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Abstract. This paper concerns the dynamics of a layer of incompressible viscous

fluid lying above a vertically oscillating rigid plane and with an upper boundary given

by a free surface. We consider the problem with gravity and surface tension for horizon-

tally periodic flows. This problem gives rise to flat but vertically oscillating equilibrium

solutions, and the main thrust of this paper is to study the asymptotic stability of these

equilibria in certain parameter regimes. We prove that both with and without surface

tension there exists a parameter regime in which sufficiently small perturbations of the

equilibrium at time t = 0 give rise to global-in-time solutions that decay to equilibrium

at an identified quantitative rate.

1. Introduction.

1.1. Faraday waves. Consider a flat rigid surface in three dimensions, and suppose

that a finite layer of incompressible fluid is deposited on the surface and held there by a

uniform gravitational field. The upper surface of the fluid is free. Suppose that the rigid

lower surface is then oscillated in the vertical direction as indicated in Figure 1.
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Fig. 1. A layer of fluid evolves on a vertically oscillating rigid surface.

It was observed by Faraday [9] in the nineteenth century that in certain regions of the

frequency-amplitude parameter space the free surface of the fluid forms standing waves,

and in the complement of this region the free surface remains flat. This phenomenon is

now given the moniker Faraday waves, and the various fascinating patterns formed by

these standing waves have been studied intensively, both experimentally and theoretically.

As such, we will only attempt a very brief survey of the mathematical literature related

to Faraday waves. For a more thorough survey of the literature, especially for the case

of inviscid fluids, we refer to the review by Miles-Henderson [17].

From a mathematical perspective, the linearized problem has been analyzed in the

inviscid case by Benjamin-Ursell [4] and in the viscous case by Kumar [14] and Kumar-

Tuckerman [15] to determine conditions for the onset of these surface waves, or more

precisely to characterize the stability or instability of the flat interface. In the inviscid

case it is known [4] that the instability mechanism is equivalent to the parametric insta-

bility mechanism of the Mathieu ODE, about which much is known (see, for instance,

McLachlan’s book [16]). The viscous problem is more complicated and does not reduce

to the Mathieu ODE, but the numerical approximations of [14] show that instability

regions persist and are qualitatively similar to those in the inviscid case. In the work of

Skeldon-Rucklidge [22] and Westra-Binks-van de Water [28] the tools of weakly nonlinear

analysis were employed to explain the various surface wave patterns observed in exper-

iments. Simulations and numerical studies also have achieved results that agree well

with experiments in various settings: see for instance Périnet-Juric-Tuckerman [19] and

Qadeer [20]. Faraday waves have also been studied with linear and numerical analysis in

compressible fluids by Das-Morris-Bhattacharyay [8].

Faraday waves have recently experienced a renewed interest since the experimental

discovery of Couder-Protière-Fort-Boudaoud [6], which showed that Faraday waves cou-

pled with fluid droplets can “walk”. These walking water droplets can further be coupled
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FARADAY STABILITY 547

with other water droplets, and have been shown to exhibit behavior analogous to quan-

tum mechanical phenomena. We refer the reader to the review of Bush [5] for more

details of this line of work.

To the best of our knowledge, there has been no fully nonlinear analysis of the viscous

Faraday wave problem. In particular, there are no results rigorously establishing the

existence of a stable parameter regime. The principal goal in this paper is to prove such

a result and to provide some quantitative estimates for where in the oscillation parameter

space Faraday waves do not occur, i.e., where the flat free interface remains stable.

1.2. Free boundary Navier-Stokes equations in an oscillating domain. We now prop-

erly formulate the problem to be studied in the paper.

1.2.1. Overview of assumptions. We consider a layer of viscous incompressible fluid

evolving above a flat plane in three dimensions. We assume the fluid is subjected to a

uniform gravitational force field of the form −ge3 ∈ R
3 where g > 0 is a constant and

e3 = (0, 0, 1) is the vertical unit vector. Furthermore, we work in a situation where the

layer of fluid lies on top of a lower boundary that moves in the vertical direction, so that

the vertical component at time t is given by Af(ωt) − b where f : T = R/Z → [−1, 1]

is a smooth, nonconstant oscillation profile, A > 0 is an amplitude parameter, ω > 0

is a frequency parameter, and b > 0 is a constant depth parameter. A typical choice

of the oscillation profile is f(t) = cos(2πt − δ) for some δ ∈ [0, 2π). We allow for the

more general profile f in order to highlight that it is the amplitude and frequency of the

oscillation profile that play the dominant role in determining stability. Note in particular

that since f is a smooth function on the torus T, the assumption that it is not a constant

implies that none of its derivatives may vanish identically.

In addition to the above assumption on the external force acting on the fluid, we will

assume three other main features. First, we assume that the fluid is bounded above by a

free surface that evolves with the fluid. Second, we assume that above the free interface

the fluid is bordered by a trivial fluid of constant pressure (for instance, a vacuum).

Third, we assume that the fluid is horizontally periodic so that we can determine its

dynamics by studying a single horizontal periodicity cell. See Figure 2 for a sketch.

bottom boundary

top boundary

fluid

vacuum

Fig. 2. Cross-sectional side view of the top free boundary and bot-
tom rigid oscillating boundary of a horizontally periodic fluid.
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1.2.2. Fluid domain and boundaries. We introduce the horizontal cross-section Σ =

(L1T) × (L2T) for horizontal periodicity parameters L1, L2 > 0, and we assume that

the moving upper boundary of the fluid is given by the graph of an unknown function

η̃ : Σ× R
+ → R, so that the moving fluid domain is modeled by the set

Ω̃(t) = {x = (x′, x3) ∈ Σ× R : Af(ωt)− b < x3 < η̃(x′, t)}. (1.1)

Note that the lower boundary of Ω̃(t) is the oscillating set

Σ̃b(t) = {x = (x′, x3) ∈ Σ× R : x3 = Af(ωt)− b}, (1.2)

while the moving upper surface is

Σ̃(t) = {x = (x′, x3) ∈ Σ× R : x3 = η̃(x′, t)}. (1.3)

1.2.3. Equations of motion. For each t ≥ 0, the fluid is described by its velocity

and pressure functions (ũ, p̃) : Ω̃(t) → R
3 × R. We require that (ũ, p̃, η̃) satisfy the

incompressible Navier-Stokes equations in Ω̃(t) for t > 0:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tũ+ ũ · ∇ũ+∇p̃− μΔũ = −ge3 in Ω̃(t),

div ũ = 0 in Ω̃(t),

∂tη̃ + ũ1∂1η̃ + ũ2∂2η̃ = ũ3 on Σ̃(t),

(p̃I − μDũ)ν = (Pext − σH(η̃))ν on Σ̃(t),

ũ = Aωf ′(ωt)e3 on Σ̃b(t).

(1.4)

Here, μ > 0 is the fluid viscosity, (Dũ)ij = ∂iũj + ∂j ũi is the symmetric gradient of ũ, ν

is the outward-point unit normal vector on Σ̃(t), I is the 3× 3 identity matrix, Pext ∈ R

is the constant pressure above the fluid, σ > 0 is the surface tension coefficient, and

H(η̃) = div

⎛
⎝ ∇η̃√

1 + |∇η̃|2

⎞
⎠ (1.5)

is (minus) twice the mean curvature of Σ(t), which models the force of surface tension

on the free interface. The first two equations of (1.4) are the standard incompressible

Navier-Stokes equations, the third is the kinematic transport equation for η̃, the fourth is

the balance of stress at the interface, and the fifth is the no-slip boundary condition at the

bottom. The problem is augmented with initial data η̃0 : Σ̃ → (−b + Af(0),∞), which

determines the initial domain Ω̃0, as well as an initial velocity field ũ0 : Ω̃0 → R
3. Note

that the assumption η̃0 > −b+Af(0) on Σ means that the upper and lower boundaries

Ω̃0 do not intersect and thus Ω̃0 is an open set.

We will assume that the constant b > 0 is chosen such that the mass of the fluid,

which is conserved in time due to the incompressibility, is given by

M := b |Σ| = bL1L2. (1.6)

Rewriting this condition in terms of η̃ shows that

b |Σ| = M =

∫
Σ

[η̃(x′, t)− (Af(ωt)− b)]dx′ = b |Σ|+
∫
Σ

[η̃(x′, t)−Af(ωt)]dx′, (1.7)
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FARADAY STABILITY 549

or equivalently ∫
Σ

[η̃(x′, t)−Af(ωt)]dx′ = 0. (1.8)

1.3. Recasting the problem in the oscillating frame. Here we recast the problem in

the oscillating fluid frame and make some convenient changes of unknowns in order to

simplify further analysis.

1.3.1. Change of coordinates. First, we make a change of coordinates. The above

formulation of the problem is intuitive as an external observer, but it is more convenient

to view the problem from the frame of the fluid itself and fix the moving lower boundary.

As such, we employ the following change of coordinates and unknowns:

ũ(x, t) = ū(x′, x3 −Af(ωt), t) +Aωf ′(ωt)e3,

p̃(x, t) = p̄(x′, x3 −Af(ωt), t),

η̃(x′, t) = η̄(x′, t) +Af(ωt).

(1.9)

By plugging the above into (1.4), we obtain the equivalent set of equations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tū+ ū · ∇ū+∇p̄− μΔū+Aω2f ′′(ωt)e3 = −ge3 in Ω(t),

div ū = 0 in Ω(t),

∂tη̄ + ū1∂1η̄ + ū2∂2η̄ = ū3 on Σ(t),

(p̄I − μDū)ν = (Pext − σH(η̄)) ν on Σ(t),

ū = 0 on Σb,

(1.10)

where
Ω(t) = {x = (x′, x3) ∈ Σ× R : −b < x3 < η̄(x′, t)},
Σ(t) = {x = (x′, x3) ∈ Σ× R : x3 = η̄(x′, t)},
Σb = {x = (x′, x3) ∈ Σ× R : x3 = −b},

(1.11)

are the new versions of the domains where the lower boundary is now unmoving and the

upper boundary is now defined by the new graph function η̄.

1.3.2. Modifying the pressure. Next, we modify the pressure to remove the term

Aω2f ′′(ωt)e3 + ge3 from the first equation and to eliminate Pext on the boundary. To

this end we define

p̄new := p̄old − Pext + (g +Aω2f ′′(ωt))x3 (1.12)

in order to arrive (after dropping the subscript) at the equivalent problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tū+ ū · ∇ū+∇p̄− μΔū = 0 in Ω(t),

div ū = 0 in Ω(t),

∂tη̄ + ū1∂1η̄ + ū2∂2η̄ = ū3 on Σ(t),

(p̄I − μDū)ν =
(
−σH(η̄) +

(
g +Aω2f ′′(ωt)

)
η̄
)
ν on Σ(t),

ū = 0 on Σb.

(1.13)

Note that modifying the pressure in this way is essentially the same trick as subtracting

off the hydrostatic pressure, which has been employed in numerous previous studies of

viscous nonoscillating free boundary problems (see, for instance, the references listed

below in Section 1.5).
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In summary, to go from (1.4) to (1.13) we have made the following changes of un-

knowns:

ũ(x, t) = ū(x′, x3 −Af(ωt), t) +Aωf ′(ωt)e3,

p̃(x, t) = p̄(x′, x3 −Af(ωt), t) + Pext −
(
g + Aω2f ′′(ωt)

)
(x3 −Af(ωt)) ,

η̃(x′, t) = η̄(x′, t) +Af(ωt).

(1.14)

Note that (1.8) now becomes∫
Σ

η̄(x′, t)dx′ = 0 for t ≥ 0. (1.15)

However, for sufficiently regular solutions to (1.13) we have that

∂tη̄ = ū · ν
√
1 + (∂1η̄)2 + (∂2η̄)2,

and hence

d

dt

∫
Σ

η̄(x′, t)dx′ =

∫
Σ

∂tη̄(x
′, t)dx′ =

∫
Σ(t)

ū · ν =

∫
Ω(t)

div ū = 0. (1.16)

Thus (1.15) is satisfied provided that the initial surface function satisfies the “zero aver-

age” condition
1

L1L2

∫
Σ

η̄0 = 0, (1.17)

a condition that we henceforth assume. Note, though, that this condition is no real loss

of generality, as it can always be achieved with a coordinate shift via the relation between

the fluid mass M and the parameter b. See, for instance, the introduction of [10] for an

explanation of how the coordinate shift works.

1.4. Steady oscillating solution. Note that U(x, t) = 0, P (x, t) = 0, H(x, t) = 0 is a

solution to the reparameterized system (1.13) when we set ū = U, p̄ = P, η̄ = H . In the

original system, this corresponds to the steady oscillation solution

Ũ(x, t) = Aωf ′(ωt)e3,

P̃ (x, t) = Pext −
(
g +Aω2f ′′(ωt)

)
(x3 −Af(ωt)) ,

H̃(x, t) = Af(ωt),

(1.18)

and it is easy to check that this indeed satisfies system (1.4) along with the fixed mass

condition M = bL1L2 = b |Σ|.
We will study the Faraday problem in the reparametrization (1.13), with the aim

of showing that the above steady oscillation solution is asymptotically stable for some

range of the parameters. In order to justify why we might expect such a stability result,

consider the natural energy-dissipation equation associated with (1.13) (for details of the

derivation, see Proposition 3.1):

d

dt

(∫
Ω(t)

|ū|2

2
+

∫
Σ

g |η̄|2

2
+ σ

√
1 + |∇η̄|2

)
+

∫
Ω(t)

μ |Dū|2

2
= −(Aω2f ′′(ωt))

∫
Σ

η̄∂tη̄.

(1.19)

This identity establishes that the competition between the viscous dissipation (the inte-

gral with μ on the left) and power supplied by the oscillation of the plate (the term on

the right) will determine the stability of the system. In particular, it shows that if we
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can absorb the oscillation term with the dissipation, then we should expect stability, and

this is indeed what we will prove. Obviously, the natural dissipation term involves only

the velocity field ū and does not control η̄ or ∂tη̄, so to complete our analysis we will

need to introduce a host of auxiliary estimates that provide dissipative control of these

terms.

1.5. Previous work. A brief survey of previous mathematical work on the Faraday

problem was recorded above in Section 1.1. To the best of our knowledge, there are no

rigorous results on the fully nonlinear analysis of this problem, either in the stable or

unstable parameter regimes. However, when f = 0, i.e., when the rigid bottom is not

oscillated, the fully nonlinear dynamics of the free boundary problem (1.13) and its vari-

ants are well-understood for small data. Nishida-Teramoto-Yoshihara [18] constructed

global solutions for the problem with surface tension and showed that the solutions de-

cay to equilibrium at an exponential rate. The corresponding problem without surface

tension was handled by Hataya [12], who constructed global solutions decaying at a fixed

algebraic rate, and later by Guo-Tice [10], who constructed global solutions that decay

almost exponentially. Tan-Wang [23] established the vanishing surface tension limit. In

the nonperiodic setting many related results are known; see for instance the work of

Beale [1, 2], Beale-Nishida [3], Tani-Tanaka [25], and Guo-Tice [11]. The stability of the

periodic problem without Faraday oscillation has also been studied with more physical

effects included. Gravitational fields with horizontal components, corresponding to slid-

ing along a tilted incline plane, were studied by Tice [26]. The coupling to the MHD

system was studied by Tan-Wang [24]. Remond–Tiedrez-Tice [21] studied stability with

more general surface forces generated by bending energies.

1.6. Reformulation in a flattened coordinate system. The moving domain Ω(t) is in-

convenient for analysis, so we will reformulate the problem (1.13) in the fixed equilibrium

domain

Ω = {x = (x′, x3) ∈ Σ× R : −b < x3 < 0}. (1.20)

We will think of Σ as the upper boundary of Ω and view η̄ as a function on Σ×R
+. We

then define

η̂ := P η̄ (1.21)

to be the harmonic extension of η̄ into the lower half space as in Section B.2. Then, we

follow a standard approach (see, for instance, [2, 10, 11, 18, 20, 21, 23, 26]) and flatten the

coordinate domain via the mapping Φ : Ω× R
+ → Ω(t)

Φ(x, t) =
(
x1, x2, x3 + η̂(x′, t)

(
1 +

x3

b

))
. (1.22)

Note that Φ(·, t) is smooth and extends to Ω in such a way that Φ(Σ, t) = Σ(t) and

Φ(Σb, t) = Σb, i.e., Φ maps Σ to the free surface and keeps the lower surface fixed. We

have

∇Φ =

⎛
⎝1 0 0

0 1 0

A B J

⎞
⎠ , A :=

(
∇Φ−1

)�
=

⎛
⎝1 0 −AK

0 1 −BK

0 0 K

⎞
⎠ , (1.23)
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where under the notational convenience b̃ = (1 + x3/b) we have

A = ∂1η̂b̃, B = ∂2η̂b̃, J =

(
1 +

η̂

b
+ ∂3η̂b̃

)
, K = J−1. (1.24)

Note that J = det∇Φ is the determinant of the transformation.

Using the matrix A, we define a collection of A-dependent differential operators. We

define the differential operators ∇A and divA with their actions given by

(∇Af)i := Aij∂jf, divA X := Aij∂jXi (1.25)

for appropriate f and X. We extend divA to act on symmetric tensors in the usual way.

Now write the change of coordinates as

u(x, t) = ū(Φ(x, t), t), p(x, t) = p̄(Φ(x, t), t), η(x′, t) = η̄(x′, t). (1.26)

We then also write

(DAu)ij := Aik∂kuj +Ajk∂kui, SA(u, p) := pI − μDAu, (1.27)

and we define

N := (−∂1η̄,−∂2η̄, 1) (1.28)

for the nonunit normal to Σ(t). In this new coordinate system, the new system of PDEs

(1.13) becomes the following equivalent system:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tu− ∂tη̂b̃K∂3u+ u · ∇Au+ divA SA(u, p) = 0 in Ω,

divA u = 0 in Ω,

∂tη = u · N on Σ,

SA(u, p)N =
(
−σH(η) +

(
g +Aω2f ′′(ωt)

)
η
)
N on Σ,

u = 0 on Σb.

(1.29)

2. Main results and discussion.

2.1. Notation and definitions. In order to properly state our main results we must

first introduce some notation and define various functionals that will be used throughout

the paper. We begin with some notational conventions.

Einstein summation and constants: We will employ the Einstein convention of sum-

ming over repeated indices for vector and tensor operations. Throughout the paper C > 0

will denote a generic constant that can depend on Ω and its dimensions as well as on g,

μ, and the oscillation profile f , but not on the parameters σ, A, or ω. Such constants are

referred to as “universal”, and they are allowed to change from one inequality to another.

We employ the notation a � b to mean that a ≤ Cb for a universal constant C > 0.

Norms: We write Hk(Ω) with k ≥ 0 and Hs(Σ) with s ∈ R for the usual L2-based

Sobolev spaces. In particular H0 = L2. In the interest of concision, we neglect to write

Hk(Ω) or Hk(Σ) in our norms and typically write only ‖·‖k. The price we pay for this

is some minor ambiguity in the set on which the norm is computed, but we mitigate

potential confusion by always writing the space for the norm when traces are involved.
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FARADAY STABILITY 553

Multi-indices: We will write N
k for the usual set of multi-indices, where here we

employ the convention that 0 ∈ N. For α ∈ N
k we define the spatial differential operator

∂α = ∂α1
1 ∂α2

2 . . . ∂αk

k . We will also write N
1+k for the set of space-time multi-indices

N
1+k = {(α0, α1, . . . , αk) : αi ∈ N for 0 ≤ i ≤ k} . (2.1)

For a multi-index α ∈ N
1+k, we define the differential operator ∂α = ∂α0

t ∂α1
1 . . . ∂αk

k .

Also, for a space-time multi-index α ∈ N
1+k we use the parabolic counting scheme

|α| = 2α0 + α1 + · · · + αk appropriate for measuring the regularity of parabolic PDEs

such as the heat equation, in which time derivatives are “worth” two spatial derivatives.

Such a counting scheme for the free boundary Navier-Stokes equations can be found, for

instance, in [10, 11, 21, 23, 26].

Energy and dissipation functionals: Throughout the paper we will make frequent use

of various energy and dissipation functionals, dependent on time. We define these now.

The basic (with bars) and full (no bars) energy functionals, respectively, are defined as

Eσ
n :=

∑
α∈N

1+2

|α|≤2n

‖∂αu‖20 + g ‖∂αη‖20 + σ ‖∇∂αη‖20 (2.2)

and

Eσ
n :=Eσ

n+

n∑
j=0

∥∥∥∂j
t u
∥∥∥2
2n−2j

+

n−1∑
j=0

∥∥∥∂j
t p
∥∥∥2
2n−2j−1

+σ ‖η‖22n−2j+1+‖η‖22n+
n∑

j=1

∥∥∥∂j
t η
∥∥∥2
2n−2j+3/2

.

(2.3)

The corresponding basic and full dissipation functionals are

Dn :=
∑

α∈N
1+2

|α|≤2n

‖D∂αu‖20 (2.4)

and

Dσ
n := Dn +

n∑
j=0

∥∥∥∂j
t u
∥∥∥2
2n−2j+1

+

n−1∑
j=0

∥∥∥∂j
t p
∥∥∥2
2n−2j

+

n−1∑
j=0

(∥∥∥∂j
t η
∥∥∥2
2n−2j−1/2

+ σ2
∥∥∥∂j

t η
∥∥∥2
2n−2j+3/2

)

+
n+1∑
j=3

∥∥∥∂j
t η
∥∥∥2
2n−2j+5/2

+ ‖∂tη‖22n−1+σ2 ‖∂tη‖22n+1/2 +
∥∥∂2

t η
∥∥2
2n−2

+ σ2
∥∥∂2

t η
∥∥2
2n−3/2

.

(2.5)

We will also need to make frequent reference to two functionals that are not naturally

of energy or dissipation type. We refer to these as

Fn := ‖η‖22n+1/2 (2.6)

and

K := ‖u‖2C2
b (Ω) + ‖u‖2H3(Σ) + ‖p‖2H3(Σ) + ‖η‖25/2 . (2.7)
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2.2. Local existence theory. The main content of this work is deriving a priori estimates

for solutions to (1.29), which we will then combine with local existence theory in order

to construct global-in-time solutions to (1.29). In this section we will discuss the local

existence theory needed to make this work, but we will omit a complete proof. Such

an omission is justified by the abundance of similar local existence results based on the

corresponding a priori estimates. We refer, for instance, to the works [10, 13, 23, 27, 29].

To state these local existence results, we need to introduce function spaces in which

our solutions exist, as well as compatibility conditions, which give sufficient constraints

on our initial data for constructing solutions using our a priori estimates. Our function

spaces are the following:

0H
1(Ω;R3) = {v ∈ H1(Ω;R3) : v |Σb

= 0},
XT = {u ∈ L2([0, T ]; 0H

1(Ω)) : divA(t) u(t) = 0 for a.e. t ∈ [0, T ]},
(2.8)

where the A(t) here is determined by the η : Σ × [0, T ] → R coming from the solution.

We refer the reader to [10, 13, 23, 27, 29] for the compatibility conditions, as they are

simple yet cumbersome to record.

When σ > 0 is fixed and positive, we have the following local existence result, similar

to that of [27].

Theorem 2.1 (Local existence for fixed positive σ). Let σ > 0 be fixed and positive and

suppose that the initial data (u0, η0) ∈ (0H
1(Ω;R3) ∩H2(Ω;R3))×H3(Σ) satisfy

‖u0‖22 + ‖η0‖25/2 + σ ‖∇η0‖22 < ∞ (2.9)

as well as the natural compatibility conditions associated with n = 1. Then there exist

δ∗, T∗ ∈ (0, 1) such that if

‖u0‖22 + ‖η0‖25/2 + σ ‖∇η0‖22 ≤ δ∗ (2.10)

and 0 < T ≤ T∗, then there exists a unique triple (u, p, η) that achieves the initial data,

solves (1.29), and obeys the estimates

sup
0≤t≤T

(Eσ
1 (t)+F1(t))+

∫ T

0

Dσ
1 (t) dt+

∥∥∂2
t u
∥∥2
(XT )∗

� ‖u0‖22+‖η0‖25/2+σ ‖∇η0‖22 . (2.11)

We also consider the vanishing surface tension regime, in which we obtain the following

result by requiring n to be larger [10, 13, 23, 29].

Theorem 2.2 (Local existence for vanishing σ). Let n ≥ 2 be an integer and suppose

that the initial data (u0, η0) ∈ (0H
1(Ω;R3) ∩H2n(Ω;R3))×H2n+1/2(Σ) satisfy σ∇η0 ∈

H2n(Σ) and

‖u0‖22n + ‖η0‖22n+1/2 + σ ‖∇η0‖22n < ∞ (2.12)

as well as the natural compatibility conditions associated with n. Then there exist

δ∗, T∗ ∈ (0, 1) such that if

‖u0‖22n + ‖η0‖22n+1/2 + σ ‖∇η0‖22n ≤ δ∗ (2.13)
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and 0 < T ≤ T∗, then there exists a unique triple (u, p, η) that achieves the initial data,

solves (1.29), and obeys the estimates

sup
0≤t≤T

(Eσ
n (t)+Fn(t))+

∫ T

0

Dσ
n(t) dt+

∥∥∂n+1
t u

∥∥2
(XT )∗

� ‖u0‖22n+‖η0‖22n+1/2+σ ‖∇η0‖22n .

(2.14)

2.3. Statement of main results. The main result of this paper is the global well-

posedness of the problem and decay of solutions, which establishes the asymptotic sta-

bility of the equilibrium solutions. We begin with the result for a fixed value of surface

tension.

Theorem 2.3. Fix σ > 0. Suppose that initial data (u0, η0) ∈ (0H
1(Ω;R3)∩H2(Ω;R3))×

H3(Σ) satisfy ‖u0‖22 + ‖η0‖25/2 + σ ‖∇η0‖22 < ∞ as well as the compatibility conditions

of Theorem 2.1. There exist constants γ0, κ0 ∈ (0, 1), both depending on σ, such that if

‖u0‖22 + ‖η0‖25/2 + σ ‖∇η0‖22 ≤ κ0 and A(ω2 + ω3) ≤ γ0, (2.15)

then there exists a unique (within the energy class) solution (u, p, η) that solves (1.29)

on the temporal interval (0,∞) and achieves the initial data. Moreover, there exists

constants λ > 0 and C0, C1 > 0, depending on A, ω, and σ, such that the solution obeys

the estimate

sup
0≤t≤∞

eλtEσ
1 (t) +

∫ ∞

0

eλtDσ
1 (t) dt � C0Eσ

1 (0) ≤ C1

(
‖u0‖22 + ‖η0‖25/2 + σ ‖∇η0‖22

)
.

(2.16)

Theorem 2.3 requires a fixed positive value of surface tension and guarantees that

solutions return to equilibrium exponentially fast in the topology determined by Eσ
1 .

Our next main result considers the cases σ = 0 and σ small but positive. We view

the latter as the “vanishing surface tension” regime, as we will employ it to establish

this limit. In these cases we work in a more complicated functional setting that changes

depending on whether σ vanishes or not. We introduce this with the following functional,

defined for any integer N ≥ 3 and time t ∈ [0,∞]:

Gσ
2N (t) := sup

0≤r≤t
Eσ
2N (r) +

∫ t

0

Dσ
2N (r) dr + sup

0≤r≤t
(1 + r)4N−8Eσ

N+2(r) + sup
0≤r≤t

F2N (r)

1 + r
,

(2.17)

where here Eσ
n , Dσ

n, and Fn are defined by (2.3), (2.5), and (2.6), respectively. Note that

the condition N ≥ 3 implies that 2N > N + 2 and that 4N − 8 > 0.

We can now state our second main result.

Theorem 2.4. Let Ω be given by (1.20), let N ≥ 3, and define Gσ
2N via (2.17). Suppose

that the initial data (u0, η0) ∈ (0H
1(Ω;R3)∩H4N (Ω;R3))×H4N+1/2(Σ) satisfy σ∇η0 ∈

H4N (Σ) and ‖u0‖24N + ‖η0‖24N+1/2 +σ ‖∇η0‖24N < ∞ as well as compatibility conditions

of Theorem 2.2. There exist universal constants γ0, κ0 ∈ (0, 1) such that if

‖u0‖24N + ‖η0‖24N+1/2 + σ ‖∇η0‖24N ≤ κ0, 0 ≤ A

2N+2∑
�=2

ω� ≤ γ0, and 0 ≤ σ ≤ 1, (2.18)
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then there exists a unique (within the energy class) triple (u, p, η) that solves the (1.29)

on the temporal interval (0,∞), achieves the initial data, and obeys the estimate

Gσ
2N (∞) � Eσ

2N (0) + F2N (0) � ‖u0‖24N + ‖η0‖24N+1/2 + σ ‖∇η0‖24N . (2.19)

In particular, the bound in Theorem 2.4 establishes the decay estimate

Eσ
N+2(t) � Eσ

2N (0) + F2N (0)

(1 + t)4N−8
. (2.20)

This is an algebraic decay rate, slower than the exponential rate proved in Theorem

2.3 with a fixed σ > 0. Two remarks about this are in order. First, by choosing N

larger, we arrive at a faster rate of decay. In fact, by taking N to be arbitrarily large

we can achieve arbitrarily fast algebraic decay rates, which is what is known as “almost

exponential decay”. The trade-off in the theorem is that faster decay requires smaller

data in higher regularity classes. The second point is that when 0 < σ ≤ 1 in the theorem,

it is still possible to prove that Eσ
2n decays exponentially by modifying the arguments used

later in Theorem 7.1. We neglect to state this properly here because we only care about

the vanishing surface tension limit, and in this case we cannot get uniform control of the

exponential decay parameter λ(σ) from Theorem 2.3.

Theorems 2.3 and 2.4 also guarantee enough regularity to switch back to Eulerian

coordinates. Consequently, the theorem tells us that the steady oscillating solution in

(1.18) remains asymptotically stable with and without surface tension, but that the rate

of decay to equilibrium is faster with surface tension.

Our third result establishes the vanishing surface tension limit for the problem (1.29)

in the same spirit as the result proved in [23].

Theorem 2.5. Let Ω be given by (1.20), let N ≥ 3, and consider a decreasing sequence

{σm}∞m=0 ⊂ (0, 1) such that σm → 0 as m → ∞. Let κ0, γ0 ∈ (0, 1) be as in Theorem

2.4, and assume that 0 ≤ A
∑2N+2

�=2 ω� ≤ γ0. Suppose that for each m ∈ N we have initial

data (u
(m)
0 , η

(m)
0 ) ∈ (0H

1(Ω;R3) ∩ H4N (Ω;R3)) × H4N+1/2(Σ) satisfy σ∇η0 ∈ H4N (Σ)

and ‖u0‖24N + ‖η0‖24N+1/2 + σm ‖∇η0‖24N < κ0 as well as the compatibility conditions of

Theorem 2.2. Let (u(m), p(m), η(m)) be the global solutions to (1.29) associated to the

data given by Theorem 2.4. Further assume that

u
(m)
0 → u0 in H4N (Ω), η

(m)
0 → η0 in H4N+1/2(Σ) and

√
σm∇η

(m)
0 → 0 in H4N (Σ)

(2.21)

as m → ∞.

Then the following hold:

(1) The pair (u0, η0) satisfy the compatibility conditions of Theorem 2.2 with σ = 0.

(2) As m → ∞, the triple (u(m), p(m), η(m)) converges to (u, p, η), where the latter

triple is the unique solution to (1.29) with σ = 0 and initial data (u0, η0). The

convergence occurs in any space into which the space of triples (u, p, η) obeying

G0
2N (∞) < ∞ compactly embeds.
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2.4. Discussion and plan of paper. The strategy of the current paper is similar to

that of [10,26], which proved similar results for related problems with f = 0. As in these

papers, the main focus of this paper is to establish a priori estimates for solutions to

the PDE (1.29), which allow us to prove Theorems 2.3 and 2.4 by standard arguments

coupling these estimates with local existence results. The scheme of a priori estimates

developed in this paper is a variant of the nonlinear energy method employed in [10,26]

and is designed to carefully track the dependence on the surface tension σ, the oscillation

amplitude parameter A, and the oscillation frequency parameter ω in order to optimize

the parameter regime in which we obtain the desired existence and stability theorem. In

the case with fixed surface tension σ > 0 we obtain sufficient conditions for asymptotic

stability of the form

A(ω2 + ω3) � 1, (2.22)

without bounds on A or ω individually (see Figure 3). Thus, the Faraday oscillation

system can be stable for arbitrarily large A or ω, so long as the other parameter is

sufficiently small for (2.22) to hold. In the vanishing surface tension case, we obtain a

similar result, although the trade-off is that more stringent constraints on A and ω are

necessary, namely

A

2N+2∑
�=2

ω� � 1. (2.23)

We note that although our technique is capable of rigorously identifying a stable regime

in the oscillation parameter space, it tells us nothing about the complement of this set.

The numerics for the linearized problem in [14] suggest that the complement indeed

contains both stable and unstable components.

ω

A

unknown

asymptotic stability,
exponential decay

A(ω2 + ω3) = C

Fig. 3. Bounds on the stability regime with fixed σ > 0.

Our strategy for obtaining the a priori estimates is essentially the same nonlinear

energy method as that of [26], so we refer the reader to the introduction of that paper

for a detailed outline and opt for a terse summary here. First, we obtain horizontal en-

ergy estimates by applying horizontal and temporal derivatives to the problem and using
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the basic energy-dissipation structure. It turns out to be convenient to do these esti-

mates in two different forms depending on whether the derivatives involve only temporal

derivatives or a mixture. These estimates are developed in Section 3.

The next step in the nonlinear energy method is energy and dissipation enhancement,

where we employ various auxiliary estimates in order to gain control of more quantities in

terms of those already controlled by the horizontal estimates. The main tools are elliptic

regularity for the Stokes problem and elliptic regularity for the capillary problem, both

of which are recorded in Appendix A. The enhanced estimates are recorded in Section 5

and are predicated on the various estimates of the nonlinearities presented in Section 4.

We combine the above estimates into a scheme of a priori estimates. In Section 6 we

study the cases σ = 0 and σ → 0. When coupled with the local existence theory, the a

priori estimates allow us to complete the proofs of Theorems 2.4 and 2.5. In Section 7

we study the fixed surface tension problem and prove Theorem 2.3.

3. Evolution of the energy and dissipation. In this section we record the energy-

dissipation evolution equations for two linearized versions of the problem (1.29): the

geometric form and the flattened form. The former retains the coefficients A and related

terms and is thus tied to the moving geometry of the domain. The latter is constant

coefficient and thus corresponds to a flat geometry. We also record the forms of the

nonlinear forcing terms that appear in the analysis of (1.29).

3.1. Geometric form. Suppose that a known pair (u, η) is given and that Φ,A,N , J ,

etc., are given in terms of η as in Section 1.6. The geometric form of the linearization of

(1.29) for an unknown triple (v, q, ζ) is then:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tv − (∂tη̂)b̃K∂3q + u · ∇Aζ + divA SA(v, q) = Ψ1 in Ω,

divA v = Ψ2 in Ω,

∂tζ − v · N = Ψ3 on Σ,

SA(v, q)N =
(
−σΔζ + gζ +Ψ5

)
N +Ψ4 on Σ,

v = 0 on Σb.

(3.1)

Note that the coefficients in this problem are determined by the given functions (u, η)

and that the problem is then linear in the triple (v, q, ζ). This form of linearized prob-

lem arises from (1.29) when we apply a horizontal differential operator, in which case

(v, q, ζ) = (∂αu, ∂αp, ∂αη) and the original pair (u, η) give rise to coefficients in the

resulting linearized problem.

3.1.1. Energy-dissipation. The next result records the energy-dissipation equation as-

sociated to the solutions of (3.1).

Proposition 3.1 (Geometric energy-dissipation). Let η and u be given and satisfy

{
divA u = 0 in Ω,

∂tη = u · N on Σ.
(3.2)
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Suppose that (v, q, ζ) solve (3.1), where Φ,A, J , etc., are determined by η as before.

Then,

d

dt

[∫
Ω

|v|2 J
2

+

∫
Σ

σ |∇η|2

2
+

g |η|2

2

]
+

∫
Ω

μ
|DAv|2 J

2

=

∫
Ω

J
(
v ·Ψ1 + qΨ2

)
+

∫
Σ

(−σΔζ + gζ)Ψ3 −Ψ4 · v −Ψ5v · N .

(3.3)

Proof. We take the dot product of the first equation in (3.1) with v, multiply by J ,

and integrate over Ω to see that

I + II =

∫
Ω

Ψ1 · vJ (3.4)

for

I =

∫
Ω

∂tv · vJ − (∂tη̂)b̃∂3v · v + (u · ∇Av) · vJ and II =

∫
Ω

divA SA(v, q) · vJ. (3.5)

In order to integrate these terms by parts, we will utilize the geometric identity ∂k(JAik)

= 0 (which is readily verified by direct computation) for each i.

To handle the term I, we first compute

I = ∂t

∫
Ω

|v|2 J
2

+

∫
Ω

−|v|2 ∂tJ
2

− ∂tη̂b̃∂3
|v|2

2
+ uj∂k

(
JAjk

|v|2

2

)
=: I1 + I2. (3.6)

Since b̃ = (1 + x3/b), an integration by parts, an application of the boundary condition

v = 0 on Σb reveals that

I2 =

∫
Ω

−|v|2 ∂tJ
2

− (∂tη̂)̃b∂3
|v|2

2
+ uj∂k

(
JAjk

|v|2

2

)

=

∫
Ω

−|v|2 ∂tJ
2

+
|v|2

2
∂3

(
∂tη̂b̃

)
+ uj∂k

(
JAjk

|v|2

2

)
+

∫
Σ

−|v|2

2
∂tη̂b̃

=

∫
Ω

−|v|2

2

(
∂tη̂

b
+ ∂3∂tη̂b̃

)
+

|v|2

2

(
∂3∂tη̂b̃+

∂tη̂

b

)
− (∂kuj)

(
JAjk

|v|2

2

)

+

∫
Σ

−|v|2

2
∂tη̂ + ujJAjk

|v|2

2
(e3 · ek)

=

∫
Ω

−J
|v|2

2
divA u+

∫
Σ

−|v|2

2
∂tη̂ + ujJAjk

|v|2

2
(e3 · ek).

(3.7)

Now note that JAjk(e3 · ek) = Nj on Σ and also we have that u and η satisfy (3.2), so

the above becomes

I2 =

∫
Ω

−J
|v|2

2
divA u+

∫
Σ

|v|2

2
(−∂tη + u · N ) = 0 (3.8)

and hence

I = I1 + I2 = ∂t

∫
Ω

|v|2 J
2

(3.9)

so I is purely just the transport of the quantity |v|2 J along the flow u.

Licensed to Carnegie Mellon Univ. Prepared on Tue Jun 29 13:31:32 EDT 2021 for download from IP 128.2.149.108.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



560 DAVID ALTIZIO, IAN TICE, XINYU WU, AND TAISUKE YASUDA

We begin our analysis of the term II with a similar integration by parts, which reveals

that

II =

∫
Ω

divA SA(v, q) · vJ =

∫
Ω

Ajk∂k (SA(v, q))ij viJ =

∫
Ω

viJAjk∂k (SA(v, q))ij

=

∫
Ω

−∂k (viJAjk) (SA(v, q))ij +

∫
Σ

viJAjk (SA(v, q))ij (e3 · ek)

=

∫
Ω

− [∂k (viJAjk)− vi∂k (JAjk)] (SA(v, q))ij +

∫
Σ

viJAj3 (SA(v, q))ij

=

∫
Ω

−JAjk∂kvi (SA(v, q))ij +

∫
Σ

vi (SA(v, q))ij Aj3J

=

∫
Ω

−J (∇Av)ij (SA(v, q))ij +

∫
Σ

vi (SA(v, q))ij Nj

=

∫
Ω

−JSA(v, q) : ∇Av +

∫
Σ

SA(v, q)N · v

=

∫
Ω

−J

(
q divA v − μ |DAv|2

2

)
+

∫
Σ

SA(v, q)N · v

=

∫
Ω

−J

(
qΨ2 − μ |DAv|2

2

)
+

∫
Σ

SA(v, q)N · v.

(3.10)

Now using the third and fourth equations in (3.1), we rewrite the integral on Σ as∫
Σ

SA(v, q)N · v =

∫
Σ

[(
−σΔζ + gζ +Ψ5

)
N +Ψ4

]
· v

=

∫
Σ

(
−σΔζ + gζ +Ψ5

)
N · v +

∫
Σ

Ψ4 · v

=

∫
Σ

(−σΔζ + gζ)
(
∂tζ −Ψ3

)
+

∫
Σ

Ψ4 · v +Ψ5v · N

= ∂t

[∫
Σ

σ |∇ζ|2

2
+

g |ζ|2

2

]
−
∫
Σ

(−σΔζ + gζ)Ψ3 −Ψ4 · v −Ψ5v · N

(3.11)

so on sum, we have

II =

∫
Ω

−J

(
qΨ2 − μ |DAv|2

2

)
+

d

dt

[∫
Σ

σ |∇ζ|2

2
+

g |ζ|2

2

]

−
∫
Σ

(−σΔζ + gζ)Ψ3 −Ψ4 · v −Ψ5v · N .

(3.12)

Now to see that equation (3.3) holds, just plug (3.9) and (3.12) into (3.4) and rearrange.

�
3.1.2. Forcing terms. We now record the form of the forcing terms that will appear

in our analysis. Recall that this geometric form of the linearization is responsible for the

highest order time derivatives ∂n
t , so we build this into the notation by writing F j,n for

the jth forcing term generated by applying ∂n
t to (1.29).

Licensed to Carnegie Mellon Univ. Prepared on Tue Jun 29 13:31:32 EDT 2021 for download from IP 128.2.149.108.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



FARADAY STABILITY 561

Applying ∂n
t to the ith component of the first equation results in

∂t(∂
n
t ui) +

∑
0≤�≤n

C�n

[
−∂�

t

(
(∂tη̂)b̃K

)
∂n−�
t (∂3ui) + ∂�

t (ujAjk) ∂
n−�
t (∂kui)

]

+
∑

0≤�≤n

C�n

[
∂�
tAjk∂

n−�
t ∂k (SA(u, p))ij

]
= 0.

(3.13)

Then in the above, the first term as well as the terms in the summation corresponding

to � = 0 gives the left hand side of (3.1), except for the last sum for which we have an

extra term
Ajk∂

n
t ∂k (SA(u, p)ij)−Ajk∂k (SA(∂

nu, ∂n
t p)ij)

= Ajk

⎛
⎝−

∑
0≤�≤n

C�nμD∂�
tA∂

n−�
t u+ μDA∂

n
t u

⎞
⎠

= −Ajk

∑
0<�≤n

C�nμD∂�
tA∂

n−�
t u.

(3.14)

Thus,

F 1,n
i =

∑
0<�≤n

C�n

[
∂�
t

(
∂tη̂b̃K

)
∂n−�
t (∂3ui)− ∂�

t (ujAjk) ∂
n−�
t (∂kui)

]

+
∑

0<�≤n

C�n

[
−∂�

tAjk∂
n−�
t ∂k (SA(u, p))ij +AjkμD∂�A∂

n−�
t u

]
.

(3.15)

Differentiating the second equation gives∑
0≤�≤n

C�n∂
�
tAjk∂

n−�
t ∂kuj = 0 (3.16)

so taking all but the � = 0 terms gives

F 2,n =
∑

0<�≤n

C�n∂
�
tAjk∂

n−�
t ∂kuj . (3.17)

Differentiating the third equation gives

∂t(∂
n
t η)−

∑
0≤�≤n

C�n∂
�
tu · ∂n−�

t N = 0 (3.18)

so

F 3,n =
∑

0<�≤n

C�n∂
�
tu · ∂n−�

t N . (3.19)

Finally, differentiating the ith component of the fourth equation gives∑
0≤�≤n

C�n∂
n−�
t (SA(u, p))ij ∂

�
tNj

=
∑

0≤�≤n

C�n∂
n−�
t

(
−σH(η) +

(
g +Aω2f ′′(ωt)

)
η
)
∂�
tNi

=
∑

0≤�≤n

C�n

(
−σ∂n−�

t H(η) + g∂n−�
t η + ∂n−�

t

(
Aω2f ′′(ωt)η

))
∂�
tNi

(3.20)
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so taking away the � = 0 terms and handling ∂n
t (SA(u, p))ij as before as well as handling

the Δη term, we get

F 4,n
i =

∑
0<�≤n

C�n

[
−∂n−�

t (SA(u, p))ij ∂
�
tNj +

(
μD∂�A∂

n−�
t u

)
ij
Nj

]

+
∑

0<�≤n

C�n

(
−σ∂n−�

t H(η) + g∂n−�
t η + ∂n−�

t

(
Aω2f ′′(ωt)η

))
∂n−�
t Ni

+ (−σ∂n
t (H(η)−Δη))Ni

(3.21)

and

F 5,n = ∂n
t

(
Aω2f ′′(ωt)η

)
. (3.22)

Note in particular that F 5,n is a linear term, different in form from the other nonlinear

forcing terms.

3.2. Flattened form. It will also be useful for us to have a linearized version of (1.29)

with constant coefficients. This version is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tv + divS(v, q) = Θ1 in Ω,

div v = Θ2 in Ω,

∂tζ = v3 +Θ3 on Σ,

S(v, q)e3 =
(
−σΔζ + gζ +Θ5

)
e3 +Θ4 on Σ,

v = 0 on Σb.

(3.23)

3.2.1. Energy-dissipation.

Proposition 3.2 (Flattened energy-dissipation). Suppose (v, q, ζ) solve (3.23). Then

d

dt

[∫
Ω

|v|2

2
+

∫
Σ

σ |∇ζ|2

2
+

g |ζ|2

2

]
+

μ

2

∫
Ω

|Dv|2

=

∫
Ω

v ·Θ1 + qΘ2 +

∫
Σ

(−σΔζ + gζ)Θ3 −Θ4 · v −Θ5v3.

(3.24)

Proof. We dot the first equation of (3.23) with v and integrate over Ω to see that

I + II =

∫
Ω

v ·Θ1, (3.25)

where

I :=

∫
Ω

v∂tv = ∂t

∫
Ω

|v|2
2

and II :=

∫
Ω

v · div(qI − μDv). (3.26)

To deal with II we compute∫
Ω

v · div(qI − μDv) =

∫
Ω

−(qI − μDv) : ∇v +

∫
Σ

(qI − μDv)e3 · v := II1 + II2. (3.27)

A simple computation gives

II1 =

∫
Ω

μDv : ∇v − (qI) : ∇v =
μ

2

∫
Ω

|Dv|2 −
∫
Ω

q div(v) =

∫
Ω

μ

2
|Dv|2 − qΘ2. (3.28)
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Now

II2 =

∫
Σ

v ·
[
(−σΔζ + gζ +Θ5)e3 +Θ4

]
=

∫
Σ

(
−σΔζ + gζ +Θ5

)
v3 +Θ4 · v

=

∫
Σ

(−σΔζ + gζ) (∂tζ −Θ3) + Θ4 · v +Θ5v3

= ∂t

[∫
Σ

σ |∇ζ|2

2
+

g |ζ|2

2

]
+

∫
Σ

−(−σΔζ + gζ)Θ3 +Θ4 · v +Θ5v3.

(3.29)

Thus, in sum, we have

II = ∂t

[∫
Σ

σ |∇ζ|2

2
+

g |ζ|2

2

]
+

μ

2

∫
Ω

|Dv|2 −
∫
Ω

qΘ2

+

∫
Σ

−(−σΔζ + gζ)Θ3 +Θ4 · v +Θ5v3.

(3.30)

The result follows by summing and regrouping. �
3.2.2. Forcing terms. The forcing terms come from rearranging the equation to get

the terms we want—we then designate everything else as forcing terms. Note that we

will take derivatives of the full nonlinear equations in (1.29), but to get the corresponding

forcing terms, we may just take derivatives of the forcing terms here since we constructed

our linearization to have constant coefficients. To get the first forcing term, we remark

that the first equation in (1.29) can be rewritten as

∂tu+ divS(u, p) = ∂tη̂b̃K∂3u− u · ∇Au+ (divS(u, p)− divA SA(u, p))

= ∂tη̂b̃K∂3u− u · ∇Au− divDI−Au− divA−I (pI − DAu) ,
(3.31)

and so

G1 = ∂tη̂b̃K∂3u− u · ∇Au− divDI−Au− divA−I (pI − DAu) . (3.32)

The second term is

G2 = divI−A u; (3.33)

this is a result of simply adding and subtracting the two different types of divergence.

To handle the third equation, rewrite as ∂tη = u · e3 + u · (N − e3), and so

G3 = u · (N − e3). (3.34)

Finally, we similarly write the fourth nonlinear term as

G4 = (pI − μDu)(e3 −N ) + (μDA−Iu)N +
(
gη +Aω2f ′′(ωt)η

)
(e3 −N )

− (−σH(η)) (e3 −N )− (−σ (Δη − H(η))) e3
(3.35)

and the fifth error term, which is linear, is written as

G5 = Aω2f ′′(ωt)η. (3.36)

4. Estimates of the nonlinearities and other error terms. In this section we

develop the estimates of the nonlinearities as well as other error terms needed to close

our scheme of a priori estimates.
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4.1. L∞ estimates. The next result establishes some key L∞ bounds that will be used

repeatedly throughout the paper.

Proposition 4.1. There exists a universal constant δ ∈ (0, 1) such that if ‖η‖25/2 ≤ δ,

then the following bounds hold:

(1) We have that

‖J − 1‖2L∞ + ‖N − e3‖2L∞ + ‖A‖2L∞ + ‖B‖2L∞ ≤ 1

2
(4.1)

and

‖K‖2L∞ + ‖A‖2L∞ � 1. (4.2)

(2) The mapping given by (1.22) is a diffeomorphism from Ω to Ω(t).

(3) For all v ∈ H1(Ω) such that v = 0 on Σb we have the estimate∫
Ω

|Dv|2 ≤
∫
Ω

J |DAv|2 + C (‖A − I‖L∞ + ‖J − 1‖L∞)

∫
Ω

|Dv|2 (4.3)

for a universal constant C > 0.

Proof. Recall that

J − 1 =
η̂

b
+ (∂3η̂)b̃, N − e3 = (−∂1η,−∂2η, 0), A = (∂1η̂)b̃, B = (∂2η̂)b̃.

(4.4)

Thus, the left hand side of (4.1) can be bounded above, via Sobolev embedding H3(Ω) ↪→
C1(Ω), by ‖η̂‖3. This is in turn bounded by ‖η‖5/2 by Lemma B.3. Then (4.2) holds by

the definitions ofK andA and (4.1). To see the second item note that Ψ = I+e3η̂b̃, which

means that if ‖η̂‖C1 is sufficiently small, then Ψ is a bijection with positive Jacobian J .

In this case Ψ is a diffeomorphism thanks to the inverse function theorem. For the third

item, first write

|Dv|2 = J |DAv|2 − (J − 1) |Dv|2 − J
(
|DAv|2 − |Dv|2

)
= J |DAv|2 − (J − 1) |Dv|2 − J (DAv + Dv) : (DAv − Dv)

=: I + II + III.

(4.5)

Since the I and II terms are already in place, we just need to bound III. To do this,

compute

(DAv ± Dv)ij = (A± I)ik ∂kvj + (A± I)jk ∂kvi (4.6)

and so

III = −J (DAv + Dv) : (DAv − Dv) ≤ ‖J‖L∞ ‖A+ I‖L∞ ‖A − I‖L∞ |Dv|2 . (4.7)

The L∞ norms can be bounded by universal constants by (4.1) and (4.2), so we conclude.

�
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4.2. Estimates of the F forcing terms. We now present the estimates of the F forcing

terms that appear in the geometric form of the equations (3.1). Estimates of the same

general form are now well-known in the literature [10,13,23,26], so we will focus primarily

on the terms that have not appeared before.

Theorem 4.2. Let F j,n be defined by (3.15), (3.17), (3.19), (3.21). Assume that

Eσ
n ≤ δ for the universal δ ∈ (0, 1) given by Proposition 4.1, and further suppose that∑n+1
�=2 Aω� � 1. Then there exists a polynomial P with nonnegative universal coefficients

such that∥∥F 1,n
∥∥2
0
+
∥∥F 2,n

∥∥2
0
+
∥∥∂t(JF 2,n)

∥∥2
0
+
∥∥F 3,n

∥∥2
0
+
∥∥F 4,n

∥∥2
0

� P (σ)E0
nDσ

n (4.8)

and ∥∥F 2,n
∥∥2
0

�
(
E0
n

)2
. (4.9)

Proof. The estimates∥∥F 1,n
∥∥2
0
+
∥∥F 2,n

∥∥2
0
+
∥∥∂t(JF 2,n)

∥∥2
0
+
∥∥F 3,n

∥∥2
0

� P (σ)E0
nDσ

n,
∥∥F 2,n

∥∥2
0

�
(
E0
n

)2
(4.10)

and ∥∥∥∥∥∥F 4,n −
∑

0<�≤n

C�n∂
n−�
t

(
Aω2f ′′(ωt)η

)
∂n−�
t Ni

∥∥∥∥∥∥
2

0

� P (σ)E0
nDσ

n (4.11)

are proved in Theorem 4.4 of [26]. To conclude we then use the bound
∑n+1

�=2 Aω� � 1

together with the Sobolev embeddings on Σ to estimate∥∥∂n−�
t

(
Aω2f ′′(ωt)η

)
∂�
tNi

∥∥2
0

� P (σ)

(
n+1∑
�=2

Aω�

)2(n−�∑
m=0

‖∂m
t η‖22

)∥∥∂�
t∇η

∥∥2
0

� P (σ)E0
nDσ

n,
(4.12)

and then we sum over 0 < � ≤ n to arrive at the desired final estimate. �
4.3. Estimates of the G forcing terms. We now present the estimates for the Gi non-

linearities. Define

Yn :=

n−1∑
j=0

∥∥∥∂j
tG

1
∥∥∥2
2n−2j−1

+
∥∥∥∂j

tG
2
∥∥∥2
2n−2j

+
∥∥∥∂j

tG
4
∥∥∥2
H2n−2j−1/2(Σ)

+
n∑

j=2

∥∥∥∂j
tG

3
∥∥∥2
H2n−2j+1/2(Σ)

+
∥∥G3

∥∥2
H2n−1(Σ)

+
∥∥∂tG3

∥∥2
H2n−2(Σ)

+ σ2
(∥∥G3

∥∥2
H2n+1/2(Σ)

+
∥∥∂tG3

∥∥2
H2n−3/2(Σ)

)
(4.13)

and

Wn :=

n−1∑
j=0

∥∥∥∂j
tG

1
∥∥∥2
2n−2j−2

+
∥∥∥∂j

tG
2
∥∥∥2
2n−2j−1

+
∥∥∥∂j

tG
3
∥∥∥2
H2n−2j−1/2(Σ)

+
∥∥∥∂j

tG
4
∥∥∥2
H2n−2j−3/2(Σ)

.

(4.14)

These nonlinearities are the ones generated by elliptic regularity estimates.
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Theorem 4.3. Let Gi for i = 1, . . . , 4 be defined by (3.32), (3.33), (3.34), and (3.35).

Assume that Eσ
n ≤ δ for the universal δ ∈ (0, 1) given by Proposition 4.1, and suppose

that
∑n+1

�=2 Aω� � 1. Then there exists a polynomial P with nonnegative universal

coefficients such that

Yn � P (σ)
(
E0
nDσ

n +KFn

)
(4.15)

and

Wn � P (σ)
(
E0
nEσ

n +KFn

)
. (4.16)

Furthermore, in the case that n = 1 and σ > 0 is fixed, we have

W1 � P (σ)(Eσ
1 )

2 (4.17)

and ∥∥G1
∥∥2
1
+
∥∥G2

∥∥2
2
+
∥∥G3

∥∥2
5/2

+
∥∥∂tG3

∥∥2
1/2

+
∥∥G4

∥∥2
1

� P (σ)Eσ
1 Dσ

1 . (4.18)

Note the above is just Y1 after considering σ as a fixed constant, with
∥∥G4

∥∥
1
replacing

the term
∥∥G4

∥∥
3/2

.

Proof. The estimates (4.15) and (4.16) are proved in Theorem 4.2 of [26] but with G4

replaced by G4 − (Aω2f ′′(ωt)η)(e3 −N ), so to complete the proof of these estimates it

suffices to show that
n−1∑
j=0

∥∥∥∂j
t

(
(Aω2f ′′(ωt)η)(e3 −N )

)∥∥∥2
H2n−2j−1/2(Σ)

� P (σ)
(
E0
nDσ

n +KFn

)
(4.19)

and
n−1∑
j=0

∥∥∥∂j
t

(
(Aω2f ′′(ωt)η)(e3 −N )

)∥∥∥2
H2n−2j−3/2(Σ)

� P (σ)
(
E0
nEσ

n +KFn

)
. (4.20)

These follow easily from the Leibniz rule and the product estimates of Theorem B.1,

together with the hypothesis that
∑n+1

�=2 Aω� � 1.

The bounds

W1 � P (σ)(Eσ
1 )

2 (4.21)

and ∥∥G1
∥∥2
1
+
∥∥G2

∥∥2
2
+
∥∥G3

∥∥2
5/2

+
∥∥∂tG3

∥∥2
1/2

+
∥∥G4

∥∥2
0

� P (σ)Eσ
1 Dσ

1 (4.22)

follow from similar arguments. To complete the proof of (4.18) it remains only bound∥∥∇G4
∥∥2
0

� P (σ)Eσ
1 Dσ

1 . (4.23)

To prove (4.23) we first recall that G4 can be written as the sum of five terms:

G4 = (pI − μDu)(e3 −N ) + (μDA−Iu)N +
(
gη +Aω2f ′′(ωt)η

)
(e3 −N )

− (−σH(η)) (e3 −N )− (−σ (Δη − H(η))) e3.
(4.24)

We will handle each in turn. For the first term we estimate

‖∇ ((e3 −N )(pI − μDu))‖20 �
∑

|β|+|γ|=1

∥∥∂β(e3 −N )∂γ(pI − μDu)
∥∥2
0

� ‖η‖22
(
‖p‖22 + ‖u‖23

)
� Eσ

1 Dσ
1 .

(4.25)
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We may argue similarly for the second term to see that

‖∇ (μDA−IuN )‖20 � ‖η‖22
(
‖p‖22 + ‖u‖23

)
� Eσ

1 Dσ
1 . (4.26)

For the third term we use the hypothesis Aω2 � 1 to estimate∥∥∇ (
(gη +Aω2f ′′(ωt)η)(e3 −N )

)∥∥2
0

� ‖η‖22 ‖η‖
2
3/2 � Eσ

1 Dσ
1 . (4.27)

For the fourth and fifth terms we expand

H(η) =
(
1 + |∇η|2

)−1/2

Δη −
(
1 + |∇η|2

)−3/2

D2η∇η · ∇η (4.28)

and

1√
1 + |∇η|2

− 1 = − |∇η|2√
1 + |∇η|2(1 +

√
1 + |∇η|2)

(4.29)

in order to arrive at the estimate

‖∇ (σH(η)(e3 −N ))‖20 + ‖∇ (σ(Δη − H(η))‖20 � ‖η‖22 σ2 ‖η‖27/2 � Eσ
1 Dσ

1 . (4.30)

Combining these, we deduce that (4.23) holds, which completes the proof of all of the

stated estimates. �
4.4. Estimates on auxiliary terms. Our next result provides some bounds for nonlin-

earities appearing in integrals.

Proposition 4.4. Let α ∈ N
2 with |α| = 2n. Assume that Eσ

n ≤ δ for the universal

δ ∈ (0, 1) given by Proposition 4.1. Then there exists a polynomial with nonnegative

universal coefficients such that∣∣∣∣
∫
Σ

∂αη∂αG3

∣∣∣∣ �
√
E0
nD0

n +
√
D0

nKFn (4.31)

and ∣∣∣∣σ
∫
Σ

Δ∂αη∂αG3

∣∣∣∣ � P (σ)
(√

E0
nD0

nDσ
n +

√
Dσ

nKFn

)
. (4.32)

Moreover, when n = 1 and σ > 0, we can improve the estimate above to∣∣∣∣σ
∫
Σ

Δ∂αη∂αG3

∣∣∣∣ � 1 +
√
σ

σ

√
Eσ
1 Dσ

1 . (4.33)

Proof. The first two estimates are proved in Lemma 3.5 of [13].

For the n = 1 and σ > 0 case, we first estimate∣∣∣∣
∫
Σ

σΔ∂αη∂αG3

∣∣∣∣�σ ‖Δ∂αη‖−1/2

∥∥∂αG3
∥∥
1/2

�σ ‖η‖7/2
∥∥∂αG3

∥∥
1/2

�
√

Dσ
1

∥∥∂αG3
∥∥
1/2

.

(4.34)

To conclude we use the definition of G3 to bound∥∥∂αG3
∥∥
1/2

� ‖η‖5/2 ‖u‖3 + ‖u‖2 ‖η‖7/2 � 1 +
√
σ

σ

√
Eσ
1 Dσ

1 . (4.35)

�
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We define the following auxiliary term which appears in later sections:

Hn :=

∫
Ω

−∂n−1
t pF 2,nJ +

1

2
|∂n

t u|2(J − 1). (4.36)

The next result provides estimates for this term.

Proposition 4.5. Let Hn be defined as in (4.36), and assume Eσ
n ≤ δ for the universal

δ ∈ (0, 1) given by Proposition 4.1. Furthermore, suppose that
∑n+1

�=2 Aω� � 1. Then

|Hn| � (E0
n)

3/2. (4.37)

Proof. We can bound

|Hn| ≤
∥∥∂n−1

t p
∥∥
0

∥∥F 2,n
∥∥
0
‖J‖L∞ +

1

2
‖J − 1‖L∞ ‖∂n

t u‖
2
0 . (4.38)

Then we use Proposition 4.1 and Theorem 4.2 to estimate∥∥F 2,n
∥∥
0
‖J‖L∞ � E0

n. (4.39)

Using the Sobolev embedding H3(Ω) ↪→ C1(Ω),

‖J − 1‖L∞ � ‖η̂‖C1 � ‖η̂‖H3 � ‖η‖5/2 �
√
E0
n. (4.40)

Therefore

|Hn| �
√
E0
n

(∥∥∂n−1
t p

∥∥
0

√
E0
n + ‖∂n

t u‖
2
0

)
� (E0

n)
3/2, (4.41)

as desired. �

5. General a priori estimates. The purpose of this section is to present a priori

estimates that are general in the sense that they are valid for both the problem with and

without surface tension. The general estimates presented here will be specially adapted

later to each problem to prove different sorts of results.

5.1. Energy-dissipation evolution estimates. Let α ∈ N
1+2, and write

Eσ

α =

∫
Ω

1

2
|∂αu|2 +

∫
Σ

1

2
|g∂αη|2 + σ

2
|∇∂αη|2 ,

Dα =

∫
Ω

1

2
|D∂αu|2

(5.1)

for the part of the energy and dissipation responsible for the α derivatives.

Our first result derives energy-dissipation estimates for the time derivative component

of the energy and dissipation functionals.

Theorem 5.1. Assume that Eσ
n ≤ δ for the universal δ ∈ (0, 1) given by Proposition

4.1. Suppose further that
∑n+1

�=2 Aω� � 1. Let α ∈ N
1+2 be given by α = (n, 0, 0),

i.e., ∂α = ∂n
t . Then for Ēσ

α and Dα given by (5.1), there exists a polynomial P with

nonnegative universal constants such that we have the estimate

d

dt
(Eσ

α +Hn) +Dα �
(

n+2∑
�=2

Aω�

)
D0

n + P (σ)
√
E0
nDσ

n. (5.2)
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Proof. We apply Proposition 3.1 with (v, q, ζ) = ∂n
t (u, q, η) to get

d

dt

[∫
Ω

|∂n
t u|

2 J

2
+

∫
Σ

σ |∇∂n
t η|

2

2
+

g |∂n
t η|

2

2

]
+

∫
Ω

μ
|DA∂

n
t u|

2 J

2

=

∫
Ω

J
(
∂n
t u · F 1,n + ∂n

t p · F 2,n
)

+

∫
Σ

(−σΔ∂n
t η + g∂n

t η)F
3,n −

∫
Σ

F 4,n · (∂n
t u) + F 5,n(∂n

t u) · N .

(5.3)

Now we estimate the terms on the right hand side of (5.3). We easily bound the last

term by∣∣∣∣
∫
Σ

F 5,n(∂n
t u) · N

∣∣∣∣=
∣∣∣∣∣
∫
Σ

(
n∑

�=0

C�,nAω2+�f (2+�)(ωt)∂n−�
t η

)
(∂n

t u) · N
∣∣∣∣∣�

(
n+2∑
�=2

Aω�

)
D0

n.

(5.4)

To handle the pressure term we first rewrite∫
Ω

∂n
t pJF

2,n =
d

dt

∫
Ω

∂n−1
t pJF 2,n −

∫
Ω

∂n−1
t p∂t(JF

2,n). (5.5)

We then use Theorem 4.2 to estimate∣∣∣∣
∫
Ω

∂n−1
t p∂t(JF

2,n)

∣∣∣∣ ≤ ∥∥∂n−1
t p

∥∥
0

∥∥∂t(JF 2,n)
∥∥
0

� P (σ)
√
Dσ

n

√
E0
nDσ

n = P (σ)
√
E0
nDσ

n.

(5.6)

Using Theorem 4.2, Proposition 4.1, and trace theory, we get that∣∣∣∣
∫
Ω

J∂n
t u · F 1,n −

∫
Σ

F 4,n · ∂n
t u

∣∣∣∣ � ‖∂n
t u‖1 (

∥∥F 1,n
∥∥
0
+
∥∥F 4,n

∥∥
0
)

� P (σ)
√
Dσ

n

√
E0
nDσ

n = P (σ)
√
E0
nDσ

n.

(5.7)

For the rest of the terms, we again use Theorem 4.2 to estimate∣∣∣∣
∫
Σ

(−σΔ∂n
t η + g∂n

t η)F
3,n

∣∣∣∣ � (σ ‖∂n
t η‖2 + ‖∂n

t η‖0)
∥∥F 3,n

∥∥
0

� P (σ)
√
Dσ

n

√
E0
nDσ

n = P (σ)
√
E0
nDσ

n.

(5.8)

Next we rewrite some of the terms on the left side of the equations. Proposition 4.1

allows us to bound

1

2

∫
Ω

|D∂n
t u|

2 ≤
∫
Ω

1

2
|DA∂

n
t u|

2
J + C

√
E0
nDσ

n (5.9)

and ∫
Ω

1

2
|∂n

t u|
2 J =

∫
Ω

1

2
|∂n

t u|
2 +

∫
Ω

1

2
|∂n

t u|
2 (J − 1). (5.10)

The theorem follows by combining the above estimates and rearranging. �
Our next result provides energy-dissipation estimates for all derivatives besides the

highest order temporal ones.

Licensed to Carnegie Mellon Univ. Prepared on Tue Jun 29 13:31:32 EDT 2021 for download from IP 128.2.149.108.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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Theorem 5.2. Suppose that Eσ
n ≤ δ for δ ∈ (0, 1) given in Proposition 4.1. Let α ∈ N

1+2

be such that |α| ≤ 2n and α0 < n. Suppose further that
∑n+1

�=2 Aω� � 1. Then there

exists a polynomial P with nonnegative universal coefficients such that

d

dt
Eσ
α +Dα �

(
n+1∑
�=2

Aω�

)
D0

n + P (σ)
(√

E0
nDσ

n +
√
Dσ

nKFn

)
. (5.11)

Moreover, when n = 1 and σ > 0 is a fixed constant, we can improve this to

d

dt
Eσ
α +Dα � A(ω2 + ω3)D0

1 +
P (σ)

σ

√
Eσ
1 Dσ

n. (5.12)

Proof. We begin by applying Proposition 3.2 on (v, q, ζ) = ∂α(u, p, η) to see that

d

dt
Eα +Dα = −

∫
Σ

∂α
(
Aω2f ′′(ωt)η

)
∂αu3 +

∫
Ω

∂αu · ∂αG1 + ∂αp∂αG2

+

∫
Σ

(−σΔ∂αη + g∂αη) ∂αG3 − ∂αG4 · ∂αu.

(5.13)

We will now estimate all of the terms appearing on the right side of (5.13). The first term

is easily bounded using the duality between H1/2(Σ) and H−1/2(Σ) and trace theory:∣∣∣∣
∫
Σ

∂α
(
Aω2f ′′(ωt)η

)
∂αu3

∣∣∣∣
�
(

n+1∑
�=2

Aω�

)⎛
⎝n−1∑

j=0

∥∥∥∂j
t η
∥∥∥
2n−2j−1/2

⎞
⎠
⎛
⎝n−1∑

j=0

∥∥∂ju3

∥∥
H2n−2j+1/2(Σ)

⎞
⎠

�
(

n+1∑
�=2

Aω�

)√
D0

n

⎛
⎝n−1∑

j=0

∥∥∂ju
∥∥
2n−2j+1

⎞
⎠ �

(
n+1∑
�=2

Aω�

)
D0

n.

(5.14)

In order to estimate the remaining terms on the right side of (5.13) we will break to cases

based on α.

Case 1 (Pure spatial derivatives of highest order). In this case we first consider

α ∈ N
1+2 with |α| = 2n and α0 = 0, i.e., ∂α is purely spatial derivatives of the highest

order. Now write α = β + γ for |β| = 1. We then use integration by parts and Theorem

4.3 to bound the G1 term via∣∣∣∣
∫
Ω

∂αu · ∂αG1

∣∣∣∣ =
∣∣∣∣
∫
Ω

∂α+βu · ∂γG1

∣∣∣∣ � ‖u‖2n+1

∥∥G1
∥∥
2n−1

� P (σ)
√
D0

n

√
E0
nDσ

n +KFn.

(5.15)

To bound the G2 term, compute∣∣∣∣
∫
Ω

∂αp · ∂αG2

∣∣∣∣ ≤ ‖∂αp‖0
∥∥∂αG2

∥∥
0

� P (σ)
√
D0

n

√
E0
nDσ

n +KFn. (5.16)

For the G3 term, the −σΔ∂αη∂αG3 and g∂αη terms are handled by Proposition 4.4.

Finally, to bound the G4 term, we have∣∣∣∣
∫
Σ

∂αG4 · ∂αu

∣∣∣∣ = ∥∥∂αG4
∥∥
H−1/2(Σ)

‖∂αu‖H1/2(Σ) �
∥∥G4

∥∥
H2n−1/2(Σ)

‖u‖2n+1

� P (σ)
√
D0

n

√
E0
nDσ

n +KFn.

(5.17)
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Combining the above estimates yields the desired bound for this case. For the n = 1 and

σ > 0 case, we can apply the special cases of Theorem 4.3 and Proposition 4.4 and the

same computations as above to deduce the result for G1, G2, and G3, noting that

P (σ) +
1 +

√
σ

σ
� P (σ)

σ
, (5.18)

where P denotes different universal polynomials on each side of the inequality. For G4

we can use the same method as for G1 to get∣∣∣∣
∫
Σ

∂αG4 · ∂αu

∣∣∣∣ =
∣∣∣∣
∫
Σ

∂γG4 · ∂α+βu

∣∣∣∣ �
∥∥G4

∥∥
1
‖u‖3 �

√
Eσ
1 Dσ

1 . (5.19)

Case 2 (Everything else). We now consider the remaining cases, i.e., either |α| ≤
2n − 1 or else |α| = 2n and 1 ≤ α0 < n. In this case, the G1, G2, G4 terms may be

handled with Theorem 4.3. For the G3 term, we directly compute∣∣∣∣
∫
Σ

(−σΔ∂αη+g∂αη) ∂αG3

∣∣∣∣�‖−σΔ∂αη+g∂αη‖0
∥∥∂αG3

∥∥�P (σ)
√
Dσ

n

√
E0
nDσ

n +KFn.

(5.20)

We may now combine the two cases to conclude the desired theorem. In the case of

n = 1 and σ > 0, we can apply the special cases of Theorem 4.3 in the above. �
By combining Theorems 5.1 and 5.2 we get the following synthesized result.

Theorem 5.3. Suppose that Eσ
n ≤ δ for δ ∈ (0, 1) given by Proposition 4.1. Suppose

further that
∑n+1

�=2 Aω� � 1. Then we have the estimate

d

dt

(
Eσ
n +Hn

)
+Dn �

(
n+2∑
�=2

Aω�

)
D0

n + P (σ)
(√

E0
nDσ

n +
√
Dσ

nKFn

)
, (5.21)

where Hn is defined as in (4.36). Moreover, when n = 1 and σ > 0, we have

d

dt

(
Eσ
1 +H1

)
+D1 � (Aω2 + Aω3)D0

1 +
P (σ)

σ

√
Eσ
1 Dσ

1 . (5.22)

5.2. Comparison estimates. Our goal now is to show that the full energy and dissi-

pation, En and Dn, can be controlled by their horizontal counterparts Eσ
n and Dn up to

some error terms that can be made small. We begin with the result for the dissipation.

Theorem 5.4. Suppose that Eσ
n ≤ δ for δ ∈ (0, 1) given by Proposition 4.1. Let Yn be

as defined in (4.13). If
∑n+1

�=2 Aω� � 1, then

Dσ
n � Yn +Dn. (5.23)

Proof. We divide the proof into several steps.

Step 1 (Application of Korn’s inequality). Korn’s inequality tells us that∑
α∈N

1+2

|α|≤2n

‖∂αu‖21 � Dn. (5.24)
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Since ∂1 and ∂2 account for all the spatial differential operators on Σ, we deduce from

standard trace estimates that

n∑
j=0

∥∥∥∂j
t u
∥∥∥
H2n−2j+1/2(Σ)

�
∑

α∈N
1+2

|α|≤2n

‖∂αu‖2H1/2(Σ) � Dn. (5.25)

Step 2 (Elliptic estimates for the Stokes problem). With (5.25) in hand, we can now

use the elliptic theory associated to the Stokes problem to gain control of the velocity

field and the pressure. For j = 0, 1, . . . , n− 1 we have that ∂j
t (u, p, η) solve the PDE

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

divS
(
∂j
t u, ∂

j
t p
)
= ∂j

tG
1 − ∂t

(
∂j
t u
)

in Ω,

div
(
∂j
t u
)
= ∂j

tG
2 in Ω,

∂j
t u = ∂j

t u
∣∣∣
Σ

on Σ,

∂j
t u = 0 on Σb.

(5.26)

We may then apply the Stokes problem elliptic regularity estimates in Theorem A.2 to

bound

∥∥∂n−1
t u

∥∥2
3
+
∥∥∇∂n−1

t p
∥∥2
1
�‖∂n

t u‖
2
1+

∥∥∂n−1
t u

∥∥2
H5/2(Σ)

+
∥∥∂n−1

t G1
∥∥2
1
+
∥∥∂n−1

t G2
∥∥2
2
�Yn+Dn.

(5.27)

The control of ∂n−1
t u provided by this bound then allows us to control ∂n−2

t u in a similar

manner. We thus proceed iteratively with Theorem A.2 with m = 2n− 2j − 1, counting

down from n− 1 temporal derivatives to 0 temporal derivatives in order to deduce that

n−1∑
j=0

∥∥∥∂j
t u
∥∥∥2
2n−2j+1

+
∥∥∥∇∂j

t p
∥∥∥2
2n−2j−1

� P (σ)
(
Yn +Dn

)
. (5.28)

Step 3 (Free surface function estimates). Next we derive estimates for the free surface

function. Consider the dynamic boundary condition on Σ to write

[(pI − μDu)e3] · e3 =
[
(−σΔη + (g +Aω2f ′′(ωt))η)e3 +G4

]
· e3. (5.29)

Now for i = 1, 2 and j = 0, 1, . . . , n− 1, apply ∂i∂
j
t to the above and rearrange to obtain

− σΔ∂i∂
j
t η + (g +Aω2f ′′(ωt))∂i∂

j
t η = −

∑
0<�≤j

∂�
t

(
Aω2f ′′(ωt)

)
∂i∂

j−�η

+
(
∂i∂

j
t p− 2μ∂3∂i∂

j
t u3

)
− ∂i∂

j
tG

4 · e3.
(5.30)
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We then use this in the capillary operator estimate count up from j = 0, 1, . . . , n− 1 in

Theorem A.1 and employ (5.27) to see that

∥∥∥∂i∂j
t η
∥∥∥2
2n−2j−3/2

+ σ2
∥∥∥∂i∂j

t η
∥∥∥2
2n−2j+1/2

�

∥∥∥∥∥∥−
∑

0<�≤j

∂�
t

(
Aω2f ′′(ωt)

)
∂i∂

j−�η

∥∥∥∥∥∥
2

2n−2j−3/2

+
∥∥∥(∂i∂j

t p− 2μ∂3∂i∂
j
t u3

)
− ∂i∂

j
tG

4 · e3
∥∥∥2
H2n−2j−3/2(Σ)

�
j−1∑
�=0

∥∥∂i∂�η
∥∥2
2n−2j−3/2

+
∥∥∥∇∂j

t p
∥∥∥2
2n−2j−1

+
∥∥∥∂j

t u
∥∥∥2
2n−2j+1

+
∥∥∥∂j

tG
4
∥∥∥2
H2n−2j−1/2(Σ)

� Y +D.

(5.31)

Recall that η has zero integral over Σ via (1.15), so by using Poincaré’s inequality, we

also obtain

n−1∑
j=0

∥∥∥∂j
t η
∥∥∥2
2n−2j−1/2

+ σ2
∥∥∥∂j

t η
∥∥∥2
2n−2j+3/2

�
n−1∑
j=0

2∑
i=1

∥∥∥∂i∂j
t η
∥∥∥2
2n−3/2

+ σ2
∥∥∥∂i∂j

t η
∥∥∥2
2n+1/2

� Y +D.

(5.32)

Next we estimate ∂j
t η for j = 1, 2, . . . , n + 1 by employing the kinematic boundary

condition

∂j+1
t η = ∂j

t u3 + ∂j
tG

3. (5.33)

We first use this and (5.32) to bound

‖∂tη‖22n−1 � ‖u3‖2H2n−1(Σ) +
∥∥G3

∥∥2
H2n−1(Σ)

� ‖u‖22n−1/2 + Yn � Yn +Dn (5.34)

and then multiply by σ2 in order to derive the similar estimate

σ2 ‖∂tη‖22n+1/2 � σ2 ‖u3‖2H2n+1/2(Σ) + σ2
∥∥G3

∥∥2
H2n+1/2(Σ)

� ‖u‖22n+1 + σ2
∥∥G3

∥∥2
H2n+1/2(Σ)

� Yn +Dn.
(5.35)

Next we use a similar argument to control ∂2
t η:

∥∥∂2
t η
∥∥2
2n−2

�‖∂tu3‖2H2n−2(Σ)+
∥∥∂tG3

∥∥2
H2n−2(Σ)

�‖∂tu‖22n−3/2+
∥∥∂tG3

∥∥2
H2n−2(Σ)

� Yn+Dn

(5.36)

and

σ2
∥∥∂2

t η
∥∥2
2n−3/2

� σ2 ‖∂tu3‖2H2n−3/2(Σ) + σ2
∥∥∂tG3

∥∥2
H2n−3/2(Σ)

� ‖∂tu3‖22n−1 + σ2
∥∥∂tG3

∥∥2
H2n−3/2(Σ)

� Yn +Dn.
(5.37)
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With control of ∂2
t η in hand we can iterate to obtain control of ∂j

t for j = 3, 4, . . . , n+1.

This yields the estimate

n+1∑
j=3

∥∥∥∂j
t η
∥∥∥2
2n−2j+5/2

�
n+1∑
j=3

∥∥∥∂j−1
t u3

∥∥∥2
H2n−2j+5/2(Σ)

+
∥∥∥∂j−1

t G3
∥∥∥2
H2n−2j+5/2(Σ)

=
n∑

j=2

∥∥∥∂j
t u
∥∥∥2
2n−2j+1

+
∥∥∥∂j

tG
3
∥∥∥2
H2n−2j+1/2(Σ)

� Yn +Dn.

(5.38)

Summing the above bounds then shows the following surface function estimate:

‖∂tη‖22n−1 + σ2 ‖∂tη‖22n+1/2 +
∥∥∂2

t η
∥∥2
2n−2

+ σ2
∥∥∂2

t η
∥∥2
2n−3/2

+

n−1∑
j=0

(∥∥∥∂j
t η
∥∥∥2
2n−2j−1/2

+ σ2
∥∥∥∂j

t η
∥∥∥2
2n−2j+3/2

)
+

n+1∑
j=3

∥∥∥∂j
t η
∥∥∥2
2n−2j+5/2

� Yn +Dn.

(5.39)

Step 4 (Improved pressure estimates). We now return to (5.29) with (5.39) in hand

in order to improve our estimates for the pressure. Applying ∂j
t for j = 0, 1, . . . , n − 1

shows that

∂j
t p = −σΔ∂j

t η + g∂j
t η + ∂j

t

(
Aω2f ′′(ωt)η

)
+ 2∂3∂

j
t u3 + ∂j

tG
4 · e3. (5.40)

We then use this with (5.32) to bound

n−1∑
j=0

∥∥∥∂j
t p
∥∥∥2
H0(Σ)

�
n−1∑
j=0

∥∥∥∂j
t η
∥∥∥2
0
+σ2

∥∥∥Δ∂j
t η
∥∥∥2
2
+
∥∥∥∂j

t u
∥∥∥2
2
+
∥∥∥∂j

tG
4
∥∥∥2
H0(Σ)

� Yn+Dn. (5.41)

Now by a Poincaré-type inequality,

n−1∑
j=0

∥∥∥∂j
t p
∥∥∥2
0

�
n−1∑
j=0

∥∥∥∇∂j
t p
∥∥∥2
0
+
∥∥∥∂j

t p
∥∥∥2
H0(Σ)

� Yn +Dn. (5.42)

Hence
n−1∑
j=0

∥∥∥∂j
t p
∥∥∥2
2n−2j

�
n−1∑
j=0

∥∥∥∂j
t p
∥∥∥2
0
+
∥∥∥∇∂j

t p
∥∥∥2
2n−2j−1

� Yn +Dn. (5.43)

Step 5 (Conclusion). The estimate (5.23) now follows by combining the above bounds.

�
We now explore the counterpart for the energy.

Theorem 5.5. Suppose that Eσ
n ≤ δ for δ ∈ (0, 1) given by Proposition 4.1. Let Wn be

as defined in (4.14). If
∑n+1

�=2 Aω� � 1, then there exists a polynomial P with nonnegative

universal coefficients such that

Eσ
n � P (σ)

(
Wn + Eσ

n

)
. (5.44)

Proof. We divide the proof into several steps.

Step 1 (Initial free surface terms). To begin, note that

∑
α∈N

1+2

|α|≤2n

‖∂αη‖20 + σ ‖∇∂αη‖20 �
n∑

j=0

∥∥∥∂j
t η
∥∥∥2
2n−2j

+ σ
∥∥∥∇∂j

t η
∥∥∥2
2n−2j

. (5.45)
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Since ∂j
t η has zero integral, we can then use Poincaré’s inequality to conclude that

n∑
j=0

∥∥∥∂j
t η
∥∥∥2
2n−2j

+ σ
∥∥∥∂j

t η
∥∥∥2
2n−2j+1

�
n∑

j=0

∥∥∥∂j
t η
∥∥∥2
2n−2j

+ σ
∥∥∥∇∂j

t η
∥∥∥2
2n−2j

� Eσ
n . (5.46)

Step 2 (Elliptic estimates). Rewrite the flattened equations in (1.29) as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇p− μΔu = G1 − ∂tu in Ω,

div u = G2 in Ω,

∂tη = u3 +G3 on Σ,

(pI − μDu)e3 = (−σΔη + gη +G5)e3 +G4 on Σ,

u = 0 on Σb.

(5.47)

Note that in particular (∂j
t u, ∂

j
t p, ∂

j
t η) for j = 1, 2, . . . , n− 1 satisfy the PDE⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇∂j
t p− μΔ∂j

t u = ∂j
tG

1 − ∂j+1
t u in Ω,

div ∂j
t u = ∂j

tG
2 in Ω,

∂j+1
t η = ∂j

t u3 + ∂j
tG

3 on Σ,

(∂j
t pI − μD∂j

t u)e3 = (−σΔ∂j
t η + g∂j

t η + ∂j
tG

5)e3 + ∂j
tG

4 on Σ,

v = 0 on Σb.

(5.48)

We may appeal to the elliptic estimates for the Stokes problem with stress boundary

conditions (A.3) to obtain

∥∥∂n−1
t u

∥∥2
2
+
∥∥∂n−1

t p
∥∥2
1

�
∥∥∂n−1

t G1 − ∂n
t u

∥∥2
0
+
∥∥∂n−1

t G2
∥∥2
1

+
∥∥(−σΔ∂n−1

t η + g∂n−1
t η + ∂n−1

t G5)e3 + ∂n−1
t G4

∥∥2
1/2

�
∥∥∂n−1

t G1
∥∥2
0
+ ‖∂n

t u‖
2
0 +

∥∥∂n−1
t G2

∥∥2
1

+
∥∥∂n−1

t η
∥∥2
1/2

+ σ2
∥∥∂n−1

t η
∥∥2
5/2

+
∥∥∂n−1

t G5
∥∥2
1/2

+
∥∥∂n−1

t G4
∥∥2
H1/2(Σ)

.

(5.49)

For the G5 term we bound

∥∥∂n−1
t G5

∥∥2
1/2

≤
∑

0≤�≤n−1

∥∥∥Aω�+2f (�+2)(ωt)∂
(n−1)−�
t η

∥∥∥2
1/2

�
∑

0≤�≤n−1

∥∥∂�
tη
∥∥2
1/2

.

(5.50)

As a result, we have

∥∥∂n−1
t u

∥∥2
2
+
∥∥∂n−1

t p
∥∥2
1

�
∥∥∂n−1

t G1
∥∥2
0
+ ‖∂n

t u‖
2
0 +

∥∥∂n−1
t G2

∥∥2
1

+
∥∥∂n−1

t η
∥∥2
1/2

+σ2
∥∥∂n−1

t η
∥∥2
5/2

+
∑

0≤�≤n−1

∥∥∂�
tη
∥∥2
1/2

+
∥∥∂n−1

t G4
∥∥2
H1/2(Σ)

�P (σ)
(
Wn + Eσ

n

)
.

(5.51)
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We in turn may induct downward to get bounds on ∂j
t u and ∂j

t p for j = n− 2, . . . , 1, 0.

Doing so, we arrive at the bounds

n−1∑
j=0

∥∥∥∂j
t u
∥∥∥2
2n−2j

+
∥∥∥∂j

t p
∥∥∥2
2n−2j−1

� Eσ
n+

n−1∑
j=0

∥∥∥∂j
tG

1
∥∥∥2
2n−2j−2

+
∥∥∥∂j

tG
2
∥∥∥2
2n−2j−1

+
∥∥∥∂j

tG
4
∥∥∥2
H2n−2j−3/2(Σ)

� P (σ)
(
Wn + Eσ

n

)
.

(5.52)

Step 3 (Improved estimates for time derivatives of the free surface function). With

the estimates of (5.52) in hand, we can improve the estimates for the time derivatives of

the free surface function by employing the kinematic boundary condition

∂j+1
t η = ∂j

t u3 + ∂j
tG

3 (5.53)

for j = 0, 1, . . . , n − 1. Using this, trace theory, (5.46), and (5.52) provides us with the

estimate

‖∂tη‖22n−1/2 � ‖u‖22n +
∥∥G3

∥∥2
H2n−1/2(Σ)

� Wn + Eσ
n . (5.54)

We then iterate this argument to control ∂j
t η for j = 0, 1, . . . , n − 1. This yields the

bound

n∑
j=1

∥∥∥∂j
t η
∥∥∥2
2n−2j+3/2

�
n−1∑
j=0

∥∥∥∂j
t u
∥∥∥2
2n−2j

+
∥∥∥∂j

tG
3
∥∥∥2
H2n−2j−1/2(Σ)

� Wn + Eσ
n . (5.55)

Step 4 (Conclusion). The estimate in (5.44) now follows by combining the above

bounds. �

6. The zero and vanishing surface tension problems. Recall that we use the

phrase vanishing surface tension regime to refer to the scenario in which σ > 0 is small,

which is really only of interest via its use in sending σ → 0 to arrive at the zero surface

tension problem. In this section we complete the development of the a priori estimates

for the vanishing surface tension problem and for the problem with zero surface tension.

With these estimates in hand we then prove Theorems 2.4 and 2.5, which establish

the existence of global-in-time decaying solutions and study the limit as surface tension

vanishes.

6.1. Preliminaries. Here we record a simple preliminary estimate that will be quite

useful in the subsequent analysis.

Proposition 6.1. For N ≥ 3 we have that

K � min
{
E0
N+2,D0

N+2

}
, FN+2 � E0

2N . (6.1)

Proof. By Sobolev embeddings and trace theory, K � ‖u‖27/2 + ‖η‖25/2 ≤ ‖u‖24 + ‖η‖24
and hence K � E0

2 ≤ E0
N+2 and K � D0

2 ≤ D0
N+2. On the other hand, FN+2 =

‖η‖22N+4+1/2 ≤ ‖η‖22N+5 and 2N + 5 ≤ 4N for N ≥ 3, so FN+2 ≤ E0
2N . �
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6.2. Transport estimate. We now turn to the issue of establishing structured estimates

of the highest derivatives of η by appealing to the kinematic transport equation.

Theorem 6.2. Assume that Eσ
n ≤ ∂t for the universal δ ∈ (0, 1) given by Proposition

4.1. Then

sup
0≤r≤t

F2N (r) � exp

(
C

∫ t

0

√
K(r) dr

)

×
[
F2N (0) + t

∫ t

0

(1 + E0
2N )D0

2N dr +

(∫ t

0

√
KF2N dr

)2
]
. (6.2)

Proof. The argument used to prove Theorem 6.3 of [26], which is based on fractional

regularity estimates for the transport equation proved by Danchin [7], works here as well.

We refer to [26] for details. �
Next we show that if we know a priori that G2N is small, then in fact it is possible to

estimate F2N more strongly than is done in Theorem 6.2.

Theorem 6.3. Let G0
2N be defined by (2.17) for N ≥ 3. There exists a universal δ ∈ (0, 1)

such that if G0
2N (T ) ≤ δ and γ ≤ 1, then

sup
0≤r≤t

F2N (r) � F2N (0) + t

∫ t

0

D0
2N (r) dr (6.3)

for all 0 ≤ t ≤ T .

Proof. According to Proposition 6.1 and the assumed bounds, we may estimate

∫ t

0

√
K(r) dr �

∫ t

0

√
E0
N+2(r) dr ≤

√
δ

∫ ∞

0

1

(1 + r)2N−4
dr �

√
δ. (6.4)

Since δ ∈ (0, 1), we thus have that for any universal C > 0

exp

(
C

∫ t

0

√
K(r) dr

)
� 1. (6.5)

Similarly,

(∫ t

0

√
K(r)F2N (r) dr

)2

�
(

sup
0≤r≤t

F2N (r)

)(∫ t

0

√
E0
N+2(r) dr

)2

�
(

sup
0≤r≤t

F2N (r)

)
δ.

(6.6)

Then (6.4), (6.5), (6.6), and Theorem 6.2 imply that

sup
0≤r≤t

F2N (r) ≤ C

(
F2N (0) + t

∫ t

0

D0
2N (r) dr

)
+ Cδ

(
sup

0≤r≤t
F2N (r)

)
(6.7)

for some C > 0. Then if δ is small enough so that Cδ ≤ 1
2 , we may absorb the right

hand F2N term onto the left and deduce (6.3). �
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6.3. A priori estimates for Gσ
2N . Our goal now is to complete our a priori estimates

for Gσ
2N . We start with the bounds of the high-tier terms and F2N .

Theorem 6.4. There exist δ0, γ0 ∈ (0, 1) such that if 0 ≤ σ ≤ 1, Gσ
2N (T ) ≤ δ0, and∑2N+2

�=2 Aω� ≤ γ0, then

sup
0≤r≤t

Eσ
2N (r) +

∫ t

0

Dσ
2N (r) dr + sup

0≤r≤t

F2N (r)

1 + r
� Eσ

2N (0) + F2N (0) (6.8)

for all 0 ≤ t ≤ T .

Proof. We first assume that δ0 is small as in Proposition 4.1, and small as in Propo-

sition 4.5 so that |H2N | � (E0
2N )3/2.

We invoke Theorems 5.4 and 5.5 in order to bound

Eσ
2N � W2N + Eσ

2N and Dσ
2N � Y2N +D2N . (6.9)

According to Theorem 4.3 we may then bound

W2N � E0
2NEσ

2N +KF2N and Y2N � E0
2NDσ

2N +KF2N . (6.10)

Upon combining the above two equations with the given bound for H2N , we find that

Eσ
2N � (Eσ

2N +H2N )+E0
2NEσ

2N +(E0
2N )3/2+KF2N and Dσ

2N � D2N +E0
2NDσ

2N +KF2N ,

(6.11)

and consequently, if δ0 is assumed to be small enough we may absorb the E0
2NEσ

2N +

(E0
2N )3/2 and E0

2NDσ
2N terms onto the left to arrive at the bounds

Eσ
2N � (Eσ

2N +H2N ) +KF2N and Dσ
2N � D2N +KF2N . (6.12)

We apply Theorem 5.3 with n = 2N and integrate in time from 0 to t to see that

(Eσ
2N (t) +H2N (t)) +

∫ t

0

D2N (r) dr

� (Eσ
2N (0) +H2N (0)) +

(
2N+2∑
�=2

Aω�

)∫ t

0

D0
2N (r) dr

+

∫ t

0

√
E0
2N (r)Dσ

2N (r) dr +

∫ t

0

√
Dσ

2N (r)K(r)F2N(r) dr.

(6.13)

We then combine this with the estimate in (6.12) to arrive at the refined bound

Eσ
2N (t) +

∫ t

0

Dσ
2N (r) dr � Eσ

2N (0) +

(
2N+2∑
�=2

Aω�

)∫ t

0

D0
2N (r) dr +

∫ t

0

√
E0
2N (r)Dσ

2N (r) dr

+

∫ t

0

(
K(r)F2N (r) +

√
Dσ

2N (r)K(r)F2N(r)

)
dr.

(6.14)

We now turn our attention to the KF2N terms appearing on the right side of (6.14). To

handle these we first note that K � E0
N+2, as is shown in Proposition 6.1. Thus

K(r) � E0
N+2(r) =

1

(1 + r)4N−8
(1 + r)4N−8E0

N+2 � 1

(1 + r)4N−8
G2N (T ) � δ0

(1 + r)4N−8
.

(6.15)
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Next we use Theorem 6.3 to see that for 0 ≤ r ≤ t we can estimate

F2N (r) � F2N (0) + (1 + r)

∫ r

0

D0
2N (s) ds. (6.16)

We may then combine (6.15) and (6.16) to estimate∫ t

0

K(r)F2N (r) dr

� δ0

∫ t

0

(
F2N (0)

(1 + r)4N−8
+

1

(1 + r)4N−7

∫ r

0

D0
2N (s) ds

)

� δ0F2N (0)

∫ ∞

0

dr

(1 + r)4N−8
+ δ0

(∫ t

0

D0
2N (r) dr

)(∫ ∞

0

dr

(1 + r)4N−7

)

� δ0F2N (0) + δ0

∫ t

0

D0
2N (r) dr,

(6.17)

where here we have used N ≥ 3 to guarantee that (1 + r)4N−8 and (1 + r)4N−7 are

integrable on (0,∞). Similarly, we may estimate∫ t

0

√
Dσ

2N (r)K(r)F2N(r) dr ≤
(∫ t

0

Dσ
2N (r) dr

)1/2 (∫ t

0

K(r)F2N (r) dr

)1/2

�
(∫ t

0

Dσ
2N (r) dr

)1/2 (
δ0F2N (0) + δ0

∫ t

0

D0
2N (r) dr

)1/2

�
(
F2N (0) +

∫ t

0

Dσ
2N (r) dr

)1/2(
δ0F2N (0) + δ0

∫ t

0

Dσ
2N (r) dr

)1/2

�
√
δ0F2N (0) +

√
δ0

∫ t

0

Dσ
2N (r) dr.

(6.18)

Now we plug (6.17) and (6.18) into (6.14), bound E0
2N ≤ Gσ

2N ≤ δ0, and use the fact

that
√
δ0 ≤ δ0 due to δ0 < 1 to arrive at the bound

Eσ
2N (t) +

∫ t

0

Dσ
2N (r) dr � E2N (0) + F2N (0) +

∫ t

0

(
√
δ +

2N+2∑
�=2

Aω�

)
Dσ

2N (r) dr. (6.19)

Thus if γ0, δ0 ∈ (0, 1) are chosen to be small enough, we may absorb the Dσ
2N (r) integral

term onto the left to deduce that

Eσ
2N (t) +

∫ t

0

Dσ
2N (r) dr � Eσ

2N (0) + F2N (0). (6.20)

Upon combining (6.16) and (6.20) we deduce that the desired inequality holds. �
Next we establish the algebraic decay results for the low-tier energy.

Theorem 6.5. There exists δ0, γ0 ∈ (0, 1) such that if 0 ≤ σ ≤ 1,
∑N+4

�=2 Aω� ≤ γ0, and

Gσ
2N (T ) ≤ δ0, then

sup
0≤r≤t

(1 + r)4N−8Eσ
N+2(r) � Eσ

2N (0) + F2N (0) (6.21)

for all 0 ≤ t ≤ T .
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Proof. We prove in four steps.

Step 1 (Set up). Assume δ0 is small as in Propositions 4.1 and 4.5. The latter allows

us to estimate

|HN+2| � (E0
N+2)

3/2 �
√
E0
2NE0

N+2
(6.22)

since N ≥ 3. Then by applying Theorems 5.5 and 5.4 with n = N + 2, together with

Theorem 4.3 and Proposition 6.1 to get rid of the G nonlinearities and the KFN+2 terms,

we obtain the bounds

Eσ
N+2 �

(
Eσ
N+2 +HN+2

)
+
√
E0
2NE0

N+2 + E0
N+2Eσ

N+2 + E0
N+2E0

2N ,

Dσ
N+2 � DN+2 + E0

N+2Dσ
N+2 + E0

2ND0
N+2.

(6.23)

Thus if we assume that δ0 is small enough to absorb
√
E0
2NE0

N+2+E0
N+2Eσ

N+2+E0
N+2E0

2N

and E0
N+2Dσ

N+2 + E0
2ND0

N+2 onto the left hand side, then we may arrive at the bounds

Eσ
N+2 �

(
Eσ
N+2 +HN+2

)
� Eσ

N+2 Dσ
N+2 � DN+2 � Dσ

N+2. (6.24)

Step 2 (Interpolation estimates). Now set

θ :=
4N − 8

4N − 7
∈ (0, 1). (6.25)

We claim that we have the interpolation estimate

EN+2 �
(
Dσ

N+2

)θ
(Eσ

2N )
1−θ

. (6.26)

For most of the terms appearing in Eσ
N+2, this is a simple matter. Indeed, the definitions

of Eσ
2N and Dσ

N+2 and the assumption that σ ≤ 1 allow us to estimate

N+2∑
j=0

∥∥∥∂j
t u
∥∥∥2
2(N+2)−2j

+

N+1∑
j=0

∥∥∥∂j
t p
∥∥∥2
2(N+2)−2j−1

+ σ
∥∥∥∂j

t η
∥∥∥2
2n−2j+1

+
N+2∑
j=2

∥∥∥∂j
t η
∥∥∥
2(N+2)−2j+3/2

+ σ ‖η‖22n+1

�
(
Dσ

N+2

)θ
(Eσ

2N )
1−θ

(6.27)

since the dissipation is actually coercive over the energy on these terms. To handle the

remaining terms, we must use Sobolev interpolation. We begin with the most important

term, which actually dictates the choice of θ. We have that(
2(N + 2)− 1

2

)
θ + 4N(1− θ) = 2(N + 2) ⇔

(
2N − 7

2

)
θ = 2N − 4 (6.28)

so this θ is compatible with Sobolev norm estimates and so we obtain

‖η‖22(N+2) ≤ ‖η‖2θ2(N+2)−1/2 ‖η‖
2(1−θ)
4N �

(
Dσ

N+2

)θ
(Eσ

2N )1−θ . (6.29)

Finally, we bound

‖∂tη‖22(N+2)−1/2 � ‖∂tη‖2θ(2(N+2)−1)+(1−θ)(4N−1/2)

� ‖∂tη‖2θ2(N+2)−1 ‖∂tη‖
2(1−θ)
4N−1/2 �

(
Dσ

N+2

)θ
(Eσ

2N )1−θ
(6.30)

and thus we have (6.26), as claimed.
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Step 3 (Differential inequality). Next we apply Theorem 5.3 with n = N + 2 in

conjunction with Proposition 6.1 to see that

d

dt

(
Eσ
N+2 +Hn

)
+DN+2 �

(
N+4∑
�=2

Aω�

)
D0

N+2 +
√
E0
N+2Dσ

N+2 +
√
E0
2NDσ

N+2. (6.31)

We use this together with the bound Gσ
2N (T ) ≤ δ0 and the dissipation bounds of (6.24)

to estimate

d

dt

(
Eσ
N+2 +Hn

)
+DN+2 �

(√
δ0 +

N+4∑
�=2

Aω�

)
DN+2. (6.32)

Then by assuming that δ0 and
∑N+4

�=2 Aω� are small enough, we may absorb the DN+2

onto the left of this inequality. Doing so and again invoking the dissipation bounds of

(6.24) gives us that

d

dt

(
Eσ
N+2 +HN+2

)
+ C0Dσ

N+2 ≤ 0 (6.33)

for a universal constant C0 > 0. We then use the energy estimate in (6.24) to rewrite

(6.26) as (
Eσ
N+2 +HN+2

)1/θ � Dσ
N+2 (Eσ

2N )
(1−θ)/θ

. (6.34)

We chain this together with the estimate in Theorem 6.4 to write

C1

Ms
0

(
Eσ
N+2 +HN+2

)1+s ≤ Dσ
N+2 (6.35)

for C1 > 0 a universal constant, s := (1−θ)/θ = 1/(4N−8), andM0 := E2N (0)+F2N(0).

Upon combining (6.33) and (6.35), we arrive at the differential inequality

d

dt

(
Eσ
N+2 +HN+2

)
+

C0C1

Ms
0

(
Eσ
N+2 +HN+2

)1+s ≤ 0. (6.36)

With (6.36) in hand, we may integrate and argue as in the proofs of Theorem 7.7 of [10]

or Proposition 8.4 of [13] to deduce that

sup
0≤r≤t

(1 + r)4N−8
(
Eσ
N+2(r) +HN+2(r)

)
� M0 = E2N (0) + F2N (0). (6.37)

Then (6.37) and the energy bound in (6.24) yield (6.21). �
As the final step in our a priori estimates for Gσ

2N we synthesize Theorems 6.4 and 6.5.

Theorem 6.6. There exist δ0, γ0 ∈ (0, 1) such that if 0 ≤
∑2N+2

�=2 Aω� < γ0, 0 ≤ σ ≤ 1,

and Gσ
2N (T ) ≤ δ0, then

Gσ
2N (T ) � Eσ

2N (0) + F2N (0). (6.38)

Proof. We simply combine the estimates of Theorems 6.4 and 6.5. �
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6.4. Main results for the zero and vanishing surface tension problems. Now that we

have the a priori estimates of Theorem 6.6 in hand, we may prove Theorems 2.4 and

2.5 following previously developed arguments. For the sake of brevity we will omit full

details and simply refer to the existing arguments.

Proof of Theorem 2.4. The stated results follow by combining the local well-posedness

theory, Theorem 2.2, with the a priori estimates of Theorem 6.6 and a continuation

argument. In broad strokes the idea is as follows. We pick the data smallness parameter

κ0 sufficiently small to use the local existence theorem to produce a solution on (0, T∗)

satisfying Gσ
2N (T∗) ≤ δ0. Requiring γ0 to be as small as in Theorem 7.1 then allows us to

apply the theorem and deduce that Gσ
2N (T∗) is actually bounded in terms of the initial

data. From here, provided κ0 is sufficiently small, we may restart the local existence

theory to continue the solution past T∗. Iterating this argument and carefully tracking

the constants and the smallness parameters then allows us to guarantee that the solution

is global and satisfies (2.19).

The full details of the continuation argument may be developed by mimicking the

arguments elaborated in Theorem 1.3 of [10] or Theorem 2.3 of [13]. �
Proof of Theorem 2.5. Again we present only a sketch: full details may be developed

by reproducing the proofs of Theorem 1.2 of [23] or Theorem 2.9 of [13]. Due to the

careful accounting of the dependence on σ in the estimates of Theorem 2.4, we have

uniform in σ bounds for any sequence of σ values converging to 0. From these we may

extract weakly converging sequences, but from the well-known Aubin-Lions-Simon space-

time compactness results, we get strong convergence in spaces strong enough to pass to

the limit in the equations. We then deduce that the limit satisfies the σ = 0 problem. �

7. Fixed surface tension problem. In this section we study the problem (1.29) in

the case of a fixed σ > 0. We develop a priori estimates and then present the proof of

Theorem 2.3. Although the structure of the proof is similar to that in [26], this paper

uses n = 1 to prove the main theorem rather than n = 2 as done in [26]. This is because

we wish to optimize our argument to give asymptotically better parameter regimes for A

and ω; had we used n = 2, then we would have to require
∑4

�=2 Aω� � 1, which is worse

than the regime in which
∑3

�=2Aω� � 1 when we wish to consider large ω.

Note that in what follows in this section we break our convention of not allowing

universal constants to depend on σ. All universal constants are allowed to depend on

the fixed surface tension constant σ but are still not allowed to depend on A or ω.

7.1. A priori estimates for Sλ. In order to prove Theorem 2.3 we will introduce the

following notation when λ ∈ (0,∞):

Sλ(T ) := sup
0≤t≤T

eλtEσ
1 (t) +

∫ T

0

eλtDσ
1 (t) dt. (7.1)

We now develop the main a priori estimates with surface tension.

Theorem 7.1. There exists δ0, γ0 ∈ (0, 1), depending on σ > 0, such that if S0(T ) ≤ δ0
and

A
(
ω2 + ω3

)
≤ γ0, (7.2)

Licensed to Carnegie Mellon Univ. Prepared on Tue Jun 29 13:31:32 EDT 2021 for download from IP 128.2.149.108.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



FARADAY STABILITY 583

then there exists λ = λ(σ) > 0 such that

Sλ(T ) � Eσ
1 (0). (7.3)

Proof. We assume that δ0 is small enough that Propositions 4.1 and 4.5 hold.

We use Theorems 5.4, 5.5, and 4.3, as well as addition and subtraction of H, to bound

Eσ
1 �

(
Eσ
1 +H1

)
+ (Eσ

1 )
2 + (Eσ

1 )
3/2 and Dσ

1 � D1 + E0
1Dσ

1 . (7.4)

By further restricting δ0 we can use an absorbing argument to conclude

Eσ
1 +H1 ≤ Eσ

1 � Eσ
1 +H1 and D1 ≤ Dσ

1 � D1. (7.5)

We now employ Theorem 5.3 with n = 1 (recalling that we now allow universal

constants to depend on σ) and (7.5) to get under appropriate smallness assumptions

that
d

dt

(
Eσ
1 +H1

)
+D1 �

(
Aω2 +Aω3

)
D1 +

(√
Eσ
1

)
D1. (7.6)

We may then further restrict the size of δ0 and γ0 in order to absorb terms on the right

onto the left. Note that this absorption requires γ0, δ0 to depend on σ. This yields the

inequality
d

dt

(
Eσ
1 +H1

)
+

1

2
D1 ≤ 0. (7.7)

We defined Eσ
1 and Dσ

1 such that Eσ
1 � σ−1Dσ

1 , so we can apply (7.5) to get that there

exists some C > 0 and λ > 0 depending on σ such that

1

2
D1 ≥ 2

4C)
Dσ

1 ≥ 1

4C
Dσ

1 +
σ

4C
Eσ
1

≥ 1

4C
Dσ

1 + λ
(
Eσ
1 +H1

)
.

(7.8)

Plugging this into (7.7) gives

d

dt

(
Eσ
1 +H1

)
+ λ

(
Eσ
1 +H1

)
+

1

4C
Dσ

1 ≤ 0. (7.9)

We integrate this to get

eλt
(
Eσ
1 (t) +H1(t)

)
+

1

4C

∫ t

0

eλrDσ
1 (r) dr ≤

(
Eσ
1 (0) +H1(0)

)
. (7.10)

Now, appealing to (7.5), we deduce

sup
0≤t≤T

eλtEσ
1 (t) +

∫ T

0

eλtDσ
1 (t)dt � Eσ

1 (0). (7.11)

�
7.2. Proof of main result.

Proof of Theorem 2.3. We combine the local existence result in Theorem 2.1 with

the a priori estimates in Theorem 7.1 and a continuation argument, as in the proof of

Theorem 2.4. For full details we refer to the proofs of Theorem 1.3 of [10] or Theorem

2.3 of [13]. �
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Appendix A. Elliptic estimates. Here we record basic elliptic estimates.

A.1. Capillary operator. Consider the problem

−σΔψ + gψ = f on T
n (A.1)

for g, σ > 0. If f ∈ H−1(Tn) = (H1(Tn))∗, then a weak solution is readily found with a

standard application of Riesz’s representation theorem: there exists a unique ψ ∈ H1(Tn)

such that ∫
Tn

gψϕ+ σ∇ψ · ∇ϕ = 〈f, ϕ〉 . (A.2)

Theorem A.1. Let s ≥ 0 and suppose that f ∈ Hs(Tn) ⊆ H−1(Tn). Let ψ ∈ H1(Tn)

be the weak solution to (A.1). Then ψ ∈ Hs+1(Tn) and we have the estimates

‖ψ‖s ≤ 1
g ‖f‖s and

∥∥D2+sψ
∥∥
0

� 1
σ ‖Dsf‖0 , (A.3)

where D =
√
−Δ. Moreover, if

∫
Tn ψ = 0, then

‖ψ‖s+2 � 1
σ ‖Dsf‖0 . (A.4)

Proof. See, for instance, Theorem A.1 of [26]. �
A.2. Stokes operator with Dirichlet conditions. Consider the problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δu+∇p = f1 in Ω,

div u = f2 in Ω,

u = f3 on Σ,

u = 0 on Σb.

(A.5)

The estimates for solutions are recorded in the following result, the proof of which is

standard and thus omitted.

Theorem A.2. Let m ∈ N. If f1 ∈ Hm(Ω), f2 ∈ Hm+1(Ω), and f3 ∈ Hm+3/2(Σ), the

solution pair (u, p) to (A.5) satisfies u ∈ Hm+2(Ω), ∇p ∈ Hm+1(Ω), and we have the

estimate

‖u‖m+2 + ‖∇p‖m �
∥∥f1

∥∥
m
+
∥∥f2

∥∥
m+2

+ ‖f‖m+3/2 . (A.6)

A.3. Stokes operator with stress conditions. Consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu+∇p = f1 in Ω,

div u = f2 in Ω,

u = 0 on Σb,

(pI − Du)e3 = f3 on Σ.

(A.7)

The estimates for solutions needed are recorded in the following result, the proof of

which is standard and thus omitted.

Theorem A.3. Let m ∈ N. If f1 ∈ Hm(Ω), f2 ∈ Hm+1(Ω), and f3 ∈ Hm+1/2(Σ), then

the solution pair (u, p) to (A.7) satisfies u ∈ Hm+2(Ω), p ∈ Hm+1(Ω), and we have the

estimate

‖u‖m+2 + ‖p‖m+1 �
∥∥f1

∥∥
m
+
∥∥f2

∥∥
m+1

+
∥∥f3

∥∥
m+1/2

. (A.8)
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Appendix B. Analytic tools.

B.1. Product estimates. In this section we record the necessary product estimates on

Sobolev norms that we will need to get the correct bounds.

Theorem B.1. The following hold on Σ and on Ω:

(1) Let 0 ≤ r ≤ s1 ≤ s2 be such that s1 > n/2. Let f ∈ Hs1 , g ∈ Hs2 . Then

fg ∈ Hr and

‖fg‖Hr � ‖f‖Hs1 ‖g‖Hs2 . (B.1)

(2) Let 0 ≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ Hs1 , g ∈ Hs2 . Then

fg ∈ Hr and

‖fg‖Hr � ‖f‖Hs1 ‖g‖Hs2 . (B.2)

(3) Let 0 ≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ H−r(Σ), g ∈ Hs2(Σ).

Then fg ∈ H−s1(Σ) and

‖fg‖−s1
� ‖f‖−r ‖g‖s2 . (B.3)

Proof. See for example Lemma A.1 of [10]. �
B.2. Poisson extension. Suppose that Σ = (L1T) × (L2T). We define the Poisson

integral in Ω− = Σ× (−∞, 0) by

Pf(x) :=
∑

n∈(L−1
1 Z)×(L−1

2 Z)

e2πin·x
′
e2π|n|x3 f̂(n), (B.4)

where for n ∈ (L−1
1 Z)× (L−1

2 Z) we have written

f̂(n) :=

∫
Σ

f(x′)
e−2πin·x′

L1L2
dx′. (B.5)

It is well known that P : Hs(Σ) → Hs+1/2(Ω−) is a bounded linear operator for s > 0.

We now show that derivatives of Pf can be estimated in the smaller domain Ω.

Lemma B.2. Let Pf be the Poisson integral of a function f that is either in Ḣq(Σ) or

Ḣq−1/2(Σ) for q ∈ N. Then

‖∇qPf‖20 � ‖f‖2Ḣq−1/2(Σ) and ‖∇qPf‖20 � ‖f‖2Ḣq(Σ) . (B.6)

Proof. See Lemma A.3 in [10]. �
We will also need L∞ estimates.

Lemma B.3. Let Pf be the Poisson integral of a function f that is in Ḣq+s(Σ) for q ≥ 1

an integer and s > 1. Then

‖∇qPf‖2L∞ � ‖f‖2Ḣq+s . (B.7)

The same estimate holds for q = 0 if f satisfies
∫
Σ
f = 0.

Proof. See Lemma A.4 in [10]. �
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