&u=8/G* — o/ u in Q,

div d)u = 8 G? in Q,

oty = dlus + 0 G3 on ¥, (5.48)
(3lpI — D u)es = (—a AN + gdln + ] G)es + 9] G* on %,

v=0 on Y.

We may appeal to the elliptic estimates for the Stokes problem with stress boundary
conditions ([(A.3) to obtain

oz~ ully + llor ol
< lloptet —apully + oy~

+{[(—o 20 + g7+ 87 GP)es + 7G| (5.49)
< llop 6 g + lopulls + 1o~ 2|y

1 112 1 112 n— 2 e 2
1087l + o 107l + 108 TGPy + 1108 G 12 -

For the G® term we bound

e D S T T | P A 71

0<t<n—1 1/2 0<e<n—1
(5.50)
As a result, we have

o ully + 28" ply < 107G g + g ully + 762

ol oo 08 e+ D0 00l #1108 G a ey SP0) W+ E7)-
0<i<n—1
(5.51)
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We in turn may induct downward to get bounds on 8gu and 8{]9 forj=n-2,...,1,0.
Doing so, we arrive at the bounds

nol 2 2

Z ‘ ou + H@{p‘

; 2n—2j 2n—2j—1

Jj=0

< fo = aj 1 2 aj 2 2 8j 4 2 < 5
T P o),
”+J_Z_:O‘ 0G 2n72j72+’ 0 2n72j71+‘ 0G HH2"*2J'*3/2(E) S Plo) (Wa +&7)

(5.52)

STEP 3 (Improved estimates for time derivatives of the free surface function). With

the estimates of (5.52) in hand, we can improve the estimates for the time derivatives of
the free surface function by employing the kinematic boundary condition

Ny =0lus + 0GP (5.53)

for j =0,1,...,n — 1. Using this, trace theory, (540, and (E.52]) provides us with the
estimate

2 2 2 JE—
||at77‘|2n71/2 S ||uH2'n, + HG3||H2n—1/2(2) SWh+ &7 (5.54)

We then iterate this argument to control 8,{77 for 5 = 0,1,...,n — 1. This yields the
bound
2

n } n—1 }
2 : Py < E :Haj

, H t1 2n—25+3/2 "~ 4 t¥
Jj=1 Jj=0

STEP 4 (Conclusion). The estimate in (544) now follows by combining the above
bounds. 0

2 2

+ Ha§G3H | <W,+82.  (5.55)
H2n-2j-1/2(x)

2n—2j

6. The zero and vanishing surface tension problems. Recall that we use the
phrase vanishing surface tension regime to refer to the scenario in which ¢ > 0 is small,
which is really only of interest via its use in sending o — 0 to arrive at the zero surface
tension problem. In this section we complete the development of the a priori estimates
for the vanishing surface tension problem and for the problem with zero surface tension.
With these estimates in hand we then prove Theorems 2.4] and .5 which establish
the existence of global-in-time decaying solutions and study the limit as surface tension
vanishes.

6.1. Preliminaries. Here we record a simple preliminary estimate that will be quite
useful in the subsequent analysis.

PROPOSITION 6.1. For N > 3 we have that
K < min {51%-4-271)(1)\/-4-2} ] Frniz S Ean- (6.1)

Proof. By Sobolev embeddings and trace theory, K < Hu||§/2 + ||77H§/2 < ull? + ||nl3
and hence K < &) < &}, and K < DY < DY ,. On the other hand, Fyip =
755 1ag1/2 < Inllsn 5 and 2N +5 < AN for N >3, 50 Fivya < E9y. 0
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6.2. Transport estimate. We now turn to the issue of establishing structured estimates
of the highest derivatives of i by appealing to the kinematic transport equation.

THEOREM 6.2. Assume that £ < d; for the universal § € (0,1) given by Proposition
41l Then

Osglilét]:QN(r) < exp <C /Ot VEK(r) d?‘)
X [I2N(0) +t/ (1+ EQN DYy dr + (/Ot VKFon dr) 21 . (6.2)

t
0
Proof. The argument used to prove Theorem 6.3 of [26], which is based on fractional
regularity estimates for the transport equation proved by Danchin [7], works here as well.
We refer to [26] for details. O
Next we show that if we know a priori that Gon is small, then in fact it is possible to
estimate Fon more strongly than is done in Theorem

THEOREM 6.3. Let GY be defined by (ZIT) for N > 3. There exists a universal § € (0, 1)
such that if GY\(T) < & and v < 1, then

sup Faon(r) < Fan(0) —I—t/o DY\ (1) dr (6.3)

0<r<t
forall 0 <t <T.

Proof. According to Proposition and the assumed bounds, we may estimate

/Ot\/mdrs/ot /g%w(r)drg\/g/ooomdrg\/g. (6.4)

Since § € (0,1), we thus have that for any universal C' > 0

exp <C /Ot \/Wdr> <1. (6.5)

Similarly,

(/Ot \/lmdr>2 < < sup sz(T)) (/Ot EQa(r) dr) < ( sup ng(r)) 6.

0<r<t

Then (64)), (61, [@6), and Theorem [6.2] imply that

sup Fon(r) < C <]—'2N(0) +t /O t DY (1) dr> +C6 ( sup fQN(r)> (6.7)

0<r<t 0<r<t

for some C' > 0. Then if ¢ is small enough so that C§ < %, we may absorb the right
hand Fan term onto the left and deduce (63). O
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6.3. A priori estimates for GJ5. Our goal now is to complete our a priori estimates
for GS,;. We start with the bounds of the high-tier terms and Fop.

THEOREM 6.4. There exist dg,v € (0,1) such that if 0 < o < 1, G§y(T) < o, and
ENZJFQ Aw® < g, then

.FQN(T)

sup ESn(r / DIy (r) dr + sup < EIN(0) + Fon(0) (6.8)

0<r<t 0<r<t
forall0 <t <T.

Proof. We first assume that dy is small as in Proposition LT} and small as in Propo-
sition @5 so that [Han| < (E9y)3/2.
We invoke Theorems [5.4] and in order to bound

ESy SWan +&9y  and DIy < Von + Dan. (6.9)
According to Theorem we may then bound
Wan S ENEIN +KFany and Yoy S EINDIN + KFon. (6.10)

Upon combining the above two equations with the given bound for Hsy, we find that

En S (Ey +Han) +ENESN +(E9n)*?+KFon  and DSy < Don +E5y DSy +KFan,

(6.11)
and consequently, if §y is assumed to be small enough we may absorb the E9,E9y +
(E95)3/% and £9\Dgy terms onto the left to arrive at the bounds

En S (ggN—l-HgN)—I-IC]:gN and DI <D2N+K.F2N (6.12)
We apply Theorem [5.3] with n = 2N and integrate in time from 0 to ¢ to see that

(E9n(t) + Han(t / Don(r)dr
IN+2 ¢
< (€55 (0) + Han (0)) + < Z Awe) /0 DYy (r) dr (6.13)

(=2
/,/ 0 (1) DS (r dr—i—/ VDS () Fane () dr

We then combine this with the estimate in (6I2)) to arrive at the refined bound

2N +2
En (1) /DZN S En(0 (Z AW)/ Dy (r d7'+/ V/E on (1) D5y (r

+ /0 t <lC(r)}'zN(r) + \/DgN(r)IC(r)]-'gN(r)> dr.

(6.14)
We now turn our attention to the KFan terms appearing on the right side of ([GI4]). To
handle these we first note that K < &% 4o, as is shown in Proposition B.Il Thus

1 1 5
0 _ 4N -8 o0 0
K(r) S Enyalr) = W(l +r) TN S W%N(T) S A5 )i

(6.15)
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Next we use Theorem to see that for 0 < r < ¢ we can estimate
™
Fon(r) S Fon(0) + (1 + r)/ D(Q)N(s) ds. (6.16)
0

We may then combine (6.I5) and ([6.I6]) to estimate

/Ot K(r)Fon(r)dr
s [ (20 + g [ )

t
5 50]'—21\/(0) + 50/ DgN(’I”) dr,
0

(6.17)

where here we have used N > 3 to guarantee that (1 + r)*V=8 and (1 + r)*¥=7 are
integrable on (0, c0). Similarly, we may estimate

/\/D (r)Fan(r) dr<</ DYy (r )1/2 (/’C )Fan(r )1/2

< (o« [ orarar)” (570 [ Diverar)
< VaF(0) + Vi [ Do

Now we plug ([6I7) and ([EI]) into ([GI4), bound £y < G9y < o, and use the fact
that /3y < &y due to 6y < 1 to arrive at the bound

2N+2

E9n (1) /DQN ) dr < Ean(0) + Fan(0) + / <f+ > Aw)DgN(r)dr. (6.19)

Thus if 49, dp € (0, 1) are chosen to be small enough, we may absorb the Dy (r) integral
term onto the left to deduce that

En(t) / Dyn(r)dr S E3x(0) + Fan(0). (6.20)

Upon combining (610) and (620) we deduce that the desired inequality holds. O
Next we establish the algebraic decay results for the low-tier energy.

THEOREM 6.5. There exists dp,vo € (0,1) such that if 0 < o < 1, Zév;gzl Aw? < 79, and
GIN(T) < 6o, then

sup (1+ 7)™ 7EX () S €5y (0) + Fan(0) (6.21)

0<r<t

forall0<¢<T.
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Proof. We prove in four steps.
STEP 1 (Set up). Assume dy is small as in Propositions 1] and The latter allows
us to estimate

Hsal S (E%12)"” S \/EWEY 12 (6.22)
since N > 3. Then by applying Theorems and B£.4] with n = N + 2, together with
Theorem 3] and Proposition 6.1 to get rid of the G nonlinearities and the K Fy 1o terms,
we obtain the bounds

Efiva S (Efya + Hii2) + \/ EINEXra + EX2ERr o + EX12E9N (6.23)
DYyo S Dni2+ EXoDfiga + ESnDRr 4o

Thus if we assume that &y is small enough to absorb \/EQ\EX 1o +EX o€ 1o+ EN 120N
and EX, , Do + ESNDY o onto the left hand side, then we may arrive at the bounds

ERva S (Efo + Hi2) SEX2 Dfya SDns2 S Digo. (6.24)
STEP 2 (Interpolation estimates). Now set
4N -8
= 0,1). 6.25
We claim that we have the interpolation estimate
o 0 o \1-0
Ent2 S (DN+2) (£2N) : (6'26)

For most of the terms appearing in €3, ,, this is a simple matter. Indeed, the definitions
of &7 and DY, , and the assumption that o < 1 allow us to estimate

sy 2 2, +oorn],
ZH 2(N+2)— Jz: tP 2(N+2)—2j—1 7

NZ+2 o + (6.27)
H 2
j=2 H o 2(N+2)—2j+3/2 o 11211

2n—2j5+4+1

< (DF)” (€)'
since the dissipation is actually coercive over the energy on these terms. To handle the
remaining terms, we must use Sobolev interpolation. We begin with the most important
term, which actually dictates the choice of 8. We have that

<(N+2)——>0+4N(1—9)—2(N+2) (N——>0—2N 4 (6.28)
so this 6 is compatible with Sobolev norm estimates and so we obtain

2(1-6 o \1-0
19ll3 2y < 1750wz 2 115N~ < (DR1a)” (E50) 7 (6.29)
Finally, we bound
2 2
HatUHz(NJrz)q/z S ||8t77||9(2 (N+2)—1)+(1-6)(4N—1/2)
2(1-6 o —0
SN0l 2y 1013500 < (DRr12)” (E5x)"
and thus we have ([6.26]), as claimed.

(6.30)
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STEP 3 (Differential inequality). Next we apply Theorem B3] with n = N + 2 in
conjunction with Proposition to see that

N+4

d —— _— o o

o (32 +Hn) +Dny2 S <§ : AM) DY o+ \/EXiaDirya +\/ENDRya- (6.31)
=2

We use this together with the bound G5 (T') < dp and the dissipation bounds of (6.24])
to estimate

N+4
E (5&4_2 + Hn) + DN+2 5 < 0o + Z sz> DN+2. (632)

=2

Then by assuming that §; and 2524 Aw® are small enough, we may absorb the Dy
onto the left of this inequality. Doing so and again invoking the dissipation bounds of
[624) gives us that

d

= (E%4a + Hinta) + CoDFip <0 (6.33)

for a universal constant Cp > 0. We then use the energy estimate in (624]) to rewrite

B20) as

o — 1/0 o o \(1—6)/6

(ERria +Hut2) " S DR (&) 07 (6.34)
We chain this together with the estimate in Theorem to write

C1 —_— 1+s o

N (ERryo +Hnt2) < Do (6.35)
0

for C7 > 0 a universal constant, s := (1—6)/0 = 1/(4N —8), and M := Ean(0)+Fan(0).

Upon combining (633) and ([G.35), we arrive at the differential inequality

4
dt

_ CoCy —
(E3in + Hnia) + —2 2t (EFpg + Mo

0 14+s
M; )

<o. (6.36)

With (636) in hand, we may integrate and argue as in the proofs of Theorem 7.7 of [10]
or Proposition 8.4 of [I3] to deduce that

sup (147N (S22 () + Hvs2(1) S Mo = Ean(0) + Fan (0). (6.37)
<r<t
Then (6.37) and the energy bound in (624 yield (621]). O

As the final step in our a priori estimates for GJ,, we synthesize Theorems and

THEOREM 6.6. There exist dg,vo € (0,1) such that if 0 < Z?JZV;Z

and G3y (T) < do, then

Aw€<'yo,0§o§1,

Gon(T) S E3n(0) + Fan(0). (6.38)

Proof. We simply combine the estimates of Theorems and a
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6.4. Main results for the zero and vanishing surface tension problems. Now that we
have the a priori estimates of Theorem in hand, we may prove Theorems [2.4] and
following previously developed arguments. For the sake of brevity we will omit full
details and simply refer to the existing arguments.

Proof of Theorem 2.4l The stated results follow by combining the local well-posedness
theory, Theorem [2.2] with the a priori estimates of Theorem and a continuation
argument. In broad strokes the idea is as follows. We pick the data smallness parameter
ko sufficiently small to use the local existence theorem to produce a solution on (0, T)
satisfying G9y (T%) < dp. Requiring o to be as small as in Theorem [Tl then allows us to
apply the theorem and deduce that GJy(T%) is actually bounded in terms of the initial
data. From here, provided kg is sufficiently small, we may restart the local existence
theory to continue the solution past T,. Iterating this argument and carefully tracking
the constants and the smallness parameters then allows us to guarantee that the solution
is global and satisfies (2.19)).

The full details of the continuation argument may be developed by mimicking the
arguments elaborated in Theorem 1.3 of [10] or Theorem 2.3 of [13]. O

Proof of Theorem 28 Again we present only a sketch: full details may be developed
by reproducing the proofs of Theorem 1.2 of [23] or Theorem 2.9 of [I3]. Due to the
careful accounting of the dependence on ¢ in the estimates of Theorem [Z4] we have
uniform in ¢ bounds for any sequence of ¢ values converging to 0. From these we may
extract weakly converging sequences, but from the well-known Aubin-Lions-Simon space-
time compactness results, we get strong convergence in spaces strong enough to pass to
the limit in the equations. We then deduce that the limit satisfies the ¢ = 0 problem. [

7. Fixed surface tension problem. In this section we study the problem (29) in
the case of a fixed o > 0. We develop a priori estimates and then present the proof of
Theorem 23] Although the structure of the proof is similar to that in [26], this paper
uses n = 1 to prove the main theorem rather than n = 2 as done in [26]. This is because
we wish to optimize our argument to give asymptotically better parameter regimes for A
and w; had we used n = 2, then we would have to require Z?zz Aw® < 1, which is worse
than the regime in which Z?:z Aw® <1 when we wish to consider large w.

Note that in what follows in this section we break our convention of not allowing
universal constants to depend on ¢. All universal constants are allowed to depend on
the fixed surface tension constant o but are still not allowed to depend on A or w.

7.1. A priori estimates for Sy. In order to prove Theorem 2.3 we will introduce the
following notation when A € (0, 00):

T
S\(T) := sup eMEY(t) +/ MDY (t) dt. (7.1)
0<t<T 0

We now develop the main a priori estimates with surface tension.

THEOREM 7.1. There exists do, o € (0,1), depending on o > 0, such that if So(T") < dg
and

A (W +w?) <7, (7.2)
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then there exists A = A(o) > 0 such that
Sx(T) < E7(0). (7.3)

Proof. We assume that dy is small enough that Propositions [£.1] and hold.
We use Theorems [(.4] [5.5], and [£.3], as well as addition and subtraction of H, to bound

EY S (E7+Ha) + (60 + (£7)%2  and D] D1+ E)DS. (7.4)
By further restricting §p we can use an absorbing argument to conclude
El+H1 <& SE+M1 and Dy <DJ <Dy (7.5)

We now employ Theorem [53] with n = 1 (recalling that we now allow universal
constants to depend on o) and (TH) to get under appropriate smallness assumptions
that

%(ﬁwﬁ) + D1 S (Aw? + Aw®) Dy + (,/_gg)p—l. (7.6)

We may then further restrict the size of dg and 7y in order to absorb terms on the right
onto the left. Note that this absorption requires vy, dg to depend on o. This yields the
inequality

& + ) + %D—l <. (7.7)
We defined &7 and DY such that &7 < 07 1DY, so we can apply (.5) to get that there
exists some C' > 0 and A > 0 depending on o such that

1— 1

D> 2 pos o

DY + —=&7
12 1 1
2 410) iC iC (78)
> 1 5PTHA(ET + ).
Plugging this into (T71) gives
d - 1,
7 (7 +H1) + A (ET +Hy) + 1cPI <0 (7.9)
We integrate this to get
__ 1t S
M (ET (1) +Hat) + 45 / MDY (1) drr < (5;’(0) + H1(0)> . (7.10)
0
Now, appealing to (L), we deduce
T
sup eMEY(t) + / MDY (t)dt < E7(0). (7.11)
0<t<T 0
O

7.2. Proof of main result.

Proof of Theorem 2.3l We combine the local existence result in Theorem 2.J] with
the a priori estimates in Theorem [.J] and a continuation argument, as in the proof of
Theorem 2.4l For full details we refer to the proofs of Theorem 1.3 of [10] or Theorem
2.3 of [13]. O
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Appendix A. Elliptic estimates. Here we record basic elliptic estimates.
A.1. Capillary operator. Consider the problem
—cAY+ gy = f on T" (A1)

for g,0 > 0. If f € H-}(T") = (H*(T™))*, then a weak solution is readily found with a
standard application of Riesz’s representation theorem: there exists a unique ¢ € H*(T")
such that

[ gve+ave Vo= (1.4, (A2)

THEOREM A.l. Let s > 0 and suppose that f € H*(T") C H-*(T"). Let ¢ € H(T")
be the weak solution to (AI)). Then ¢ € H*1(T™) and we have the estimates

[l < 5 Ifl and  |ID*9)l S 21D flly s (A.3)

where D = v/—A. Moreover, if [}, ¥ =0, then
[Pllgg0 S 5 1D Fllo - (A4)
Proof. See, for instance, Theorem A.1 of [26]. O

A.2. Stokes operator with Dirichlet conditions. Consider the problem
~Au+Vp=f' inQ,

divu = f? in Q, (A5)
u=f3 on X,
u=20 on 2.

The estimates for solutions are recorded in the following result, the proof of which is
standard and thus omitted.

THEOREM A.2. Let m € N. If f' € H™(Q), f2 € H™T1(Q), and f> € H™3/2(), the
solution pair (u,p) to (A satisfies u € H™T2(Q), Vp € H™H1(Q), and we have the
estimate

il + 1900 S 1 A 1720 + 1l ss (A.6)

A.3. Stokes operator with stress conditions. Consider the problem
~Au+Vp=f' inQ,
divu = f2 in Q,
u=20 on Xy,
(pI —Du)es = f2 on X.

(A7)

The estimates for solutions needed are recorded in the following result, the proof of
which is standard and thus omitted.

THEOREM A.3. Let m € N. If f1 € H™(Q), f2 € H™1(Q), and 3 € H™+1/2(%), then
the solution pair (u,p) to (A7) satisfies u € H™T2(Q), p € H™1(Q2), and we have the
estimate

ez + 1P lss S 1 + 1 g + 1522 (A.8)
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Appendix B. Analytic tools.
B.1. Product estimates. In this section we record the necessary product estimates on
Sobolev norms that we will need to get the correct bounds.

THEOREM B.1. The following hold on ¥ and on :
(1) Let 0 < r < s1 < 89 be such that s; > n/2. Let f € H®', g € H%2. Then

fg € H" and
19l e S N gron gl o - (B.1)
(2) Let 0 < r < s1 < s3 be such that so > r+n/2. Let f € H*, g € H*2. Then
fg € H” and
19l e S NN pron Mgl e - (B.2)

(3) Let 0 < r < s1 < sg be such that so > r+n/2. Let f € H "(X), g € H>(X).
Then fg € H*1(X) and
1fgll s, S WS- Mgl - (B.3)

Proof. See for example Lemma A.1 of [10]. O
B.2. Poisson extension. Suppose that ¥ = (L1T) x (L2T). We define the Poisson
integral in Q_ =3 X (—00,0) by

Pf(x) = > e2mina’ 2minia f(n), (B.4)

ne(Ly'Z)x (L 2)

where for n € (L7'Z) x (L;'Z) we have written
Fny = [ 1) o ®5)
s LyLy ' '

It is well known that P : H*(X) — H*"1/2(Q_) is a bounded linear operator for s > 0.
We now show that derivatives of P f can be estimated in the smaller domain §2.

LEMMA B.2. Let Pf be the Poisson integral of a function f that is either in H?(X) or
H9~1/2(%) for ¢ € N. Then

IVPLIG S Uf a2y and [IVOPAIG S 1 Wy - (B.6)

Proof. See Lemma A.3 in [10]. O
We will also need L estimates.

LEMMA B.3. Let Pf be the Poisson integral of a function f that is in Hq+S(E) forg>1
an integer and s > 1. Then

IVPF e S NF e (B.7)
The same estimate holds for ¢ = 0 if f satisfies fz f=0.

Proof. See Lemma A.4 in [10]. O
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