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The Rothman-Keller color-gradient (CG) lattice Boltzmann method is a popular method to simulate two-phase
flow because of its ability to deal with fluids with large viscosity contrasts and a wide range of interfacial
tensions. Two fluids are labeled red and blue, and the gradient in the color difference is used to compute the
effect of interfacial tension. It is well known that finite-difference errors in the color-gradient calculation lead to
anisotropy of interfacial tension and errors such as spurious currents. Here, we investigate the accuracy of the CG
calculation for interfaces between fluids with several radii of curvature and find that the standard CG calculations
lead to significant inaccuracy. Specifically, we observe significant anisotropy of the color gradient of order 7%
for high curvature of an interface such as when a pinchout occurs. We derive a second order accurate color
gradient and find that the diagonal nearest neighbors can be weighted differently than in the usual color-gradient
calculation such that anisotropy is minimized to a fraction of a percent. The optimal weights that minimize
anisotropy for the smallest radius of curvature interface are found to be w = (0.298, 0.284, 0.275) for diagonal
nearest neighbors for the cases of the interface smoothing parameter β = (0.5, 0.7, 0.99), somewhat higher than
the w = 0.25 value derived by Leclaire et al. [Leclaire, Reggio, and Trepanier, Computers and Fluids 48, 98
(2011)] based on obtaining isotropic errors to second order. We find that use of these optimal w values yields
over a factor of 10 decrease in anisotropy and over a factor of 30 decrease in mean anisotropy relative to using
the standard w = 1 value. And we find a factor of about 2 decrease in the anisotropic error and up to factor 15
decrease in mean anisotropic error relative to the choice of w = 0.25 for small radius of curvature interfaces.
The improved CG calculations will allow the method to be more reliably applied to studies of phenomenology
and pore scale processes such as viscous and capillary fingering, and droplet formation where surface-tension
isotropy of narrow fingers and small droplets plays a crucial role in correctly capturing phenomenology. We
present an example illustrating how different phenomena can be captured using the improved color-gradient
method. Namely, we present simulations of a wetting fluid invading a fluid filled pipe where the viscosity ratio
of fluids is unity in which droplets form at the transition to fingering using the improved CG calculations that
are not captured using the standard CG calculations. We present an explanation of why this is so which relates
to anisotropy of the surface tension, which inhibits the pinchouts needed to form droplets.

DOI: 10.1103/PhysRevE.103.033302

I. INTRODUCTION

The lattice Boltzmann method (LBM) allows fluid dynam-
ics to be modeled by simulating the movement and collision
of particle distributions on a discrete lattice in two or three
dimensions. Lattice Boltzmann methods have their origins
in lattice gas automata (LGA) in which particles move and
collide on a discrete lattice representing a simplified discrete
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version of molecules moving and colliding in a gas. LGA were
first proven by Frisch et al. [1] to yield the Navier-Stokes
equations in the macroscopic limit. These initial LGA models
were unconditionally stable and conserved mass and momen-
tum perfectly. However, they were computationally expensive
with averaging needed over space to obtain the macroscopic
equations and, furthermore, costly calculations were required
to calculate the collision term. Since the initial LGA mod-
els, the method has been extended to model distributions of
particles moving and colliding on a lattice. In these lattice
Boltzmann methods, one is solving the classical Boltzmann
equation on a discrete lattice. Since an efficient method via
relaxation was developed to calculate the collision term due
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to Bhatnagar, Gross, and Krook [2] (the BGK method [3,4]),
research and applications of the lattice Boltzmann method
have undergone an explosion [5–8]. Numerous studies have
been conducted of thermal convection [9–15], and a large
number of multiphase LBMs have been developed including
the Shan and Chen multicomponent multiphase LBM [16],
the Rothman and Keller (RK) color-gradient multiphase LBM
[17], free-energy based multiphase LBMs [18]), Inamuro’s
multiphase LBM [19], and the He-Chen-Zhang multiphase
LBM [9]). Multiphase LBMs remain a highly active research
field (see Huang et al. [5] for a summary of the main multi-
phase LBMs and their application).

The RK color-gradient multiphase LBM has the advantage
over the other most widely used two-phase LBM—the Shan
and Chen LBM [16]—that it allows much higher viscosity
ratios to be simulated ranging from 0.01 to 100 using the
single relaxation time BGK method, and at least 0.002 to
500 using the more stable multiple relaxation time LBM
[20]. And provided the color gradient is computed with a
more isotropic high order color-gradient operator [21], the
RK LBM can also simulate high density ratios up to O(103).
The RK color-gradient multiphase LBM has successfully been
applied to simulate viscous fingering, capillary fingering, and
stable displacement behavior [22], and has been applied to
the study of imbibition and drainage of porous media in three
dimensions [23]. In the following, we study the accuracy of
the RK LBM and, in particular, the anisotropic error of the
color-gradient calculations.

One issue with the RK color-gradient method is that the
numerical error in the color-gradient calculations leads to
anisotropy of the interfacial tension and, consequently, spuri-
ous currents [6,7] and potentially erroneous results, especially
when the interface has a small radius of curvature and, hence,
the highest error. This can be mitigated by use of high order
finite-difference calculations to compute the color gradient
such as developed by Leclaire et al. [21,24] and applied by
Leclaire et al. [23] to study imbibition and drainage in three-
dimensional porous media. In this approach, a fourth or higher
order distributed finite-difference operator is applied in fluid
sites where the operator was developed to achieve isotropy of
the color-gradient error to a given order. On sites adjacent to
walls, a standard forward, centered, or backward discrete gra-
dient operator is used [25]. A disadvantage of this approach is
its increased computational cost with both more calculations
and communications required to compute the gradient. A sec-
ond disadvantage is that it is only accurate to higher than sec-
ond order in the fluid sites that are not adjacent to walls where
the CG calculations are accurate only to first or second order.

An alternative approach to this high order finite-difference
based method is to remain accurate to second order and,
hence, to use only the nearest neighbors, and to change the
weights in the gradient calculation as developed by Leclaire
et al. [21]. This method leads to isotropy of the error in
the color-gradient calculations up to second order in space
using a weight of diagonal nearest neighbors of w = 0.25
relative to nearest neighbors along the Cartesian axes. With
their approach, Leclaire et al. also reduced spurious currents
by an order of magnitude and, for higher order schemes only,
removed the limitation of the standard RK model to handle
high density ratios up to O(103).

In the following, we adopt the basic idea of remaining
second order accurate and changing the weights in the color-
gradient calculation to minimize anisotropy. Staying second
order accurate means that the color-gradient calculation is
local which is desirable for pore scale modeling in complex
porous media, an important area of research. We present the
general formula for a second order accurate color-gradient
calculation which allows any weight to be placed on the
diagonal nearest neighbors in the color-gradient calculation
relative to the Cartesian nearest neighbors. Rather than adopt-
ing the relative weight derived by Leclaire et al. of w = 0.25
for diagonals which obtains isotropic errors to second order,
we study the numerical error in the color gradient of three
droplets with different radii of curvature over the complete
range of relative weights. The benefit of focusing on the actual
error for specific droplet radii of curvature is that it allows
one to gain a more detailed understanding of the anisotropic
error in the color gradient, and to minimize anisotropic error
of the color gradient for small radius of curvature droplets in
the LBM, which have the greatest effect on transitions such as
droplet formation.

II. NUMERICAL SIMULATION METHODOLOGY

In this paper, we apply the RK multiphase lattice Boltz-
mann model which was originally derived for a lattice gas
automaton [26], and later extended to the LBM by Gun-
tensen et al. [27] and Latva-Kokko and Rothman [17]. The
color-gradient RK lattice Boltzmann model involves modeling
particle distributions denoted f kα of two fluids (red and blue for
k = 1 and 2) moving and colliding on a discrete lattice. The
total number density of the two phase fluid is given by

fα (x, t ) =
∑
k

f kα (x, t ),

where the subscript α specifies the direction in the lattice, and
the superscript k = 1, 2 denotes fluid 1 and fluid 2.

There are three steps in this method, which are (i) stream-
ing, (ii) collision, and (iii) “recoloring.” The streaming step is
the same as the standard lattice Boltzmann method streaming
step. Namely, in one time step, the particle distributions can
move by one lattice spacing along the orthogonal axes, or
along diagonals. We use the standard LBM notation DnQm for
a simulation in D = n dimensions, and with Q = m velocities
on the discrete lattice. In the following, we restrict ourselves
to two dimensions and use the D2Q9 lattice Boltzmann lattice
arrangement shown in Fig. 1. In this lattice, we define f kα (x, t )
as the number density of particles of fluid k moving in the α

direction where the Q = 9 velocities are given by

cα = [(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1),

(1, 1), (−1,−1), (1,−1), (−1, 1)]�x/�t .

This choice means that c0 is the zero velocity vector and
therefore represents stationary particles, and cα = −cα+1 for
α = (1, 3, 5, 7) are the velocities in the eight directions shown
in Fig. 1. The lattice is unitary so the lattice spacing and time
step are �x = �t = 1. The streaming step is specified as

f kα (x + cα�t, t + �t ) = f kα (x, t ). (1)
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FIG. 1. The D2Q9 lattice.

The collision step for the two-phase LBM involves two
terms and can be written as [17]

f k∗α (x, t ) = f k (x, t ) + (
� f kα

)1 + (
� f kα

)2
, (2)

where the asterisk superscript denotes the postcollision distri-
butions, and (� f kα )1 and (� f kα )2 are the two collision terms
which represent how the particle distributions change during
each time step due to collision [(� f kα )1] while encouraging
color segregation [(� f kα )2]. The first collision term is nearly
the same as the standard collision term of the LBM and is
given by

(
� f kα

)1 = 1

τ

[
f k,eq
α (x, t ) − f kα (x, t )

]
(3)

where τ is the relaxation time and f k,eq
α (x, t ) is the equilibrium

distribution which is given by

f k,eq
α = ρk

(
Ck

α + wα

[
cα · u
c2
s

+ (cα · u)2

2c4
s

− u2

2c2
s

])

= ρk

(
Ck

α + wα

[
3(cα · u) + 9

2
(cα · u)2 − 3

2
u2

])
(4)

where cs = �x/(
√

3�t ) = 1/
√

3 is the speed of sound in the
lattice. The above equilibrium distribution is the same as the
standard equilibrium distribution except for the rest factor Cα

instead of wα . The coefficients Cα are given by [28]

Cα =
⎧⎨
⎩

αk α = 0
1−αk

5 α = 1, 2, 3, 4
1−αk

20 α = 5, 6, 7, 8
, (5)

where αk is a parameter that enables the density of the two
fluids to be adjusted [28,29] and is given by

ρ1

ρ2
= 1 − α2

1 − α1
. (6)

The other weights are the same as the standard LBM.
Namely, w0 = 4/9, wα = 1/9 for α = 1, 2, 3, 4 and wα =
1/36 for α = 5, 6, 7, 8. The macroscopic density of the two

fluids is given by

ρk =
∑

α

f kα , (7)

the total density of the fluid is given by

ρ =
∑
k

ρk, (8)

and the momentum of the fluid is given by

ρu =
∑
k

∑
α

f kα cα. (9)

The relaxation time τk relates to the kinematic viscosity νk of
each fluid as follows:

νk = c2
s (τk − 0.5)�t . (10)

At the interface between fluids, the relaxation time changes
abruptly, which cannot be handled well numerically. There-
fore, in order for the relaxation parameter to change smoothly
at the interface, it is interpolated as follows [28]:

τ (x) =

⎧⎪⎨
⎪⎩

τ1 ψ > δ

g1(ψ ) 0 < ψ � δ

g2(ψ ) −δ � ψ � 0
τ2 ψ < −δ

, (11)

where ψ is given by

ψ (x) = ρ1(x) − ρ2(x)

ρ1(x) + ρ2(x)
, (12)

and g1(ψ ) = s1 + s2ψ + s3ψ
2, g2(ψ ) = t1 + t2ψ + t3ψ2,

s1 = t1 = 2τ1τ2/(τ1 + τ2), s2 = 2(τ1 − s1)/δ, s3 = −s2/(2δ),
t2 = 2(t1 − τ2)/δ, and t3 = t2/(2δ). In these equations, the
positive free parameter δ affects interface thickness and is
usually set as δ = 0.98.

The second collision term is more complex and there are
several forms in the literature. Here, we use the term as written
in Reis and Phillips [29]:(

� f kα
)2 = A|F|{wα[cos(λα )|cα|]2 − Bα}, (13)

where F(x, t ) is the color gradient calculated by Latva-Kokko
and Rothman [17],

F(x, t ) =
∑

α

cα[ρ1(x + cα�t, t ) − ρ2(x + cα�t, t )], (14)

λα is the angle between F(x, t ) and cα , and A is a parameter
that controls interfacial tension. In the above equation, the
cosine term is given by

cos(λα ) = cα · F
|cα||F| , (15)

and B0 = −4/27, Bα = 2/27 for α = 1, 2, 3, 4 and Bα =
5/108 for α = 5, 6, 7, 8. Reis and Phillips [29] have shown
that the above parameters yield the correct term for interfacial
tension σ in the Navier-Stokes equations, and Huang et al.
[22] have shown that the interfacial tension σ is approximately
proportional to A.
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The final step in the lattice Boltzmann method for two
phase flow is a so-called recoloring step, which achieves sep-
aration of the two fluids. This is achieved as follows [17]:

f 1
α = ρ1

ρ
f ∗
α + β

ρ1ρ2

ρ2
f eq
α (ρ,u = 0) cos(λα ), (16)

and

f 2
α = ρ2

ρ
f ∗
α − β

ρ1ρ2

ρ2
f eq
α (ρ,u = 0) cos(λα ), (17)

where f ∗
α = ∑

k f k∗α , and A and β ∈ (0, 1] are adjustable
parameters that affect the interfacial properties. Namely, β

affects the interfacial thickness, and A and τ1 and τ2 affect the
interfacial tension. In the above recoloring equation, the equi-
librium distribution at zero velocity is given by the standard
equilibrium distribution, namely,

f eq
α (ρ,u = 0) = wαρ.

The pressure in the flow field is obtained from the equation of
state and can be calculated as

p = c2
sρ.

In the lattice Boltzmann method, one achieves no-slip bound-
ary conditions by “bounce-back” boundary conditions at the
solid interface. Namely, particle number densities bounce
back in the direction they came from at fluid-solid interfaces.
The RK model for two phase flow allows any wetting contact
angle θw to be specified by setting the densities of the two
fluids in the solid region [17] through

θw = cos−1

(
ρw1 − ρw2

ρi

)
, (18)

where ρw1 is the density of fluid 1 in the solid regions, ρw2 is
the density of fluid 2 in the solid regions, and ρi is the initial
density of the majority component =ρ2. Namely, we set

ρw1 = ρi
1 + cos(θw )

2
, (19)

and

ρw2 = ρi
1 − cos(θw )

2
. (20)

III. COLOR-GRADIENT CALCULATIONS

The standard color-gradient calculations for F(x, t ) speci-
fied by Latva-Kokko and Rothman [17] are given by Eq. (14)

and repeated here:

F(x, t ) =
∑

α

cα[ρ1(x + cα�t, t ) − ρ2(x + cα�t, t )]

=
∑

α

cαD(x + cα�t, t ). (21)

Hence, the color gradient is computed using the color
difference D = ρ1 − ρ2 at the eight surrounding nodes from
the lattice site. In the following, we make use of Taylor’s
expansions to derive a general formula for the color-gradient
calculations that is accurate to second order.

Taylor series based calculation of the color gradient

Taylor’s series are widely used to calculate finite-difference
derivatives of variables for numerical solutions to partial
differential equations. In this method, a derivative is ap-
proximated as the sum of the function at adjacent points
multiplied by a set of coefficients, and the coefficients are
obtained by solving algebraic equations such that the ap-
proximation converges to the derivative to a given order in
�x. For example, ∂ f /∂x ≈ c1 f (x + �x) + c2 f (x − �x) =
[ f (x + �x) − f (x − �x)]/(2�x), i.e., c1 = 1/(2�x) = −c2,
is a typical centered finite difference which converges at a rate
of O(�x2). In the following, we derive the finite-difference
formula for the color-gradient calculation using a weighted
sum of the function at adjacent points. In the following,
we denote the color difference as D = ρ1 − ρ2, and follow
the standard finite-difference approach to calculate the finite-
difference approximation. Specifically, if we wish to derive
the finite-difference approximation for a derivative using only
the values of the function at the nearest neighbors of a given
lattice site, we can write

∂D

∂x
≈

∑
α

cαD(x + �xα ), (22)

where �xα = cα�t is the vector pointing to the adjacent
lattice site in the α direction. It is important to note that in the
above, we use boldface cα to denote the particle velocity in the
α direction, whereas italic cα represents the scalar coefficients
of the finite-difference formula. In Eq. (22), which is appli-
cable for the two-dimensional (2D) LBM, we are computing
a weighted sum of the values of the color difference D at
the eight adjacent lattice sites in the orthogonal and diagonal
directions. Note that we include in the sum α = 0 for com-
pleteness, although as we will see, the value of D at the central
point plays no role (i.e., we will find that c0 = 0).

Expanding the values of D as Taylor’s series about x, and
for a square lattice with �x = �z, we obtain

∂D

∂x
≈

∑
α

cαD(x + �xα, z + �zα )

= c0D(x, z) + c1D(x + �x, z) + c2D(x − �x, z) + c3D(x, z + �z) + c4D(x, z − �z)

+ c5D(x + �x, z + �z) + c6D(x − �x, z − �z) + c7D(x + �x, z − �z) + c8D(x − �x, z + �z)

= c0D(x, z) + c1

(
D(x, z) + �x

∂D

∂x
+ �x2

2!

∂2D

∂x2
+ O(�x3)

)
+ c2

(
D(x, z) − �x

∂D

∂x
+ �x2

2!

∂2D

∂x2
+ O(�x3)

)
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+ c3

(
D(x, z) + �z

∂D

∂z
+ �z2

2!

∂2D

∂z2
+ O(�x3)

)
+ c4

(
D(x, z) − �z

∂D

∂z
+ �z2

2!

∂2D

∂z2
+ O(�x3)

)

+ c5

(
D(x, z) + �x

∂D

∂x
+ �x2

2!

∂2D

∂x2
+ �z

∂D

∂z
+ �z2

2!

∂2D

∂z2
+ 2

�x�z

2!

∂2D

∂x∂z
+ O(�x3)

)

+ c6

(
D(x, z) − �x

∂D

∂x
+ �x2

2!

∂2D

∂x2
− �z

∂D

∂z
+ �z2

2!

∂2D

∂z2
+ 2

�x�z

2!

∂2D

∂x∂z
+ O(�x3)

)

+ c7

(
D(x, z) + �x

∂D

∂x
+ �x2

2!

∂2D

∂x2
− �z

∂D

∂z
+ �z2

2!

∂2D

∂z2
− 2

�x�z

2!

∂2D

∂x∂z
+ O(�x3)

)

+ c8

(
D(x, z) − �x

∂D

∂x
+ �x2

2!

∂2D

∂x2
+ �z

∂D

∂z
+ �z2

2!

∂2D

∂z2
− 2

�x�z

2!

∂2D

∂x∂z
+ O(�x3)

)

= C(0)D(x, z) +C(1)
x �x

∂D

∂x
+C(1)

z �z
∂D

∂z
+C(2)

xx �x2 ∂2D

∂x2
+C(2)

zz �z2 ∂2D

∂z2
+C(2)

xz �x�z
∂2D

∂x∂z
+ O(�x3), (23)

where coefficients C(n)
i are coefficients of ci grouped such

that they are applied to the order (n) derivative over the i
axis (axes). For the above approximation to yield the partial
derivative ∂D/∂x, we must solve for cα such that C(0) = 0,
C(1)
x = 1/�x,C(1)

z = 0,C(2)
xx = 0,C(2)

zz = 0, andC(2)
xz = 0. This

leads to a set of six equations with nine unknowns. However,
it is well known in finite differences that use of a function
value at the central point x to compute a derivative centered
on x will lead to larger errors of order O(�x) whereas use of
centered differences leads to a scheme that is accurate to order
O(�x2). As such, we can immediately set

c0 = c3 = c4 = 0, (24)

which leaves a total of five equations with six unknowns
which are C(1)

x = 1/�x or

c1 − c2 + c5 − c6 + c7 − c8 = 1

�x
, (25)

which ensures the approximation yields the first derivative
with respect to x, C(0) = 0 or

c1 + c2 + c5 + c6 + c7 + c8 = 0, (26)

which annuls the D(x, z) terms and the �x2 terms,C(1)
z = 0 or

c5 − c6 − c7 + c8 = 0, (27)

which annuls the �z terms, C(2)
zz = 0 or

c5 + c6 + c7 + c8 = 0, (28)

which annuls the �z2 terms, and C(2)
xz = 0 or

c5 + c6 − c7 − c8 = 0, (29)

which annuls the �x�z terms. Subtracting Eq. (28) from
Eq. (26) yields

c1 = −c2. (30)

Adding Eqs. (28) and (29) yields

c6 = −c5. (31)

Adding Eqs. (27) and (29) yields

c7 = c5. (32)

Finally, inserting the results of Eq. (31) and (32) into Eq. (28)
yields

c8 = −c5. (33)

In other words, coefficients along the Cartesian axes are
related through c1 = −c2, and the coefficients along the diag-
onals are related through c5 = −c6 = c7 = −c8. Substituting
the coefficients along the Cartesian x axis denoted cc = c1 =
−c2 and diagonals denoted cd = c5 = c7 = −c6 = −c8 into
Eq. (25), we obtain

2cc + 4cd = 1

�x
. (34)

The finite-difference approximation obtained by comput-
ing the color gradient with Eq. (22) is accurate to second
order in �x since the error is equal to that of the coefficients
cc ∝ 1/�x and cd ∝ 1/�x multiplied by that of the errors in
Eq. (23) of order O(�x3), i.e., the error in the color-gradient
calculation is of order �xO(�x3) = O(�x2). A similar devel-
opment can be used to calculate the vertical derivative of the
color difference field D. Making use of our definition of the
lattice vectors cα , we can write the color-gradient calculation
in a form comparable to the standard form of

F =
∑

α

bαcα[ρ1(x + cα�t, t ) − ρ2(x + cα�t, t )]

=
∑

α

bαcαD(x + cα�t, t ), (35)

where the bα are the coefficients with b1 = b2 = cc =
c1 = −c2 and b5 = b6 = b7 = b8 = cd = c5 = c7 = −c6 =
−c8 that obey Eq. (34). Hence, we can see that the standard
color-gradient calculation assumes cc = cd = 1 (with �x =
1) which means that it computes a second order accurate
finite-difference derivative of the color difference field D =
ρ1 − ρ2 scaled by a factor of 6. The factor of 6 is ignored
in the standard color-gradient formula given by Eq. (14) as
this scale factor is effectively removed by the interfacial ten-
sion parameter A which is determined for a given interfacial
tension through numerical experiments and application of the
Young-Laplace formula. From the development above, one
may choose to weight the diagonal nearest neighbors relative
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FIG. 2. Snapshots of color difference D = (ρr − ρb) for small droplets of red fluid with three different radii of 2, 4, and 8 from left to right.

to the Cartesian nearest neighbors by any factor w so we can
write

cd = wcc, (36)

and once a choice of the diagonal weighting w is made, one
can apply the above formulas to derive all of the coefficients
bα as will be further detailed in the next section. Hence,
the important feature of the above derivation is to show that
the standard color-gradient formula is not a unique way to
calculate the color gradient to second order accuracy. One
can choose to give no weighting to the function values along
the diagonals and still obtain a second order accurate scheme
by choosing cd = 0 (i.e., w = 0). This choice is equal to a
standard finite-difference approximation taking the finite dif-
ferences along Cartesian axes. Or one may choose to weight
the diagonal nearest neighbors equally as the Cartesian nearest
neighbors (i.e., cc = cd or w = 1) which is equivalent to the
standard color-gradient calculation. Or one may choose an
intermediate value and give less weight to the diagonals in
the derivative calculation such as by setting cd = cc/4. Once
the relative weight of the nearest neighbors along diagonals
compared to nearest neighbors along the Cartesian axes is
selected, one can calculate the values of cc and cd using
Eq. (34). Leclaire et al. [21] derived a value of w = 0.25
in order to achieve isotropy of the finite-difference errors to
second order, thereby obtaining a more isotropic color gra-
dient and, consequently, more isotropic surface tension than
is achieved using the standard color-gradient calculation of
Eq. (14) which corresponds to use of w = 1 in Eq. (36). In
the following, we will study in detail the anisotropic errors in
the color gradient for small radius of curvature interfaces over
the full range of possible weights w ∈ [0, 1] which spans the
original color-gradient calculation (w = 1), through Leclaire
et al.’s value (w = 0.25), through to standard Cartesian finite
differences (w = 0).

IV. ACCURACY AND ISOTROPY OF THE PROPOSED
COLOR-GRADIENT CALCULATION

In the previous section, we have presented a general for-
mula for the color-gradient calculation that is accurate to

second order given by

F =
∑

α

bαcα[ρ1(x + cα�t, t ) − ρ2(x + cα�t, t )]

=
∑

α

bαcαD(x + cα�t, t ), (37)

where bα are coefficients given by

bα =
{

1
W α = 1, 2, 3, 4
w
W α = 5, 6, 7, 8

, (38)

and the scale factor W is given by

W = 2 + 4w, (39)

and the free parameter w is chosen such that

w ∈ [0, 1], (40)

which defines how much weight is put onto the nearest neigh-
bors along the diagonals in the finite-difference calculation of
F relative to the nearest neighbors along the Cartesian axes.
For example, a value of w = 1 means that the nearest neigh-
bors along diagonals have equal weight relative to nearest
neighbors along the Cartesian axes, which corresponds to the
standard (original) way in which the color gradient F is calcu-
lated as per Eq. (14) as defined by Latva-Kokko and Rothman
[17]. Note that the factor W scales the coefficients bα such
that the calculation of F yields the color gradient, whereas the
standard color-gradient calculation yields six times the actual
color gradient.

Like any finite-difference calculation, the accuracy of the
color-gradient calculation has an accuracy that depends on (1)
the smoothness of the function the derivative of which is being
calculated which relates to the RK LBM interface thickness
parameter β and (2) the radius of curvature of the interface.
In the following, we set the interface thickness parameter to
β = 0.5 which is the value that is typically used in the RK
LBM, and study the accuracy of the color-gradient calcu-
lation for three different radii of curvature of the interface.
It is expected that as the radius of a droplet decreases, the
accuracy of the color-gradient calculation will decrease. A
square region of blue fluid was initialized containing a circular
region of the red fluid within specified radii of r0 = 2, 4, and
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FIG. 3. Plots of color difference D(x, z0) = (ρr − ρb)(x, z0) and cubic spline fits of the droplets with three different radii of r0 = 2, 4, and
8 from left to right.

8, and LBM simulations were performed until the fluid droplet
and interface stabilized. Figure 2 shows the color difference
D = (ρr − ρb) after the simulations stabilized. To study the
accuracy of the finite-difference calculation of the color gra-
dient, we fit the color difference D = (ρr − ρb) using cubic
splines for the three cases being studied with r0 = 2, 4, and 8.
Figure 3 shows plots of the color difference in the LBM taken
through the center of the droplet at z = z0, along with the
cubic spline fits of the color difference. These spline fits are
used to calculate a radially symmetric color difference field
for each of the three cases.

In the following, we compute the color gradient numer-
ically from the radially symmetric spline fits of the color
difference field for the three different radii of droplets r0 =
2, 4, and 8 using three different values of w in Eqs. (37)–(39).
Specifically, we use values of w = 1 which yields the color
gradient calculated in the standard way, w = 0 which corre-
sponds to using finite differences along the Cartesian axes,
and an intermediate value of w = 0.25, the value derived by
Leclaire et al. that yields isotropic errors to second order [21].
The anisotropic errors in the three numerical color-gradient
calculations are then compared and analyzed.

Figure 4 shows the normalized color gradient defined as

F (w) = |F(w)|
max[|F(w)|] , (41)

for the three different droplet radii computed numerically
using Eqs. (37)–(39). One observes that for the smallest radius
droplet (r0 = 2), the color gradient computed with w = 1 is
anisotropic with higher values along the diagonals compared
to along the Cartesian axis directions. In contrast, for the case
with w = 0, the color gradient is also anisotropic but has
higher values along the Cartesian axes. For the intermediate
case of w = 0.25, the plot of the color gradient appears to be
almost isotropic. For the case of r0 = 4, a similar anisotropic
effect can be seen but it is significantly reduced, and for the
case of r0 = 8, the plots appear to be isotropic.

To enable the anisotropy in the color gradient to be bet-
ter visualized, we define the anisotropic error E (w) as the
difference between the normalized color gradient F (w) and
an isotropic color-gradient field. Namely, we define r as the
distance between point (x, z) and the center of a droplet
r =

√
(x − x0)2 + (z − z0)2, and θ as the angle so (x − x0) =

r cos(θ ) and (z − z0) = r sin(θ ) where the droplet is centered
at (x0, z0). We define the anisotropic error relative to the color

gradient at angle θ = 0 as

Er,θ (w) = Fr,θ (w) − Fr,0◦

max(Fr,0◦ )
. (42)

Hence, this color-gradient error will highlight any
anisotropy in the numerical color-gradient field. A value of
E (w) > 0 means that the color gradient at that angle is higher
than along the Cartesian axes, and a value of E (w) < 0
means that the color gradient at that angle is lower than
the color gradient along Cartesian axes. Figure 5 shows the
anisotropic error plotted in the space domain for the three
droplet sizes, and for three values of the free parameter w.
These plots indicate that using the standard color-gradient
calculation (w = 1), the maximum anisotropic error is signif-
icant with around 7% higher color-gradient values along the
diagonals for the smallest radius example (r0 = 2). Similarly,
if one uses Cartesian finite differences to calculate the color
gradient (w = 0), the maximum anisotropic error is also sig-
nificant with over 7% lower color-gradient values along the
diagonals (i.e., higher color gradient along Cartesian axes).
Again, the color gradient calculated using the intermediate
value of w = 0.25 had much lower anisotropy, being only of
order −1.4%.

To further study how the parameter w impacts on the
anisotropy of the numerical color gradient, we compute the
maximum anisotropy for a range of w values ranging from
w = 1 down to w = 0 for each of the three droplet radii
(r0 = 2, 4, and 8). Figure 6 shows the anisotropy as a function
of w where maximum anisotropy is defined as

A = anisotropy = sign[Er∗,45◦ (w) − Er∗,0◦ (w)]

× max
r

|Er,45◦ (w) − Er,0◦ (w)|, (43)

where r∗ is the radius where the highest anisotropy is found.
Figure 6 shows the maximum anisotropy as a function of w for
the three different droplet radii r0. These calculations indicate
that for the case of r0 = 2, the anisotropy is minimized at a
value of w = 0.298 and at this w value, the anisotropy is only
−0.66%. At this value of w, the anisotropy for the cases of
r0 = 4 and 8 is 0.24 and 0.22%. The optimal value of w for
the case of r0 = 4 is w = 0.28 with a maximum anisotropy of
0.16%, and the optimal w for the case of r0 = 8 is w = 0.271
with a maximal anisotropy of 0.13%. Based on these results,
we propose an optimal w value which minimizes anisotropy
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FIG. 4. Plots of the normalized color gradient calculated using Eqs. (37)–(39) for three different radii of droplets r0 and three different
values of w. From left to right: Color gradient (CG) using w = 1 (original CG calculation), calculation using w = 0.25 (diagonals weighted
down by a factor of w = 0.25), and calculation using w = 0 (CG via finite differences along coordinate axes). From top to bottom: Smallest
radius (r0 = 2), middle radius (r0 = 4), and largest radius (r0 = 8).

of

woptimal = 0.298 ∼ 0.3. (44)

Setting w = 0.298 leads to a maximum magnitude of
anisotropy of 0.66, 0.24, and 0.22%, respectively, for the
cases of r0 = 2, 4, and 8. Using the proposed optimal value
of woptimal = 0.298, the anisotropy in the numerical color
gradient is less than 0.7% for all values of r0 tested, an im-
provement of over a factor of 10 less anisotropy relative to the
standard color-gradient calculation. Note that the reason we
selected the larger value of woptimal = 0.298 which minimized
anisotropy of the r0 = 2 droplet is because we anticipate that
phenomenology such as fingering and droplet formation initi-
ates at the smallest scale and hence the lowest r0. Hence, we
wish to maximize isotropy for these small scale phenomena.
Also, the anisotropy of the larger radii droplets remains below

the anisotropy of the r0 = 2 droplet at a value of w = 0.298.
This choice of w achieves the highest accuracy at the lowest
r0 and is the best choice if the goal is for the Rothman-
Keller color-gradient lattice Boltzmann method to yield the
most realistic phenomenology at the smallest scales. Note
that the sharp jump down from 0.66 to −0.66% anisotropy
at w = 0.298 for the r0 = 2 droplet shows that for w >

0.298 the maximum anisotropy is positive (i.e., diagonals
have higher color-gradient values than along the Cartesian
axes), whereas for w < 0.298, the maximum anisotropy is
negative (i.e., diagonals have lower color gradient than along
the Cartesian axes). It is interesting to note that the maxi-
mum anisotropy for the standard color-gradient calculations
with w = 1 does not occur where the color gradient is max-
imal. Figure 7 shows the anisotropy for the smallest droplet
with r0 = 2 for cases of w = 1 (original CG formula) and
w = 0.298 (optimal w that minimizes anisotropy), and Fig. 8

033302-8



OPTIMAL SURFACE-TENSION ISOTROPY IN THE … PHYSICAL REVIEW E 103, 033302 (2021)

FIG. 5. Plots of the anisotropic error E (w) in the space domain calculated using different values of w calculated using Eq. (42). From
left to right: Error for w = 1 (original CG calculation), calculation using w = 0.25 (diagonals weighted down by a factor of w = 0.25), and
calculation using w = 0 (CG via Cartesian finite differences). From top to bottom: Smallest radius (r0 = 2), middle radius (r0 = 4), and largest
radius (r0 = 8).

shows the anisotropy at the radius of maximal anisotropy for
the smallest droplet with r0 = 2 for the cases of w = 1 and
0.298.

To illustrate the anisotropy for the optimal value of w =
0.298, we plot the anisotropic error for this value of w in
Fig. 9. These plots show that there is both positive and neg-
ative anisotropic error at the optimal value of w = 0.298 at
different radii, and that the magnitude of the maximum error
is less than about 0.6%. It is logical to assume that the positive
anisotropic error along diagonals at the higher radii will in part
cancel the effect on surface tension of the negative anisotropic
error along diagonals at lower radii, so in Fig. 10, we plot the
weighted mean anisotropic error as a function of angle for the
smallest radius droplet r0 = 2 which is defined as

Ēθ (w) =
∑

r Fr,0◦Er,θ∑
r Fr,0◦

, (45)

where the anisotropic error is weighted by the normalized
color gradient along the Cartesian axes Fr,0◦ . We also define
the maximum mean anisotropic error as the mean anisotropic
error at 45◦, so we have

Ā = mean anisotropy = Ēr,45◦ . (46)

This plot indicates that the mean anisotropic error for the opti-
mal case of w = 0.298 is around 0.12%, about 34 times lower
than the mean anisotropic error of 4.24% for the standard
color-gradient calculation with w = 1. To see the detail of
how the color-gradient error depends on the radius r, we plot
in Fig. 11 the anisotropic error at 45◦ together with the color
gradient for the two cases of w = 1 (original CG calculation)
and w = 0.298 (optimal w that minimizes anisotropy). Note
that in the plot, the color gradient is scaled by factors of s1

and s2 to enable the shape of the CG to be visualized on
the same plot as the anisotropic error. One observes that for
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FIG. 6. Plots of the maximum anisotropy vs w for three different
radii r0 of a droplet.

w = 1, the maximal anisotropic error is about 7% and occurs
at a significantly higher radius of r∗ = 2.4 than the radius of
maximal color gradient of rF = 1.65. In contrast, the maximal
anisotropic error of −0.66% for the optimal value of w occurs
at the radius of the maximum color gradient of rF = 1.65.

Figure 12 shows the set of plots of anisotropic error for the
case of w = 0.25 (the value derived by Leclaire et al. [21]) for
the smallest radius of droplet with r0 = 2 for comparison with
the same plots for the optimal value of w = 0.298 shown in
Figs. 7, 8, 10, and 11. The plots for the case of w = 0.25 have
a significantly higher anisotropic error than the plots for the
optimal case of w = 0.298. Specifically, use of the value of
w = 0.25 in the color-gradient calculations yields a maximum
anisotropic error of 1.38% compared to a maximum error of
0.66% obtained when using the optimal value of w = 0.298,
about two times larger. Furthermore, the mean anisotropic
error is significantly higher using w = 0.25 having a value of
0.37% compared to 0.12% for the case of the optimal weight
of w = 0.298, which is about three times larger. Considering
that it is logical to assume that some of the effect of the too
high color gradient at certain r will negate the effect of the too

FIG. 7. Plots of the normalized color gradient as a function of di-
rection θ at the radius of maximal color gradient rF = maxr Fr,0◦ (w)
for the original color-gradient calculation (w = 1) and the proposed
optimal value of w = 0.298 for the smallest droplet with r0 = 2.

FIG. 8. Plots of the normalized color gradient as a function of di-
rection θ at the radius of maximal anisotropy r∗ = maxr Er,45◦ − Er,0◦

for the original color-gradient calculation (w = 1) and the proposed
optimal value of w = 0.298 for the smallest droplet with r0 = 2.

low color gradient at different r, it is reasonable to conclude
that in practice, the factor improvement using the proposed
value of w = 0.298 is 2 to 3. Figure 13 shows the anisotropic
error in the space domain for the value of w = 0.25 for
comparison with the anisotropic error for the optimal case of
w = 0.298 shown in Fig. 9.

V. ANISOTROPY SUMMARY AT DIFFERENT VALUES
OF SMOOTHING PARAMETER β

So far, we have focused on analyzing the case where the
interface smoothing parameter is β = 0.5 which is widely
used in the literature. However, as the smoothing parameter
impacts the shape and sharpness of the fluid interface which
implies it will also affect the accuracy of the finite-difference
calculations, it is also interesting to compute the anisotropy
for different typical cases of β such as β = 0.7 and 0.99
[21]. Note that the viscosity ratio M = νr/νb and interfacial
tension parameter A do not significantly affect the shape of
the interface which is entirely controlled by the recoloring
step and, hence, the parameter β. To demonstrate this, we
calculated the optimal value of w denoted wopt for various A
in the range A ∈ [0.1, . . . , 10−13] with νr = νb = 0.02, and
for the case of a viscosity ratio of M = νr/νb = 0.01 with
νr = 0.002, νb = 0.2. The results are shown in Table I and
demonstrate that wopt is insensitive to A and the viscosities and
viscosity ratio. Table II contains a summary of the anisotropy
defined by Eq. (43), the weighted mean anisotropy defined in
Eq. (46), and the factor improvement in isotropy relative to the
cases of w = 1 and Leclaire’s value of w = 0.25. The table
summarizes the anisotropic error for each β = (0.5, 0.7, 0.99)
and for each radius of curvature r0 = (2, 4, 8).

From Table II, we see that for β = 0.5, the anisotropy using
the proposed optimal weight w = 0.298 for r0 = 2 droplets
is A = 0.66% which is 10.8 times lower than the anisotropy
using the standard weight of w = 1 and 2.1 times lower than
the anisotropy using Leclaire’s weight of w = 0.25. And the
mean anisotropic error is only Ā = 0.12% which is 34.2 times
lower than using the standard w value, and 3.2 times smaller
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TABLE I. Optimal w at various A and at a viscosity ratio of M = νr/νb = 0.01 showing insensitivity of wopt to A and viscosity ratio.

r0 A = 0.1 A = 0.01 A = 10−12 A = 10−13 νr = 0.002, νb = 0.2

2 0.299 0.298 0.298 0.298 0.298
4 0.282 0.280 0.279 0.279 0.282
8 0.269 0.270 0.270 0.270 0.270

than using Leclaire’s w value. For the higher radii droplets,
the factor improvement over the standard w value is also
high (≈10), but the factor improvement over the standard
Leclaire is only slight. However, one should note that in any
event, the anisotropy is much lower for the higher radii of
curvature, being A � 0.24% in both cases (i.e., 2.75 times
less than for the r0 = 2 case). As such, the anisotropic error
at the lowest radius of curvature is the dominant source of
error, and also has the most impact on fingering and pinchout
transitions. For this reason, we recommend use of the optimal
w value of w = 0.298 at r0 = 2 in Table II for the case
of β = 0.5, especially for studies of fingering and pinchout
transitions.

Similarly, from Table II, we see that for β = 0.7, the
anisotropy using the proposed optimal weight of w = 0.284
for r0 = 2 droplets is only 0.35%, which is about 18 times
lower than the anisotropy using the standard weight, and about
1.8 times lower than the anisotropy using Leclaire’s weight of
w = 0.25. And the mean anisotropic error is only Ā = 0.02%
which is 185 times smaller than using the standard weight and
about 15 times smaller than using Leclaire’s value. For the
higher radii of curvature droplets, the factors of improvement
over the standard and Leclaire cases are, respectively, over 13
and over 2. At these higher radii of curvature, the magnitude
of the anisotropy is only slightly lower than the anisotropy for
the r0 = 2 case, being less than 0.3%.

Finally, from Table II, we see that for β = 0.99, the
anisotropy using the proposed optimal weight of w = 0.275
for r0 = 2 droplets is only 0.67%, which is more than 11
times lower than the anisotropy using the standard weight of
w = 1, and is about 1.7 times lower than the anisotropy using
Leclaire’s weight of w = 0.25. Here, the mean anisotropic
error is very low at Ā ∼ 0.09% which is about 33 times less
than using the standard w value, and about 1.1 times less
than the mean anisotropic error using Leclaire’s value. At
this highest value of β = 0.99, the higher radii of curvature
cases have an anisotropic error of about 1%. At these higher

radii of curvature, the proposed weight leads to about six
times less anisotropic error than using the standard weight,
and a slight factor 1.3 improvement relative to using Leclaire’s
weight.

In summary, from Table II, at the smallest radius droplet
of r0 = 2 which is the radius that will have the dominant
effect on controlling fingering and pinchout transitions, the
proposed optimal values of w for each of β = 0.5, 0.7, and
0.99, dramatically outperform the standard color-gradient cal-
culations by a factor of around 11–18, and offer a factor of
around 2 lower anisotropy than Leclaire’s value of w = 0.25.
The mean anisotropy is also much lower using the proposed w

values than using the standard calculations, being a factor of
33–185 lower. Relative to using Leclaire’s w value, the mean
anisotropy ranges from 15 times lower for β = 0.7, to 3.2
times lower for β = 0.5, to just 1.1 times lower for the case of
β = 0.99.

For all three β values, using the recommended values
of w, namely, the optimal w at the lowest value of r0 = 2,
leads to less than 0.67% anisotropy and less than about 0.1%
average anisotropy. Specifically, for β = (0.5, 0.7, 0.99),
the anisotropy is A = (0.66%, 0.35%, 0.67%) and the
mean anisotropy is Ā = (0.12%, 0.02%, 0.085%). This
compares to anisotropy of 6–7% for the standard
value of w = 1 and about 3–4% average anisotropy.
And for Leclaire’s w = 0.25 value, the anisotropy
for the three β values is A = (1.38%, 0.62%, 1.15%)
and the mean anisotropy is Ā = (0.4%, 0.32%,

0.09%).
Based on the above and considering that it is the lowest

radii of curvature that have both the highest anisotropic er-
ror and the most significant impact on transitions such as
fingering and droplet formation, we recommend the use of
the r0 = 2 optimal w values of w = (0.298, 0.284, 0.275),
respectively, for the cases of β = (0.5, 0.7, 0.99) when using
the Rothman-Keller color-gradient LBM to model complex
pore scale processes and related transitions.

FIG. 9. Plots of the anisotropic error E (w) in the space domain calculated using the proposed optimal value of w = 0.298. From left to
right: Error for r0 = 2, 4, and 8.
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TABLE II. Comparison of the anisotropic error A and mean anisotropic error Ā in percent, and the corresponding factor decrease in
anisotropic error and mean error relative to the standard and Leclaire’s w = 0.25 case. The bold lines represent use of the choice of w that is
optimal for the smallest radius of curvature droplet with r0 = 2, which are the recommended optimal w values for each β.

Anisotropy (%) Factor less than standard Factor less than Leclaire

β r0 What w A Ā A(1)/A(w) Ā(1)/Ā(w) A(0.25)/A(w) Ā(0.25)/Ā(w)

0.5 2 Standard 1 7.07 4.24 1.00 1.00 0.20 0.09
0.5 2 Leclaire 0.25 1.38 0.40 5.12 10.70 1.00 1.00
0.5 2 Optimal 0.298 0.66 0.12 10.78 34.21 2.10 3.20
0.5 4 Standard 1 2.63 0.25 1.00 1.00 0.10 0.08
0.5 4 Leclaire 0.25 0.26 0.02 10.13 12.07 1.00 1.00
0.5 4 Optimal2 0.298 0.24 0.05 10.77 5.09 1.06 0.42
0.5 4 Optimal 0.28 0.155 0.039 16.94 6.43 1.67 0.53
0.5 8 Standard 1 2.58 0.76 1.00 1.00 0.11 0.03
0.5 8 Leclaire 0.25 0.27 0.026 9.46 29.37 1.00 1.00
0.5 8 Optimal2 0.298 0.22 0.068 11.79 11.17 1.25 0.38
0.5 8 Optimal 0.271 0.127 0.017 20.23 45.73 2.14 1.56
0.7 2 Standard 1 6.36 3.80 1.00 1.00 0.10 0.08
0.7 2 Leclaire 0.25 0.62 0.32 10.21 12.09 1.00 1.00
0.7 2 Optimal 0.284 0.35 0.02 18.24 185.53 1.79 15.35
0.7 4 Standard 1 3.78 0.78 1.00 1.00 0.16 0.11
0.7 4 Leclaire 0.25 0.61 0.083 6.20 9.49 1.0 1.0
0.7 4 Optimal2 0.284 0.283 0.011 13.35 73.73 2.15 7.77
0.7 4 Optimal 0.286 0.27 0.007 13.97 119.22 2.25 12.56
0.7 8 Standard 1 4.07 1.42 1.00 1.00 0.16 0.05
0.7 8 Leclaire 0.25 0.66 0.072 6.21 19.60 1.00 1.00
0.7 8 Optimal2 0.284 0.281 0.056 14.45 25.28 2.33 1.29
0.7 8 Optimal 0.282 0.273 0.049 14.89 29.03 2.40 1.48
0.99 2 Standard 1 7.76 2.77 1.00 1.00 0.15 0.03
0.99 2 Leclaire 0.25 1.15 0.09 6.74 29.72 1.00 1.00
0.99 2 Optimal 0.275 0.67 0.085 11.55 32.78 1.71 1.10
0.99 4 Standard 1 5.86 0.52 1.00 1.00 0.23 0.48
0.99 4 Leclaire 0.25 1.33 0.25 4.40 2.07 1.00 1.00
0.99 4 Optimal2 0.275 1.016 0.208 5.77 2.50 1.31 1.21
0.99 4 Optimal 0.299 0.74 0.17 7.92 3.08 1.80 1.49
0.99 8 Standard 1 6.08 0.4 1.00 1.00 0.22 0.66
0.99 8 Leclaire 0.25 1.36 0.26 4.47 1.52 1.00 1.00
0.99 8 Optimal2 0.275 1.066 0.23 5.71 1.76 1.28 1.16
0.99 8 Optimal 0.303 0.76 0.19 8.01 2.12 1.79 1.40

FIG. 10. Plots of the mean anisotropic error as a function of
direction θ at the radius of maximal anisotropy r∗ = maxr (Er,45◦ −
Er,0◦ ) for the original color-gradient calculation (w = 1) and the
proposed optimal value of w = 0.298 for the smallest droplet with
r0 = 2.

FIG. 11. Plot of the anisotropic error at 45◦ together with the
color gradient for the two cases of w = 1 (original CG calculation)
and w = 0.298 (optimal w that minimizes anisotropy) for the small-
est droplet with r0 = 2. The color gradient is scaled by factors of s1

and s2 to enable the shape of the color-gradient magnitude |F(w)| to
be visualized on the same plot as the error.
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FIG. 12. Plots for the case of w = 0.25 for the smallest radius of droplet with r0 = 2 for comparison with Figs. 7, 8, 10, and 11 which were
for the optimal case of w = 0.298. Upper left: The normalized color gradient as a function of direction θ at the radius of maximal color gradient
rF = maxr Fr,0◦ (w) for the original color-gradient calculation (w = 1) and the value of w = 0.25. Upper right: The normalized color gradient
as a function of direction θ at the radius of maximal anisotropy r∗ = maxr Er,45◦ − Er,0◦ for the original color-gradient calculation (w = 1) and
the value of w = 0.25. Lower left: The mean anisotropic error as a function of direction θ for the original color-gradient calculation (w = 1)
and the value of w = 0.25. Lower right: The anisotropic error at 45◦ together with the color gradient for the two cases of w = 1 (original CG
calculation) and w = 0.25. The color gradient is scaled by factors of s1 and s2 to enable the shape of the color-gradient magnitude |F(w)| to
be visualized on the same plot as the error.

VI. EXAMPLE OF PHENOMENA MISSED DUE TO
ANISOTROPY OF THE STANDARD
COLOR-GRADIENT CALCULATION

The previous section has shown that there is about a 7%
anisotropic error using the standard color-gradient calculation
according to Eq. (14) whereas the proposed color-gradient

calculation using Eqs. (37)–(39) and a value of w = 0.298
leads to much lower anisotropy of approximately 0.66%. Fur-
thermore, the proposed color-gradient calculation has both
positive and negative anisotropies at different radii with
a mean anisotropy of only about 0.12% (see Fig. 10) so
the effect of the anisotropy of the color gradient on sur-
face tension at w = 0.298 is likely to be even smaller than

FIG. 13. Plots of the anisotropic error E (w) in the space domain calculated using the value of w = 0.25 for comparison with Fig. 9
calculated with the optimal value of w = 0.298. From left to right: Error for r0 = 2, 4, and 8.
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FIG. 14. Snapshots of flow in a pipe for wetting angle of θ = 0 and various capillary numbers using the optimal value of w = 0.298 to
calculate the color gradient.

suggested by the maximum anisotropy of 0.66%. The
anisotropy in the color gradient will have the greatest effect
for small radii of curvature of fluid boundaries such as at the
pinchout when droplets form. In this section, we demonstrate
that the anisotropy of the standard color gradient leads to
fundamentally different results for certain cases. Specifically,
we show in this section that the transition to fingering in a pipe
using the standard color-gradient calculation does not lead to
formation of droplets, whereas when one applies the proposed
more isotropic color-gradient calculation, droplets form at the
transition to fingering.

In this section, we simulate flow in a 2D pipe of length 800
and width of 40 units. A wetting red fluid with wetting angle
θw = 0◦ is injected from the left with a specified injection
velocity, and constant pressure boundary conditions are spec-
ified at the right of the tube where these boundary conditions
were calculated using the Zou and He velocity and pressure
boundary conditions [30]. Numerous simulations over a range
of capillary numbers were run to determine and study the
transition to fingering, where capillary number is defined as

Ca = ρrνruin

σ
= μruin

σ
, (47)

where νr is the kinematic viscosity of the invading red fluid,
μr is the dynamic viscosity of the invading red fluid, and σ

is the interfacial tension which can be determined through a
simulation of a static droplet and application of the Young-
Laplace formula

σ = r0�P = r0(Pin − Pout), (48)

where �P is the difference in average pressure inside versus
outside a droplet of radius r0 (i.e., the radius between the
drop center and the contour of D = 0). Note that the use of
Eq. (48) effectively yields the mean surface tension where
the average is over angle. So due to the anisotropy of the
color-gradient calculations, the surface tension in the RK
LBM may be higher or lower than this mean value depending
on the angle. We find that using the proposed color-gradient
calculations given by Eqs. (37)–(39), the interfacial tension
is typically found to be σ ∈ [0.55 × A, 0.79 × A] where A is
the interfacial tension term specified in the second collision
term given by Eq. (13). In these simulations of flow in a
pipe, we fix the inlet velocity to be uin = 0.02, and we vary
the interfacial tension parameter A to allow different capillary
numbers to be simulated. Namely, numerous simulations were
done of a static droplet at different values of A to determine the
relationship between A and σ which allowed us to accurately
specify each interfacial tension parameter A required to model
a specific capillary number with a constant injection flow
rate uin using Eq. (47). The kinematic viscosities were set
to ν1 = ν2 = 0.02 (i.e., viscosity ratio of M = 1). Figure 14
shows snapshots for a range of capillary numbers surrounding
the transition to fingering calculated using the proposed more
isotropic color-gradient calculation with w = 0.298, whereas
Fig. 15 shows snapshots for the standard color-gradient calcu-
lation using a value of w = 1. We observe two fundamental
differences. First, for the the proposed color-gradient cal-
culations with w = 0.298, the fingering transition occurs at
Ca ≈ 0.134 whereas for standard color gradient, the fingering
transition occurs at a lower capillary number of Ca ≈ 0.127.
Also, after the transition to fingering—using the optimal w
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FIG. 15. Snapshots of flow in a pipe for wetting angle of θ = 0 and various capillary numbers using the standard color-gradient calculations
corresponding to a value of w = 1.

value—droplets occur at Ca ≈ 0.137, followed by a finger
from Ca ≈ 0.140, droplets again at Ca ≈ 0.146, and finally
a finger for Ca � 0.154. Note that we have performed simu-
lations at Ca numbers ranging from Ca = 0.130 to 0.155 at
intervals of �Ca = 0.001 and the images in Fig. 14 and the
capillary numbers in Table III summarize all of the transitions
observed within this range of capillary numbers (i.e., no other
transitions to droplets or fingering occurred other than the
ones shown) when using the optimal value of w = 0.298 in
the color-gradient calculations. In the case of the runs using
the standard color-gradient calculation with w = 1, we ob-
serve only one transition to fingering behavior at Ca ≈ 0.127.

The lower capillary number predicted using the standard
color-gradient calculation of the transition to fingering can be
explained as follows. The fingering initiates at the front of the
red fluid at 0◦. Hence, the effective capillary number for fin-
gering to initiate at 0◦ is Ca∗ = μuin/σ

∗
0◦ = μuin/(gσ ∗) where

g is the factor decrease in interfacial tension lower along the

TABLE III. Table showing the key phenomena observed in sim-
ulation of flow in a pipe with the color gradient calculated using the
optimal weight of w = 0.298.

Capillary
number Phenomenon Transition

0.133 Meniscus Pretransition to fingering
0.134 Fingering First transition to fingering
0.137 Droplets First transition to droplets
0.140 Fingering Second transition to fingering
0.146 Droplets Second transition to droplets
0.154 Fingering Third transition to fingering

Cartesian axes at 0◦. So we have that the true capillary number
of the transition to fingering is given by

Ca∗ ≈ μuin

σ0◦
= μuin

gσ ∗ = 1

g

μuin

σ ∗ = 1

g
Ca∗(w = 1). (49)

From the previous section, we expect a decrease in inter-
facial tension of order 7% along the Cartesian axes for the
standard color-gradient calculations with w = 1 and, hence,
we can expect the value of g ∼ 0.93 and, based on this, one
may predict the true capillary number of the fingering tran-
sition from the apparent capillary number of the transition
obtained using the standard color-gradient calculations as

Ca∗ ≈ 1

0.93
Ca∗(w = 1) = 0.127

0.93
= 1.075 × 0.127 ≈ 0.1366, (50)

which is slightly higher than the capillary number of the fin-
gering transition of Ca∗(0.298) = 0.134 predicted using the
proposed color-gradient calculation with w = 0.298. Namely,
from the simulations we have

Ca∗(w = 0.298) = 0.134

= 0.134

0.127
Ca∗(w = 1) ≈ 1.055 × 0.127.

(51)

The proposed color-gradient calculations with the optimal
w have the lowest anisotropy at the smallest radii of curva-
ture so these should provide the most accurate estimate of
the transition capillary numbers. The reason for the slight
overprediction of Ca∗ ≈ 0.1366 above which is higher than
the value of Ca∗(0.298) = 0.134 is likely the assumption of
the 7% anisotropy whereas we should use the percentage
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FIG. 16. Mechanism explaining how the anisotropy in the stan-
dard color-gradient calculation with w = 1 resists a finger head from
breaking off and forming a droplet.

reduction in interfacial tension relative to the mean interfacial
tension as measured during the Young-Laplace calculations
of interfacial tension. An assumption of a 5% reduction in
interfacial tension relative to the average would yield a precise
prediction. However, there is no point to try to exactly predict
this value as it is not clear what radius of curvature interface
is the critical one for a finger to form (and, hence, exactly
what percentage of anisotropy to use in this calculation). The
analysis is intended only to demonstrate that the too low
transition capillary number of the fingering predicted using
the standard color-gradient calculation is expected because
of the lower interfacial tension along Cartesian axes, and
has a reasonable magnitude given the order of magnitude of
the anisotropy. The proposed color-gradient calculations with
w = 0.298 have the lowest anisotropy and, hence, provide the
most accurate estimate of the capillary number transitions. In

the above, we found that the size of the differences between
the w = 1 capillary number transitions and the w = 0.298
transitions is adequately explained by the anisotropy of the
w = 1 calculations.

The second and more fundamental difference between the
simulation results of flow in a pipe using the standard and pro-
posed color-gradient calculations is the existence of droplets
at the transition to fingering using the proposed color-gradient
calculations. This can be explained as follows. In these sim-
ulations, as the finger starts to form, a large head followed
by a narrow tail appears (see Ca = 0.134 of Fig. 14 and
Ca = 0.127 of Fig. 15). For the bulge at the head of the
finger to break off and form a droplet, the interface at an
angle of about 45◦ must be broken. However, for the stan-
dard color-gradient calculations, the color gradient and hence
interfacial tension are larger at 45◦. Hence, for the standard
color-gradient calculation, this higher anisotropic interfacial
tension at 45◦ resists formation of droplets. Figure 16 illus-
trates the proposed mechanism that explains why the standard
color-gradient calculation for flow in a pipe failed to capture
droplet formation whereas the proposed more isotropic color-
gradient calculations did capture droplet formation.

We also did the same suite of runs using Leclaire’s value
of w = 0.25. Snapshots at the transition capillary numbers
are shown in Fig. 17. Comparing to the results in Fig. 14,
we see that using w = 0.25, one obtains the same fingering
and droplet transitions, but they are shifted to slightly higher
capillary numbers. Specifically, the first transition to fingering
occurs at Ca ≈ 0.135 compared to Ca ≈ 0.134 for the runs
using w = 0.298. Table IV compares the transition capillary

FIG. 17. Snapshots of flow in a pipe for wetting angle of θ = 0 and various capillary numbers using Leclaire’s value of w = 0.25 to
calculate the color gradient.
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TABLE IV. Table comparing the capillary numbers of transitions in simulation of flow in a pipe with the color gradient calculated using
the optimal weight of w = 0.298 and Leclaire’s value of 0.25.

Phenomenon Transition Ca (w = 0.298) Ca (w = 0.25)

Meniscus Pretransition to fingering 0.133 0.134
Fingering First transition to fingering 0.134 0.135
Droplets First transition to droplets 0.137 0.137
Fingering Second transition to fingering 0.140 0.141
Droplets Second transition to droplets 0.146 0.146
Fingering Third transition to fingering 0.154 0.154

numbers for the two cases. Based on these results, there is
a shift of order 0.005 to higher capillary numbers in the w =
0.25 runs. This can again be explained by the slight anisotropy
of the w = 0.25 run. From Fig. 12, we know that using
w = 0.25 leads to a −1.4% anisotropy, which means that the
color gradient is about 1.4% higher along the Cartesian axes.
Hence, as was done in the analysis above, we can estimate the
true capillary number of the first fingering transition as

Ca∗ ≈ 1

1.014
Ca∗(w = 0.25) = 0.135

1.14
= 0.986 × 0.135 ≈ 0.133. (52)

As explained above, this is an overestimate of the correc-
tion since one should use the percent anisotropy relative to an
average but, again, this level of detail in the analysis is not
warranted given that the anisotropy at the critical radius of
curvature at which a pinchout occurs is not exactly known.
The only purpose of the above analysis is to demonstrate
that due to the slight anisotropy using w = 0.25, the capil-
lary number of fingering transitions is slightly overpredicted,
which explains the slightly higher transition capillary numbers
of the w = 0.25 runs compared to the w = 0.298 runs. Based
on the above analyses, and given that the w = 0.298 weight
minimizes color-gradient anisotropy to less than 0.66% with
a mean anisotropy of 0.12% for small radius of curvature
interfaces, we propose that the proposed weight for diagonal
nearest neighbors is optimal for correctly capturing pore scale
phenomena such as fingering and droplet formation, and that
this weight will lead to the most accurate quantification of
transition capillary numbers.

VII. NONPHYSICAL PRESSURE GRADIENTS
AND SPURIOUS CURRENTS

Another advantage of the proposed color-gradient calcu-
lations is that it significantly attenuates nonphysical static
droplet pressure gradients that exist using the standard color-
gradient calculations due to the relatively high surface-tension
anisotropy, and which lead to significant spurious currents.
Preliminary studies suggest that the level of attenuation is
roughly an order of magnitude, similar to that reported by
Leclaire et al. [21] using w = 0.25. Using the proposed op-
timal w value or Leclaire et al.’s value of w = 0.25 leads to a
much more homogeneous pressure field inside and around the
edges of a static droplet, even to very low interfacial tensions
of σ ∼ 5 × 10−12 which is down to the limit of numerical
precision. This improved accuracy gives confidence that, as is

the case using Leclaire et al.’s color-gradient calculations with
w = 0.25, the proposed color-gradient calculations will en-
able a large range of interfacial tensions to be more accurately
simulated. To illustrate the attenuation of spurious currents
down to A = 10−11 ⇒ σ ∼ 5 × 10−12, we defined a static
droplet with r0 = 8 and calculated the maximum magnitude of
the spurious currents for the cases of w = 1 (standard case),
w = 0.25 (Leclaire’s value), and w = 0.298 (optimal w for
the r0 = 2 case) at various A. Table V shows these results
and demonstrates that the spurious currents at the optimal w

are about ten times smaller than those in the standard case
(w = 1), and about two times smaller than Leclaire’s case
(w = 0.25).

VIII. CONCLUSIONS

The Rothman-Keller color-gradient lattice Boltzmann
method is a powerful method to simulate multiphase flow. At
its heart is a calculation of the gradient F of the color differ-
ence D = (ρr − ρb) between two fluids. It is well known that
the surface tension using the standard color-gradient calcula-
tion is anisotropic, leading to nonphysical spurious currents,
and potentially an inability to correctly model certain pore
scale phenomena. The standard second order accurate color-
gradient calculation is one option to calculate the gradient.
Improved accuracy can be achieved by using higher order
finite-difference calculations but these are computationally
expensive and, also, the calculations near walls remain only
second or first order accurate. Alternatively, a better choice of
the relative weights of the nearest neighbors when calculating
the second order accurate color gradients leads to improved
isotropy. One such choice is a relative weight of w = 0.25
for diagonal nearest neighbors as developed by Leclaire et al.
[21] based on achieving isotropy of the error in the gradi-
ent to second order. In contrast, we have investigated the
anisotropy of the color gradient of droplets of varying sizes
over the full range of diagonal weights w and for several
typical interface smoothing parameters β to study whether
there may be an even more optimal choice. We first present
the general formula for second order accurate finite-difference
calculations of the color gradient which allows the weight
w of nearest neighbors along diagonals to be varied relative
to those along the Cartesian axes. We have then studied the
anisotropy of the color gradient for varying weights w for
small radius of curvature droplets. We have found that for in-
terface smoothing parameters of β = (0.5, 0.7, 0.99), the use
of weights of w = (0.298, 0.284, 0.275) for diagonal nearest
neighbors in the color-gradient calculations minimizes the
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TABLE V. Magnitude of spurious currents scaled by the interfacial tension parameter, i.e., max(|u|/A) as a function of A for the cases of
w = 1, 0.25, and 0.298 for a static droplet with r0 = 8.

max(|u|/A)
w A = 0.1 A = 0.01 A = 0.001 A = 10−11 A = 10−12

1 0.00898 0.0116 0.0215 0.0249 0.0252
0.25 0.00110 0.00206 0.00467 0.00559 0.00808
0.298 0.00128 0.00146 0.00211 0.00254 0.00935

anisotropy to a fraction of a percent for the smallest droplets
to (0.66%,0.35%,0.67%) and minimizes the mean anisotropy
to (0.12%,0.02%,0.085%). In contrast, the standard color-
gradient calculation which weights the diagonal nearest
neighbors equally (i.e., w = 1) has much higher anisotropy
and mean anisotropy, respectively, of (7.1%,6.4%,5.9%) and
(4.2%,3.8%,2.8%). And use of Leclaire’s value of w = 0.25
has anisotropy of (1.4%,.62%,1.15%) and mean anisotropy of
(0.4%,0.32%,0.09%). Hence, our proposed optimal w values
yield much greater isotropy than the standard w = 1 value,
and significantly greater isotropy than Leclaire’s value. We
present an example that shows that the anisotropy of the
standard color-gradient calculations can lead to fundamentally
different behavior at critical capillary numbers such as at the
transition to fingering.

In this example, we inject a nonwetting red fluid into a
pipe filled with a blue fluid of the same viscosity, and we
observe droplet formation at the transition capillary number to
fingering using the proposed color-gradient calculations with
β = 0.5 and w = 0.298, whereas using the standard w = 1
color-gradient calculations, no such droplets are observed.
We present an explanation for why the droplet formation is
inhibited by the anisotropic surface tension of the standard
color-gradient calculations. Leclaire’s value of w = 0.25 also
predicts the droplet formation. However, there may be other
cases where the factor of 2 lower anisotropic error and up to
15 times lower mean anisotropic error for β = 0.7 using our
proposed optimal w values compared to using Leclaire’s w =
0.25 value is significant. As such, we recommend for the cases
of β = (0.5, 0.7, 0.99) the use of w = (0.298, 0.284, 0.275)
when using second order accurate RK color-gradient calcula-
tions. These w values represent an optimal choice to minimize
surface-tension anisotropy of small radius of curvature inter-
faces and, hence, to most accurately model and study pore
scale processes, a major target of the RK LBM, where surface-
tension isotropy of narrow fingers and small droplets plays a
crucial role in correctly capturing phenomenology.

We note that as was the case for Leclaire’s improved value
of w = 0.25, the use of the proposed optimal w values also

decreases nonphysical heterogeneous pressure fields and spu-
rious currents around the edges of static droplets which result
from surface-tension anisotropy, and increases the range of
interfacial tensions that can be accurately modeled. Namely,
the spurious currents are around an order of magnitude lower
using the optimal value of w = 0.298 compared to using the
standard value of w = 1, and about twice lower than using
Leclaire’s value of w = 0.25 over a range of ten orders of
magnitude of the surface-tension parameter A.

In conclusion, the RK LBM is a powerful method to
study multiphase flow at the pore scale but requires suffi-
ciently isotropic calculations of the color gradient to reliably
predict phenomena. Such isotropy cannot be achieved using
the widely applied standard second order accurate finite-
difference scheme using w = 1. Vastly improved isotropy can
be achieved with Leclaire’s weight of w = 0.25 for diagonal
nearest neighbors, and so at a minimum, this value should
be applied rather than the standard color-gradient calcula-
tions. We show that an even greater isotropy can be achieved
for small radius of curvature interfaces using values of w =
(0.298, 0.284, 0.275) for the cases of β = 0.5, 0.7, 0.99), and
as such, we propose these values as the optimal weights
for RK color-gradient LBM simulations and related variants
that aim to study pore scale phenomena such as fingering
and droplet formation. There remains no justification for any
researcher to continue to use the standard color-gradient cal-
culation. Either our proposed optimal weights or, at the very
least, Leclaire et al.’s value of w = 0.25 should be used to
weight the diagonal nearest neighbors in the CG calculation.
The computational cost is identical and the surface-tension
isotropy is dramatically improved.
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