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Acoustic ranging is a technique for estimating the distance between two objects using acoustic signals, which plays a critical

role in many applications, such as motion tracking, gesture/activity recognition, and indoor localization. Although many

ranging algorithms have been developed, their performance still degrades significantly under strong noise, interference and

hardware limitations. To improve the robustness of the ranging system, in this paper we develop a Deep learning based

Ranging system, called DeepRange. We first develop an effective mechanism to generate synthetic training data that captures

noise, speaker/mic distortion, and interference in the signals and remove the need of collecting a large volume of training

data. We then design a deep range neural network (DRNet) to estimate distance. Our design is inspired by signal processing

that ultra-long convolution kernel sizes help to combat the noise and interference. We further apply an ensemble method to

enhance the performance. Moreover, we analyze and visualize the network neurons and filters, and identify a few important

findings that can be useful for improving the design of signal processing algorithms. Finally, we implement and evaluate

DeepRangeusing 11 smartphones with different brands and models, 4 environments (i.e., a lab, a conference room, a corridor,

and a cubic area), and 10 users. Our results show that DRNet significantly outperforms existing ranging algorithms.
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1 INTRODUCTION

1.1 Motivation

Ranging is the technique to estimate the distance from a signal source to a target object. It is a fundamental

building block for localization, motion tracking, gesture and activity recognition, which have a wide variety

of applications. For example, it enables gesture based interface to remotely control smart appliances, virtual

reality (VR), augmented reality (AR), and gaming. It offers an effective way of sensing environments for wireless
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Fig. 1. Applications for passive acoustic ranging.

optimization (e.g., beamforming, AP selection), habitat monitoring, disaster recovery, user tracking, health

monitoring, and context aware applications.

Ranging can be classified into (i) active ranging, where the target can either send or receive signals and (ii)

passive ranging, where the target can be any object and simply reflects the signal. In this paper, we consider

passive ranging using the reflected signals. As shown in Figure 1, in this case the source sends and receives

signals to measure the round trip propagation delay from the target (e.g., a user’s hand) and compute the distance.

Passive ranging is useful for many applications, such as gesture recognition, indoor mapping, virtual reality

(VR), and augmented reality (AR). For example, we can use ranging techniques to create a map for indoor

environments by measuring the distance to walls and furniture. We can also estimate the distance to nearby

obstacles for safety applications.

A number of ranging approaches have been developed, based on different signals, such as audios [22, 26, 27,

30, 36, 41, 44, 51, 52, 56], radio frequency (RF) [2, 3, 12, 15, 19, 21, 32, 34, 40, 43, 48, 50], and infrared lights [10].

Compared to other types, acoustic ranging has following advantages. First, the slow propagation speed of acoustic

signals is beneficial to achieve high accuracy in distance estimation. Second, most devices are already equipped

with speakers and microphones, and we do not need to deploy extra hardware (e.g., RFID readers and tags,

millimeter wave antennas, and depth cameras) for ranging. Third, the sampling rate of acoustic signals is low so

that the processing can be done in software. This makes acoustic ranging easily available on commodity devices

(e.g., smartphones and VR/AR headsets). Due to these advantages, we focus on acoustic ranging in this paper.

1.2 Limitation

Existing acoustic ranging approaches exploit various signal processing techniques. Frequency-modulated con-

tinuous wave (FMCW) is one of the most widely used approaches (e.g., [22, 26]). Other works use correlation

with known signal patterns [27, 30], or measures the phase changes [41, 44, 52]. However, the performance

of signal processing approaches degrades significantly under low signal-to-noise ratio (SNR) and multipath

propagation. As shown in Figure 3(b), when the SNR is low, there are many false peaks in the FMCW profile and

it is challenging to locate the correct peak corresponding to the target. As result, the existing passive ranging

approaches can only work when the target is within tens of centimeters [27, 44, 52]. Figure 3(c) further shows

the impact of multipath where the reflected signals from the target and nearby objects interfere and result in a

merged peak, which makes it hard to locate the target.
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1.3 Our Approach

Existing ranging algorithms are designed by domain experts. In this paper, we explore the following interesting

questions: Can a deep neural network automatically learn the features in the received acoustic signals to estimate

the distance? Can it outperform traditional signal processing algorithms designed by domain experts?

This direction is interesting for several significant reasons. Scientifically, it is interesting to understand

the feasibility of the machine learning approach in automatically learning features. This learning task seems

challenging since unlike images or videos, where humans can easily determine the correct answers (e.g., image

label), human is not good at estimating the distance from acoustic signals. Practically, if successful, the resulting

approach can improve the accuracy of ranging and benefit a wide range of applications. Moreover, it can also

shed light on the limitations and potential of signal processing versus machine learning approaches. Such insights

will help us design new algorithms that achieve the best of both worlds.

Note that our work is inspired by the tremendous success of deep neural network (DNN) and its advantage

in nonlinear problems. Motivated by its success in vision and speech recognition communities, we have seen

applications of neural networks to ranging and tracking. For example, RF-Echo [6] applies a neural network with

a single hidden layer to estimate the propagation delay of RF signals based on the correlation profile. RF-Pose

[57, 58] develops a convolutional neural network (CNN) to estimate a user’s pose based on the heatmap generated

by applying FMCW to RF signals. Different from these works, which use the features designed by domain experts

as the neural network input, we aim to automatically learn the features from raw acoustic signals. Moreover,

unlike the existing works, which require training data from real testbeds and can be time-consuming and labor

intensive, we aim to automatically generate the training data.

In order to apply DNN to the received signals, we need to address two major challenges. First, DNN requires

a large volume of training data to work well, and it is important to have an efficient way of generating lots of

training data. Second, we need to design a DNN that works well for distance estimation.

To address the first challenge, we develop a simulator that models how acoustic signals propagate through the

environment. Through extensive trials, we find that not only noise and multipath (i.e., reflections from objects

other than the target) affect the learner performance, but also self interference (i.e., the signal directly going

from the transmitter to the receiver) and speaker/microphone distortion have a significant impact. Therefore, our

simulator captures all these factors. To derive a general model, we add randomness when generating signals to

prevent the network from overfitting specific values or patterns. For example, not only the noise in our synthetic

signals is a random Gaussian variable, but its standard deviation is also randomly chosen. Similarly, we randomly

synthesize a piece-wise polynomial function to capture the frequency responses of speakers and microphones. In

this way, our simulator achieves simplicity, generality, and realism. We only use the data generated from our

simulator to train DNNs for ranging and show that they work well for real signals using 11 different smartphones,

10 users, different targets, and 4 different locations.

To address the second challenge, we start with a generic multi-layer fully connected neural network. Interest-

ingly, we find the weights connected to each neuron in the first layer have a high correlation with the transmission

signals at different shifts. This insight motivates us to develop a CNN. We first try the traditional CNNs, such as

AlexNet [16] and VGG [35], but find they do not work well because their filters have too short kernel size (e.g.,

3×3 or 11×11) and fail to detect local patterns under noise and interference. To robustly capture signal patterns,

we develop a CNN with filter sizes comparable to the length of transmission signals.

Moreover, we find the network weights converge to different values during different runs. Intuitively, these

weights correspond to different ways of feature extraction for ranging. Therefore, instead of training a single

network, we train a set of networks and combine them using an ensemble model. To maximize the effectiveness

of ensemble learning, we add randomness during training by using random initialization, applying dropout, and

using different sets of training data.
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Fig. 2. FMCW processing stages.

We evaluate our approach by training DRNet using synthetic data generated from our simulator and testing on

the acoustic signals collected from 11 phones with different brands, 10 users, different targets, and 4 environments

including a lab, a conference room, a corridor, and a cubic area. The evaluation results show that our network

generalizes well to different scenarios. Compared to three baseline approaches that use FMCW, correlation, and

phases, our learning based approach achieves up to 5 times improvement on the ranging accuracy when the SNR

is low and the interference is severe. Our contributions are summarized as follows:

• We develop the first DNN based ranging that takes the raw received acoustic signals without feature extraction

as the input. It significantly outperforms the existing signal processing algorithms designed by domain experts.

• We show our simulator not only captures noise, speaker/mic distortion, and interference but also generates

diverse enough training data so that the model learned from the simulation data generalizes well to real data

collected from a variety of scenarios.

• We analyze the DNN structure and identify several important findings that can potentially help improve

existing signal processing methods.

2 LIMITATIONS OF EXISTING APPROACHES

There are a number of acoustic ranging algorithms, such as frequency-modulated continuous-wave (FMCW)

[22, 51], correlation with known sequence [27, 30, 56], and monitoring phase changes [41, 44, 52]. According

to our experiments, FMCW and correlation based methods out-perform the phase-based method under low

SNR and/or strong multipath. In this section, we briefly describe how FMCW works and use it to illustrate why

existing approaches do not work well under strong noise and multipath.

To estimate the distance propagated by the signals, we let the speaker periodically send chirps whose frequency

linearly increases over time as shown in Figure 2. Upon receiving the chirp reflected by the target, we perform a

mixing operation (i.e., multiply the received chirp with the transmission signal) and apply a low-pass filter. It can

be shown that the mixed signal is a sinusoid with the frequency proportional to the signal propagation delay

[3, 22]. To determine the delay, we estimate the frequency of the mixed signal by applying Fast Fourier Transform

(FFT) on the mixed signal and finding the peak frequency in the spectrum. Figure 3(a) shows an example for the

spectrum derived by FMCW, where the ground truth frequency is labeled by a red circle.

With other ranging techniques, the performance of FMCW degrades significantly when the SNR is low. In this

case, the spectrum derived as above becomes very noisy as shown in Figure 3(b), and it is difficult to locate the

target because the target location does not correspond to the highest peak in the spectrum. The performance of

FMCW also degrades under severe multipath. For example, when we place another object next to the target, the

microphone will receive reflections from both the target and the nearby object. The peaks corresponding to both

the target and object may interfere and merge, which makes it difficult to locate the target as shown in Figure

3(c). However, while it is challenging to design a hand-crafted heuristic to select a peak corresponding to the

target, it may be possible for deep learning to automatically learn the pattern by mining a large amount of data.

For example, the shape of a real peak may be quite different from the noise. Similarly, by analyzing the shape of a
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Fig. 3. The spectrum derived by FMCW under ideal, low SNR, and severe interference scenarios.

merged peak, it seems possible to locate the first peak if the target can be assumed to be the closest object after

interference cancellation.

We also evaluate the impact of speaker/microphone frequency response and find it does not have a significant

impact on FMCW performance. However, learning based approaches require training traces with realistic

speaker/microphone frequency response; otherwise, there is significant performance degradation as shown in

Section ??.

In summary, the existing ranging algorithms are developed based on a solid theoretical foundation. However,

they face challenges arising from low SNR, multipath interference, and speaker/microphone frequency response.

Deep neural network (DNN) has the potential to address these challenging scenarios by automating feature

extraction. In fact, our DNN can accurately estimate the distance to the targets in the examples shown in Figure

3 by automatically learning from labeled data.

3 APPROACH

In this section, we develop a DNN to estimate the distance based on received signals. To minimize the overhead

of collecting training data, we develop a simulator to synthetically generate training data that captures noise

(e.g., ambient sounds or random acoustic noise), interference (e.g., the signals propagated from the direct path

and reflections from non-target objects), and speaker/mic distortion (e.g., uneven frequency response of the

speakers and microphones). We further develop a convolutional neural network (CNN) with long kernel sizes to

achieve high accuracy and outperform both classic CNN and fully connected neural networks. We also propose

an ensemble method to further enhance the performance.

3.1 Signal Generation

Basic model: We use 𝑥 (𝑡) to denote the transmission signal over time 𝑡 , which is a chirp as discussed in Section

2, where 0 ≤ 𝑡 ≤ 𝑇 , and 𝑇 is the transmission period. We use 𝑦 (𝑡) to represent the received signal and it is what

we need to generate. Ideally the received signal is the transmission signal after certain attenuation and delay.

Therefore, one can generate received signals as follows: 𝑦 (𝑡) = 𝑎0𝑥 (𝑡 − 𝑡0), where 𝑎0 is the attenuation coefficient

and 𝑡0 is the delay. We train a neural network based on signals generated in this way, and test it using real data

(refer Section 4 for details about our neural network and testing data). It achieves a 1.9 cm median distance

estimation error, which is much higher than 0.75 cm achieved by FMCW.

To achieve better performance, we should generate training data that is more similar to real data and captures

various factors in real environments.

Noise: First, we add a noise term 𝑛(𝑡) to our received signal as 𝑦 (𝑡) = 𝑎0𝑥 (𝑡 − 𝑡0) + 𝑛(𝑡). We generate 𝑛(𝑡)

following Gaussian distributions with a zero mean and standard deviation 𝜎 . 𝜎 has a significant impact on

learning performance. If 𝜎 is too small, the learner cannot gain knowledge about how to deal with low SNR. If 𝜎
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is too large, the signals are too noisy to learn features from them. Moreover, we cannot use a single value for 𝜎 ,

since the learner may overfit the particular noise level and does not generalize well to other situations. This is

shown in Figure 4: when we use the synthetic data with a fixed 𝜎 to train a neural network, it does not work

well even for the test cases with less noise. Note that the testing data in this experiment is generated using our

simulator so that we can control the noise level. For all other experiments in this section, we use the testing data

collected from real environments as described in Section 4.

Therefore, our approach uses 𝜎 from a range [0, 4]. As a reference, the magnitude of signals reflected by the

target at 0.3 m is set to 1. The upper bound of the range is tuned based on the experiments to give the best

performance. It covers low SNR scenarios but prevents signals from getting too noisy to provide information. For

each transmission period, we randomly choose a value from that range and generate noise following a Gaussian

distribution. After taking into account the noise, the distance estimation error of our neural network reduces to

1.1 cm, but is still much higher than FMCW.

Multipath:Multipath is a common phenomenon in wireless signal propagation [39], where the signal generated

from the transmitter takes multiple paths to reach the receiver. The signal along each path is a delayed and

attenuated version of the transmission signal. The final received signal is the superposition of signals along all

the paths. To capture this effect, our generation model becomes

𝑦 (𝑡) =

𝐿∑

𝑖=0

𝑎𝑖𝑥 (𝑡 − 𝑡𝑖 ) + 𝑛(𝑡), (1)

where 𝑡𝑖 is the propagation delay sorted in an ascending order. The parameter we need to decide is how many

reflection paths (i.e., 𝐿) should be added into signals. While there could be many reflection paths in practice,

most of them are static (e.g., reflection paths from furniture and walls) and can be removed using interference

cancellation [5, 25]. The main idea is to record the reflection from these objects in advance when the target is

absent and then remove them when collecting the signals to estimate the distance to the target. After interference

cancellation, only a few reflection paths remain. In our approach, we generate data to emulate signals after

interference cancellation, and use them as the neural network input. This not only reduces the number of

reflection paths, but also removes the environment dependency because most reflections from the environment

are removed. Based on our experiments, we only need to generate 0ś4 reflections (excluding the one coming

from the target) with random propagation delay in the training signals and our neural network generalizes well

to the cases with more reflections. Further increasing the number of reflection paths leads to little additional

improvement.

For the attenuation coefficient 𝑎𝑖 , we first set its value inversely proportional to the propagation delay of the

𝑖-th path so that the signal energy on that path follows the inverse-square law [39]. Then we multiply the above

value with a random number in the range [1/2, 2] to take into account the other factors that affect the reflection

strength, such as object materials and sizes. The multiplier larger than 1 indicates a stronger reflector with a
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larger reflection area or less absorption. Note that choosing another range (e.g., [1/3, 3]) may achieve similar

performance. The key point here is to add randomness to prevent the neural network from relying on only the

signal strength. After incorporating multipath in the training data, our neural network out-performs FMCW and

achieves a 0.58 cm median distance estimation error.

Self interference: In addition to the target reflection, the transmission signals also propagate directly from

the speaker to the microphone, which we call self interference. Since the relative position between the speaker

and microphone on a mobile is fixed, the signals through the direct path can be removed by self interference

cancellation. However, the transmission signals sent at different time are slightly different in practice due

to variation in device temperature, power supply, and self interference channel. Therefore self interference

cancellation is not perfect. Since self interference is orders of magnitude higher than the target reflection due to a

small separation between the speaker and microphone, the residual self interference can still be relatively large

compared with the target reflection and should be taken it into account in our signal generation.

To model the residual self interference, we use [1 + 𝜖 (𝑡)]𝑥 (𝑡) to represent the transmission signal, where 𝜖 (𝑡)

captures the variation. Without loss of generality, we generate 𝜖 (𝑡) using random splines whose magnitude is

within 𝜖𝑚𝑎𝑥 . According to our observations, the transmission signal variations are usually on the order of 10−3.

Therefore, we set the upper bound 𝜖𝑚𝑎𝑥 as 0.01.

By applying interference cancellation, the residual self interference becomes 𝑎𝑠𝜖 (𝑡 − 𝑡𝑠 )𝑥 (𝑡 − 𝑡𝑠 ), where 𝑎𝑠 and

𝑡𝑠 are the attenuation coefficient and propagation delay of the self interference. Since the signal on the direct

path always has the shortest propagation delay, it corresponds to the first term in Equation 1. Based on the above

discussion, our signal generation model becomes

𝑦 (𝑡) = 𝑎0𝜖 (𝑡 − 𝑡0)𝑥 (𝑡 − 𝑡0) +

𝐿∑

𝑖=1

𝑎𝑖𝑥 (𝑡 − 𝑡𝑖 ) + 𝑛(𝑡).

By incorporating the self interference, the median ranging error of our neural network reduces to 0.51 cm.

Transceiver frequency response: Another important factor needed to be taken into account is the frequency

response[31] of the speaker and microphone. Ideally, they should have the same gain across the entire frequency.

However, real speakers and microphones have different gains across different frequencies, especially for those

above 18 KHz (used by our transmission signals), as they are hardly audible and not optimized. To emulate this

effect, we let our synthetic signals pass through a digital filter with uneven frequency gains. For each transmission

period, we use different filters to cover various possibilities. The frequency responses of these filters are generated

using random splines. Thus, our signal generation model becomes

𝑦 (𝑡) = 𝑎0𝜖 (𝑡 − 𝑡0)𝑥 (𝑡 − 𝑡0) +

𝐿∑

𝑖=1

𝑎𝑖𝑥 (𝑡 − 𝑡𝑖 ) + 𝑛(𝑡), (2)

where 𝑥 stands for the signals distorted by uneven frequency response. After incorporating this effect, the median

distance estimation error of our neural network reduces to 0.42 cm.

As we will show, our synthetic data generated in this way are both realistic and diverse by capturing the

important real-world effects, such as multipath, noise, and speaker/microphone distortions. So we transform the

target distance 𝑥 to the received signal 𝑦 as 𝑦 = 𝑓 (𝑥). However, it is challenging to infer 𝑥 based on 𝑦 since 𝑓 ()

is non-linear, unknown in advance, and varies over time and across environments and speakers/microphones.

Neural network is an effective way to model a non-linear and complex relationship between the input (i.e., the

received signals) and output (i.e., the target distance). In the following sections, we develop a DNN to estimate

the distance based on the raw acoustic signals.
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3.2 Deep Neural Network for Ranging

A neural network includes three elements: input, output, and network structure. The output of our neural network

is the distance between the transceiver and target. Since there could be a few objects whose reflections are not

removed by interference cancellation [25], we assume that our target is the one closest to the transceiver to

avoid ambiguity. In our signal model in Equation 2, the target reflection corresponds to 𝑎1𝑥 (𝑡 − 𝑡1). Note that any

passive ranging technique needs certain assumptions to distinguish the target reflection from others. We assume

the target is the first reflection after static background cancellation since it holds more often than alternative

assumptions (e.g., the target is the largest reflection). For example, when a user puts his hand toward a mobile for

tracking, the hand is closer to the phone than the arm and body, but the body reflection may be stronger due to

the larger reflection area.

There is an interesting trade-off regarding which input to use for training. Using the signals at later stages

as the input means relying more on feature extraction and less on machine learning. Since feature extraction

can reduce the input dimension and make the relationship between the input and output more clear, training

becomes easier. On the other side, since feature extraction may also remove some useful information, using the

signals at earlier stages might potentially achieve better performance. Figure 5 shows the performance of the

DNNs trained with signals at different stages. Refer to Section 4 for the details about the neural network and

testing data. We see that using received signals after pre-processing (i.e., band-pass filtering and interference

cancellation) provides the best performance. Since the pre-processing only removes unwanted artifacts from

signals (e.g., out-of-band noise and background reflections), it is beneficial to apply pre-processing to get a cleaner

version of received signals. Therefore, we choose them as our network input.

For the network structure, we start with a multi-layer fully-connected neural network (FNN), which is the

most general structure. Using 6 hidden layers, 50 neurons in each layer, a 1920-element vector as the input

(representing the received signal duration each period), and 200 K synthetic training samples, FNN can achieve

much lower distance estimation error than FMCW, as shown in Figure 6. The median errors of FMCW and FNN

are 0.75 cm and 0.49 cm, respectively.

To further improve the network structure, we examine the weights in our FNN. Interestingly, the weights

for the first layer have high correlation with the delayed versions of the transmission signal. To illustrate that,

we take one neuron from the first layer and use w to denote the weights connected to it. Let x represent the

discretized transmission signal. We calculate the cross-correlation between c, w and x as

𝑐 [𝑖] =
< w, xi >

|w| · |xi |
,

where < ·, · > represents the inner product, | · | stands for the L2 norm, and xi denotes x delayed by 𝑖 elements. If

𝑐 [𝑖] is close to one, w has high similarity to xi. Figure 7 plots c for all neurons in the first layer. We see that the

neuron weights have a high correlation with the transmission signal shifted by different amounts. This reminds

us CNN, where the same set of weights are shifted by different amounts and applied to different portions of the

input. Based on the above observation, we next develop a CNN for ranging.

We first investigate if traditional CNNs can be used for ranging.We train AlexNet and VGGnetworks customized

to fit our application. The number of layers and the structure of these networks remain the same. The filters are

changed to one-dimensional kernel (e.g., a 3×3 filter becomes a 3×1 filter) because our inputs are one-dimensional.

The number of filters in convolutional layers and the neurons in FC layers are tuned to have the same amount of

parameters as our final model in Section 4. Further increasing the model size requires more training data and

longer training time with only marginal improvement. As shown in Figure 6, both networks perform significantly

worse than FMCW. In fact, traditional CNNs rely on convolutional filters with small kernel sizes (e.g., from 3×3

to 11×11) to capture local patterns. Based on the local patterns, CNNs gradually constructs a global view about

the input at upper network layers. This does not work well in our case since a short convolution is very sensitive
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Fig. 7. The correlation between shifted transmission signals

and the weights in the first layer of our FNN.
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Fig. 8. The performance of CNNs with various kernel sizes.

to noise and interference, which are common in acoustic signals. If the low-level pattern detection is erroneous,

it is challenging for upper layers to mitigate these errors.

To tolerate noise and interference, we develop a CNN using convolutional filters with long kernel sizes.

Intuitively, a convolutional filter is used to detect a specific pattern in the signals. When the pattern is longer,

it is less likely for noise or interference to resemble the specific pattern. Therefore long kernel sizes up to the

transmission signals are more robust for detecting patterns. However, patterns longer than the transmission

signal does not help improve the performance. Therefore, we use convolutional filters in the first layer to have

similar length to that of the transmission signal. Figure 8 shows the performance of neural networks with one

convolution layer and 5 fully connected layers but using different filter sizes. We see that the distance estimation

errors first reduce, and then taper off as the filter size gets close to the length of our transmission signal (i.e.,

1440). Note that we use a grid search to determine the hyper-parameters in DRNet. To illustrate how a particular

parameter affects the performance, we show figures by varying one parameter while keeping the other parameters

the same.

The final design for DRNet is described in Section 4. Although it has a slightly smaller number of weights than

our FNN, it achieves 20% lower distance estimation error as shown in Figure 6. As discussed, both the first layers

in our FNN and CNN are used to detect certain patterns with different shifts, but the convolutional layer is more

effective in capturing the pattern and achieves better accuracy.

3.3 Ensemble

A major advantage of using synthetic data is that it is easy to generate an arbitrary amount of training data. One

way to leverage this benefit is to train larger networks with more data to improve the performance. Figure 9

shows the performance of CNNs with different sizes, measured by numbers of weights used by them. We change

the network size by scaling the number of neurons in each layer of our default CNN and adjust the training data

proportionally. We see the performance improvement tapers off when the number of weights in the network is

larger than 100 K, which is the size for our FNN and CNN. As shown in Figure 18, further increasing the network

depth does not help.

Another way to exploit a large amount of data is to train multiple CNNs and apply the ensemble method. [29]

shows that a bagging ensemble nearly always outperforms a single classifier. The key observation is that our

network converges to different local minimums in different runs, and these local minimums lead to comparable

distance estimation errors when applied to real signals. Intuitively, different converging points indicate that the

networks capture different features from the signals for distance estimation. These features respond differently to

the noise and interference in the signals. By combining these networks (e.g., using the median of outputs from all

networks), we can average out the impact of noise and interference and potentially improve the ranging accuracy.
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Fig. 11. The spectrograms of CNN filters.

A similar idea is explained in [9]. Figure 10 shows the performance gain of ensemble learning. For our application,

it is interesting to see that using an ensemble of multiple CNNs is more effective than using a larger CNN.

To maximize the effectiveness of ensemble learning, we try to increase the diversity across the networks by

using 1) random initialization, 2) a different set of synthetic data to train each network, and 3) random dropout

with the probability equal to 0.95 at the input layers. The last strategy not only helps increase the randomness

during training but also improves the generalization of networks.

3.4 Observations from CNN

In this section, we use visualizations to better understand DRNet. Instead of figuring out exactly how the neural

network works, which remains an open challenge, we would like to gain insights about why CNN performs well

and what we can learn from CNN to improve ranging algorithms.

Observation 1: Three convolution filters are chirps with different energy distributions across frequen-

cies. Figure 11 shows the spectrograms of filter coefficients for four channels in the convolutional layers of

DRNet. In this figure, the x-axis represents the index of filter coefficients in each channel, and the y-axis stands

for the frequency. The color indicates the strength of a specific frequency at a certain portion of the coefficient

sequence. As we can see, the spectrograms of the first three filters show the pattern of chirps from 18 KHz to

20 KHz. However, different from a standard linear chirp used by FMCW, these filter coefficients have different

energy distributions across frequencies. For example, the filter in the first channel has more energy at the end

of the filter sequence since we see a spot there, while the second filter has more energy at the beginning. The

third filter has relatively uniform energy across the whole band. This structure may be helpful to handle uneven

frequency response caused by speaker/mic distortion. Based on this observation, interesting future work is to

explore chirps with non-uniform energy distribution across frequencies for FMCW.
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Fig. 12. Performance of removing one channel information. Fig. 13. Performance of different methods.

Observation 2: Combining multiple FMCW with transmission chirps shifted by different amounts is

helpful to improve the performance. The first three filters in DRNet have similar patterns to the chirps, and

received signals are multiplied by these filters multiple times with different shifts. In contrast, traditional FMCW

only multiplies received signals with the transmitted chirp once with no additional shift.

Inspired by CNN, we explore whether it is beneficial to mix the received signals with the transmission signals

with different shifts. More specifically, we shift the transmitted chirps by different numbers of samples so that

each one corresponds to a new propagation delay. For each shifted transmitted chirp, we multiply it with the

received signals and apply FMCW techniques to estimate the propagation delay. It has an offset from the true

propagation delay due to the additional shift introduced to the transmitted chirp. We compensate for the offset

and then average the estimation after compensation. As shown in Figure 13, this approach (denoted by "shifting

FMCW") significantly outperforms traditional FMCW, though its ranging errors are still larger than DRNet.

The improvement can be because using different shifts smooths out the errors arising from noise, speaker/mic

distortion and multipath.

We also observe from Figure 13 that DRNet outperforms correlation based approach that selects the offset

with the maximal correlation coefficient. This is likely because correlation only takes the peak but DRNet uses

different filters to remove outliers and improve estimation.

Observation 3: One convolution filter is not a chirp but has a strong impact on the performance. The

fourth filter has a very different pattern from the others but has the most significant impact on the performance.

Figure 12 shows the performance of removing one convolutional channel by setting the corresponding channel

outputs as zeros. It shows that removing the fourth channel degrades performance more than removing any

other channels.

To better understand the role of the fourth filter, we find that it has more energy near the head and tail of

the filters. We expect it to leverage knowledge of noise, speaker/mic distortion and interference hidden in the

non-chirp component of received signals. More specifically, the transmission signal is composed of two parts,

a chirp and trailing zeros. Traditional FMCW only processes the chirp part of the receiving signal to compute

the beat frequency. The part with zeros can provide information about noise and interference. The fourth filter

leverages this part to improve the ranging performance. To verify that, we replace the received signals in this

part with zeros, the error increases by 41%, as indicated by Figure 13 (denoted by "CNN No Gap").

4 IMPLEMENTATION

4.1 Acoustic Signals

To test our deep learning based acoustic ranging, we use the built-in speaker a smartphone to send chirp signals.

The chirp frequency sweeps from 18 KHz to 20 KHz. According to [38], the absolute threshold of hearing (ATH)
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Fig. 14. Top down view of our experiment setup.

increases rapidly beyond 10 KHz. For example, human can hear the sound of 1 KHz at 0 dB sound pressure level

(SPL), but over 75 dB SPL for sound beyond 17 KHz (10,000x). Our sound level at 18 KHz is 35 dB at 0.5 m from

the speaker, well below ATH.

The chirp duration is 30 ms and the transmission period is 40 ms. We use the microphone on the same

smartphone to receive the signals reflected from the target. The sampling rate of acoustic signals is 48 KHz so

that the number of samples in a transmission period is 1920. We use the samples in one period as the input to our

network for estimating the distance between the smartphone and target.

4.2 Training

For training, we generate synthetic data based on the signal parametersmentioned above and themodel parameters

discussed in Section 3. We generate ground truth distance and signals for 200 K transmission periods to train

each CNN.

To tune the hyper parameters for DRNet, we generate synthetic testing signals for 100 K transmission periods.

By applying the grid search, the final design is described as follows. DRNet has one convolutional layer with 4

filters. The kernel length for each filter is 1521. The convolution layer is followed by a max pooling layer with

the stride and window size equal to 4. Then there are 5 fully connected layers with 200, 100, 50, 50, 50 neurons,

respectively. We train our network in PyTorch [1] using Adam [14] optimization algorithm. The loss function is

the mean square error. The batch size is 200. The initial learning rate is 0.001, which decays by a factor of 0.2

every 50 epochs. In total, we train 25 CNNs for ensemble learning.

4.3 Ground Truth

To evaluate the CNNs trained by synthetic data, we use them to estimate the distance between the mobile and

target as shown in Figure 14 based on the signals recorded by the mobile. In the user study, the target is a user’s

hand. In other evaluations, the target is a 10 cm×10 cm white cardboard. The distance between the mobile and

target varies from 0.2 m to 1.2 m in all experiments except the long range one (i.e., Figure 20), where the testing

range is extended to 5 m.

To get the ground truth distance, we use the Intel RealSense D415 camera system [10]. Its accuracy is 1mm

when the distance is between 0.3 m and 1.5 m based on our calibration. It comes with an RGB camera and a depth

camera. We use the RGB image to find our target and read the depth from corresponding pixels in the depth

image. Since the depth camera does not work when the distance is less than 0.3 m, we put it 0.3 m behind the

phone as shown in Figure 14 so that the minimum distance between the camera and the target is larger than

0.3 m. The accuracy of our depth camera significantly degrades when the distance is larger than 1.5 m. For long

range experiments, we manually calibrate the distance between the phone and target.
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4.4 Testing

We collect testing traces in the following steps: 1) place the camera and smartphone as described above; 2) send

the chirp signals with the smartphone speaker; 3) let the microphone record the signals for one second when the

target is not present to capture the background reflection, which is used for interference cancellation [25]; 4)

place the target and move it in front of the phone for one minute; 5) use the depth camera to get the ground truth

distance; 6) use the microphone to receive the signals; 7) perform pre-processing on received signals, including

band-pass filtering and interference cancellation [25]. Note that Step 5 is only used to quantify the accuracy but

not required by our approach.

To demonstrate that our approach generalizes well, we use 11 smartphones with different brands and models

to collect data, including Samsung S9 plus, Samsung S7 Active, Samsung S7 international version, Samsung S7

US version, iPhone X, iPhone 6, iPhone 5S, Huawei Mate 9, Huawei Honor 8, Xiaomi 8, and Google Pixel. The

speakers and microphones on these phones have very different acoustic characteristics (e.g., frequency responses)

as shown in Figure 15. In this figure, the y-axis represents the normalized speaker and microphone amplification

on signals at a specific frequency. We use the approach developed in [8] to measure the frequency response for a

mobile. The testing traces are collected from 4 real environments, including a lab, a corridor, a meeting room,

and a cube area. There are furniture and walls in all these locations. Besides static objects, there is also dynamic

inference in our testing environments. For example, there are other people walking by our experiment setup.

Moreover, the user’s body and arm also exhibit some movements and introduce non-static interference.

We collected 119 testing traces. Each trace has 1375 transmission periods. In each period, we take the received

signals as the input and the corresponding ground truth distance as the output label. The traces are divided into

four groups, where all groups except the last one track a board. (i) 33 traces in ideal scenarios where the SNR

is around 10 dB and there is no object near the target; (ii) 38 traces where SNR falls into -15ś5 dB due to low

speaker volume or large separation between the mobile and target, (iii) 28 traces with SNR around 10 dB and an

object (a 10 cm×10 cm cardboard) behind the target (0ś15 cm) to introduce severe interference. (iv) 20 traces for

tracking different users’ hands.

5 EVALUATION

In this section, we evaluate the performance of our ranging approach. We use the median and cumulative

distribution functions (CDF) of distance estimation errors as our performance metrics. Except for the results

shown in Figure 17, all evaluation uses the testing data collected from real environments as described in Section

4.

5.1 Micro Benchmark

We first evaluate various aspects of our approach, including signal generation, network generalization, network

depth, and inference time. We report the ranging performance using a single CNN, and compare it with FMCW.

Signal generation: We evaluate the impact of key components in our signal generation. For this purpose,

we generate training signals without noise (denoted by -N), without multipath (-M), without self interference

(-S), or without frequency response (-F), respectively, and evaluate the performance of the CNN trained using

signals without certain component. Figure 16 shows the testing performance on different testing data. We see

that without adding noise, the group with low SNR has the largest median ranging errors, i.e., 5.3 cm. Without

adding multipath, the CNN does not work well for the group with strong multipath interference. Neglecting self

interference and frequency response also degrades the performance. DRNet is trained using signals with all these

components to achieve good performance across a wide range of scenarios.

Network generalization:We evaluate the performance of our network for the cases not covered by the training

data. As mentioned in Section 3, 𝜎 (i.e., standard deviation of noise) varies from 0 to 4 in our training data, and
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Fig. 18. The impact of numbers of layers.

the number of multipath (excluding the target reflection) is randomly chosen from 0 to 4. To test if DRNet works

when the noise and multipath go beyond these ranges, we generate two sets of synthetic data with 1) 𝜎 varying

from 3 to 6 and zero multipath and 2) the number of multipath varying from 3 to 8 and 𝜎 equal to 1. We use

synthetic testing data in this experiment because we need to control the noise and multipath level. The testing

performance on the two data sets is shown in Figure 17(a) and 17(b), respectively. We observe that the estimation

errors of DRNet increase only marginally when the noise and multipath are outside the ranges covered by the

training data, DRNet degrades slower than FMCW since it is more robust to noise and multipath. These results

demonstrate our model generalizes well to the uncovered scenarios.

Network depth:We evaluate the impact of the number of fully connected layers in our neural network. The

deepest CNN we evaluate has 7 fully connected layers with 200, 100, 50, 50, 50, 50, 50 neurons, respectively.

Each time we remove the last layer before the output and create a shallower CNN, until there is only one fully

connected layer. As in Figure 18. the estimation error first reduces significantly and then tapers off. The result

shows 5 fully connected layers are sufficient for our application.

Inference time:We run DRNet on a desktop with Ubuntu 16.04, Nvidia GTX 980 [28], and 6 GB VRAM. We also

run it on Android 9, Snapdragon 845, and 6 GB RAM [33]. For the phone, we implement DRNet with Android

NDK and uses Eigen [11] as matrix calculation library. The inference time for a single CNN is 0.36 ms on the

desktop and 1.98 ms on the phone. The total time for 25-CNN ensemble learning is 7.1 ms on the desktop and
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Fig. 20. The median ranging errors at various ranges.

36.5 ms on the phone. Since the transmission period is 40 ms, our approach can support real time ranging even

on the phone. In comparison, the running time for FMCW is 0.55 ms on the desktop and 4.7 ms on the phone.

5.2 Overall Performance

In this part, we evaluate the overall performance of our approach using an ensemble of 25 CNNs. We compare

our method with FMCW, FingerIO [27], and LLAP [44]. FingIO uses correlation and LLAP uses phase to estimate

the distance. We use 18-20KHz OFDM signals in FingerIO, and send five sinusoids at 18, 18.5, 19, 19.5, and 20 KHz

in LLAP. All approaches use the same experimental setup.

Impact of SNR: We evaluate the performance of our learning based ranging under different SNRs. For this

purpose, we measure the SNR of our testing data and show the ranging performance for the data for given

SNR values (allowing ±3 dB variance). As shown in Figure 19, when the SNR is around 10 dB, the phase-based

approach (i.e., LLAP) achieves the best performance ś its median ranging error is 1.3 mm. It is followed by our

approach with 1.7 mm median error, while FMCW and FingerIO have errors larger than 2 mm. As the SNR

reduces, the performance advantage of our learning based approach becomes more significant. At SNR of -14 dB,

our approach reduces the median ranging error by a factor of 3 over FMCW and FingerIO. LLAP has the worst

ranging accuracy in this case, indicating that phase-based approaches are most sensitive to noise.

Impact of range:We evaluate our approach under long distances. In this case, the propagation delay of reflected

signals can be large (e.g., 29 ms for a target at 5 m away). If we use the signals aligning with our transmission

period for distance estimation, the target reflection is only present in the last few milliseconds of the signals.

This has a negative impact on estimation accuracy. Instead, we choose a 40 ms window roughly aligning with the

target reflection, and use the signals in this window for distance estimation. The delay estimated this way starts

from the beginning of a selected window. We get the propagation delay by adding the offset between the starts of

the transmission period and the selected window. Note that the rough knowledge about propagation delay of

the target reflection is obtained by correlating with transmitted signals and detecting the second peak since the

first peak is the direct transmission from speaker to microphone). We use the same correlation approach in all

schemes for fair comparison. The results are shown in Figure 20. As we can see, the distance estimation error of

our approach is still within 1 cm at 4 m, while FMCW has the error close to 4 cm in this case. This experiment

indicates that our approach has a larger working range.

Target size: We evaluate the ranging errors for targets with different sizes: a 2 cm×2 cm cardboard (denoted by

𝑆), a 10 cm×10 cm one (denoted by𝑀), and a 40 cm×40 cm one (denoted by 𝐿). We perform experiments under

both high SNR and low SNR, where signals reflected by the 2 cm cardboard ranges between 0 and 10 dB SNR. A

large cardboard tends to reflect more signals and yields a higher SNR. However, as the cardboard gets even larger,

its gain becomes marginal since the regions far away from the perpendicular reflection point reflect little energy
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mance for different users.

back to the microphone. We find the signals reflected by 10 cm cardboard are 6ś7 dB stronger than those for

2 cm one. However, the SNRs for 10 cm cardboard and 40 cm one are similar. When the SNR is sufficiently high,

the accuracy is comparable across all reflectors as shown in Figure 21(a). When the SNR is low, larger targets

have higher SNR than smaller targets and experience smaller estimation errors as shown in Figure 21(b).

Impact of interference angle: We evaluate the impact when an interfering object (a cardboard with the same

size as the target) is placed at different angles, as shown in Figure 22. The interfering object is 10 cm farther away

from the mobile than the target so that the target is always the first reflector. The results are illustrated in Figure

23. For comparison, we show the ranging performance without interfering objects (denoted by∞). As we can see,

when the angle is zero, the interfering object has no impact on ranging because its reflection has been occluded

by the target. When the interfering object is placed at other angles, the impact of interference varies significantly

because the speaker radiates different portions of energy across different directions, which can be characterized

by the speaker’s radiation pattern. For our speaker, the interference is maximized at 20 degrees while minimized

at 80 degrees. Therefore, we use 20 degrees as the default angle for interference experiments in this paper.

Interference distance: We evaluate the ranging performance under interference at different distances. For

this purpose, we place the interfering object at a 20-degree angle from the target and 2.5-12 cm farther away

from the mobile. Figure 24 shows the distance estimation errors with various separation between the target and

interference reflection, where∞ indicates no interference. Our approach achieves the best performance under

multipath. It reduces the ranging errors by a factor of 4.4 when the interference is 7.5 cm away, which is the most

challenging cases. LLAP has the largest estimation errors under interference. We see that the errors first increase

and then decrease, and reach the maximum when the interference reflection is 5ś7 cm away from the target. This
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Fig. 26. The sample user traces with different performance.

is because if two reflections have a similar distance, the interfering object does not affect the distance estimation.

If the interference reflection is well separated from the target, they can be easily differentiated.

5.3 User Study

In this experiment, we use our ranging approach to track the distance between the user’s hand and a smartphone,

as shown in Figure 1(a). This is a key building block in the motion tracking. We conduct the experiment with

10 users, including 4 women and 6 men. Their ages are between 20s and 50s. For each user, we let him or her

stand 1.2 meters in front of the phone, raise the hand to roughly the same height as the phone, and move the

hand back and forth in an arbitrary pattern. The details of trace collection are described in Section 4.

Tracking samples: To provide intuition about how our approach performs for hand tracking, we show the raw

traces with different performance. For this purpose, we sort all the traces based on the median ranging errors

and plot the traces ranked at 20%, 50%, and 80%, as shown in Figure 26. The traces for our approach are directly

generated from CNN outputs without any additional filtering. The median ranging errors of selected traces are

0.3 cm, 0.7 cm, and 1.2 cm, respectively.

Performance for different users: Figure 25 and 27 show the median ranging errors and CDF across different

users, respectively. We rank the users according to their median errors. For comparison, we also show the

performance using FMCW. We see that our approach out-performs FMCW for all users, and the median errors are

reduced by a factor of 1.6x - 5.6x. Moreover, we observe that there is a large performance variation across different

users. User 1 achieves 0.255 cm median error and 0.5 cm 80-percent error, while User 10 has 1.39 cm median error

and 3.4 cm 80-percent error. The performance variation mainly comes from different hand inclination and body

posture. When the user’s hand is not perpendicular to the signal propagation path, (e.g., the inclination angle 𝛼 in

Figure 28 is less than 90 degrees), most of the reflection propagates downward, instead of returning to the phone,

as shown in the figure. Different users use different inclination angles. The smaller inclination angle reduces SNR.

In addition, the body posture affects the interference. When the separation between the body and hand is small

and/or the area of the body facing the phone is larger, there is stronger interference. Since our approach is more

robust to low SNR and strong interference, its performance benefit is higher in these traces.

Performance under practical situations: Furthermore, we evaluate our approach under the following practical

situations:

• There is another person near the target user. We consider two cases. In the first case, the second person

stands around the position A as shown in Figure 29 and performs semi-static activities like playing games

on a mobile phone. In the second case, the second person walks roughly along the trajectory B shown in

Figure 29.
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Fig. 30. The ranging performance under various practical situations.

• The user is allowed to walk back and forth towards the mobile. In this case, the tracked motion is the net

effect of the user walking and the hand movement with respect to the user body.

• There are ambient sounds during the experiments. We consider two common types of sounds: music and

voice. We set the music to the same volume as that of inaudible tracking signals, while the loudness of voice

is the same as in normal conversion (i.e., around 60 dB). The sound source is at 1.5 m away from the mobile.

Figure 30(a) compares the tracking accuracy with and without the second person, where the latter is denoted

as "Baseline". We observe that the second person with semi-static activities has little impact on the tracking

performance, while the one with dynamic activities (e.g., walking around) affects the ranging performance and

the median error increases from 0.7 cm to 1.0 cm. This is expected since dynamic interference is harder to remove.

Moreover, the second person may be temporarily closer than the user’s hand. Under such challenging situations,

our approach can still provide reasonable tracking performance with 1 cm median errors.

Figure 30(b) compares the performance with a semi-static and moving second user. As we can observe, our

approach is fairly robust under the moving user. The median ranging error is 0.8 cm.

Figure 30(c) compares the performance with and without ambient sounds, where the latter is denoted as

Baseline. The ambient sounds, such as music and voice, has little impact on the accuracy since our tracking

signals are at 18ś20 KHz band while common ambient sounds like music and voice have little energy in such

high frequency band.

6 DISCUSSION

In this section, we discuss the overheads and limitations of DeepRange and speculative ideas for DRNet .
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6.1 Overhead

Deployment Overhead: DeepRange can be deployed on off-the-shelf devices, such as mobile phones and

VR/AR headset. It uses its internal speakers and microphones to transmit and receive acoustic signals in real-time.

Learning Overhead: The major overhead in machine learning usually is collecting training data. Since we can

train DeepRange using synthetic data after capturing noise, interference, and frequency response, we remove the

major bottleneck in ML. Training can be done offline. Mobile devices use the pre-trained model to estimate the

range in an online manner.

Inference Overhead: DeepRange takes 36.5 ms inference time on mobile phones, which is shorter than the

chirp duration. This is sufficient to achieve real-time ranging.

Collecting Background Reflections: DeepRange requires to measure background reflections for interference

cancellation. Our evaluation uses 1 second received signals, which include 25 reflected chirps, to estimate

background reflections. We also try measuring for a shorter measurement period ś 0.4 s and observe similar

performance.

6.2 Limitations

DeepRange works well if the mobile phone stops and stays static for a short period to measure the range to the

target. Many use cases can fit the stop and measure model. For example, the mobile phone pauses to estimate the

range. DeepRange does not support continuous movement scenarios, and we leave that for future work.

DeepRange assumes the target is the closest object. This assumption has been widely used and holds for many

scenarios such as VR/AR, gesture recognition, etc.

6.3 DRNet Interpretation

[53ś55] attempt to visualize intermediate feature layers to interpret knowledge representations. They find that

CNN layers play the role of spatial filters to extract texture-level and part-level semantics. DRNet shows a similar

mechanism that CNN channels extract finer granularity features. Considering the scenario without interference

and noise, a small bandwidth FMCW chirp is able to estimate the range. Using wider bandwidth is the heuristic

aggregation of each small band for robustness and high resolution in complex scenarios. DRNet has an implicit

aggregation as well. It performs spatial filtering on received signals by non-uniform FMCW-like channels. It

is a weighted correlation whose weights are learned by synthetic data with interference, noise and frequency

response. Four channels provide even more diverse spatial filters so that it has a larger capability to estimate the

range for different scenarios. We believe that other signal processing algorithms based on pattern recognition

have the potential to improve performance with deep learning.

7 RELATED WORK

We classify the related work into (i) acoustic motion tracking, (ii) RF motion tracking, and (iii) neural network

based motion tracking.

7.1 Acoustic Motion Tracking

A number of systems have been developed for motion tracking using acoustic signals. BeepBeep [30] measures the

distance between two mobiles by correlating the pseudo-random sequence. Based on BeepBeep, SwordFight [56]

further improves the efficiency and supports the interaction for mobile motion games. ApneaApp [26] uses

FMCW to measure the chest and abdomen movements for apnea detection. AAMouse [51] relies on Doppler shifts

of the signals to capture the distance changes over time. CAT [22] develops a distributed FMCW to estimate the

distance between separated speakers and microphones. LLAP [44] leverages the phase changes of raw acoustic
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signals to determine the distance changes, while Strata [52] and VSkin [36] uses the phases of channel taps.

FingerIO [27] estimates the distance based on correlation and uses the properties of OFDM symbols to refine the

estimation. DroneTrack [24] develops an approach to estimate the distance between a drone and a user based on

MUSIC algorithm. MilliSonic [41] combines FMCW and phase measurements to estimate the distance. It achieves

impressive estimation accuracy at high SNR, but does not work well under low SNR because it relies on the

assumption that the estimation error is always less than the wavelength (e.g., about 2 cm for 17 KHz acoustic

signals) to avoid the phase ambiguity. However, this assumption cannot hold under low SNR. These algorithms

are developed by human experts. This paper complements the existing work by exploring the possibility of

applying DNN to raw acoustic signals for distance estimation. The insights gained from DNN can potentially

help improve the existing signal processing methods.

7.2 RF Based Motion Tracking

Many motion tracking systems use radio frequency signals, such as WiFi, RFID, and millimeter-wave transceivers.

ArrayTrack [49] estimates the angle-of-arrivals to different access points based on an array of antennas. RF-

IDraw [43] uses the phase difference between a pair of RFID tags to estimate the incoming angles of the signals.

Tagoram [50] estimates the locations of RFID tags by generating holograms with an array of RFID readers.

TurboTrack [19] exploits the physical properties of RFID tags to emulate large bandwidth for accurate motion

tracking. MTrack [46] measures the phases of 60 GHz waves for motion tracking with highly directional and

steerable antennas. WiTrack [2, 3] leverages FMCW sweeping from 5.5 GHz to 7.2 GHz to estimate the positions

of multiple people in the room. The above approaches require access to raw signals. When raw signals are not

available, channel state information (CSI) is used to infer the position of a target. CUPID [34] and Splicer [48] derive

the power delay profiles for the paths from the transmitter to the receiver by applying IFFT on CSI measurements.

Widar [32] constructs the model between CSI and target motion and uses it for tracking. SpotFi [15] applies 2D

MUSIC to jointly estimate the distance and angle-of-arrival of a target based on CSI measurements. Chronos [40]

combines the CSI measurements at different bands to improve the tracking accuracy. WiDeo [12] determines the

propagation delays of all paths by finding the best match between the CSI calculated according to these paths and

measured values. WiDraw [37] uses CSI to estimate the angle-of-arrival of a target and relies on multiple WiFi

APs for localization. The CSI-based approaches work on commodity devices (e.g., WiFi APs and smartphones)

and do not require any special hardware (e.g., RFID tags and steerable antennas). However, these approaches

only achieve decimeter level tracking accuracy, which is insufficient for fine-grained tracking applications.

7.3 Neural Network Based Tracking

RF-Echo [6] applies a neural network with a single hidden layer to estimate the propagation delay of RF signals

based on the correlation profile. RF-Pose [57] develops a convolutional neural network to estimate a user’s

poses based on heat maps generated by RF signals. RF-Pose3D [58] further extends above approaches to 3D

pose estimation. Other works [4, 18] apply the recurrent neural network to determine a user’s indoor location

using the received signal strength of RF signals. RF-Finger [42] identifies the multi-touch gestures by applying

CNN. WordRecorder [7] extracts the spectrogram feature from acoustic signals and combines with CNN for

handwriting classification. A multi-LSTM neural network is designed in [17] to fingerprint mobile device sensor,

instead of using handcrafted features. RTrack [23] develops an RNN to automatically learn the mapping between

the 2D profile and target position to exploit the temporal locality. All these works need features extracted from

the received signals before applying neural networks, while our network directly takes the received signals as

the input. Using the raw signals is beneficial to achieve better performance as demonstrated by our experiments.

In addition, these approaches require collecting lots of data to train the networks, which can be time-consuming

and labor-intensive.
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Recently, there have been many CNN-based object detectors improving the accuracy of detecting sonar images.

[47] first implements CNN over synthetic aperture sonar image and argument data by mirroring mugshots. [13]

makes use of the efficient YOLO model on forward-looking sonar images for real-time detection. [59] extracts

target features by AlexNet and classify objects by applying SVM to side-scan sonar images. [45] further proposes

an adaptive weights CNN to fuse the generated weights of the deep belief network and normalize the adaptive

weights by local response normalization. They directly apply detectors for optical images to sonar images and

ignore the inherent differentiation. [20] designs a Noise Adversarial Network as the sideway network to introduce

perturbation with specific noise to sonar images during training to generalize the object detector in sonar images.

These works apply deep learning to images derived from processing acoustic signals and hence are more similar

to image processing work. In comparison, our works directly feed raw acoustic signals to DNN. This is more

challenging but can achieve higher gain since post-processing using existing signal processing methods may

already reduce accuracy, which can be hard to recover at the later stage. Our results demonstrate our approach

outperforms the approaches that apply DNN to outputs from signal processing stages.

8 CONCLUSION

In this paper, we develop a deep learning based ranging. To eliminate the need of collecting large volumes of

training data, we generate synthetic signals by incorporating important factors in real environments, such as

noise, multipath, self interference, and transceiver frequency response. We develop a DNN that uses filters with

long kernel sizes to detect signal patterns and applies the ensemble method to enhance the estimation accuracy.

We evaluate DRNet on real data collected using 11 phones across 4 locations, and show it achieves significant

performance gain over FMCW.
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