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Abstract

In an effort to study the stability of contact lines in fluids, we consider the dynamics of a drop of incom-
pressible viscous Stokes fluid evolving above a one-dimensional flat surface under the influence of gravity. 
This is a free boundary problem: the interface between the fluid on the surface and the air above (modeled 
by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, 
air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface 
and the flat surface is called the contact angle. We consider a model of this problem that allows for fully 
dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then 
allows us to show that for initial data sufficiently close to equilibrium, the model admits global solutions 
that decay to a shifted equilibrium exponentially fast.
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z1 ∈ R
�(t) = {z | L(t) < z1 < R(t),0 < z2 < ζ(t, z1)}

�(t) = {z2 = ζ(z1, t)}

L(t) R(t)

Fig. 1. An example of a droplet domain.

1. Problem formulation

Consider a two-dimensional droplet of viscous incompressible fluid evolving above a one-
dimensional flat surface. Denote the spatial variable z = (z1, z2) ∈ R2. We then assume that at 
time t ≥ 0 the fluid occupies the moving droplet domain

�(t) := {z ∈R2 : 0 < z2 < ζ(t, z1)}, (1.1)

where the free surface of the droplet is given by the unknown function ζ(t, ·) : [L(t), R(t)] →
R+, which satisfies ζ(t, L(t)) = ζ(t, R(t)) = 0. Here L(t) and R(t) are the left and right end 
points of the moving droplet domain. We write the free surface at the top of the droplet as

�(t) := {(z1, z2) : L(t) < z1 < R(t), z2 = ζ(t, z1)}, (1.2)

and at the bottom as

�b(t) := {(z1, z2) : L(t) < z1 < R(t), z2 = 0}. (1.3)

See Fig. 1 for an example of such a fluid droplet domain. For each t ≥ 0, the fluid is de-
scribed by its velocity and pressure (u(t, ·), P(t, ·)) : �(t) → R2 × R. The viscous stress ten-
sor is determined in term of P and u according to S(P, u) = PI − μDzu, where I is the 
2 × 2 identity matrix, Dzu = ∇zu + (∇zu)T is the symmetric gradient of u, and μ > 0 is 
the viscosity of the fluid. We note that a simple computation reveals that if ∇z · u = 0, then 
∇z · S(P, u) = −μ�zu + ∇zP .

Before stating the equations of motion, we define a number of terms that will appear. We will 
write g > 0 for the strength of gravity, σ > 0 for the surface tension coefficient along the free 
surface, and β > 0 for the Navier slip friction coefficient on the flat surface. The coefficients 
γsv, γsf ∈ R are a measure of the free-energy per unit length associated to the solid-vapor and 
solid-fluid interaction, respectively. We set [γ ] = γsv − γsf and make the crucial assumption that
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0 <
[γ ]
σ

< 1. (1.4)

This is equivalent to the classical Young’s law, together with the extra assumption that [γ ] > 0. 
The former is a necessary condition for the existence of any equilibrium state, while the latter is 
a technical condition that guarantees that any equilibrium state can be described as above by the 
graph of a function. Finally, we define the contact point velocity response function V : R → R
to be a C2 increasing diffeomorphism such that V (0) = 0. We will refer to its inverse as W =
V −1 ∈ C2(R).

We require that (u, P, ζ, L, R) satisfy the gravity-driven free-boundary incompressible Stokes 
equations in �(t) for t > 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇z · S(P,u) = −μ�zu + ∇zP = 0 in �(t),

∇z · u = 0 in �(t),

S(P,u)ν = gζν − σH(ζ )ν on �(t),(
S(P,u)ν − βu

)
· τ = 0 on �b(t),

u · ν = 0 on �b(t),

∂t ζ + u1∂z1ζ − u2 = 0 on �(t),

∂tL = V

⎛
⎜⎝σ

1√
1 + ∣∣∂z1ζ

∣∣2
∣∣∣∣∣
z1=L

− [γ ]
⎞
⎟⎠ ,

∂tR = V

⎛
⎜⎝[γ ] − σ

1√
1 + ∣∣∂z1ζ

∣∣2
∣∣∣∣∣
z1=R

⎞
⎟⎠ ,

(1.5)

for ν the outward-pointing unit normal vector, τ the associated unit tangent vector, and

H(ζ ) := ∂z1

⎛
⎜⎝ ∂z1ζ√

1 + ∣∣∂z1ζ
∣∣2
⎞
⎟⎠ , (1.6)

being twice the mean-curvature operator. Note that here we have already shifted the gravitational 
force to eliminate the atmospheric pressure Patm by adjusting the actual pressure P̄ according to 
P = P̄ + gz2 − Patm. Also, it is easy to see that the contact point equations are equivalent to

W (∂tL) = σ
1√

1 + ∣∣∂z1ζ
∣∣2
∣∣∣∣∣
z1=L

− [γ ] and W (∂tR) = [γ ] − σ
1√

1 + ∣∣∂z1ζ
∣∣2
∣∣∣∣∣
z1=R

. (1.7)

The mass of the fluid is conserved in time since the transport equation in (1.5) is equivalent to 

∂t ζ = (u · ν)

√
1 + ∣∣∂z ζ

∣∣2:
1
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Solid

FluidVapor

θeq

Fig. 2. Equilibrium contact angle very near the contact point.

d

dt
|�(t)| = d

dt

R(t)∫
L(t)

ζ(t, z1)dz1 =
R(t)∫

L(t)

∂t ζ(t, z1)dz1 + ∂tLζ
(
t,L(t)

)
− ∂tRζ

(
t,R(t)

)
(1.8)

=
R(t)∫

L(t)

∂t ζ(t, z1)dz1 =
∫

�(t)

u · ν =
∫

∂�(t)

u · ν =
∫

�(t)

∇z · u = 0.

We denote this conserved mass

M = |�(t)| =
R(t)∫

L(t)

ζ(t, z1)dz1. (1.9)

1.1. Background and model discussion

The study of triple interfaces between fluid, solid, and vapor phases is rather old, dating to the 
work of Young [19], Laplace [13], and Gauss [10] in the nineteenth century. In the subsequent 
two centuries this problem has attracted the attention of far too many researchers for us to attempt 
a full survey of the literature here. Instead we refer to the exhaustive survey by de Gennes [6] for 
a more thorough discussion.

The initial work of Young, Laplace, and Gauss showed that equilibrium configurations not 
only solve a particular equation, known as the gravity-capillary equation, but also satisfy fixed 
contact angle conditions determined via

cos(θeq) = −[γ ]
σ

. (1.10)

See Fig. 2 for a schematic. Note in particular that this, together with our sign assumption (1.4)
allows for the possibility of describing the fluid-vapor interface by a graph.

The dynamics at a contact point are a much more complicated issue. The first issue to deal 
with in the context of viscous fluids is that the usual no-slip condition (u = 0 at the fluid-solid 
interface) combines with the free boundary kinematic equation (the sixth equation in (1.5)) to 
disallow contact point motion, which is obvious nonsense. The no-slip condition must then be 
replaced with the more general Navier-slip conditions, the fourth and fifth equations in (1.5), 
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which do allow the fluid to slip along the interface at the expense of a dissipative frictional force 
but do not allow the fluid to penetrate the solid.

Much work has gone into the study of contact point (and line) motion: we refer to the surveys 
of Dussan [7] and Blake [2] for a thorough discussion of theoretical and experimental studies. 
What has emerged from these studies is the understanding that deviation of the dynamic contact 
angle θdyn from the equilibrium angle θeq (which we recall is determined via Young’s relation 
(1.10)) causes the contact point to move in an attempt to return to the equilibrium value. More 
precisely, these quantities are related via

Vcl = V (σ (cos(θdyn) − cos(θeq))), (1.11)

where Vcl is the contact point normal velocity and V is the increasing diffeomorphism such that 
V (0) = 0, mentioned above. Equations of the form (1.11) have been derived in a number of 
ways. Blake-Haynes [3] combined thermodynamic and molecular kinetics arguments to arrive at 
V (z) = A sinh(Bz) for material constants A, B > 0. Cox [5] used matched asymptotic analysis 
and hydrodynamic arguments to derive (1.11) with a different V but of the same general form. 
Ren-E [14] performed molecular dynamics simulations to probe the physics near the contact 
point and also found an equation of the form (1.11). Ren-E [15] also derived (1.11) from con-
stitutive equations and thermodynamic principles. The last pair of equations in (1.5) implement 
(1.11) in the context of the droplet problem.

In recent work, Guo-Tice [9] studied a version of (1.5), coupling the incompressible Stokes 
equations to the Navier-slip conditions and a contact point equation of the form (1.11), within 
the context of the fluid evolving inside a vessel. They proved that for data starting sufficiently 
close to equilibrium (measured in an appropriate Sobolev norm), solutions exist globally in time 
and decay to equilibrium at an exponential rate. This provides some evidence in support of the 
model, which was identified in total for the first time by Ren-E [14], as one expects asymptotic 
stability of equilibria for most physically meaningful models. The purpose of the present paper 
is to further press the Ren-E model by examining its behavior when used in droplet geometries. 
These are more complicated than the vessel geometries of [9] since there is an extra degree of 
freedom corresponding to the motion of the droplet endpoints.

There has also been much prior work devoted to studying contact lines and points in simplified 
thin-film models; we will not attempt to enumerate these results here and instead refer to the 
survey by Bertozzi [1]. By contrast, there are relatively few results in the literature related to 
models in which the full fluid mechanics are considered, and to the best of our knowledge none 
that allow for both dynamic contact point and dynamic contact angle. Schweizer [16] studied 
a 2D Navier-Stokes problem with a fixed contact angle of π/2. Bodea [4] studied a similar 
problem with fixed π/2 contact angle in 3D channels with periodicity in one direction. Knüpfer-
Masmoudi [12] studied the dynamics of a 2D drop with fixed contact angle when the fluid is 
assumed to be governed by Darcy’s law. Related analysis of the fully stationary Navier-Stokes 
system with free, but unmoving boundary, was carried out in 2D by Solonnikov [18] with contact 
angle fixed at π , by Jin [11] in 3D with angle π/2, and by Socolowsky [17] for 2D coating 
problems with fixed contact angles.

1.2. Energy-dissipation structure

The system (1.5) has a natural energy-dissipation structure, which we present in the following 
theorem, the proof of which we postpone to Appendix B.1.
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Theorem 1.1. We have

d

dt

⎛
⎝ R∫

L

g

2
|ζ |2 +

R∫
L

σ

√
1 + ∣∣∂z1ζ

∣∣2 − [γ ](R − L)

⎞
⎠ (1.12)

+
⎛
⎜⎝ ∫

�(t)

μ

2
|Dzu|2 +

∫
�b(t)

β |u · τ |2 +
(

W (∂tL)∂tL + W (∂tR)∂tR

)⎞⎟⎠= 0.

Note that in light of the assumption (1.4) we have that [γ ] > 0, and so at first glance it is 
possible for the energetic term (the term acted on by the time derivative) in Theorem 1.1 to be 
negative. However, this does not happen due to Young’s condition (1.4); indeed,

R∫
L

σ

√
1 + ∣∣∂z1ζ

∣∣2 − [γ ](R − L) ≥
R∫

L

σ − [γ ](R − L) = (σ − [γ ])(R − L) > 0. (1.13)

1.3. Equilibrium

Note that in light of Theorem 1.1 any steady state equilibrium solution to (1.5) must satisfy 
ζ(t, z1) = ζ0(z1), u(t, z) = 0, P(t, z) = P0, and L(t) = L0, R(t) = R0, with ζ0 and P0 satisfying 
a number of equilibrium conditions. Given such a solution, we define the equilibrium domain 
to be the set �0 = {(z1, z2) : L0 ≤ z1 ≤ R0, 0 ≤ z2 ≤ ζ0(z1)}. Our next result provides for the 
existence of an equilibrium.

Theorem 1.2. Assume (1.4). Then there exists a smooth equilibrium satisfying u = 0 and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gζ0 − σ∂z1

⎛
⎜⎝ ∂z1ζ0√

1 + ∣∣∂z1ζ0
∣∣2
⎞
⎟⎠= P0,

∣∣∂z1ζ0(L0)
∣∣= ∣∣∂z1ζ0(R0)

∣∣=
√

σ 2 − [γ ]2

[γ ] , ζ0(L0) = ζ0(R0) = 0,

R0∫
L0

ζ0(z1)dz1 = M,P0 = C1

(
M,g,σ, [γ ]

)
, R0 − L0 = C2

(
M,g,σ, [γ ]

)
,

(1.14)

where C1

(
M, g, σ, [γ ]

)
and C2

(
M, g, σ, [γ ]

)
are positive constants that depends on M, g, σ , 

[γ ]. Moreover, the equilibrium is unique up to a common shift of L0 and R0 and a corresponding 
translation of ζ0.

The proof of this theorem may be found in Appendix B.2. Note that there is a translation 
invariance in the equilibrium that does not uniquely determine its location on the surface. Once 
one of the endpoints is selected, though, the equilibrium is unique.
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1.4. Geometric reformulation

In order to analyze the PDE system (1.5) we will reformulate the equations in the equilib-
rium domain �0. The basic idea is to define a time-dependent diffeomorphism transforming the 
moving domain �(t) into the fixed equilibrium domain �0. We intend to construct a geometric 
mapping �0 → �(t) : x → z. Without loss of generality, we assume the center of the bottom of 

the equilibrium domain is located at the origin. Let � = R0 − L0

2
. Then the equilibrium domain 

is

�0 := {x = (x1, x2) : −� < x1 < �, 0 < x2 < ζ0(x1)}. (1.15)

Correspondingly, we denote the equilibrium top

�0 := {(x1, x2) : x2 = ζ0(x1),−� < x1 < �}, (1.16)

the equilibrium bottom

�0b := {(x1, x2) : x2 = 0,−� < x1 < �}. (1.17)

The mapping is constructed as follows.

• Define the mapping from �̃(t) = {y = (y1, y2) : −� < y1 < �, 0 < y2 < ζ(t, y1)} to �(t) as

� : y1 → z1 = R(t) − L(t)

2�
y1 + R(t) + L(t)

2
, y2 → z2 = y2. (1.18)

This is a dilation in the horizontal direction.
• Let the free surface be given as a small perturbation of ζ0, i.e. ζ = ζ0 + η for some η(t, ·) :

R+ × [−�, �] → R. Firstly, we extend η from Hs(L0, R0) to Hs(R) by means of a standard 
extension operator E : Hs(L0, R0) → Hs(R), which is bounded for all 0 ≤ s ≤ 3. Then we 
define the upper harmonic extension of η(t, x1) from x2 = 0 to x2 ≥ 0 as η̄(t, x1, x2) given 
by

η̄(t, x) := P
[
E[η]
]
(t, x1, ζ0(x1) − x2) (1.19)

for

Pf (z1, z2) :=
∫
R

f̂ (ξ)e−2π |ξ |z2e2πiz1ξ dξ. (1.20)

It is easy to check that η̄
(
t, x1, ζ0(x1)

)
= P
[
E[η]
]
(t, x1, 0) = η(t, x1), which means that 

η(t, x1) = η̄(t, x1, x2) at �0.
654
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• Define the mapping from �0 to �̃(t) as

� : x1 → y1, x2 → y2 =
(

1 + η̄(t, x1, x2)

ζ0(x1)

)
x2. (1.21)

This maps x2 = ζ0(x1) to y2 = ζ(y1) and x2 = 0 to y2 = 0.
• Then the composition � = � ◦ � : �0 → �(t)

� : x1 → z1 = R(t) − L(t)

2�
x1 + R(t) + L(t)

2
, x2 → z2 =

(
1 + η̄(t, x1, x2)

ζ0(x1)

)
x2, (1.22)

is the desired geometric mapping.

Write

J1 = R(t) − L(t)

2�
, K1 = 1

J1
, J2 = 1 + η̄

ζ0
+ x2∂2η̄

ζ0
, K2 = 1

J2
, A =

(
∂1η̄

ζ0
− η̄∂1ζ0

ζ 2
0

)
x2,

(1.23)

and define Ki = 1

Ji

with i = 1, 2. Then the Jacobi and transform matrices are then

∇� =
(

J1 0
A J2

)
and A = (∇�)−T =

(
K1 −AK

0 K2

)
, (1.24)

with the Jacobian J = det(∇�) = J1J2 and K = det(A) = 1

J
= K1K2. We will work within a 

small-energy regime that guarantees that � is a diffeomorphism and J, K > 0.
In the new coordinates, u(t, x), P(t, x), ζ(t, x1), L(t), and R(t) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇A · SA(P,u) = 0 in �0,

∇A · u = 0 in �0,

SA(P,u)N = gζN − σ∂A1

⎛
⎜⎝ ∂A1ζ√

1 + ∣∣∂A1ζ
∣∣2
⎞
⎟⎠N on �0,

(
SA(P,u)N − βu

)
· T = 0 on �0b,

u ·N = 0 on �0b,

∂t ζ − K1ã∂1ζ + u1∂A1ζ − u2 = 0 on �0,

W (∂tL) = σ
1√

1 + ∣∣∂A1ζ
∣∣2
∣∣∣∣∣
x1=−�

− [γ ],

W (∂tR) = [γ ] − σ
1√

1 + ∣∣∂A1ζ
∣∣2
∣∣∣∣∣
x1=�

,

(1.25)
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where here

ã = ∂tR − ∂tL

2�
x1 + ∂tR + ∂tL

2
(1.26)

and ∇A, �A and DA are weighted operators defined as follows with Einstein summation em-
ployed

(∇Af )i = Aij ∂j f, ∇A · 	g = Aij ∂j gi, �Af = ∇A · ∇Af, and (DAu)ij = Aik∂kuj +Ajk∂kui .

(1.27)
The tensor SA(P, u) = PI − μDAu satisfies ∇A · SA(P, u) = −μ�Au + ∇AP whenever u is 
such that ∇A · u = 0. Also, ∂A1 = K1∂1 denotes the weighted derivative in x1 direction. More-
over, N = JAν0 and T = JAτ0, where ν0 and τ0 are the unit normal and tangential vectors on 
∂�0. In particular, on �0,

ν0 = (−∂1ζ0,1)√
1 + |∂1ζ0|2

, τ0 = (1, ∂1ζ0)√
1 + |∂1ζ0|2

. (1.28)

We may directly verify that

N = (−∂1ζ, J1)√
1 + |∂1ζ0|2

on �0. (1.29)

The transport equation can be rewritten as

∂t ζ − K1ã∂1ζ = K1(u ·N )

√
1 + |∂1ζ0|2, (1.30)

or

J1∂t ζ − ã∂1ζ = (u ·N )

√
1 + |∂1ζ0|2. (1.31)

Note that the mass conservation equation in the new coordinates reads

M =
�∫

−�

J1ζ(t, x1)dx1. (1.32)

In these new coordinates, there is a natural variant of energy-dissipation structure of Theo-
rem 1.1. For the sake of brevity we will not prove this here but merely state it.

Theorem 1.3. We have

∂t

⎛
⎜⎝∫ J

2
|u|2 +

�∫
gJ1

2
|ζ |2 +

�∫
σJ1

√
1 + K2

1 |∂1ζ |2 − [γ ](R − L)

⎞
⎟⎠ (1.33)
�0 −� −�
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+
⎛
⎜⎝∫

�0

μJ

2
|DAu|2 +

∫
�0b

β |u · τ0|2 +
(
W (∂tL)∂tL + W (∂tR)∂tR

)⎞⎟⎠= 0.

1.5. Perturbation form

We will consider solutions to the full problem as perturbations around the equilibrium state 
(0, P0, ζ0, L0, R0) given by Theorem 1.1. We will now reformulate the equations in (1.25) in 
terms of the perturbed unknowns.

Define the perturbation variables

p := P − P0, η := ζ − ζ0, l := L + �, r := R − �. (1.34)

Define κ = W ′(0) > 0, and let

Ŵ (z) = 1

κ
W (z) − z. (1.35)

Since

∂A1

⎛
⎜⎝ ∂A1ζ√

1 + ∣∣∂A1ζ
∣∣2
⎞
⎟⎠= ∂1

⎛
⎜⎜⎝ K2

1

(
∂1ζ0 + ∂1η

)
√

1 + K2
1

(
∂1ζ0 + ∂1η

)2

⎞
⎟⎟⎠ , (1.36)

we may linearize

∂A1

⎛
⎜⎝ ∂A1ζ√

1 + ∣∣∂A1ζ
∣∣2
⎞
⎟⎠= ∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3 +R, (1.37)

where

k1 = K1 − 1 = 2�

R − L
− 1 = − r − l

2� + r − l
, (1.38)

and the nonlinear terms are included in R. See Appendix C.3 for an alternate expansion of R.
Similarly, since

1√
1 + ∣∣∂A1ζ

∣∣2 = 1√
1 + K2

1

(
∂1ζ0 + ∂1η

)2
, (1.39)

we may linearize

1√
1 + ∣∣∂A1ζ

∣∣2 = 1√
1 + |∂1ζ0|2

− k1 |∂1ζ0|2 + ∂1ζ0∂1η(√
1 + |∂1ζ0|2

)3 +Q, (1.40)
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where Q contains the nonlinear terms. Again we refer to Appendix C.3 for an alternate expansion 
of Q.

For the convenience of linearized energy-dissipation estimates, we intend to connect k1 with 
ã. Define a modification of ã as

a = 2�(∂t r − ∂t l)

(2� + r − l)2 x1 + ∂t r + ∂t l

2
, (1.41)

which satisfies the relation ∂tk1 = −∂1a, and let

O = a − ã = − (r − l)(4� + r − l)

2(2� + r − l)2 (∂t r − ∂t l)x1 (1.42)

represent the nonlinear perturbation terms. We may linearize the transport equation in (1.25)

∂tη − a∂1ζ0 = (u ·N )

√
1 + |∂1ζ0|2 + S, (1.43)

where S contains the nonlinear terms. See Appendix C.3 for another expression of S .
Considering the conservation of mass

M =
−�∫

−�

ζ0(x1)dx1 =
�∫

−�

J1ζ(t, x1)dx1 =
�∫

−�

J1

(
ζ0(x1) + η(t, x1)

)
dx1, (1.44)

we have

J1

�∫
−�

η(t, x1)dx1 =
−�∫

−�

(1 − J1)ζ0(x1)dx1, or

�∫
−�

η(t, x1)dx1 =
−�∫

−�

(K1 − 1)ζ0(x1)dx1. (1.45)

Hence, we know the linearization of mass conservation:

�∫
−�

η = k1

�∫
−�

ζ0 = k1M. (1.46)

Therefore, we can rewrite the system (1.25) in the linearized variables u(t, x), p(t, x) and 
η(t, x1) with l(t) and r(t):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇A · SA(p,u) = 0 in �0,

∇A · u = 0 in �0,

SA(p,u)N = gηN − σ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3 +R

⎞
⎟⎠N on �0,

(
SA(p,u)N − βu

)
· T = 0 on �0b,

u ·N = 0 on �0b,

∂tη − a∂1ζ0 = (u ·N )
√

1 + |∂1ζ0|2 + S on �0,

κ∂t l + κŴ (∂t l) = σ

⎛
⎜⎝−k1 |∂1ζ0|2 + ∂1ζ0∂1η(√

1 + |∂1ζ0|2
)3 +Q

⎞
⎟⎠
∣∣∣∣
x1=−�

,

κ∂t r + κŴ (∂t r) = −σ

⎛
⎜⎝−k1 |∂1ζ0|2 + ∂1ζ0∂1η(√

1 + |∂1ζ0|2
)3 +Q

⎞
⎟⎠
∣∣∣∣
x1=�

.

(1.47)

2. Main results and discussion

2.1. Energy and dissipation

In order to state our main results we must first define a number of energy and dissipation 
functionals. We define the basic or parallel (since temporal derivatives are the only ones parallel 
to the boundary) energy as

E‖ =
2∑

j=0

∥∥∥∂j
t η

∥∥∥2

H 1(−�,�)
, (2.1)

and the basic dissipation as

D̃‖ =
2∑

j=0

∥∥∥∂j
t u

∥∥∥2

H 1(�0)
+

2∑
j=0

∥∥∥∂j
t u

∥∥∥2

H 0(�0b)
+

2∑
j=0

(∣∣∣∂j+1
t l

∣∣∣2 +
∣∣∣∂j+1

t r

∣∣∣2). (2.2)

We also define the improved basic dissipation as

D‖ = D̃‖ +
2∑

j=0

∥∥∥∂j
t p

∥∥∥2

H 0(�0)
+

2∑
j=0

∥∥∥∂j
t η

∥∥∥2

H
3
2 (−�,�)

(2.3)

+
2∑(∣∣∣∂j

t ∂1η(−�)

∣∣∣2 +
∣∣∣∂j

t ∂1η(�)

∣∣∣2)+
2∑(∣∣∣∂j

t u(−�,0) ·N
∣∣∣2 +
∣∣∣∂j

t u(�,0) ·N
∣∣∣2).
j=0 j=0

659



I. Tice and L. Wu Journal of Differential Equations 272 (2021) 648–731
The basic energy and dissipation arise through a version of the energy-dissipation relation (1.12). 
However, once we control these terms we are then able to control much more. This extra control 
is encoded in the full energy and dissipation, which are defined as follows:

E = E‖ + ‖u‖2
W 2

δ (�0)
+ ‖∂tu‖2

H 1(�0)
+ ‖p‖2

W 1
δ (�0)

+ ‖∂tp‖2
H 0(�0)

(2.4)

+‖η‖2

W
5
2

δ (−�,�)

+ ‖∂tη‖2

H
3
2 (−�,�)

+
1∑

j=0

(∣∣∣∂j+1
t l(t)

∣∣∣2 +
∣∣∣∂j+1

t r(t)

∣∣∣2)

+
1∑

j=0

(∣∣∣∂j
t ∂1η(−�)

∣∣∣2 +
∣∣∣∂j

t ∂1η(�)

∣∣∣2)+
1∑

j=0

(∣∣∣∂j
t u(−�,0) ·N

∣∣∣2 +
∣∣∣∂j

t u(�,0) ·N
∣∣∣2),

and

D =D‖ + ‖u‖2
W 2

δ (�0)
+ ‖∂tu‖2

W 2
δ (�0)

+ ‖p‖2
W 1

δ (�0)
+ ‖∂tp‖2

W 1
δ (�0)

(2.5)

+ ‖η‖2

W
5
2

δ (−�,�)

+ ‖∂tη‖2

W
5
2

δ (−�,�)

+
∥∥∥∂2

t η

∥∥∥2

W
3
2

δ (−�,�)
+
∥∥∥∂3

t η

∥∥∥2

W
1
2

δ (−�,�)
.

The spaces Wr
δ are weighted Sobolev spaces, as defined in Appendix A, for a fixed weight pa-

rameter δ ∈ (0, 1).

2.2. Main theorems

Our main result establishes the existence of global-in-time solutions that decay to equilibrium 
at an exponential rate.

Theorem 2.1. Fix 0 < δ < 1. There exists a universal constant ϑ > 0 such that if E(0) ≤ ϑ , then 
there exists a unique global solution (u, p, η) to (1.47) such that

sup
t≥0

(
E(t) + eλt

(
E‖(t) + ‖u(t)‖2

H 1(�0)
+ ‖u(t) · τ0‖2

H 0(�0b)
+ ‖p(t)‖2

H 0(�0)
+ |∂t l(t)|2 (2.6)

+
∣∣∣∂t r(t)

2
∣∣∣+ |∂1η(t,−�)|2 + |∂1η(t, �)|2 + |u(t,−�,0) ·N |2 + |u(t, �,0) ·N |2

))

+
∞∫

0

D(t)dt � E(0).

Some remarks are in order. First, the result can be interpreted as saying that the equilibrium 
constructed in Theorem 1.2 is asymptotically stable in the dynamics (1.47). Second, although the 
equilibrium droplet is asymptotically stable in the sense described in the theorem (namely, in the 
fixed coordinate system), its final location in Eulerian coordinates does not have to coincide with 
where it began. Indeed, let X = (X1, X2) be the mass center of the fluid. Then we know
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∂tX = 1

M

∫
�0

J (t)u(t, x)dx. (2.7)

Based on the exponential decay of u, we know there exists λ > 0 such that

eλt |∂tX| � E(0). (2.8)

Therefore, we know

|X(∞) − X(0)| � E(0)

λ
< ∞. (2.9)

In other words, the mass center is shifted for a finite distance. This is consistent with the fact that 
the equilibrium is only unique once one of its endpoints is fixed. The translation invariance gives 
a one-parameter family of equilibria, and our result then says that this family is stable.

Third, the theorem is valid for any weight parameter 0 < δ < 1. This is in contrast with the 
result in [9] for the vessel problem, which required δ to be tuned to the equilibrium contact angle. 
The reason for this is that in the present paper, in order to employ the graph formulation for the 
droplet we have had to enforce (1.4), which restricts to θeq ∈ (π/2, π). In this range there are 
no restrictions placed on δ ∈ (0, 1) in the weighted elliptic theory. It is only for acute θeq that 
restrictions are needed, as in [9].

Our strategy for proving Theorem 2.1 is in broad strokes the same as that employed for the 
vessel problem in [9]: we use a nonlinear energy method based on the physical energy-dissipation 
structure of 1.3, coupled to weighted elliptic estimates in the equilibrium domain. This results 
in a closed scheme of a priori estimates (Theorems 7.3 and 7.4) that couples to a local existence 
theory (Theorem 7.5) via a continuation argument to give global decaying solutions.

All of the difficulties (other than the δ restriction issue described above) from the vessel prob-
lem carry over to the droplet problem, so we refer to the introduction of [9] for a summary of 
these and the strategy for dealing with them. There are two principal new difficulties caused by 
the droplet geometry. The first is due to the extra degree of freedom present in the horizontal mo-
tion of the droplet endpoints. In our geometric coordinate system this motion is manifest in the 
first part of the Jacobian, J1, due to dilation and contraction of the interval (L(t), R(t)). While 
the dissipation provides control of the time derivatives of L, R, it is not clear from Theorem 1.3
that dissipative control of J1 is possible. This is analogous to the problem of controlling η with 
the dissipation when it naturally only controls ∂tη. Acquiring dissipative control of J1 and η, 
which couple together in a nontrivial way, is one of the key steps in our a priori estimates. The 
second new difficulty is manifest in the fact that the free surface graph intersects the flat line on 
which the droplet resides. This causes technical problems with the geometric coefficients near 
the contact points, and we must resort to delicate analysis to handle these.

The rest of the paper is organized as follows. In Section 3 we develop essential linearized 
analysis tools. In Section 4 we record various auxiliary estimates that couple directly to the 
energy-dissipation structure to give enhanced control. In Section 5 we estimate the various 
nonlinearities appearing in the energy-dissipation structure. For the sake of brevity we have at-
tempted to borrow as many of these as possible from [9], but many terms in the droplet problem 
do not appear in the vessel problem and require delicate analysis. In Section 6 we estimate the 
various nonlinear terms appearing in the elliptic estimates. Again, we have borrowed what we 
could from [9], but much new work was needed. Finally, in Section 7 we synthesize our a priori 
estimates and complete the proof of Theorem 2.1.
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3. Linear analysis

In this section we analyze the problem (1.47) and its time derivatives in linear form. To begin 
we record the form of (1.47) when time derivatives are applied. Upon doing this we find that 
v(t, x) := ∂m

t u(t, x), q(t, x) := ∂m
t p(t, x), �(t, x1) := ∂m

t η(t, x1), L (t) := ∂m
t l(t) and R(t) :=

∂m
t r(t) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇A · SA(q, v) = F1 in �0,

∇A · v = F2 in �0,

SA(q, v)N = g�N − σ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3 + ∂m

t R

⎞
⎟⎠N +F3 on �0,

(
SA(q, v)N − βv

)
· T = F4 on �0b,

v ·N = 0 on �0b,

∂t� − a∂1ζ0 = (v ·N )
√

1 + |∂1ζ0|2 + ∂m
t S +F5 on �0,

κ∂tL = σ

⎛
⎜⎝−K1 |∂1ζ0|2 + ∂1ζ0∂1�(√

1 + |∂1ζ0|2
)3 + ∂m

t Q

⎞
⎟⎠
∣∣∣∣−�

+F6,

κ∂tR = −σ

⎛
⎜⎝−K1 |∂1ζ0|2 + ∂1ζ0∂1�(√

1 + |∂1ζ0|2
)3 + ∂m

t Q

⎞
⎟⎠
∣∣∣∣
�

+F7,

(3.1)

where K1 := ∂m
t k1 and a := ∂m

t a satisfying ∂1a = −∂tK1, with the mass conservation

�∫
−�

� = K1

�∫
−�

ζ0. (3.2)

Here, the nonlinear terms F1 −F7 are defined in Appendix C.2.
In what follows we will need the following spaces. We define the time-dependent spaces

0H1(�0) =
{
u : �0 → R2

∣∣∣∣ ∫�0

μJ
2 |DAu|2 + ∫

�0b
β |u · τ0|2 < ∞, u ·N = 0 on �0b

}
,

(3.3)

and

W(t) =
{
v ∈ 0H1(�0) | v ·N ∈ H 1(−�, �)

}
, (3.4)

V(t) ={v ∈W | ∇A · v = 0} . (3.5)
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3.1. Weak formulation

We now aim to justify a weak formulation of (3.1).

Lemma 3.1. Suppose that η is given and A and N are determined in terms of η. If 
(v, q, �, L , R) are sufficiently regular and satisfy (3.1), then for any w ∈W(t),

∫
�0

μJ

2
DAv : DAw −

∫
�0

Jq(∇A · w) +
∫

�0b

β(v · τ0)(w · τ0) +
∫
�0

g�(w ·N ) (3.6)

+
∫
�0

K1(P0 − gζ0)(w ·N ) +
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(w ·N )

+
(

− κ

∂1ζ0
∂tR(w ·N )

∣∣∣∣
�

− κ

∂1ζ0
∂tL (w ·N )

∣∣∣∣−�

)

=
∫
�0

Jw ·F1 −
∫
�0

w ·F3 −
∫

�0b

F4

(
w · T

|T |2
)

−
∫
�0

σ∂1∂
m
t R(w ·N )

+ σ

∂1ζ0
∂m
t Q(w ·N )

∣∣∣∣
�

−�

− 1

∂1ζ0
F7(w ·N )

∣∣∣∣
�

− 1

∂1ζ0
F6(w ·N )

∣∣∣∣−�

.

Proof. Multiplying Jw on both sides of the Stokes equation and integrating over �0 imply

∫
�0

J
(
∇A · SA(q, v)

)
· w =

∫
�0

Jw ·F1.

Using the simple identity

JAν0 =
{

Jν0 on �0b,

N on �0,
(3.7)

and integrating by parts yields

∫
�0

J
(
∇A · SA(q, v)

)
· w =

(∫
�0

μJ

2
DAv :DAw −

∫
�0

Jq(∇A · w)

)
(3.8)

+
∫ (

SA(q, v)N
)

· w +
∫ (

SA(q, v)N
)

· w = I1 + I2 + I3.
�0b �0
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We may then simplify

I2 =
∫

�0b

(
SA(q, v)N

)
· w (3.9)

=
∫

�0b

((
SA(q, v)N

)
·N
)(

w · N
|N |2

)
+
∫

�0b

((
SA(q, v)N

)
· T
)(

w · T
|T |2
)

=
∫

�0b

((
SA(q, v)N

)
· T
)(

w · T
|T |2
)

=
∫

�0b

β

(
v · T

|T |
)(

w · T
|T |
)

+
∫

�0b

F4

(
w · T

|T |2
)

=
∫

�0b

β(v · τ0)(w · τ0) +
∫

�0b

F4

(
w · T

|T |2
)

.

On the other hand, we may decompose

I3 =
∫
�0

(
SA(q, v)N

)
· w =

∫
�0

g�(w ·N ) + H +
∫
�0

w ·F3, (3.10)

where the equilibrium equation (1.14) and integrating by parts yield

H = −
∫
�0

σ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3 + ∂m

t R

⎞
⎟⎠ (w ·N ) (3.11)

=
∫
�0

K1(P0 − gζ0)(w ·N ) +
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(w ·N ) −

∫
�0

σ∂1∂
m
t R(w ·N )

−σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ (w ·N )

∣∣∣∣
�

−�

.

In particular, using the contact point equation, we have

−σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ (w ·N )

∣∣∣∣
�

−�

(3.12)

= 1

∂ ζ

(
− κ∂tR − σ∂m

t Q+F7

)
(w ·N )

∣∣∣∣ + 1

∂ ζ

(
− κ∂tL + σ∂m

t Q+F6

)
(w ·N )

∣∣∣∣

1 0 � 1 0 −�
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=
(

− κ

∂1ζ0
∂tR(w ·N )

∣∣∣∣
�

− κ

∂1ζ0
∂tL (w ·N )

∣∣∣∣−�

)

+ 1

∂1ζ0

(
− σ∂m

t Q+F7

)
(w ·N )

∣∣∣∣
�

+ 1

∂1ζ0

(
σ∂m

t Q+F6

)
(w ·N )

∣∣∣∣−�

.

Collecting all of the above terms, we have the weak formulation (3.6). �
3.2. Linearized energy-dissipation structure

We have the following equation for the evolution of the energy of (v, q, �, L , R):

Theorem 3.2. Suppose that η is given and A and N are determined in terms of η. If 
(v, q, �, L , R) satisfy (3.1), we have

∂t

⎛
⎜⎝

�∫
−�

σ

2

(
K1∂1ζ0 + ∂1�

)2

(√
1 + |∂1ζ0|2

)3 + K 2
1

2

⎛
⎝P0M + σ

�∫
−�

|∂1ζ0|2√
1 + |∂1ζ0|2

⎞
⎠+ g

2

�∫
−�

(K1ζ0 − �)2

⎞
⎟⎠

(3.13)
+
⎛
⎜⎝∫

�0

Jμ

2
|DAv|2 +

∫
�0b

β(v · τ0)
2 + κ

(
(∂tL )2 + (∂tR)2

)⎞⎟⎠

=
∫
�0

Jv ·F1 +
∫
�0

JqF2 −
∫
�0

v ·F3 −
∫

�0b

F4

(
v · T

|T |2
)

−σ

∫
�0

∂1∂
m
t R(v ·N ) +

(
− σ∂m

t Q
(
∂tL + ∂m

t O
)∣∣∣∣

�

+ σ∂m
t Q
(
∂tR + ∂m

t O
)∣∣∣∣−�

)

−κ

(
∂tR∂m

t O
∣∣∣∣
�

+ ∂tL ∂m
t O
∣∣∣∣−�

)
−F7

(
∂tR + ∂m

t O
)∣∣∣∣

�

−F6

(
∂tL + ∂m

t O
)∣∣∣∣−�

+
�∫

−�

⎛
⎜⎝g� − ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠
⎞
⎟⎠ (∂m

t S +F5).

Proof. Letting w = v in the weak formulation (3.6), we know

∫
�0

μJ

2
|DAv|2 +

∫
�0b

β |v · τ0|2) +
∫
�0

g�(v ·N ) (3.14)

+
∫
�0

K1(p0 − gζ0)(v ·N ) +
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(v ·N )

+
(

− κ

∂ ζ
∂tR(v ·N )

∣∣∣∣ − κ

∂ ζ
∂tL (v ·N )

∣∣∣∣
)

1 0 � 1 0 −�
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=
∫
�0

Jv ·F1 +
∫
�0

JqF2 −
∫
�0

v ·F3 −
∫

�0b

F4

(
v · T

|T |2
)

−
∫
�0

σ∂1∂
m
t R(v ·N )

+ σ

∂1ζ0
∂m
t Q(v ·N )

∣∣∣∣
�

−�

− 1

∂1ζ0
F7(v ·N )

∣∣∣∣
�

− 1

∂1ζ0
F6(v ·N )

∣∣∣∣−�

.

We will focus on the simplification of gravitational, surface tension, and contact point terms. We 
may directly verify the relation

∂1a = −∂tK1, (3.15)

which will be used frequently in the following.

Step 1: Gravitational term: We may decompose

G :=
∫
�0

g�(v ·N ) =
�∫

−�

g�(v ·N )

√
1 + |∂1ζ0|2 =

�∫
−�

g�
(
∂t� − a∂1ζ0 − ∂m

t S −F5

)
(3.16)

= G1 + G2 −
�∫

−�

g�(∂m
t S +F5).

Integration by parts and using (3.15), we obtain

G1 =
�∫

−�

g�∂t� = ∂t

⎛
⎝ �∫

−�

g

2
|�|2
⎞
⎠ , (3.17)

G2 = −
�∫

−�

g�a∂1ζ0 =
�∫

−�

gaζ0∂1� +
�∫

−�

gζ0�∂1a =
�∫

−�

gaζ0∂1� −
�∫

−�

g∂tK1ζ0� = A1 + A2.

(3.18)

We cannot simplify A1 and A2 at this stage and have to wait until the surface tension terms.

Step 2: Surface tension term – First stage: The transport equation in (3.1) and integrating by 
parts yield

H1 :=
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(v ·N ) (3.19)

=
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1

(
∂t� − a∂1ζ0 − ∂m

t S −F5

)
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=
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1

(
∂t� − a∂1ζ0

)
−

�∫
−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(∂

m
t S +F5).

We may use (3.15) and (1.14) to simplify

�∫
−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1

(
∂t� − a∂1ζ0

)

=
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠(∂t ∂1� − ∂1a∂1ζ0 − a∂11ζ0

)

=
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠((∂t ∂1� + ∂tK1∂1ζ0) − a∂11ζ0

)
= B1 + B2,

where

B1 =
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠(∂t ∂1� + ∂tK1∂1ζ0

)
(3.20)

=
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂t

(
∂1� + K1∂1ζ0

)
= ∂t

⎛
⎜⎝

�∫
−�

σ

2

(
K1∂1ζ0 + ∂1�

)2

(√
1 + |∂1ζ0|2

)3

⎞
⎟⎠ ,

and

B2 = −
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠a∂11ζ0 (3.21)

= −
�∫

−�

σa(K1∂1ζ0 + ∂1�)∂1

(
∂1ζ0√

1 + |∂1ζ0|2
)

=
�∫

−�

a(K1∂1ζ0 + ∂1�)(P0 − gζ0) = C1 + C2 + C3 + C4.

We may use (3.15) to directly compute
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C1 = K1P0

�∫
−�

a∂1ζ0 = −K1P0

�∫
−�

∂1aζ0 = K1P0

�∫
−�

∂tK1ζ0 = ∂t

(
P0M

2
K 2

1

)
, (3.22)

C2 = −K1g

�∫
−�

aζ0∂1ζ0 = −K1g

2

�∫
−�

a∂1 |ζ0|2 = K1g

2

�∫
−�

∂1aζ
2
0 (3.23)

= −K1g

2

�∫
−�

∂tK1ζ
2
0 = −∂t

(
K 2

1 g

4

�∫
−�

ζ 2
0

)
,

and

C3 = P0

�∫
−�

a∂1� = −P0

�∫
−�

∂1a� = P0

�∫
−�

∂tK1� = P0K1∂tK1

�∫
−�

ζ0 = ∂t

(
P0M

2
K 2

1

)
,

(3.24)
which means

C1 + C3 = ∂t

(
P0MK 2

1

)
and C4 = −

�∫
−�

gaζ0∂1�, (3.25)

and so

A1 + C4 =
�∫

−�

gaζ0∂1� −
�∫

−�

gaζ0∂1� = 0. (3.26)

Step 3: Surface tension term – Second stage: The transport equation in (3.1) and integrating 
by parts imply

H2 :=
∫
�0

K1(P0 − gζ0)(v ·N ) =
�∫

−�

K1(P0 − gζ0)
(
∂t� − a∂1ζ0 − ∂m

t S −F5

)
(3.27)

=D1 + D2 + D3 + D4 −
�∫

−�

K1(P0 − gζ0)
(
∂m
t S +F5

)
,

where by (3.15),

D1 =K1P0

�∫
−�

∂t� = K1P0

(
∂tK1

�∫
−�

ζ0

)
= ∂t

(
P0M

2
K 2

1

)
, (3.28)
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D2 = − gK1

�∫
−�

ζ0∂t� = −gK1∂t

( �∫
−�

ζ0�

)
, (3.29)

which means

A2 + D2 = −g∂tK1

( �∫
−�

ζ0�

)
− gK1∂t

( �∫
−�

ζ0�

)
= −∂t

(
gK1

�∫
−�

ζ0�

)
, (3.30)

D3 = −K1P0

�∫
−�

a∂1ζ0 = K1P0

�∫
−�

∂1aζ0 = −P0K1

�∫
−�

∂tK1ζ0 = −∂t

(
P0M

2
K 2

1

)
,

(3.31)
from which we see that

D1 + D3 = 0, (3.32)

and

D4 =gK1

�∫
−�

ζ0a∂1ζ0 = gK1

2

�∫
−�

a∂1 |ζ0|2 = −gK1

2

�∫
−�

∂1aζ
2
0 (3.33)

=gK1

2

�∫
−�

∂tK1ζ
2
0 = ∂t

(
K 2

1 g

4

�∫
−�

ζ 2
0

)
,

which in turn implies that

C2 + D4 = 0. (3.34)

In summary, we have

G + H1 + H2 = ∂t

⎛
⎝ �∫

−�

g

2
|�|2 + P0MK 2

1 − gK1

�∫
−�

ζ0�

⎞
⎠−

�∫
−�

g�(∂m
t S +F5) (3.35)

−
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(∂

m
t S +F5) −

�∫
−�

K1(P0 − gζ0)
(
∂m
t S +F5

)
.

Step 4: Contact point term – First stage: Note that ∂t�(−�) = ∂t�(�) = 0, and a(−�) = ∂tL +
∂mO(−�), a(�) = ∂tR + ∂mO(�). Using these, we have
t t
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− κ

∂1ζ0
∂tR(v ·N )

∣∣∣∣
�

− κ

∂1ζ0
∂tL (v ·N )

∣∣∣∣−�

(3.36)

= − κ

∂1ζ0
∂tR
(
∂t� − a∂1ζ0 − ∂m

t S −F5

)∣∣∣∣
�

− κ

∂1ζ0
∂tL
(
∂t� − a∂1ζ0 − ∂m

t S −F5

)∣∣∣∣−�

= κ
(
(∂tL )2 + (∂tR)2

)
+ κ

(
∂tR∂m

t O
∣∣∣∣
�

+ ∂tL ∂m
t O
∣∣∣∣−�

)

+
(

κ

∂1ζ0
∂tR
(
∂m
t S +F5

)∣∣∣∣
�

+ κ

∂1ζ0
∂tL
(
∂m
t S +F5

)∣∣∣∣−�

)
.

Step 5: Contact point term – Second stage: Using the transport equation in (3.1), we have

σ

∂1ζ0
∂m
t Q(v ·N )

∣∣∣∣
�

−�

= σ

∂1ζ0
∂m
t Q
(
∂t� − a∂1ζ0 − ∂m

t S −F5

)∣∣∣∣
�

−�

(3.37)

=
(

− σ∂m
t Q
(
∂tL + ∂m

t O
)∣∣∣∣

�

+ σ∂m
t Q
(
∂tR + ∂m

t O
)∣∣∣∣−�

)
− σ

∂1ζ0
∂m
t Q
(
∂m
t S +F5

)∣∣∣∣
�

−�

,

and

− 1

∂1ζ0
F7(v ·N )

∣∣∣∣
�

− 1

∂1ζ0
F6(v ·N )

∣∣∣∣−�

(3.38)

= − 1

∂1ζ0
F7

(
∂t� − a∂1ζ0 − ∂m

t S −F5

)∣∣∣∣
�

− 1

∂1ζ0
F6

(
∂t� − a∂1ζ0 − ∂m

t S −F5

)∣∣∣∣−�

= F7

(
∂tR + ∂m

t O
)∣∣∣∣

�

+F6

(
∂tL + ∂m

t O
)∣∣∣∣−�

+ 1

∂1ζ0
F7

(
∂m
t S +F5

)∣∣∣∣
�

+ 1

∂1ζ0
F6

(
∂m
t S +F5

)∣∣∣∣−�

.

Combining the terms related to ∂m
t S +F5, and using the equilibrium equation (1.14), we can get 

(3.13). �
4. Basic estimates

In this section we record a number of essential estimates needed for the nonlinear analysis 
of (1.47). These include auxiliary estimates for the pressure, free surface function, and contact 
points, as well as elliptic estimates for the Stokes problem.

4.1. Pressure estimates

The linearized energy-dissipation structure cannot control the pressure directly, so we need a 
separate argument. It is well-known that the pressure can be regarded as the Lagrangian multiplier 
in the fluid equation, and that this gives rise to a pressure estimate. Here we will employ estimates 
proved in [9], which we restate without proof here.
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Theorem 4.1. If (v, �) satisfies∫
�0

μJ

2
DAv :DAw +

∫
�0b

β(v · τ0)(w · τ0) +
∫
�0

g�(w ·N ) (4.1)

+
∫
�0

K1(p0 − gζ0)(w ·N ) +
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(w ·N )

+
(

− κ

∂1ζ0
∂tR(w ·N )

∣∣∣∣
�

− κ

∂1ζ0
∂tL (w ·N )

∣∣∣∣−�

)

=
∫
�0

Jw ·F1 −
∫
�0

w ·F3 −
∫

�0b

F4

(
w · T

|T |2
)

−
∫
�0

σ∂1∂
m
t R(w ·N )

+ σ

∂1ζ0
∂m
t Q(w ·N )

∣∣∣∣
�

−�

− 1

∂1ζ0
F7(w ·N )

∣∣∣∣
�

− 1

∂1ζ0
F6(w ·N )

∣∣∣∣−�

,

for all w ∈ V(t), then there exists a unique q ∈ H̊ 0(�0) such that∫
�0

μJ

2
DAv : DAw −

∫
�0

Jq(∇A · w) +
∫

�0b

β(v · τ0)(w · τ0) +
∫
�0

g�(w ·N ) (4.2)

+
∫
�0

K1(p0 − gζ0)(w ·N ) +
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(w ·N )

+
(

− κ

∂1ζ0
∂tR(w ·N )

∣∣∣∣
�

− κ

∂1ζ0
∂tL (w ·N )

∣∣∣∣−�

)

=
∫
�0

Jw ·F1 −
∫
�0

w ·F3 −
∫

�0b

F4

(
w · T

|T |2
)

−
∫
�0

σ∂1∂
m
t R(w ·N )

+ σ

∂1ζ0
∂m
t Q(w ·N )

∣∣∣∣
�

−�

− 1

∂1ζ0
F7(w ·N )

∣∣∣∣
�

− 1

∂1ζ0
F6(w ·N )

∣∣∣∣−�

,

for all w ∈ W(t). Moreover,

‖q‖2
H 0(�0)

� ‖v‖2
H 1(�0)

+ ‖F‖2
(H 1)∗ , (4.3)

where F ∈ (H 1)∗ is given by

〈F ,w〉 =
∫
�0

Jw ·F1 −
∫
�0

w ·F3 −
∫

�0b

F4

(
w · T

|T |2
)

. (4.4)

Proof. See the proof of [9, Theorem 4.6]. �
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4.2. Free surface estimates

In this section, we prove various estimates regarding the free surface function. We begin with 
a useful inequality.

Lemma 4.2. Suppose that � ∈ H 1
0 (−�, �) and K1 ∈ R satisfy (3.2). Then we have the norm 

equivalence

‖∂1�‖H 0(−�,�) � ‖K1∂1ζ0 + ∂1�‖H 0(−�,�) � ‖∂1�‖H 0(−�,�) . (4.5)

Proof. Assume that the first inequality is not true. Then we can find a sequence {(K n
1 , �n)}∞n=1 ⊂

R × H 1
0 (−�, �) such that

K n
1

�∫
−�

ζ0(x1)dx1 =
�∫

−�

�n(x1)dx1, (4.6)

with

∥∥∂1�
n
∥∥

H 0(−�,�)
= 1 and

∥∥K n
1 ∂1ζ0 + ∂1�

n
∥∥

H 0(−�,�)
≤ 1

n
. (4.7)

Then by Poincaré’s inequality and the relation (3.2), we have that

∣∣K n
1

∣∣=
∣∣∣∣∣∣

�∫
−�

�n(x1)dx1

∣∣∣∣∣∣
∣∣∣∣∣∣

�∫
−�

ζ0(x1)dx1

∣∣∣∣∣∣
−1

�
∥∥�n
∥∥

H 0(−�,�)
�
∥∥∂1�

n
∥∥

H 0(−�,�)
� 1. (4.8)

Hence, we know K n
1 is bounded and up to the extraction a subsequence, we may assume K n

1 →
K1. On the other hand, by Poincaré’s inequality, we may estimate

∥∥K n
1 ζ0 + �n

∥∥
H 1(−�,�)

�
∥∥∥∂1

(
K n

1 ζ0 + �n
)∥∥∥

H 0(−�,�)
� 1

n
. (4.9)

Hence, K n
1 ζ0 + �n → 0 in H 1, but since K n

1 → K1, we conclude that �n → � in H 1. Sending 
n → ∞ in (4.6) and using (3.2), we conclude that

K1

�∫
−�

ζ0(x1)dx1 =
�∫

−�

�(x1)dx1 = −K1

�∫
−�

ζ0(x1)dx1. (4.10)

Hence, K1=0 and �=0. This contradicts the fact that ‖∂1�‖H 0(−�,�) = limn→∞‖∂1�
n‖H 0(−�,�) =

1, which proves the first inequality. On the other hand, the second inequality follows trivially 
from (3.2). �

Next, we prove an elliptic estimate for the free surface function.
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Lemma 4.3. Suppose that � ∈ H 1
0 (−�, �) and K1 ∈R satisfy (3.2), and

�∫
−�

g�θ +
�∫

−�

K1(P0 − gζ0)θ +
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1θ = 〈F , θ〉 , (4.11)

for any θ ∈ H 1
0 (−�, �). If F ∈ H−s(−�, �) for s ∈ [0, 1], then � ∈ H 2−s

0 (−�, �) and

‖�‖H 2−s (−�,�) + |K1| � ‖F‖H−s (−�,�) . (4.12)

Proof. We begin with an H 1 estimate for �. We rearrange the first two terms of (4.11) to see the 
structure

�∫
−�

g
(
� − K1ζ0

)
θ + P0K1

�∫
−�

θ +
�∫

−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1θ = 〈F , θ〉 . (4.13)

Then we take the test function θ = K1ζ0 + � and use Lemma 4.2 to obtain

�∫
−�

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1θ =

�∫
−�

σ
|K1∂1ζ0 + ∂1�|2(√

1 + |∂1ζ0|2
)3 (4.14)

� ‖K1∂1ζ0 + ∂1�‖2
H 0(−�,�)

� ‖�‖2
H 1(−�,�)

.

On the other hand,

�∫
−�

g
(
� − K1ζ0

)
θ + P0K1

�∫
−�

θ = g

�∫
−�

(
� − K1ζ0

)(
� + K1ζ0

)
+ P0K1

�∫
−�

(
� + K1ζ0

)

(4.15)

= g

�∫
−�

(
�2 − K 2

1 ζ 2
0

)
+ P0K1

�∫
−�

� + P0K
2

1

�∫
−�

ζ0 = g

�∫
−�

|�|2 − gK 2
1

�∫
−�

ζ 2
0 + 2P0K

2
1 M

= g

�∫
−�

|�|2 + K 2
1

(
2P0M − g

�∫
−�

ζ 2
0

)
.

Consider the second equation in (1.14). Multiplying by ζ0 and integrating, we obtain the identity

P0M − g

�∫
−�

ζ 2
0 =σ

�∫
−�

|∂1ζ0|2√
1 + |∂1ζ0|2

. (4.16)

Therefore, since P0M > 0, we may use Lemma 4.2 to derive
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g

�∫
−�

�θ +
�∫

−�

K1

(
P0 − gζ0

)
θ + σ

�∫
−�

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1θ (4.17)

= σ

�∫
−�

|K1∂1ζ0 + ∂1�|2(√
1 + |∂1ζ0|2

)3 + g

�∫
−�

|�|2 + K 2
1

⎛
⎝P0M + σ

�∫
−�

|∂1ζ0|2√
1 + |∂1ζ0|2

⎞
⎠

� ‖�‖2
H 1(−�,�)

+ K 2
1 .

Also, we use Lemma 4.2 to directly estimate

|〈F , θ〉| � ‖F‖H−1(−�,�) ‖θ‖H 1(−�,�) = ‖F‖H−1(−�,�) ‖K1ζ0 + �‖H 1(−�,�) (4.18)

� ‖F‖H−1(−�,�) ‖�‖H 1(−�,�) .

Hence,

‖�‖H 1(−�,�) + |K1| � ‖F‖H−1(−�,�) . (4.19)

We now obtain an H 2 estimate for our solution, supposing that F ∈ H 0. Let b(x1) =(√
1 + |∂1ζ0|2

)3
and take an arbitrary smooth function ψ ∈ C∞

c (−�, �). Plugging in the test 
function θ = ψb and rearranging (4.11), we find that

σ

�∫
−�

(K1∂1ζ0 + ∂1�) ∂1ψ = 〈F ,ψb〉 −
�∫

−�

g�bψ −
�∫

−�

K1b
(
P0 − gζ0

)
ψ (4.20)

− σ

�∫
−�

∂1b

(
K1∂1ζ0 + ∂1�

b

)
ψ.

Hence, we know that K1∂1ζ0 + ∂1� is weakly differentiable and

K1∂11ζ0 + ∂11� = − 1

σ

(
Fb − g�b − K1b

(
P0 − gζ0

))
+ ∂1b

(
K1∂1ζ0 + ∂1�

b

)
. (4.21)

Then this and the estimate (4.19) imply that

‖�‖H 2(−�,�) � ‖�‖H 1(−�,�) + |K1| + ‖K1∂11ζ0 + ∂11�‖H 0(−�,�) (4.22)

� ‖F‖H 0(−�,�) + ‖�‖H 1(−�,�) + |K1| � ‖F‖H 0(−�,�) .

With the bounds (4.19) and (4.22) in hand, we may apply a standard interpolation argument to 
get the desired estimate. �

The next lemma is a variant of the previous elliptic regularity result.
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Lemma 4.4. Suppose that � ∈ H 1
0 (−�, �) and K1 ∈R satisfy (3.2), and

g

∫
�0

�θ + K1

∫
�0

(P0 − gζ0)θ + σ

∫
�0

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1θ = 〈f, ∂1θ〉 , (4.23)

for any θ ∈ H 1
0 (−�, �). If f ∈ H

1
2 (−�, �), then � ∈ H

3
2 (−�, �) and

‖�‖
H

3
2 (−�,�)

� ‖f ‖
H

1
2 (−�,�)

. (4.24)

Proof. Arguing as in Lemma 4.3, we may deduce the bound ‖�‖H 1(−�,�) +|K1| � ‖f ‖H 0(−�,�). 
Plugging in the test function θ = ψ ∈ C∞

c (−�, �) implies that

σ

�∫
−�

(
K1∂1ζ0 + ∂1�

b
− f

)
∂1ψ = −

�∫
−�

g�ψ −
�∫

−�

K1

(
P0 − gζ0

)
ψ. (4.25)

Hence, we know that χ = K1∂1ζ0 + ∂1�

b
− f is weakly differentiable and

∂1χ = 1

σ

(
g� + K1

(
P0 − gζ0

))
. (4.26)

Then this implies that

‖χ‖H 1(−�,�) � ‖χ‖H 0(−�,�) + ‖∂1χ‖H 0(−�,�) (4.27)

� |K1| + ‖�‖H 1(−�,�) + ‖f ‖H 0(−�,�) � ‖f ‖H 0(−�,�) .

Therefore, we have

‖∂1�‖
H

1
2 (−�,�)

� |K1| + ‖f b‖
H

1
2 (−�,�)

+ ‖χb‖
H

1
2 (−�,�)

(4.28)

� ‖f ‖
H

1
2 (−�,�)

+ ‖χ‖
H

1
2 (−�,�)

� ‖f ‖
H

1
2 (−�,�)

.

The desired estimate follows. �
We have now developed all of the tools needed to state a central estimate of the free surface 

function.

Theorem 4.5. If (v, q, �) satisfies

∫
μJ

2
DAv :DAw −

∫
Jq(∇A · w) +

∫
β(v · τ0)(w · τ0) +

∫
g�(w ·N ) (4.29)
�0 �0 �0b �0
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+
∫
�0

K1(p0 − gζ0)(w ·N ) +
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1(w ·N )

+
(

− κ

∂1ζ0
∂tR(w ·N )

∣∣∣∣
�

− κ

∂1ζ0
∂tL (w ·N )

∣∣∣∣−�

)

=
∫
�0

Jw ·F1 −
∫
�0

w ·F3 −
∫

�0b

F4

(
w · T

|T |2
)

−
∫
�0

σ∂1∂
m
t R(w ·N )

+ σ

∂1ζ0
∂m
t Q(w ·N )

∣∣∣∣
�

−�

− 1

∂1ζ0
F7(w ·N )

∣∣∣∣
�

− 1

∂1ζ0
F6(w ·N )

∣∣∣∣−�

,

for all w ∈W(t), then for each θ ∈ H 1
0 (−�, �), there exists w[θ ] ∈W(t) such that the following 

hold:

(1) w[θ ] depends linearly on θ .
(2) w[θ ] ·N = θ on �0.
(3) We have the estimate

‖w[θ ]‖2
H 1(�0)

� ‖θ‖2

H
1
2 (−�,�)

and ‖w[θ ]‖2
W(t) � ‖θ‖2

H 1(−�,�)
. (4.30)

(4) We have the identity

∫
�0

g�θ + K1

∫
�0

(P0 − gζ0)θ + σ

∫
�0

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1θ (4.31)

= 〈G,w[θ ]〉 + 〈F ,w[θ ]〉 +
∫
�0

σ∂m
t R∂1θ,

where G is given by

〈G,w[θ ]〉 = −
∫
�0

μJ

2
DAv : DAw[θ ] +

∫
�0

Jq(∇A · w[θ ]) −
∫

�0b

β(v · τ0)(w[θ ] · τ0),

(4.32)
and F ∈ (H 1)∗ is given by

〈F ,w[θ ]〉 =
∫
�0

Jw[θ ] ·F1 −
∫
�0

w[θ ] ·F3 −
∫

�0b

F4

(
w[θ ] · T

|T |2
)

. (4.33)

(5) We have the estimate

‖�‖2
3 � ‖v‖2

H 1(�0)
+ ‖q‖2

H 0(�0)
+ ‖F‖2

(H 1)∗ + ∥∥∂m
t R
∥∥2

1
2

. (4.34)

H 2 (−�,�) H (−�,�)
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Proof. Let θ ∈ H 1
0 (−�, �). Then we may use standard elliptic arguments (see Theorem 4.11 in 

[9]) to find w[θ ] ∈W(t) satisfying

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇A · w = C

�∫
�

θ(x1)dx1 in �0,

w ·N = θ on �0,

w · ν0 = 0 on �0b,

(4.35)

where C is chosen depending on �0 in order to enforce the compatibility condition for this 
equation. The resulting w[θ ] satisfies the requirements of the statements. An integration by parts 
yields

−
∫
�0

σ∂1∂
m
t R(w ·N ) =

∫
�0

σ∂m
t R∂1(w ·N ) − σ∂m

t R(w ·N )

∣∣∣∣
�

−�

. (4.36)

Also, since θ ∈ H 1
0 (−�, �), in the weak formulation, all the contributions at contact points vanish. 

Hence, we have

∫
�0

g�θ +
∫
�0

K1(P0 − gζ0)θ +
∫
�0

σ

⎛
⎜⎝ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂1θ (4.37)

= 〈G,w[θ ]〉 + 〈F ,w[θ ]〉 +
∫
�0

σ∂m
t R∂1θ.

Then the estimate (4.34) follows in light of Lemmas 4.3 and 4.4. �
4.3. Contact point estimates

In this section, we will prove the estimates of derivatives of η and u ·N at the contact points, 
which are much stronger than the results obtained through the usual trace theorem.

We start with the ∂1η estimates.

Theorem 4.6. There exists a universal ϑ > 0 such that if ‖η‖H 0(−�,�) + |∂tL| + |∂tR| < ϑ , then

2∑
j=0

(∣∣∣∂j
t ∂1η(−�)

∣∣∣2 +
∣∣∣∂j

t ∂1η(�)

∣∣∣2)�
2∑

j=0

∥∥∥∂j
t η

∥∥∥2

H 0(−�,�)
+

2∑
j=0

(∣∣∣∂j+1
t l

∣∣∣2 +
∣∣∣∂j+1

t r

∣∣∣2).

(4.38)

Proof. First note the simple fact that ∂tL = ∂t l and ∂tR = ∂t r . Consider the equations for ∂tL

and ∂tR in (1.25). Solving for ∂1η(−�) in the ∂tL equation, we obtain
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∂1η(−�) =J1

√√√√√ σ 2(
W (∂tL) + [γ ]

)2 − 1 − ∂1ζ0(−�), (4.39)

where here we assume ϑ is sufficiently small for the term in the square root to be nonnegative. 
From the equilibrium equations (1.14), we may compute

∂1ζ0(−�) =
√

σ 2

[γ ]2 − 1. (4.40)

Further restricting the value of ϑ if necessary, employing a Taylor expansion, and using 
Lemma C.2, we conclude from these that

|∂1η(−�)| � |J1 − 1| + |∂tL| � ‖η‖H 0(−�,�) + |∂t l| . (4.41)

When ∂t is applied in (4.39), we know

∂t ∂1η(−�)
(
∂1ζ0(−�) + ∂1η(−�)

)
(4.42)

= J1∂tJ1

⎛
⎜⎝ σ 2(

W (∂tL) + [γ ]
)2 − 1

⎞
⎟⎠− J 2

1
σ 2W ′(∂tL)∂2

t L(
W (∂tL) + [γ ]

)3 .

Again restricting the value of ϑ if necessary, and considering ∂1ζ0(−�) � 1, we know

|∂1ζ0(−�) + ∂1η(−�)| � 1. (4.43)

Then we may use (4.42) and (4.43) together with (1.45) to estimate

|∂t ∂1η(−�)| � |∂tJ1| +
∣∣∣∂2

t L

∣∣∣� ‖∂tη‖H 0(−�,�) +
∣∣∣∂2

t l

∣∣∣ . (4.44)

When ∂2
t is applied in (4.39), we know

∂2
t ∂1η(−�)

(
∂1ζ0(−�) + ∂1η(−�)

)
+
(
∂t ∂1η(−�)

)2
(4.45)

=
(
J1∂

2
t J1 + (∂tJ1)

2
)⎛⎜⎝ σ 2(

W (∂tL) + [γ ]
)2 − 1

⎞
⎟⎠− J1∂tJ1

σ 2W ′(∂tL)∂2
t L(

W (∂tL) + [γ ]
)3

+ J 2
1

3σ 2
(
W ′(∂tL)

)2(
∂2
t L
)2

(
W (∂tL) + [γ ]

)4 − J 2
1

σ 2
(

W ′′(∂tL)
(
∂2
t L
)2 + W ′(∂tL)∂3

t L

)
(
W (∂tL) + [γ ]

)3 .

Hence, as above, we may estimate
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∣∣∣∂2
t ∂1η(−�)

∣∣∣� |∂t ∂1η(−�)|2 +
∣∣∣∂2

t J1

∣∣∣+ |∂tJ1|2 + |∂tJ1|
∣∣∣∂2

t L

∣∣∣+ ∣∣∣∂2
t L

∣∣∣2 +
∣∣∣∂3

t L

∣∣∣ (4.46)

�
∥∥∥∂2

t η

∥∥∥
H 0(−�,�)

+
∣∣∣∂2

t l

∣∣∣+ ∣∣∣∂3
t l

∣∣∣ .
In summary, we have proved that if ϑ is sufficiently small, then

2∑
j=0

∣∣∣∂j
t ∂1η(−�)

∣∣∣� 2∑
j=0

∥∥∥∂j
t η

∥∥∥
H 0(−�,�)

+
2∑

j=0

∣∣∣∂j+1
t l

∣∣∣ . (4.47)

A similar argument with the ∂tR equation provides the bound

2∑
j=0

∣∣∣∂j
t ∂1η(�)

∣∣∣� 2∑
j=0

∥∥∥∂j
t η

∥∥∥
H 0(−�,�)

+
2∑

j=0

∣∣∣∂j+1
t r

∣∣∣ . � (4.48)

Next we consider the u ·N estimates.

Theorem 4.7. There exists a universal ϑ > 0 such that if ‖η‖H 0(−�,�) + |∂t l| + |∂t r| + ∣∣∂2
t l
∣∣+∣∣∂2

t r
∣∣< ϑ , then

2∑
j=0

(∣∣∣∂j
t u(−�,0) ·N

∣∣∣2 +
∣∣∣∂j

t u(�,0) ·N
∣∣∣2) (4.49)

�
2∑

j=0

∥∥∥∂j
t η

∥∥∥2

H 0(−�,�)
+

2∑
j=0

(∣∣∣∂j+1
t l

∣∣∣2 +
∣∣∣∂j+1

t r

∣∣∣2).

Proof. Throughout the proof we will abuse notation by suppressing the time dependence of the 
unknowns; for example, we will write ∂tη(±�) in place of ∂tη(±�, t). The transport equation 
reads

(u ·N )b = J1∂tη − ã(∂1ζ0 + ∂1η), (4.50)

for b =
√

1 + |∂1ζ0|2. Hence, noting that ∂tη(−�) = 0, using Theorem 4.6, and taking ϑ to be 
sufficiently small, we know

|u(−�,0) ·N | = |ã(∂1ζ0 + ∂1η(−�))| � |ã|
(

1 + |∂1η(−�)|
)

� |ã| � |∂t l| + |∂t r| . (4.51)

When ∂t is applied in (4.50), we have

(∂tu ·N )b = ∂tJ1∂tη + J1∂
2
t η − ∂t ã(∂1ζ0 + ∂1η) − ã∂t ∂1η − (u · ∂tN )b. (4.52)

It is easy to check that u(−�, 0) = (∂t l, 0) and u(�, 0) = (∂t r, 0). Hence, noting that ∂2
t η(−�) = 0, 

using Theorem 4.6, and taking ϑ to be sufficiently small, we know
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|∂tu(−�,0) ·N | � |∂t ã(∂1ζ0 + ∂1η(−�))| + |ã∂t ∂1η(−�)| + |(u(−�,0) · ∂tN )b| (4.53)

� |∂t ã|
(

1 + |∂1η(−�)|
)

+ |ã| |∂t ∂1η(−�)| + |u(−�,0)| |∂t ∂1η(−�)|

� |∂t ã| + |∂t ∂1η(−�)| �
1∑

j=0

∥∥∥∂j
t η

∥∥∥
H 0(−�,�)

+
1∑

j=0

∣∣∣∂j+1
t l

∣∣∣+ 1∑
j=0

∣∣∣∂j+1
t r

∣∣∣ .

When ∂2
t is applied in (4.50), we have

(∂2
t u ·N )b = ∂2

t J1∂tη + ∂tJ1∂
2
t η + J1∂

3
t ζ − ∂2

t ã(∂1ζ0 + ∂1η) − ∂t ã∂t ∂1η (4.54)

− ã∂2
t ∂1η − (u · ∂2

t N )b − (∂tu · ∂tN )b.

Hence, noting that ∂3
t η(−�) = 0, using Theorem 4.6 and taking ϑ to be sufficiently small, we 

know

|∂tu(−�,0) ·N | (4.55)

�
∣∣∣∂2

t ã

∣∣∣ |(∂1ζ0 + ∂1η(−�))| + |∂t ã| |∂t ∂1η(−�)| + |ã|
∣∣∣∂2

t ∂1η(−�)

∣∣∣
+|u(−�,0)|

∣∣∣∂2
t N
∣∣∣+ |∂tu(−�,0)| |∂tN |

�
∣∣∣∂2

t ã

∣∣∣ (1 + |∂1η(−�)|
)

+ |∂t ã| |∂t ∂1η(−�)| + |ã|
∣∣∣∂2

t ∂1η(−�)

∣∣∣
+|u(−�,0)|

∣∣∣∂2
t ∂1η

∣∣∣+ |∂tu(−�,0)| |∂t ∂1η(−�)|

�
∣∣∣∂2

t ã

∣∣∣+ |∂t ∂1η(−�)| +
∣∣∣∂2

t ∂1η(−�)

∣∣∣� 2∑
j=0

∥∥∥∂j
t η

∥∥∥
H 0(−�,�)

+
2∑

j=0

∣∣∣∂j+1
t l

∣∣∣+ 2∑
j=0

∣∣∣∂j+1
t r

∣∣∣ .
In summary, we have now shown

2∑
j=0

∣∣∣∂j
t u(−�,0) ·N

∣∣∣2 �
2∑

j=0

∥∥∥∂j
t η

∥∥∥2

H 0(−�,�)
+

2∑
j=0

(∣∣∣∂j+1
t l

∣∣∣2 +
∣∣∣∂j+1

t r

∣∣∣2). (4.56)

A similar argument with the ∂tR equation provides the bound

2∑
j=0

∣∣∣∂j
t u(�,0) ·N

∣∣∣2 �
2∑

j=0

∥∥∥∂j
t η

∥∥∥2

H 0(−�,�)
+

2∑
j=0

(∣∣∣∂j+1
t l

∣∣∣2 +
∣∣∣∂j+1

t r

∣∣∣2). � (4.57)

4.4. Weighted elliptic estimates for the Stokes problem

We now turn our attention to some weighted elliptic estimates for solutions to the Stokes 
problem.
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Theorem 4.8. There exists a ϑ > 0 such that if η ∈ W
5
2
δ (�0) and ‖η‖

W
5
2

δ (�0)

< ϑ , then there is a 

unique solution (v, q, �) ∈ W 2
δ (�0) × W̊ 1

δ (�0) × W
5
2
δ (�0) to the equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇A · SA(q, v)N = G1 in �0,

∇A · v = G2 in �0,

v ·N = G+
3 on �0,

SA(q, v)N = g�N − σ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3 + ∂m

t R

⎞
⎟⎠N

+G+
4

T
|T | + G5

N
|N | on �0,

v ·N = G−
3 on �0b,(

SA(q, v)N − βv
)

· T = G−
4 on �0b,

�

∣∣∣−�
= �

∣∣∣
�
= 0,

(4.58)
such that for any δ ∈ (0, 1),

‖v‖2
W 2

δ (�0)
+ ‖q‖2

W 1
δ (�0)

+ ‖�‖2

W
5
2

δ (�0)

� ‖�‖2
H 0(−�,�)

+ ‖G1‖2
W 0

δ (�0)
+ ‖G2‖2

W 1
δ (�0)

(4.59)

+ ‖G3‖2

W
3
2

δ (∂�0)

+ ‖G4‖2

W
1
2

δ (∂�0)

+ ‖G5‖2

W
1
2

δ (∂�0)

+ ∥∥∂1∂
m
t R
∥∥2

W
1
2

δ (∂�0)
.

Proof. Using Theorem 5.10 in [9], we may find (v, q) ∈ W 2
δ (�0) × W̊ 1

δ (�0) satisfying

‖v‖2
W 2

δ (�0)
+ ‖q‖2

W 1
δ (�0)

� ‖G1‖2
W 0

δ (�0)
+ ‖G2‖2

W 1
δ (�0)

+ ‖G3‖2

W
3
2

δ (∂�0)

+ ‖G4‖2

W
1
2

δ (∂�0)

.

(4.60)
The only remaining estimate is for �, which satisfies an elliptic equation

g� − σ∂1

⎛
⎜⎝ ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠= (qI − μDAv)N · N

|N |2 (4.61)

+σ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0(√

1 + |∂1ζ0|2
)3 + ∂m

t R

⎞
⎟⎠− G5

|N | ,

with Dirichlet boundary conditions �(−�) = �(�) = 0. We may use (4.59) to verify that

∥∥∥∥(qI − μDAv)N · N
|N |2

∥∥∥∥
2

W
1
2

δ (�0)

� ‖v‖2
W 2

δ (�0)
+ ‖q‖2

W 1
δ (�0)

. (4.62)
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Using (3.2), we may directly estimate

∥∥∥∥∥∥∥σ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠
∥∥∥∥∥∥∥

2

W
1
2

δ (�0)

� |K1| � ‖�‖H 0(−�,�) . (4.63)

We then combine (4.61), (4.62), and (4.63) to deduce that

‖�‖2

W
5
2

δ (�0)

�
∥∥∥∥(qI − μDAv)N · N

|N |2
∥∥∥∥

2

W
1
2

δ (�0)

(4.64)

+

∥∥∥∥∥∥∥σ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠
∥∥∥∥∥∥∥

2

W
1
2

δ (�0)

+∥∥∂1∂
m
t R
∥∥2

W
1
2

δ (∂�0)
+
∥∥∥∥ G5

|N |
∥∥∥∥

2

W
1
2

δ (�0)

� ‖v‖2
W 2

δ (�0)
+ ‖q‖2

W 1
δ (�0)

+ ‖�‖2
H 0(−�,�)

+ ∥∥∂1∂
m
t R
∥∥2

W
1
2

δ (∂�0)
+ ‖G5‖2

W
1
2

δ (∂�0)

.

Combining (4.60) and (4.64), we get the desired result. �
5. Nonlinear estimates in the energy-dissipation structure

We will employ the basic energy estimate of Theorem 3.2 as the starting point for our a 
priori estimates. In order for this to be effective, we must be able to estimate the interaction 
terms appearing on the right side of (3.13) when the Fi terms are given as in Appendix C.2. 
For the sake of brevity we will only present these estimates when the Fi terms are given for the 
twice temporally differentiated problem. The corresponding estimates for the once temporally 
differentiated problem follow from similar, though often simpler, arguments. When possible, we 
will present our estimates in the most general form, as estimates for general functionals generated 
by the Fi terms. It is only for a few essential terms that we must resort to employing the special 
structure of the interaction terms in order to close our estimates.

Throughout this section, we always assume that η is given and satisfies

sup
0≤t≤T

(
E‖(t) + ‖η(t)‖

W
5
2

δ (−�,�)

+ ‖∂tη(t)‖
W

3
2

δ (−�,�)

)
≤ ϑ < 1, (5.1)

for some ϑ > 0 sufficiently small. Also, throughout this section, we will repeatedly use without 
explicit statement the following techniques in our estimates:

• Sobolev embedding theorems and trace theorems for both the usual Sobolev spaces and 
weighted Sobolev spaces;
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• the pointwise bound 
∣∣∂m

t k1
∣∣ � ∣∣∂m

t l
∣∣ + ∣∣∂m

t r
∣∣, as well as the bounds, for any 1 ≤ r < ∞, ∣∣∂m

t k1
∣∣ � ∥∥∂m

t η
∥∥

Lr(−�,�)
�
∥∥∂m

t ∂1η
∥∥

Lr(−�,�)
, which follow due to (3.2) and Poincaré’s in-

equality;

• for s >
1

2
, the estimate ‖η̄‖Hs(�0)

� ‖η‖
H

s− 1
2 (−�,�)

, which is due to the definition of har-

monic extension;

• the bound |∇A| � ∣∣∇2η̄
∣∣+ |∇η̄|

∣∣∣∣ 1

ζ0

∣∣∣∣;
• Theorems 4.6 and 4.7.

Moreover, we will repeatedly use the following two lemmas:

Lemma 5.1. Let d = dist (·, M), where M =
{
(−�, 0), (�, 0)

}
is the set of the corner points. 

Suppose that 0 < δ < 1. Then d−δ ∈ Lr(�0) for 1 ≤ r <
2

δ
.

Proof. See Lemma 6.1 in [9]. �
Lemma 5.2. Let 1 < p < 2. Then 

1

ζ0
∈ Lp(�0).

Proof. The difficulty concentrates on the neighborhood of the contact points. Near (−�, 0), using 
the mean value theorem, we have for c ∈ (−�, x1),

ζ0(x1) = ζ0(−�) + ∂1ζ0(c)(x1 + �) = ∂1ζ0(c)(x1 + �). (5.2)

Then using polar coordinates, we compute

∫
x∈�0,d≤R

1

ζ
p
0 (x1)

dx1dx2 ≤
�∫

0

R∫
0

r

rp cosp θ
drdθ =

�∫
0

R∫
0

1

rp−1 cosp θ
drdθ < ∞, (5.3)

where tan� = ∂1ζ0(−�). The integral with respect to r is finite since 0 < p − 1 < 1 and the 

integral with respect to θ is finite since 0 < θ < � <
π

2
. �

5.1. Estimate of the F1 term

The following estimate is the same as that of Proposition 6.2 of [9], but the argument needed 
to arrive at this estimate is slightly different due to the different structure of A. In particular, the 
appearance of the term 1/ζ0 in terms involving ∇A is novel to the droplet problem.

Lemma 5.3. Let F1 be given by (C.2.1) or (C.2.8). We have the estimate

∣∣∣∣∣∣∣
∫

Jv ·F1

∣∣∣∣∣∣∣� ‖v‖H 1(�0)

(
E + √

E
)√

D. (5.4)
�0
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Proof. We will only present the estimate of the term −∇∂2
t A ·
(
pI −μDAu

)
in order to highlight 

how to deal with the appearance of 1/ζ0. The remaining terms can be handled similarly, following 
the general blueprint of Proposition 6.2 of [9] with appropriate modifications to handle 1/ζ0 as 
indicated in what follows.

To estimate −∇∂2
t A ·
(
pI − μDAu

)
, we begin by splitting

∣∣∣∣∣∣∣
∫
�0

Jv

(
− ∇∂2

t A ·
(
pI − μDAu

))∣∣∣∣∣∣∣ (5.5)

�
∫
�0

|v|
∣∣∣∂2

t A
∣∣∣ ( ∣∣∣∇2u

∣∣∣+ |∇p|
)

+
∫
�0

|v|
∣∣∣∂2

t A
∣∣∣ |∇A|

(
|∇u| + |p|

)

�
∫
�0

|v|
∣∣∣∂2

t ∇η̄

∣∣∣ ( ∣∣∣∇2u

∣∣∣+ |∇p|
)

+
∫
�0

|v|
∣∣∣∂2

t ∇η̄

∣∣∣ ∣∣∣∇2η̄

∣∣∣ ( |∇u| + |p|
)

+
∫
�0

|v|
∣∣∣∂2

t ∇η̄

∣∣∣ |∇η̄|
∣∣∣∣ 1

ζ0

∣∣∣∣ ( |∇u| + |p|
)

=: I + II + III.

For I , we choose q ∈ [1, ∞) and 2 < r <
2

δ
such that 

2

q
+ 1

r
= 1

2
. Then we have

I =
∫
�0

|v|
∣∣∣∂2

t ∇η̄

∣∣∣ ( ∣∣∣∇2u

∣∣∣+ |∇p|
)

(5.6)

�‖v‖Lq(�0)

∥∥∥∂2
t ∇η̄

∥∥∥
Lq(�0)

∥∥d−δ
∥∥

Lr(�0)

(∥∥∥dδ∇2u

∥∥∥
L2(�0)

+ ∥∥dδ∇p
∥∥

L2(�0)

)

�‖v‖H 1(�0)

∥∥∥∂2
t ∇η̄

∥∥∥
H 1(�0)

(
‖u‖W 2

δ (�0)
+ ‖p‖W 1

δ (�0)

)

�‖v‖H 1(�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

(
‖u‖W 2

δ (�0)
+ ‖p‖W 1

δ (�0)

)
� ‖v‖H 1(�0)

√
D

√
E .

For II , we choose m = 2

2 − s
and 2 < r <

2

δ
such that 

1

m
+ 1

r
< 1, which is possible since 

δ < 1 < s. Then choosing q ∈ [1, ∞) such that 
3

q
+ 1

m
+ 1

r
= 1, we have

II =
∫
�0

|v|
∣∣∣∂2

t ∇η̄

∣∣∣ ∣∣∣∇2η̄

∣∣∣ ( |∇u| + |p|
)

(5.7)

� ‖v‖Lq(�0)

∥∥∥∂2
t ∇η̄

∥∥∥
Lq(�0)

∥∥∥∇2η̄

∥∥∥
Lm(�0)

∥∥d−δ
∥∥

Lr(�0)

(∥∥dδ∇u
∥∥

Lq(�0)
+ ∥∥dδp

∥∥
Lq(�0)

)

� ‖v‖H 1(�0)

∥∥∥∂2
t ∇η̄

∥∥∥
1

∥∥∥∇2η̄

∥∥∥
s−1

(
‖u‖W 2(�0)

+ ‖p‖W 1(�0)

)

H (�0) H (�0) δ δ
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� ‖v‖H 1(�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

‖η‖
H

s+ 1
2 (−�,�)

(
‖u‖W 2

δ (�0)
+ ‖p‖W 1

δ (�0)

)
� ‖v‖H 1(�0)

√
D

√
E
√
E = ‖v‖H 1(�0)

E
√
D.

For III , we choose 2 < r <
2

δ
and 1 < p < 2 such that 

1

p
+ 1

r
< 1, which is possible since 

r > 2. Then choosing q ∈ [1, ∞) such that 
4

q
+ 1

p
+ 1

r
= 1, we have

III =
∫
�0

|v|
∣∣∣∂2

t ∇η̄

∣∣∣ |∇η̄|
∣∣∣∣ 1

ζ0

∣∣∣∣ ( |∇u| + |p|
)

(5.8)

� ‖v‖Lq(�0)

∥∥∥∂2
t ∇η̄

∥∥∥
Lq(�0)

‖∇η̄‖Lq(�0)

∥∥∥∥ 1

ζ0

∥∥∥∥
Lp(�0)

∥∥d−δ
∥∥

Lr(�0)

×
(∥∥dδ∇u

∥∥
Lq(�0)

+ ∥∥dδp
∥∥

Lq(�0)

)
� ‖v‖H 1(�0)

∥∥∥∂2
t ∇η̄

∥∥∥
H 1(�0)

‖∇η̄‖H 1(�0)

(
‖u‖W 2

δ (�0)
+ ‖p‖W 1

δ (�0)

)
� ‖v‖H 1(�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

‖η‖
H

3
2 (−�,�)

(
‖u‖W 2

δ (�0)
+ ‖p‖W 1

δ (�0)

)
� ‖v‖H 1(�0)

√
D

√
E
√
E = ‖v‖H 1(�0)

E
√
D. �

5.2. Estimate of the F2 term

The estimate of the F2 term is available from [9]. We record it now.

Lemma 5.4. Let F2 be given by (C.2.2) or (C.2.9). We have the estimate

∣∣∣∣∣∣∣
∫
�0

JψF2

∣∣∣∣∣∣∣� ‖ψ‖H 0(�0)

√
E
√
D. (5.9)

Proof. The estimate is proved in Theorem 6.8 of [9]. �
5.3. Estimate of the F3 term

We now estimate the F3 term.

Lemma 5.5. Let F3 be given by (C.2.3) or (C.2.10) and R be given by (C.3.1). We have the 
estimate ∣∣∣∣∣∣∣

∫
v ·F3

∣∣∣∣∣∣∣� ‖v‖H 1(�0)

(
E + √

E
)√

D. (5.10)
�0
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Proof. In the following, we choose p = 3 + δ

2 + 2δ
, q = 6 + 2δ

1 − δ
and r = 9 + 3δ

1 − δ
such that 

1

p
+ 2

q
=

1 and 
1

p
+ 3

r
= 1.

Estimates of the integral involving the terms μD∂2
t AuN , μD∂tAu∂tN 2μD∂tA∂tuN , −(pI −

μDAu)∂2
t N , −2(∂tpI − μDA∂tu)∂tN , gη∂2

t N , and 2g∂tη∂tN may be found in the proof of 
Proposition 6.4 of [9]. The remaining three terms are novel, and we will present the estimates 
here.

Term: −σ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂2

t N

We estimate

∣∣∣∣∣∣∣
∫
�0

v

⎛
⎜⎝−σ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂2

t N

⎞
⎟⎠
∣∣∣∣∣∣∣�
∫
�0

|v|
(

|k1| +
∣∣∣∂2

1 η

∣∣∣ ) ∣∣∣∂2
t N
∣∣∣

(5.11)

�
∫
�0

|v|
(

|k1| +
∣∣∣∂2

1 η

∣∣∣ ) ∣∣∣∂2
t ∂1η

∣∣∣� ‖v‖Lq(�0)

(
‖η‖Lp(−�,�) +

∥∥∥∂2
1η

∥∥∥
Lp(−�,�)

)∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

� ‖v‖
H

1
2 (�0)

‖η‖
W

5
2

δ (−�,�)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

� ‖v‖H 1(�0)
‖η‖

W
5
2

δ (−�,�)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

� ‖v‖H 1(�0)

√
E
√
D.

Term: −σ(∂1R)∂2
t N

We may directly bound

|∂1R| � |∂1η|
∣∣∣∂2

1 η

∣∣∣+ |k1|
∣∣∣∂2

1η

∣∣∣ . (5.12)

Then we estimate

∣∣∣∣∣∣∣
∫
�0

v

(
− σ(∂1R)∂2

t N
)∣∣∣∣∣∣∣�

∫
�0

|v| |∂1R|
∣∣∣∂2

t N
∣∣∣ (5.13)

�
∫
�0

|v| |∂1η|
∣∣∣∂2

1 η

∣∣∣ ∣∣∣∂2
t ∂1η

∣∣∣+ ∫
�0

|v| |k1|
∣∣∣∂2

1 η

∣∣∣ ∣∣∣∂2
t ∂1η

∣∣∣
�‖v‖Lr(�0)

‖∂1η‖Lr(−�,�)

∥∥∥∂2
1 η

∥∥∥
Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lr(−�,�)

�‖v‖
H

1
2 (�0)

‖∂1η‖
H

1
2 (−�,�)

‖η‖ 5
2

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)
Wδ (−�,�)
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�‖v‖H 1(�0)
‖η‖

H
3
2 (−�,�)

‖η‖
W

5
2

δ (−�,�)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�‖v‖H 1(�0)

√
E
√
E
√
D = ‖v‖H 1(�0)

E
√
D.

Term: −2σ∂1

⎛
⎜⎝ ∂tk1∂1ζ0√

1 + |∂1ζ0|2
+ ∂tk1∂1ζ0 + ∂t ∂1η(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂tN

We estimate

∣∣∣∣∣∣∣
∫
�0

v

⎛
⎜⎝−2σ∂1

⎛
⎜⎝ ∂tk1∂1ζ0√

1 + |∂1ζ0|2
+ ∂tk1∂1ζ0 + ∂t ∂1η(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂tN

⎞
⎟⎠
∣∣∣∣∣∣∣ (5.14)

�
∫
�0

|v|
(

|∂tk1| +
∣∣∣∂t∂

2
1 η

∣∣∣ ) |∂tN | �
∫
�0

|v|
(

|∂tk1| +
∣∣∣∂t ∂

2
1 η

∣∣∣ ) |∂t ∂1η|

� ‖v‖Lq(�0)

(
‖∂tη‖Lp(−�,�) +

∥∥∥∂t ∂
2
1 η

∥∥∥
Lp(−�,�)

)
‖∂t ∂1η‖Lq(−�,�)

� ‖v‖
H

1
2 (�0)

‖∂tη‖
W

5
2

δ (−�,�)

‖∂tη‖
H

3
2 (−�,�)

� ‖v‖H 1(�0)
‖∂tη‖

W
5
2

δ (−�,�)

‖∂tη‖
H

3
2 (−�,�)

� ‖v‖H 1(�0)

√
D

√
E .

Term: −2σ(∂t∂1R)∂tN
We may directly obtain

|∂t ∂1R| � 6 |∂tk1|
∣∣∣∂2

1 η

∣∣∣+ |k1|
∣∣∣∂t ∂

2
1 η

∣∣∣+ ∣∣∣∂2
1 η

∣∣∣ |∂t ∂1η| + |∂1η|
∣∣∣∂t ∂

2
1η

∣∣∣ . (5.15)

Then we estimate

∣∣∣∣∣∣∣
∫
�0

v

(
− 2σ(∂t ∂1R)∂tN

)∣∣∣∣∣∣∣�
∫
�0

|v| |∂t ∂1R| |∂tN | (5.16)

�
∫
�0

|v|
(∣∣∣∂2

1η

∣∣∣ |∂t ∂1η| + |∂1η|
∣∣∣∂t ∂

2
1η

∣∣∣) |∂t ∂1η|

� ‖v‖Lr(�0)

(∥∥∥∂2
1 η

∥∥∥
Lp(−�,�)

‖∂t ∂1η‖Lr(−�,�) +‖∂1η‖Lr(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
Lp(−�,�)

)
‖∂t ∂1η‖Lr(−�,�)

� ‖v‖
H

1
2 (�0)

‖η‖
W

5
2

δ (−�,�)

‖∂tη‖
W

5
2

δ (−�,�)

‖∂tη‖
H

3
2 (−�,�)

� ‖v‖H 1(� )

√
E
√
D

√
E = ‖v‖H 1(� ) E

√
D. �
0 0
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5.4. Estimate of the F4 term

The estimate for F4 is again available from [9].

Lemma 5.6. Let F4 be given by (C.2.4) or (C.2.11). We have the estimate

∣∣∣∣∣∣∣
∫

�0b

F4

(
v · T

|T |2
)∣∣∣∣∣∣∣� ‖v‖H 1(�0)

√
E
√
D. (5.17)

Proof. The estimate is proved in Proposition 6.4 of [9], though there the nonlinearity is named 
F5 instead of F4. �
5.5. Estimate of the F6 and F7 terms

We now turn to the terms F6 and F7.

Lemma 5.7. Let F6 be given by (C.2.6) or (C.2.13), and F7 be given by (C.2.7) or (C.2.14). We 
have

∣∣∣∣−F7

(
∂tR + ∂2

t O
)∣∣∣∣

�

−F6

(
∂tL + ∂2

t O
)∣∣∣∣−�

∣∣∣∣� √
ED. (5.18)

Proof. We know that

|∂tL | =
∣∣∣∂3

t l

∣∣∣� √
D and |∂tR| =

∣∣∣∂3
t r

∣∣∣� √
D, (5.19)

and that

∣∣∣∂2
t O
∣∣∣� ( |∂t l| + |∂t r|

)( ∣∣∣∂2
t l

∣∣∣+ ∣∣∣∂2
t r

∣∣∣ )+ |k1|
( ∣∣∣∂3

t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣ )�
√
E
√
D. (5.20)

Hence, we have the estimates

∣∣∣∣∂tL + ∂2
t O
∣∣∣−�

∣∣∣∣� √
D and

∣∣∣∂tR + ∂2
t O
∣∣∣
�

∣∣∣� √
D. (5.21)

We may easily check that 
∣∣∣W̃ ′(z)

∣∣∣+ ∣∣∣W̃ ′′(z)
∣∣∣� z for z small, and so we know

|F6| �
∣∣∣W̃ ′(∂t l)

∣∣∣ ∣∣∣∂3
t l

∣∣∣+ ∣∣∣W̃ ′′(∂t l)

∣∣∣ ∣∣∣∂2
t l

∣∣∣2 � |∂t l|
∣∣∣∂3

t l

∣∣∣+ |∂t l|
∣∣∣∂2

t l

∣∣∣2 �
√
E
√
D.

Next we bound

|F7| �
∣∣∣W̃ ′(∂t r)

∣∣∣ ∣∣∣∂3
t r

∣∣∣+ ∣∣∣W̃ ′′(∂t r)

∣∣∣ ∣∣∣∂2
t r

∣∣∣2 � |∂t r|
∣∣∣∂3

t r

∣∣∣+ |∂t r|
∣∣∣∂2

t r

∣∣∣2 �
√
E
√
D, (5.22)
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from which we deduce that∣∣∣∣−F7

(
∂tR + ∂2

t O
)∣∣∣∣

�

−F6

(
∂tL + ∂2

t O
)∣∣∣∣−�

∣∣∣∣� √
ED. � (5.23)

5.6. Estimate of the F5 term

Next we handle F5.

Lemma 5.8. Let F5 be given by (C.2.5) or (C.2.12) and S be given by (C.3.14). We have

∣∣∣∣∣∣∣
�∫

−�

⎛
⎜⎝g� − ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠
⎞
⎟⎠ (∂2

t S +F5) − dF1

dt

∣∣∣∣∣∣∣�
(
E + √

E
)
D,

(5.24)
where

F1 = −
�∫

−�

J1 − 1(√
1 + |∂1ζ0|2

)3

∣∣∣∂2
t ∂1η

∣∣∣2 . (5.25)

Proof. It is easy to check that

g� − ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0 + ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ (5.26)

=
⎛
⎜⎝g� − ∂1

⎛
⎜⎝ K1∂1ζ0√

1 + |∂1ζ0|2
+ K1∂1ζ0(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠
⎞
⎟⎠+ ∂1

⎛
⎜⎝ ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠=: I + II.

We may directly verify that

‖I‖L∞(−�,�) �‖�‖L∞(−�,�) + ‖K1‖L∞(−�,�) �
∥∥∥∂2

t η

∥∥∥
L∞(−�,�)

+
∥∥∥∂2

t k1

∥∥∥
L∞(−�,�)

(5.27)

�
∥∥∥∂2

t η

∥∥∥
L∞(−�,�)

�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

�
√
E .

Then we have

∣∣∣∣∣∣
�∫

−�

I (∂2
t S +F5)

∣∣∣∣∣∣� ‖I‖L∞(−�,�)

( �∫
−�

∣∣∣∂2
t S
∣∣∣+

�∫
−�

|F5|
)

. (5.28)

We may directly estimate
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�∫
−�

∣∣∣∂2
t S
∣∣∣� ( |k1| +

2∑
j=0

( ∣∣∣∂j+1
t l

∣∣∣+ ∣∣∣∂j+1
t r

∣∣∣ )) (5.29)

×
(∥∥∥∂3

t η

∥∥∥
H 0(−�,�)

+
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

+ ‖η‖H 1(−�,�) +
2∑

j=0

( ∣∣∣∂j+1
t l

∣∣∣+ ∣∣∣∂j+1
t r

∣∣∣ ))

�
√
D

√
D = D,

and

�∫
−�

|F5| �
(

‖u‖H 0(−�,�) + ‖∂tu‖H 0(−�,�)

)(
‖∂tη‖H 1(−�,�) +

∥∥∥∂2
t η

∥∥∥
H 1(−�,�)

)
(5.30)

�
(

‖u‖H 1(�0)
+ ‖∂tu‖H 1(�0)

)(
‖∂tη‖H 1(−�,�) +

∥∥∥∂2
t η

∥∥∥
H 1(−�,�)

)
�

√
D

√
D = D.

Therefore, we know that

∣∣∣∣∣∣
�∫

−�

I (∂2
t S +F5)

∣∣∣∣∣∣�
√
ED. (5.31)

Then we turn to the estimate of II . We integrate by parts to obtain

�∫
−�

II (∂2
t S +F5) =

�∫
−�

∂1

⎛
⎜⎝ ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ (∂2

t S +F5) (5.32)

= −
�∫

−�

⎛
⎜⎝ ∂1�(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ (∂2

t ∂1S + ∂1F5) =
�∫

−�

b∂2
t ∂1η
(
∂2
t ∂1S + ∂1F5

)
,

for b(x1) = −
(

1 + |∂1ζ0|2
)−3/2

.

First Term of ∂2
t ∂1S: ∂2

t ∂1

(
(J1 − 1)∂tη

)
We can directly compute

∂2
t ∂1

(
(J1 − 1)∂tη

)
= ∂2

t J1∂t ∂1η + 2∂tJ1∂
2
t ∂1η + (J1 − 1)∂3

t ∂1η. (5.33)

For the first two terms we estimate

∣∣∣∣∣∣
�∫
b
(
∂2
t ∂1η
)(

∂2
t J1∂t ∂1η

)∣∣∣∣∣∣�
∥∥∥∂2

t ∂1η

∥∥∥
L2(−�,�)

∥∥∥∂2
t J1

∥∥∥
L∞(−�,�)

‖∂t ∂1η‖L2(−�,�) (5.34)
−�
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�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

( ∣∣∣∂2
t l

∣∣∣+ ∣∣∣∂2
t r

∣∣∣ )‖∂tη‖H 1(−�,�)

�
√
E
√
D

√
D = √

ED,

and

∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

2∂tJ1∂
2
t ∂1η
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
L2(−�,�)

‖∂tJ1‖L∞(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
L2(−�,�)

(5.35)

�
∥∥∥∂2

t η

∥∥∥2

H 1(−�,�)

(
|∂t l| + |∂t r|

)
�
(√

D
)2√

E = √
ED.

For the third term we then write

�∫
−�

b
(
∂2
t ∂1η
)(

(J1 − 1)∂3
t ∂1η
)

= ∂t

( �∫
−�

b(J1 − 1)

∣∣∣∂2
t ∂1η

∣∣∣2)−
�∫

−�

b∂tJ1

∣∣∣∂2
t ∂1η

∣∣∣2 , (5.36)

where we have

∣∣∣∣∣∣
�∫

−�

b∂tJ1

∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣∣∣�‖∂tJ1‖L∞(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥2

L2(−�,�)
(5.37)

�
(

|∂t l| + |∂t r|
)∥∥∥∂2

t η

∥∥∥2

H 1(−�,�)
�

√
E
(√

D
)2 = √

ED.

Second Term of ∂2
t ∂1S: ∂2

t ∂1

(
ã∂1η
)

We can directly compute

∂2
t ∂1

(
ã∂1η
)

= −∂3
t k1∂1η + ∂2

t ã∂2
1 η − 2∂2

t k1∂t ∂1η + 2∂t ã∂t ∂
2
1 η − ∂tk1∂

2
t ∂1η + ã∂2

t ∂2
1 η.

(5.38)
We estimate each term as follows

∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

∂3
t k1∂1η

)∣∣∣∣∣∣�
∥∥∥∂2

t ∂1η

∥∥∥
L2(−�,�)

∥∥∥∂3
t k1

∥∥∥
L∞(−�,�)

‖∂1η‖L2(−�,�) (5.39)

�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

( ∣∣∣∂3
t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣ )‖η‖H 1(−�,�) �
√
E
√
D

√
D = √

ED,

∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

∂2
t ã∂2

1 η
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
L2(−�,�)

∥∥∥∂2
t ã

∥∥∥
L∞(−�,�)

∥∥∥∂2
1 η

∥∥∥
L2(−�,�)

(5.40)

�
∥∥∥∂2

t η

∥∥∥
1

( ∣∣∣∂3
t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣ )‖η‖H 2(−�,�) �
√
E
√
D

√
D = √

ED,

H (−�,�)
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∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

2∂2
t k1∂t ∂1η

)∣∣∣∣∣∣�
∥∥∥∂2

t ∂1η

∥∥∥
L2(−�,�)

∥∥∥∂2
t k1

∥∥∥
L∞(−�,�)

‖∂t ∂1η‖L2(−�,�) (5.41)

�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

( ∣∣∣∂2
t l

∣∣∣+ ∣∣∣∂2
t r

∣∣∣ )‖∂tη‖H 1(−�,�)

�
√
E
√
D

√
D = √

ED,∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

2∂t ã∂t ∂
2
1 η
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
L2(−�,�)

‖∂t ã‖L∞(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
L2(−�,�)

(5.42)

�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

( ∣∣∣∂2
t l

∣∣∣+ ∣∣∣∂2
t r

∣∣∣ )‖∂tη‖H 2(−�,�)

�
√
E
√
D

√
D = √

ED∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

∂tk1∂
2
t ∂1η
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
L2(−�,�)

‖∂tk1‖L∞(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
L2(−�,�)

(5.43)

�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

(
|∂t l| + |∂t r|

)∥∥∥∂2
t η

∥∥∥
H 1(−�,�)

�
√
E
√
D

√
D = √

ED.

For the remaining term we write

�∫
−�

b
(
∂2
t ∂1η
)(

ã∂2
t ∂2

1 η
)

=
�∫

−�

bã∂1

∣∣∣∂2
t ∂1η

∣∣∣2 = −
�∫

−�

∂1

(
bã
) ∣∣∣∂2

t ∂1η

∣∣∣2 +
(

bã

∣∣∣∂2
t ∂1η

∣∣∣2)∣∣∣∣
�

−�

(5.44)
and then estimate∣∣∣∣∣∣

�∫
−�

∂1

(
bã
) ∣∣∣∂2

t ∂1η

∣∣∣2
∣∣∣∣∣∣�
∥∥∥∂1

(
bã
)∥∥∥

L∞(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥2

L2(−�,�)
(5.45)

�
(

|∂t l| + |∂t r|
)∥∥∥∂2

t η

∥∥∥2

H 1(−�,�)
�

√
E
(√

D
)2 = √

ED,

and∣∣∣∣∣
(

bã

∣∣∣∂2
t ∂1η

∣∣∣2)∣∣∣∣
�

−�

∣∣∣∣∣� |bã|
(∣∣∣∂2

t ∂1η

∣∣∣2 ∣∣∣∣−�

+
∣∣∣∂2

t ∂1η

∣∣∣2 ∣∣∣∣
�

)
�

√
E
(√

D
)2 = √

ED. (5.46)

Third Term of ∂2
t ∂1S: ∂2

t ∂1

(
O∂1ζ0

)
We can directly compute

∂2
t ∂1

(
O∂1ζ0

)
= ∂2

t ∂1O∂1ζ0 + ∂2
t O∂2

1 ζ0. (5.47)
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We estimate each term via:

∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

∂2
t ∂1O∂1ζ0

)∣∣∣∣∣∣�
∥∥∥∂2

t ∂1η

∥∥∥
L2(−�,�)

∥∥∥∂2
t ∂1O

∥∥∥
L2(−�,�)

(5.48)

�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

( 2∑
j=0

( ∣∣∣∂j+1
t l

∣∣∣+ ∣∣∣∂j+1
t r

∣∣∣ ))2

�
√
E
(√

D
)2 = √

ED,

and

∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

∂2
t O∂2

1 ζ0

)∣∣∣∣∣∣�
∥∥∥∂2

t ∂1η

∥∥∥
L2(−�,�)

∥∥∥∂2
t O
∥∥∥

L2(−�,�)
(5.49)

�
∥∥∥∂2

t η

∥∥∥
H 1(−�,�)

( 2∑
j=0

( ∣∣∣∂j+1
t l

∣∣∣+ ∣∣∣∂j+1
t r

∣∣∣ ))2

�
√
E
(√

D
)2 = √

ED.

First Term of ∂1F5: ∂1

(
u · ∂2

t N
)

We can directly compute

∂1

(
u · ∂2

t N
)

= ∂1u · ∂2
t N + u · ∂2

t ∂1N . (5.50)

For the first term, we choose p = 3 + δ

2 + 2δ
and q = 6 + 2δ

1 − δ
such that 

1

p
+ 2

q
= 1.

∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

∂1u · ∂2
t N
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

‖∂1u‖Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

(5.51)

�
∥∥∥∂2

t ∂1η

∥∥∥
H

1
2 (−�,�)

‖∂1u‖
W

1
2

δ (−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
H

1
2 (−�,�)

�
∥∥∥∂2

t η

∥∥∥
H

3
2 (−�,�)

‖u‖W 2
δ (�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED.

For the second term, we have
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�∫
−�

b
(
∂2
t ∂1η
)(

u · ∂2
t ∂1N

)
=

�∫
−�

bu1∂1

∣∣∣∂2
t ∂1η

∣∣∣2 (5.52)

= −
�∫

−�

∂1

(
bu1

) ∣∣∣∂2
t ∂1η

∣∣∣2 +
(

bu1

∣∣∣∂2
t ∂1η

∣∣∣2)∣∣∣∣
�

−�

,

and then bound

∣∣∣∣∣∣
�∫

−�

∂1(bu1)

∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣∣∣�‖∂1(bu1)‖Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥2

Lq(−�,�)
(5.53)

�‖u‖W 2
δ (�0)

∥∥∥∂2
t η

∥∥∥2

H
3
2 (−�,�)

�
√
E
(√

D
)2 = √

ED

and∣∣∣∣∣
(

bu1

∣∣∣∂2
t ∂1η

∣∣∣2)
∣∣∣∣
�

−�

∣∣∣∣∣�
(

|u1|
∣∣∣∣−�

+ |u1|
∣∣∣∣
�

)(∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣−�

+
∣∣∣∂2

t ∂1η

∣∣∣2
∣∣∣∣
�

)
(5.54)

�
(

|∂t l| + |∂t r|
)(∣∣∣∂2

t ∂1η

∣∣∣2 ∣∣∣∣−�

+
∣∣∣∂2

t ∂1η

∣∣∣2 ∣∣∣∣
�

)
�

√
E
(√

D
)2 = √

ED.

Second Term of ∂1F5: ∂1

(
∂tu · ∂tN

)
We can directly compute

∂1

(
∂tu · ∂tN

)
= ∂t ∂1u · ∂tN + ∂tu · ∂t ∂1N . (5.55)

We estimate each term as follows:

∣∣∣∣∣∣
�∫

−�

b
(
∂2
t ∂1η
)(

∂t ∂1u · ∂tN
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

‖∂t ∂1u‖Lp(−�,�) ‖∂t ∂1η‖Lq(−�,�) (5.56)

�
∥∥∥∂2

t ∂1η

∥∥∥
H

1
2 (−�,�)

‖∂t ∂1u‖
W

1
2

δ (−�,�)

‖∂t ∂1η‖
H

1
2 (−�,�)

�
∥∥∥∂2

t η

∥∥∥
H

3
2 (−�,�)

‖∂tu‖W 2
δ (�0)

‖∂tη‖
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED

and

∣∣∣∣∣∣
�∫
b
(
∂2
t ∂1η
)(

∂tu · ∂t ∂1N
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

‖∂tu‖Lq(−�,�)

∥∥∥∂t∂
2
1 η

∥∥∥
Lp(−�,�)

(5.57)
−�

694



I. Tice and L. Wu Journal of Differential Equations 272 (2021) 648–731
�
∥∥∥∂2

t ∂1η

∥∥∥
H

1
2 (−�,�)

‖∂tu‖
H

1
2 (−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
W

1
2

δ (−�,�)

�
∥∥∥∂2

t η

∥∥∥
H

3
2 (−�,�)

‖∂tu‖H 1(�0)
‖∂tη‖

W
5
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED. �
5.7. Other nonlinear estimates

We now turn our attention to bounding various other nonlinear terms that appear in the anal-
ysis. We begin with O.

Lemma 5.9. Let O be given by (C.3.18). We have

∣∣∣∣κ
(

∂tR∂2
t O
∣∣∣∣
�

+ ∂tL ∂2
t O
∣∣∣∣−�

)∣∣∣∣� √
ED.

Proof. By definition ∂tR = ∂3
t R and ∂tL = ∂3

t L. Then we estimate

∣∣∣∣κ
(

∂tR∂2
t O
∣∣∣∣
�

+ ∂tL ∂2
t O
∣∣∣∣−�

)∣∣∣∣� ( ∣∣∣∂3
t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣ )( |∂t l| + |∂t r|
)( ∣∣∣∂2

t l

∣∣∣+ ∣∣∣∂2
t r

∣∣∣ ) (5.58)

+
( ∣∣∣∂3

t r

∣∣∣+ ∣∣∣∂3
t l

∣∣∣ ) |k1|
( ∣∣∣∂3

t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣ )�
√
D

√
D

√
E + √

D
√
E
√
D = √

ED. �
Next we consider Q and O.

Lemma 5.10. Let Q be given by (C.3.8) and O be given by (C.3.18). We have

∣∣∣∣σ∂2
t Q
(
∂tL + ∂2

t O
)∣∣∣∣

�

− σ∂2
t Q
(
∂tR + ∂2

t O
)∣∣∣∣−�

∣∣∣∣� √
ED. (5.59)

Proof. By Lemma C.6, we have

∣∣∣(∂tL + ∂2
t O
)∣∣∣

�

∣∣∣+
∣∣∣∣(∂tL + ∂2

t O
)∣∣∣−�

∣∣∣∣� √
D. (5.60)

Also, it is easy to check

∣∣∣∣∂2
t Q
∣∣∣±�

∣∣∣∣� |k1|
∣∣∣∂2

t k1

∣∣∣+ |∂tk1|2 +
∣∣∣∂2

t k1

∣∣∣ |∂1η(±�)| + |k1|
∣∣∣∂2

t ∂1η(±�)

∣∣∣ (5.61)

+ |∂1η(±�)|
∣∣∣∂2

t ∂1η(±�)

∣∣∣+ |∂t ∂1η(±�)|2 �
√
E
√
D.

Therefore, our result easily follows. �
We may write R =R(�1, �2) where �1 = k1 and �2 = ∂1η. Let ∂�i

R denote the derivative 
of R with respect to �i for i = 1, 2.
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Lemma 5.11. Let R be given by (C.3.1). We have the estimate

∣∣∣∣∣∣∣σ
∫
�0

∂1∂
2
t R(v ·N ) − dF2

dt

∣∣∣∣∣∣∣�
√
ED, (5.62)

where

F2 =
�∫

−�

∂�2RJ1√
1 + |∂1ζ0|2

∣∣∣∂2
t ∂1η

∣∣∣2 . (5.63)

Proof. Using the transport equation in (1.25) and integrating by parts, for v = ∂2
t u, we know

σ

∫
�0

∂1∂
2
t R(v ·N ) = σ

∫
�0

∂1∂
2
t R
(
bJ1∂

3
t η + ∂2

t (bã∂1η) + ∂tu · ∂tN + u · ∂2
t N
)

(5.64)

= −σ

∫
�0

∂2
t R
(

∂1

(
bJ1∂

3
t η
)

+ ∂1

(
∂2
t (bã∂1η)

)

+∂1

(
∂tu · ∂tN

)
+ ∂1

(
u · ∂2

t N
))

+σ

(
∂2
t R
(
bJ1∂

3
t η + ∂2

t (bã∂1η) + ∂tu · ∂tN + u · ∂2
t N
))∣∣∣∣

�

−�

,

where here we have written b(x1) =
(
1 + |∂1ζ0|2

)−1/2
.

We may directly verify that

∂tR= ∂�1R∂tk1 + ∂�2R∂t ∂1η, (5.65)

∂2
t R= ∂�1R∂2

t k1 + ∂2
�1

R(∂t k1)
2 + ∂�1∂�2R∂tk1∂t ∂1η + ∂2

�2
R(∂t ∂1η)2 + ∂�2R∂2

t ∂1η.

(5.66)

It is easy to check that

∣∣∂�1R
∣∣+ ∣∣∂�2R

∣∣+ ∣∣∣∂2
�1

R
∣∣∣+ ∣∣∂�1∂�2R

∣∣+ ∣∣∣∂2
�2

R
∣∣∣� |k1| + |∂1η| . (5.67)

Since the terms related to k1 are easier to estimate, we will focus on the terms related to 
∂2
�2

(∂t ∂1η)2 and ∂�2∂
2
t ∂1η. We will proceed with the estimates term by term.

First Integral Term, ∂1

(
bJ1∂

3
t η
)

: We can directly compute

∂1

(
bJ1∂

3
t η
)

= ∂1bJ1∂
3
t η + bJ1∂

3
t ∂1η. (5.68)
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In the following, we choose p = 3 + δ

2 + 2δ
and q = 6 + 2δ

1 − δ
such that 

1

p
+ 2

q
= 1. The ∂1bJ1∂

3
t η

terms can be directly estimated:

∣∣∣∣∣∣
�∫

−�

∂2
�2

R(∂t ∂1η)2
(
∂1bJ1∂

3
t η
)∣∣∣∣∣∣� ‖∂t ∂1η‖Lq(−�,�) ‖∂t ∂1η‖Lq(−�,�)

∥∥∥∂3
t η

∥∥∥
Lp(−�,�)

(5.69)

� ‖∂tη‖
H

3
2 (−�,�)

‖η‖
H

3
2 (−�,�)

∥∥∥∂3
t η

∥∥∥
W

1
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED,

and

∣∣∣∣∣∣
�∫

−�

∂�2R∂2
t ∂1η
(
∂1bJ1∂

3
t η
)∣∣∣∣∣∣� ‖∂1η‖Lq(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

∥∥∥∂3
t η

∥∥∥
Lp(−�,�)

(5.70)

� ‖η‖
H

3
2 (−�,�)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

∥∥∥∂3
t η

∥∥∥
W

1
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED.

The bJ1∂
3
t ∂1η terms require more efforts. We integrate by parts to obtain

�∫
−�

∂2
�2

R(∂t ∂1η)2
(
bJ1∂

3
t ∂1η
)

= −
�∫

−�

∂1∂
2
�2

R(∂t ∂1η)2(bJ1)∂
3
t η (5.71)

−
�∫

−�

∂2
�2

R(∂t ∂1η)(∂t ∂
2
1 η)(bJ1)∂

3
t η −

�∫
−�

∂2
�2

R(∂t ∂1η)2∂1(bJ1)∂
3
t η = I + II + III,

where the contact point terms vanish since ∂3
t η(−�) = ∂3

t η(�) = 0. Then we have

|I | =
∣∣∣∣∣∣

�∫
−�

∂1∂
2
�2

R(∂t ∂1η)2(bJ1)∂
3
t η

∣∣∣∣∣∣� ‖∂t ∂1η‖2
Lq(−�,�)

∥∥∥∂3
t η

∥∥∥
Lp(−�,�)

(5.72)

�‖∂tη‖2

H
3
2 (−�,�)

∥∥∥∂3
t η

∥∥∥
W

1
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED,

|II | =
∣∣∣∣∣∣

�∫
−�

∂2
�2

R(∂t ∂1η)(∂t ∂
2
1η)(bJ1)∂

3
t η

∣∣∣∣∣∣� ‖∂t ∂1η‖Lq(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
Lq(−�,�)

∥∥∥∂3
t η

∥∥∥
Lp(−�,�)

(5.73)
� ‖∂tη‖

H
1
2 (−�,�)

‖∂tη‖
H

5
2 (−�,�)

∥∥∥∂3
t η

∥∥∥ 1
2

�
√
E
√
D

√
D = √

ED,

Wδ (−�,�)
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and

|III | =
∣∣∣∣∣∣

�∫
−�

∂2
�2

R(∂t ∂1η)2∂1(bJ1)∂
3
t η

∣∣∣∣∣∣� ‖∂t ∂1η‖2
Lq(−�,�)

∥∥∥∂3
t η

∥∥∥
Lp(−�,�)

(5.74)

�‖∂tη‖2

H
3
2 (−�,�)

∥∥∥∂3
t η

∥∥∥
W

1
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED.

For the remaining term we compute

�∫
−�

∂�2R∂2
t ∂1η
(
bJ1∂

3
t ∂1η
)

= ∂t

( �∫
−�

∂�2RbJ1

∣∣∣∂2
t ∂1η

∣∣∣2)−
�∫

−�

b∂t (∂�2RJ1)

∣∣∣∂2
t ∂1η

∣∣∣2 ,

(5.75)
and then estimate

∣∣∣∣∣∣
�∫

−�

b∂t (∂�2RJ1)

∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣∣∣�
(

‖∂tJ1‖L∞(−�,�) + ‖∂t ∂1η‖L∞(−�,�)

)∥∥∥∂2
t ∂1η

∥∥∥2

L2(−�,�)
(5.76)

�
(

|∂t l| + |∂t r| + ‖∂tη‖H 2(−�,�)

)∥∥∥∂2
t η

∥∥∥2

H 1(−�,�)

�
√
E
(√

D
)2 = √

ED.

Second Integral Term, ∂1

(
∂2
t (bã∂1η)

)
: We begin by computing

∂2
t ∂1

(
bã∂1η

)
= ∂1b∂2

t ã∂1η + ∂1b∂t ã∂t ∂1η + ∂1bã∂2
t ∂1η (5.77)

−b∂3
t k1∂1η + b∂2

t ã∂2
1 η − 2b∂2

t k1∂t ∂1η

+2b∂t ã∂t ∂
2
1 η − b∂tk1∂

2
t ∂1η + bã∂2

t ∂2
1η.

For the first two of these terms we may bound

∣∣∣∣∣∣
�∫

−�

∂2
�2

R(∂t ∂1η)2
(
∂1b∂2

t ã∂1η
)∣∣∣∣∣∣� ‖∂t ∂1η‖2

Lq(−�,�)

∥∥∥∂2
t ã

∥∥∥
L∞(−�,�)

‖∂1η‖Lp(−�,�) (5.78)

� ‖∂tη‖2

H
3
2 (−�,�)

( ∣∣∣∂3
t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣ )‖η‖
W

3
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED.∣∣∣∣∣∣
�∫
∂�2R∂2

t ∂1η
(
∂1b∂2

t ã∂1η
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
L2(−�,�)

∥∥∥∂2
t ã

∥∥∥
L∞(−�,�)

‖∂1η‖L2(−�,�) (5.79)
−�
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�
∥∥∥∂2

t η

∥∥∥2

H 1(−�,�)

( ∣∣∣∂3
t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣ )‖η‖H 1(−�,�)

�
√
E
√
D

√
D = √

ED.

Arguing similarly for all but the last term, we conclude that

∣∣∣∣∣∣∣σ
∫
�0

∂2
t R
(

∂1∂
2
t (bã∂1η) − bã∂2

t ∂2
1 η

)∣∣∣∣∣∣∣�
√
ED. (5.80)

The last term is much more complicated. To handle it we first integrate by parts to obtain

�∫
−�

∂2
�2

R(∂t ∂1η)2
(
bã∂2

t ∂2
1η
)

= −
�∫

−�

∂1∂
2
�2

R(∂t ∂1η)2(bã)∂2
t ∂1η (5.81)

−
�∫

−�

∂2
�2

R(∂t ∂1η)(∂t ∂
2
1 η)(bã)∂2

t ∂1η

−
�∫

−�

∂2
�2

R(∂t ∂1η)2∂1(bã)∂2
t ∂1η + ∂2

�2
R(∂t ∂1η)2

(
bã∂2

t ∂1η
)∣∣∣∣

�

−�

= I + II + III + IV .

Then we have

|I | =
∣∣∣∣∣∣

�∫
−�

∂1∂
2
�2

R(∂t ∂1η)2(bã)∂2
t ∂1η

∣∣∣∣∣∣� ‖∂t ∂1η‖2
Lq(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lp(−�,�)

(5.82)

�‖∂tη‖2

H
3
2 (−�,�)

∥∥∥∂2
t η

∥∥∥
W

3
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED,

|II | =
∣∣∣∣∣∣

�∫
−�

∂2
�2

R(∂t ∂1η)(∂t ∂
2
1η)(bã)∂2

t ∂1η

∣∣∣∣∣∣� ‖∂t ∂1η‖Lq(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

(5.83)

� ‖∂tη‖
H

1
2 (−�,�)

‖∂tη‖
W

5
2

δ (−�,�)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED,

and
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|III | =
∣∣∣∣∣∣

�∫
−�

∂2
�2

R(∂t ∂1η)2∂1(bã)∂2
t ∂1η

∣∣∣∣∣∣� ‖∂t ∂1η‖2
Lq(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lp(−�,�)

(5.84)

�‖∂tη‖2

H
3
2 (−�,�)

∥∥∥∂2
t η

∥∥∥
W

3
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED.

The contact point term

|IV | �
∣∣∣∣∣∂2

�2
R(∂t ∂1η)2

(
bã∂2

t ∂1η
)∣∣∣∣

�

−�

∣∣∣∣∣ (5.85)

�
(

|∂t ∂1η(−�)|2 + |∂t ∂1η(�)|2
)(∣∣∣∂2

t ∂1η(−�)

∣∣∣+ ∣∣∣∂2
t ∂1η(�)

∣∣∣)�
√
E
√
D

√
D = √

ED.

On the other hand,

�∫
−�

∂�2R∂2
t ∂1η
(
bã∂2

t ∂2
1η
)

=
�∫

−�

∂�2Rbã∂1

∣∣∣∂2
t ∂1η

∣∣∣2 (5.86)

= −
�∫

−�

∂1

(
∂�2Rbã

) ∣∣∣∂2
t ∂1η

∣∣∣2 +
(

∂�2Rbã

∣∣∣∂2
t ∂1η

∣∣∣2)
∣∣∣∣
�

−�

,

where we have the bounds

∣∣∣∣∣∣
�∫

−�

∂1

(
∂�2Rbã

) ∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣∣∣�
∥∥∥∂1

(
∂�2Rbã

)∥∥∥
Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥2

Lq(−�,�)
(5.87)

�
(

|∂t l| + |∂t r| + ‖η‖
W

5
2

δ (−�,�)

)∥∥∥∂2
t η

∥∥∥2

H
3
2 (−�,�)

�
√
E
(√

D
)2 = √

ED,

and

∣∣∣∣∣
(

∂�2Rbã

∣∣∣∂2
t ∂1η

∣∣∣2)
∣∣∣∣
�

−�

∣∣∣∣∣� |ã|
(∣∣∣∂2

t ∂1η

∣∣∣2
∣∣∣∣−�

+
∣∣∣∂2

t ∂1η

∣∣∣2
∣∣∣∣
�

)
�

√
E
(√

D
)2 = √

ED.

(5.88)

Third Integral Term, ∂1

(
∂tu · ∂tN

)
: We can directly compute

∂1

(
∂tu · ∂tN

)
= ∂t ∂1u · ∂tN + ∂tu · ∂t ∂1N . (5.89)
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We estimate each term. In the following, we choose p = 3 + δ

2 + 2δ
and q = 6 + 2δ

1 − δ
such that 

1

p
+

2

q
= 1:

∣∣∣∣∣∣
�∫

−�

∂2
�2

R(∂t ∂1η)2
(
∂t ∂1u · ∂tN

)∣∣∣∣∣∣� ‖∂t ∂1η‖2
Lq(−�,�) ‖∂t ∂1u‖Lp(−�,�) ‖∂t ∂1η‖L∞(−�,�) (5.90)

� ‖∂t ∂1η‖2

H
1
2 (−�,�)

‖∂t ∂1u‖
W

1
2

δ (−�,�)

‖∂t ∂1η‖H 1(−�,�)

� ‖∂tη‖2

H
3
2 (−�,�)

‖∂tu‖W 2
δ (�0)

‖∂tη‖H 2(−�,�)

�
√
E
√
D

√
D = √

ED,

∣∣∣∣∣∣
�∫

−�

∂�2R∂2
t ∂1η
(
∂t∂1u · ∂tN

)∣∣∣∣∣∣�
∥∥∥∂2

t ∂1η

∥∥∥
Lq(−�,�)

‖∂t ∂1u‖Lp(−�,�) ‖∂t ∂1η‖Lq(−�,�) (5.91)

�
∥∥∥∂2

t ∂1η

∥∥∥
H

1
2 (−�,�)

‖∂t ∂1u‖
W

1
2

δ (−�,�)

‖∂t ∂1η‖
H

1
2 (−�,�)

�
∥∥∥∂2

t η

∥∥∥
H

3
2 (−�,�)

‖∂tu‖W 2
δ (�0)

‖∂tη‖
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED,

∣∣∣∣∣∣
�∫

−�

∂2
�2

R(∂t ∂1η)2
(
∂tu · ∂t ∂1N

)∣∣∣∣∣∣� ‖∂t ∂1η‖2
Lq(−�,�) ‖∂tu‖L∞(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
Lp(−�,�)

(5.92)

� ‖∂t ∂1η‖2

H
1
2 (−�,�)

‖∂tu‖H 1(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
W

1
2

δ (−�,�)

� ‖∂tη‖2

H
3
2 (−�,�)

‖∂tu‖W 2
δ (�0)

‖∂tη‖
W

5
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED,

∣∣∣∣∣∣
�∫

−�

∂�2R∂2
t ∂1η
(
∂tu · ∂t ∂1N

)∣∣∣∣∣∣�
∥∥∥∂2

t ∂1η

∥∥∥
Lq(−�,�)

‖∂tu‖Lq(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
Lp(−�,�)

(5.93)

�
∥∥∥∂2

t ∂1η

∥∥∥
H

1
2 (−�,�)

‖∂tu‖
H

1
2 (−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
W

1
2

δ (−�,�)

�
∥∥∥∂2

t η

∥∥∥
H

3
2 (−�,�)

‖∂tu‖H 1(�0)
‖∂tη‖

W
5
2

δ (−�,�)

�
√
E
√
D

√
D = √

ED.
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Fourth Integral Term, ∂1

(
u · ∂2

t N
)

: We can directly compute

∂1

(
u · ∂2

t N
)

= ∂1u · ∂2
t N + u · ∂2

t ∂1N . (5.94)

We estimate each term. In the following, we choose p = 3 + δ

2 + 2δ
and q = 6 + 2δ

1 − δ
such that 

1

p
+

2

q
= 1:

∣∣∣∣∣∣
�∫

−�

∂2
�2

R(∂t ∂1η)2
(
∂1u · ∂2

t N
)∣∣∣∣∣∣ (5.95)

� ‖∂t∂1η‖L∞(−�,�) ‖∂t ∂1η‖Lq(−�,�) ‖∂1u‖Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

� ‖∂tη‖H 2(−�,�) ‖∂tη‖
H

3
2 (−�,�)

‖u‖W 2
δ (�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED,

∣∣∣∣∣∣
�∫

−�

∂�2R∂2
t ∂1η
(
∂1u · ∂2

t N
)∣∣∣∣∣∣�

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

‖∂1u‖Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

(5.96)

�
∥∥∥∂2

t ∂1η

∥∥∥
H

1
2 (−�,�)

‖∂1u‖
W

1
2

δ (−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
H

1
2 (−�,�)

�
∥∥∥∂2

t η

∥∥∥
H

3
2 (−�,�)

‖u‖W 2
δ (�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED.

The last term is much more complicated. We integrate by parts to obtain

�∫
−�

∂2
�2

R(∂t ∂1η)2
(
u · ∂2

t ∂1N
)

= −
�∫

−�

∂1∂
2
�2

R(∂t ∂1η)2u1∂
2
t ∂1η

−
�∫

−�

∂2
�2

R(∂t ∂1η)(∂t ∂
2
1η)u1∂

2
t ∂1η

−
�∫

−�

∂2
�2

R(∂t ∂1η)2∂1u1∂
2
t ∂1η + ∂2

�2
R(∂t ∂1η)2

(
u1∂

2
t ∂1η
)∣∣∣∣

�

−�

=: I + II + III + IV .

Then we have
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|I | =
∣∣∣∣∣∣

�∫
−�

∂1∂
2
�2

R(∂t ∂1η)2u1∂
2
t ∂1η

∣∣∣∣∣∣ (5.97)

� ‖∂t ∂1η‖L∞(−�,�) ‖∂t ∂1η‖Lq(−�,�) ‖u‖Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

� ‖∂tη‖H 2(−�,�) ‖∂tη‖
H

3
2 (−�,�)

‖u‖W 2
δ (�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED,

|II | =
∣∣∣∣∣∣

�∫
−�

∂2
�2

R(∂t ∂1η)(∂t ∂
2
1 η)u1∂

2
t ∂1η

∣∣∣∣∣∣ (5.98)

� ‖∂t ∂1η‖L∞(−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥
Lp(−�,�)

‖u‖Lq(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥
Lq(−�,�)

� ‖∂tη‖H 2(−�,�) ‖∂tη‖
W

5
2

δ (−�,�)

‖u‖H 1(�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED,

and

|III | =
∣∣∣∣∣∣

�∫
−�

∂2
�2

R(∂t ∂1η)2∂1u1∂
2
t ∂1η

∣∣∣∣∣∣ (5.99)

� ‖∂t ∂1η‖L∞(−�,�) ‖∂t ∂1η‖Lq(−�,�) ‖∂1u‖Lp(−�,�)

∥∥∥∂2
t ∂1η
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Lq(−�,�)

� ‖∂tη‖H 2(−�,�) ‖∂tη‖
H

3
2 (−�,�)

‖u‖W 2
δ (�0)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D

√
D = √

ED.

The contact point term

|IV | �
∣∣∣∣∣∂2

�2
R(∂t ∂1η)2

(
u1∂

2
t ∂1η
)∣∣∣∣

�

−�

∣∣∣∣∣ (5.100)

�
(

|∂t ∂1η(−�)|2 + |∂t ∂1η(�)|2
)(∣∣∣∂2

t ∂1η(−�)

∣∣∣+ ∣∣∣∂2
t ∂1η(�)

∣∣∣)( |∂tL| + |∂tR|
)

�
√
E
√
D

√
D = √

ED.

On the other hand,

�∫
−�

∂�2R∂2
t ∂1η
(
u · ∂2

t ∂1N
)

=
�∫

−�

∂�2Ru1∂1

∣∣∣∂2
t ∂1η

∣∣∣2 (5.101)

= −
�∫

−�

∂1

(
∂�2Ru1

) ∣∣∣∂2
t ∂1η

∣∣∣2 +
(

∂�2Ru1

∣∣∣∂2
t ∂1η

∣∣∣2)
∣∣∣∣
�

−�

,

where we have
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∣∣∣∣∣∣
�∫

−�

∂1

(
∂�2Ru1

) ∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣∣∣�
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(
∂�2Ru1

)∥∥∥
Lp(−�,�)

∥∥∥∂2
t ∂1η

∥∥∥2

Lq(−�,�)
(5.102)

�‖u‖W 2
δ (�0)

∥∥∥∂2
t η

∥∥∥2

H
3
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�
√
E
(√

D
)2 = √

ED,

and ∣∣∣∣∣
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∂�2Ru1

∣∣∣∂2
t ∂1η
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�
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(
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∣∣∣∂2

t ∂1η

∣∣∣2
∣∣∣∣
�

)
(5.103)

�
(

|∂tL| + |∂tR|
)(∣∣∣∂2

t ∂1η

∣∣∣2
∣∣∣∣−�

+
∣∣∣∂2

t ∂1η

∣∣∣2
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�

)

�
√
E
(√

D
)2 = √

ED.

Next we turn to the contact point terms:

σ

(
∂2
t R
(
bJ1∂

3
t η + ∂2

t (bã∂1η) + ∂tu · ∂tN + u · ∂2
t N
))∣∣∣∣

�

−�

(5.104)

= σ

(
∂2
t R
(
∂2
t (bã∂1η) + ∂tu · ∂tN + u · ∂2

t N
))∣∣∣∣

�

−�

,

which follows because ∂3
t η(−�) = ∂3

t η(�) = 0. Note the fact that

∣∣∣∂2
t R(±�)

∣∣∣� ∣∣∣∂2
�2

R(±�)

∣∣∣ |∂t ∂1η(±�)|2 + ∣∣∂�2R(±�)
∣∣ ∣∣∣∂2

t ∂1η(±�)

∣∣∣� √
D. (5.105)

First Contact Point Term, ∂2
t (bã∂1η): We can directly compute

∂2
t (bã∂1η) = b∂2

t ã∂1η + 2b∂t ã∂t ∂1η + bã∂2
t ∂1η. (5.106)

Then we have ∣∣∣∣b∂2
t ã∂1η

∣∣∣±�

∣∣∣∣�
(∣∣∣∂3

t l

∣∣∣+ ∣∣∣∂3
t r

∣∣∣) |∂1η(±�)| � √
D

√
E, (5.107)

∣∣∣∣2b∂t ã∂t ∂1η

∣∣∣±�

∣∣∣∣�
(∣∣∣∂2

t l

∣∣∣+ ∣∣∣∂2
t r

∣∣∣) |∂t ∂1η(±�)| � √
E
√
D, (5.108)

and ∣∣∣∣bã∂2
t ∂1η

∣∣∣±�

∣∣∣∣�
(

|∂t l| + |∂t r|
)∣∣∣∂2

t ∂1η(±�)

∣∣∣� √
E
√
D. (5.109)

Second Contact Point Term, ∂tu ·∂tN : Notice that u(−�, 0) = (∂t l, 0) and u(�, 0) = (∂t r, 0). 
We have
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∣∣∣∣∂tu · ∂tN
∣∣∣±�

∣∣∣∣�
(∣∣∣∂2

t l

∣∣∣+ ∣∣∣∂2
t r

∣∣∣) |∂t ∂1η(±�)| � √
E
√
D. (5.110)

Third Contact Point Term, u · ∂2
t N : We have

∣∣∣∣u · ∂2
t N
∣∣∣±�

∣∣∣∣�
(

|∂t l| + |∂t r|
)∣∣∣∂2

t ∂1η(±�)

∣∣∣� √
E
√
D. � (5.111)

5.8. Nonlinear estimates in the pressure estimates and free surface estimates

Lemma 5.12. Define the functional H 1(�0) � w → 〈F ,w〉 ∈ R via

〈F ,w〉 =
∫
�0

Jw ·F1 −
∫
�0

w ·F3 −
∫

�0b

F4

(
w · T

|T |2
)

. (5.112)

Then

|〈F ,w〉| � ‖w‖H 1(�0)

√
E
√
D. (5.113)

Proof. This is a summary of previous estimates for F1, F3 and F4. �
Lemma 5.13. Let R be given by (C.3.1). We have the estimate∥∥∥∂2

t R
∥∥∥

H
1
2 (−�,�)

�
√
E
√
D. (5.114)

Proof. Similar to the proof of Lemma 5.11, for s − 1

2
>

1

2
, we estimate

∥∥∥∂�2R∂2
t ∂1η

∥∥∥
H

1
2 (−�,�)

�
(

|k1| + ‖∂1η‖
H

s− 1
2 (−�,�)

)∥∥∥∂2
t ∂1η

∥∥∥
H

1
2 (−�,�)

(5.115)

� ‖η‖
H
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2 (−�,�)

∥∥∥∂2
t η

∥∥∥
H

3
2 (−�,�)

�
√
E
√
D,
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R(∂t ∂1η)2
∥∥∥

H
1
2 (−�,�)

� ‖∂t ∂1η‖
H

s− 1
2 (−�,�)

‖∂t ∂1η‖
H

1
2 (−�,�)

(5.116)

� ‖∂tη‖
H

s+ 1
2 (−�,�)

‖∂tη‖
H

3
2 (−�,�)

�
√
D

√
E . �

6. Nonlinear estimates in the Stokes problem

We will now prove the nonlinear estimate in the Stokes problem when applying ∂t on both 
sides of the equation. Throughout this section, we always assume η is given and satisfies

sup
0≤t≤T

(
E‖(t) + ‖η(t)‖

W
5
2

δ (−�,�)

+ ‖∂tη(t)‖
W

3
2

δ (−�,�)

)
≤ ϑ < 1, (6.1)
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for some ϑ > 0 sufficiently small. Here, we will employ the same techniques as developed in [9]
and Section 5.

6.1. Estimate of the G1 term

We now handle the term G1.

Lemma 6.1. Let G1 = F1. We have the estimate

‖G1‖2
W 0

δ (�0)
�
(
E2 + E

)
D. (6.2)

Proof. We will only present the estimate for the term −∇∂tA ·
(
pI − μDAu

)
. The term μ∇A ·

D∂tAu may be handled with a similar argument. We begin by bounding

∥∥∥−∇∂tA ·
(
pI − μDAu

)∥∥∥2

W 0
δ (�0)

(6.3)

� ‖∂tA∇p‖2
W 0
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+
∥∥∥∂tAA∇2u

∥∥∥2

W 0
δ (�0)

+ ‖∂tA∇A∇u‖2
W 0

δ (�0)

=: I + II + III.

For I , we have
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δ (�0)
(6.4)

�‖∂tη‖2

H
s+ 1

2 (−�,�)
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� DE .

For II , we have
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For III , we choose q ∈ [1, ∞) such that 
3

q
+ 1

2 + 2δ
= 1

2
, and also p ∈ [1, ∞) such that 

2

p
+

2 − s

2
= 1

2
. Then we have
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1

ζ0
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2
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∥∥∥∇2η̄

∥∥∥2
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Lp(�0)

+ ‖∂t∇η̄‖2
Lq(�0)

‖∇η̄‖2
Lq(�0)

‖∇u‖2
Lq(�0)

∥∥∥∥dδ

ζ

∥∥∥∥
2+2δ
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� ‖∂t η̄‖2
H 2(�0)

‖η̄‖2
Hs+1(�0)

‖∇u‖2
W 1

δ (�0)
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+ ‖∂tη‖2

H
3
2 (−�,�)

‖η‖2

H
1
2 (−�,�)

‖u‖2
W 2

δ (�0)

� DE2. �
6.2. Estimate of the G2 term

Now we handle the term G2.

Lemma 6.2. Let G2 = F2. We have the estimate

‖G2‖2
W 1

δ (�0)
� ED. (6.7)

Proof. The estimate may be proved as in Proposition 7.2 of [9] with minor modifications to 
accommodate the 1/ζ0 term as in the proof of Lemma 6.1. �
6.3. Estimate of the G3 term

Next we handle G3.

Lemma 6.3. Let G3 be given by G−
3 = 0 and

G+
3 =

∂t

(
J1∂tη

)
− ∂t

(
ã∂1ζ

)
√

1 + |∂ζ0|2
− u · ∂tN . (6.8)

We have the estimate

‖G3‖2

W
3
2

δ (∂�0)

� D‖ + ED. (6.9)

Proof. We estimate

‖G3‖2

W
3
2

δ (∂�0)

�
∥∥G+

3

∥∥2

W
3
2

δ (�0)
(6.10)

�
∥∥∥∂t

(
J1∂tη

)∥∥∥2

W
3
2

δ (−�,�)
+
∥∥∥∂t

(
ã∂1ζ

)∥∥∥2

W
3
2

δ (−�,�)
+ ‖u · ∂tN‖2

W
3
2

δ (�0)

= : I + II + III.

We then bound

I =
∥∥∥∂t

(
J1∂tη

)∥∥∥2

W
3
2

δ (−�,�)
� ‖∂tJ1∂tη‖2

W
3
2

δ (−�,�)

+
∥∥∥J1∂

2
t η

∥∥∥2

W
3
2

δ (−�,�)
(6.11)

� |∂tJ1|2 ‖∂tη‖2
3
2

+ |J1|2
∥∥∥∂2

t η

∥∥∥2

W
3
2 (−�,�)
Wδ (−�,�) δ
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�
(

|∂t l|2 + |∂t r|2
)

‖∂tη‖
H

3
2 (−�,�)

+
∥∥∥∂2

t η

∥∥∥
H

3
2 (−�,�)

� ED +D‖,

I I =
∥∥∥∂t

(
ã∂1ζ

)∥∥∥2

W
3
2

δ (−�,�)
�
( ∣∣∣∂2

t l

∣∣∣2 +
∣∣∣∂2

t r

∣∣∣2 )‖ζ‖2

W
3
2

δ (−�,�)

+
(

|∂t l|2 +|∂t r|2
)

‖∂tη‖2

W
3
2

δ (−�,�)

(6.12)

�
( ∣∣∣∂2

t l

∣∣∣2 +
∣∣∣∂2

t r

∣∣∣2 )+
(

|∂t l|2 + |∂t r|2
)

‖∂tη‖2

W
3
2

δ (−�,�)

� D‖ + ED,

and

III = ‖u · ∂tN‖2

W
3
2

δ (�0)

� ‖u · ∂tN‖W 1
δ (�0)

+
∥∥∥∂1

(
u · ∂tN

)∥∥∥
W

1
2

δ (�0)

(6.13)

� ‖u‖2

W
3
2

δ (�0)

‖∂t ∂1η‖2

W
3
2

δ (−�,�)

+ ‖∂1u‖2

W
1
2

δ (�0)

‖∂t ∂1η‖2

W
3
2

δ (−�,�)

+ ‖u‖2

W
3
2

δ (�0)

∥∥∥∂t ∂
2
1η

∥∥∥2

W
1
2

δ (−�,�)

� ‖u‖2
W 2

δ (�0)
‖∂tη‖2

W
5
2

δ (−�,�)

� ED. �

6.4. Estimate of the G4 term

Next to estimate is G4.

Lemma 6.4. Let G4 = F4 be given by G−
4 = F4 and G+

4 = F3 · T
|T | . We have the estimate

‖G4‖2

W
1
2

δ (∂�0)

�
(
E2 + E

)
D. (6.14)

Proof. It is easy to check that

‖G4‖2

W
1
2

δ (∂�0)

�
∥∥G−

4

∥∥2

W
1
2

δ (∂�0)
+∥∥G+

4

∥∥2

W
1
2

δ (∂�0)
� ‖F4‖2

W
1
2

δ (∂�0)

+‖F3‖2

W
1
2

δ (∂�0)

. (6.15)

We will proceed by estimating these term by term.
G−

4 Term μD∂tAuν · τ : We have

∥∥μD∂tAuν · τ∥∥2

W
1
2

δ (�0b)
�
∥∥D∂tAue2 · e1

∥∥2
W 1

δ (�0)
(6.16)

� ‖∂tA∇u‖2
W 0

δ (�0)
+
∥∥∥∂tA∇2u

∥∥∥2

W 0
δ (�0)

+ ‖∂t∇A∇u‖2
W 0

δ (�0)

=: I + II + III.

For I , we have
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I = ‖∂tA∇u‖2
W 0

δ (�0)
� ‖∂tA‖2

L4(�0)

∥∥dδ∇u
∥∥2

L4(�0)
� ‖∂t∇η̄‖2

L4(�0)

∥∥dδ∇u
∥∥2

L4(�0)
(6.17)

� ‖∂tη‖2

H
3
2 (−�,�)

‖u‖2
W 2

δ (�0)
� DE .

For II , we have

II =
∥∥∥∂tA∇2u

∥∥∥2

W 0
δ (�0)

� ‖∂tA‖2
L∞(�0)

∥∥∥∇2u

∥∥∥2

W 0
δ (�0)

� ‖∂t∇η̄‖2
L∞(�0)

∥∥∥∇2u

∥∥∥2

W 0
δ (�0)

(6.18)

� ‖∂tη‖2

H
s+ 1

2 (−�,�)
‖u‖2

W 2
δ (�0)

� DE .

For III , we choose q ∈ [1, ∞) such that 
2

q
+ 1

2 + 2δ
= 1

2
. Then we have

III = ‖∂t∇A∇u‖2
W 0

δ (�0)
�
∥∥∥∂t∇2η̄∇u

∥∥∥2

W 0
δ (�0)

+
∥∥∥∥∂t∇η̄

1

ζ0
∇u

∥∥∥∥
2

W 0
δ (�0)

(6.19)

�
∥∥∥∂t∇2η̄

∥∥∥2

L
2

2−s (�0)

∥∥dδ∇u
∥∥2

L
2

s−1 (�0)
+ ‖∂t∇η̄‖2

Lq(�0)

∥∥∥∥dδ

ζ0

∥∥∥∥
L2+2δ(�0)

‖∇u‖2
Lq(�0)

� ‖∂t η̄‖2
Hs+1(�0)

‖∇u‖2
W 1

δ (�0)
+ ‖∂t η̄‖2

H 2(�0)
‖∇u‖2

W 1
δ (�0)

� ‖∂tη‖2

H
s+ 1

2 (−�,�)
‖u‖2

W 2
δ (�0)

+ ‖∂tη‖2

H
3
2 (−�,�)

‖u‖2
W 2

δ (�0)
� DE .

First Term of G+
4 , μD∂tAuN : We have

∥∥μD∂tAuN
∥∥2

W
1
2

δ (�0)
�
∥∥D∂tAu(J1e2 + e1∂1η̄)

∥∥2
W 1

δ (�0)
(6.20)

�‖∂tA∇u‖2
W 0

δ (�0)
+
∥∥∥∂tA∇2u

∥∥∥2

W 0
δ (�0)

+ ‖∂t∇A∇u‖2
W 0

δ (�0)
+
∥∥∥∂tA∇u∂2

1 η̄

∥∥∥2

W 0
δ (�0)

= : I + II + III + IV .

For I , we have

I = ‖∂tA∇u‖2
W 0

δ (�0)
� ‖∂tA‖2

L4(�0)

∥∥dδ∇u
∥∥2

L4(�0)
� ‖∂t∇η̄‖2

L4(�0)

∥∥dδ∇u
∥∥2

L4(�0)
(6.21)

� ‖∂tη‖2

H
3
2 (−�,�)

‖u‖2
W 2

δ (�0)
� DE .

For II , we have

II =
∥∥∥∂tA∇2u

∥∥∥2

W 0
δ (�0)

� ‖∂tA‖2
L∞(�0)

∥∥∥∇2u

∥∥∥2

W 0
δ (�0)

� ‖∂t∇η̄‖2
L∞(�0)

∥∥∥∇2u

∥∥∥2

W 0
δ (�0)

(6.22)

� ‖∂tη‖2
s+ 1 ‖u‖2

W 2(�0)
� DE .
H 2 (−�,�) δ
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For III , we choose q ∈ [1, ∞) such that 
2

q
+ 1

2 + 2δ
= 1

2
. Then we have

III = ‖∂t∇A∇u‖2
W 0

δ (�0)
�
∥∥∥∂t∇2η̄∇u

∥∥∥2

W 0
δ (�0)

+
∥∥∥∥∂t∇η̄

1

ζ0
∇u

∥∥∥∥
2

W 0
δ (�0)

(6.23)

�
∥∥∥∂t∇2η̄

∥∥∥2

L
2

2−s (�0)

∥∥dδ∇u
∥∥2

L
2

s−1 (�0)
+ ‖∂t∇η̄‖2

Lq(�0)

∥∥∥∥dδ

ζ0

∥∥∥∥
L2+2δ(�0)

‖∇u‖2
Lq(�0)

� ‖∂t η̄‖2
Hs+1(�0)

‖∇u‖2
W 1

δ (�0)
+ ‖∂t η̄‖2

H 2(�0)
‖∇u‖2

W 1
δ (�0)

� ‖∂tη‖2

H
s+ 1

2 (−�,�)
‖u‖2

W 2
δ (�0)

+ ‖∂tη‖2

H
3
2 (−�,�)

‖u‖2
W 2

δ (�0)
� DE .

For IV , we have

IV =
∥∥∥∂tA∇u∂2

1 η̄

∥∥∥2

W 0
δ (�0)

� ‖∂tA‖2
L∞(�0)

‖∇u‖2
L4(�0)

∥∥∥∂2
1 η̄

∥∥∥2

L4(�0)

� ‖∂t∇η̄‖2
L∞(�0)

‖∇u‖2
W 1

δ (�0)

∥∥∥∂2
1 η̄

∥∥∥
W 1

δ (�0)

� ‖∂tη‖2

H
s+ 1

2 (−�,�)
‖u‖2

W 2
δ (�0)

‖η‖
W

5
2

δ (−�,�)

� DE2.

Second Term of G+
4 , −(pI − μDAu)∂tN : We have

‖−(pI − μDAu)∂tN‖2

W
1
2

δ (�0)

� ‖(pI − μDAu)∂t (J1e2 + e1∂1η̄)‖2
W 1

δ (�0)
(6.24)

� ‖(p + ∇u)∂t ∂1η̄‖2
W 0

δ (�0)
+
∥∥∥∇2u∂t∂1η̄

∥∥∥2

W 0
δ (�0)

+ ‖∇A∇u∂t∂1η̄‖2
W 0

δ (�0)
+
∥∥∥(p + ∇u)∂t ∂

2
1 η̄

∥∥∥2

W 0
δ (�0)

=: I + II + III + IV .

For I , we have

I = ‖(p + ∇u)∂t ∂1η̄‖2
W 0

δ (�0)
�
∥∥dδ(p + ∇u)

∥∥2
L4(�0)

‖∂t∇η̄‖2
L4(�0)

(6.25)

�
∥∥dδ(p + ∇u)

∥∥2
L4(�0)

‖∂t∇η̄‖2
L4(�0)

�
(

‖u‖2
W 2

δ (�0)
+ ‖p‖2

W 1
δ (�0)

)
‖∂tη‖2

H
3
2 (−�,�)

� ED.

For II , we have

II =
∥∥∥∇2u∂t∂1η̄

∥∥∥2

W 0
δ (�0)

�
∥∥∥∇2u

∥∥∥2

W 0
δ (�0)

‖∂t∇η̄‖2
L∞(�0)

�
∥∥∥∇2u

∥∥∥2

W 0
δ (�0)

‖∂t∇η̄‖2
L∞(�0)

(6.26)

� ‖u‖2
W 2(�0)

‖∂tη‖2
s+ 1 � ED.
δ H 2 (−�,�)
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For III , we choose q ∈ [1, ∞) such that 
3

q
+ 1

2 + 2δ
= 1

2
. Then we have

III = ‖∇A∇u∂t∂1η̄‖2
W 0

δ (�0)
�
∥∥∥∇2η̄∇u∂t∂1η̄

∥∥∥2

W 0
δ (�0)

+
∥∥∥∥∇η̄

1

ζ0
∇u∂t∂1η̄

∥∥∥∥
2

W 0
δ (�0)

(6.27)

�
∥∥∥∇2η̄

∥∥∥2

L3(�0)

∥∥dδ∇u
∥∥2

L3(�0)
‖∂t ∂1η̄‖2

L3(�0)

+ ‖∇η̄‖2
Lq(�0)

∥∥∥∥dδ

ζ0

∥∥∥∥
L2+2δ(�0)

‖∇u‖2
Lq(�0)

‖∂t ∂1η̄‖2
Lq(�0)

� ‖η̄‖2
H 3(�0)

‖∇u‖2
W 1

δ (�0)
‖∂t ∂1η̄‖2

H 1(�0)
+ ‖η̄‖2

H 2(�0)
‖∇u‖2

W 1
δ (�0)

‖∂t ∂1η̄‖2
H 1(�0)

� ‖η‖2

H
5
2 (−�,�)

‖u‖2
W 2

δ (�0)
‖∂tη‖2

H
3
2 (−�,�)

+ ‖η‖2

H
3
2 (−�,�)

‖u‖2
W 2

δ (�0)
‖∂tη‖2

H
3
2 (−�,�)

� DE2.

For IV , we have

IV =
∥∥∥(p + ∇u)∂t ∂

2
1 η̄

∥∥∥2

W 0
δ (�0)

� ‖p + ∇u‖2
L4(�0)

∥∥∥∂t ∂
2
1 η̄

∥∥∥2

L4(�0)
(6.28)

�
(

‖∇u‖2
W 1

δ (�0)
+ ‖p‖2

W 1
δ (�0)

)∥∥∥∂t ∂
2
1 η̄

∥∥∥
W 1

δ (�0)

�
(

‖u‖2
W 2

δ (�0)
+ ‖p‖2

W 1
δ (�0)

)
‖∂tη‖

W
5
2

δ (−�,�)

� ED.

Third Term of G+
4 , gη∂tN : We estimate

‖gη∂tN‖2

W
1
2

δ (�0)

� ‖η‖2

W
1
2

δ (−�,�)

‖∂t ∂1η̄‖2

W
s− 1

2
δ (�0)

� ‖η‖2

W
1
2

δ (−�,�)

‖∂tη‖2
Ws

δ (−�,�) � ED.

Fourth Term of G+
4 , σ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂tN : We estimate

∥∥∥∥∥∥∥σ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠ ∂tN

∥∥∥∥∥∥∥
2

W
1
2

δ (�0)

(6.29)

�
∥∥∥∂2

1 η

∥∥∥2

W
1
2

δ (−�,�)
‖∂t ∂1η̄‖2

W
s− 1

2
δ (�0)

� ‖η‖2

W
5
2

δ (−�,�)

‖∂tη‖2
Ws

δ (−�,�) � ED.
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Fifth Term of G+
4 , σ∂1R∂tN : We estimate

‖σ∂1R∂tN‖2

W
1
2

δ (�0)

� ‖∂1η‖2
W 1

δ (−�,�)

∥∥∥∂2
1 η

∥∥∥2

W
1
2

δ (−�,�)
‖∂t ∂1η̄‖2

W
s− 1

2
δ (�0)

(6.30)

� ‖η‖2

W
5
2

δ (−�,�)

‖∂tη‖2
Ws

δ (−�,�) � ED. �

6.5. Estimate of the G5 term

Finally, we handle G5.

Lemma 6.5. Let G5 = F3 · N
|N | . We have the estimate

‖G5‖2

W
1
2

δ (∂�0)

�
(
E2 + E

)
D. (6.31)

Proof. This estimate follows from an argument similar to that of Lemma 6.2. �
6.6. Other nonlinear estimates

Here we record some other nonlinear estimates.

Lemma 6.6. Let R be given by (C.3.1). We have the estimate

‖∂1∂tR‖2

W
1
2

δ (−�,�)

� ED. (6.32)

Proof. We have

‖∂1∂tR‖2

W
1
2

δ (−�,�)

�
∥∥∥∂tk1∂

2
1 η

∥∥∥2

W
1
2

δ (−�,�)
+
∥∥∥k1∂t ∂

2
1 η

∥∥∥2

W
1
2

δ (−�,�)
(6.33)

+
∥∥∥∂2

1 η∂t∂1η

∥∥∥2

W
1
2

δ (−�,�)
+
∥∥∥∂1η∂t∂

2
1 η

∥∥∥2

W
1
2

δ (−�,�)
=: I + II + III + IV .

We estimate each term as follows:

I � |∂tk1|2
∥∥∥∂2

1 η

∥∥∥2

W
1
2

δ (−�,�)
�
(

|∂t l|2 + |∂t r|2
)

‖η‖2

W
5
2

δ (−�,�)

� ED, (6.34)

II � |k1|2
∥∥∥∂t ∂

2
1 η

∥∥∥2

W
1
2

δ (−�,�)
� ‖η‖2

H 1(−�,�)
‖∂tη‖2

W
5
2

δ (−�,�)

� ED, (6.35)

III �
∥∥∥∂2

1 η

∥∥∥2

W
1
2

δ (−�,�)
‖∂t ∂1η‖2

W
s− 1

2
δ (−�,�)

� ‖η‖2

W
5
2

δ (−�,�)

‖∂tη‖2

W
s+ 1

2
δ (−�,�)

� ED, (6.36)

and
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IV � ‖∂1η‖2

W
s− 1

2
δ (−�,�)

∥∥∥∂t ∂
2
1 η

∥∥∥2

W
1
2

δ (−�,�)
� ‖η‖2

W
s+ 1

2
δ (−�,�)

‖∂tη‖2

W
5
2

δ (−�,�)

� ED. � (6.37)

7. Well-posedness and decay

Define the functionals

E =
2∑

j=0

�∫
−�

σ

2

(
∂

j
t k1∂1ζ0 + ∂

j
t ∂1η
)2

(√
1 + |∂1ζ0|2

)3 , (7.1)

D=
2∑

j=0

⎛
⎜⎝∫

�0

Jμ

2

∣∣∣DA∂
j
t u

∣∣∣2 +
∫

�0b

β(∂
j
t u · τ0)

2 + κ
(
(∂

j+1
t L )2 + (∂

j+1
t R)2

)⎞⎟⎠ , (7.2)

and

F= F1 + F2 = −
�∫

−�

J1 − 1(√
1 + |∂1ζ0|2

)3

∣∣∣∂2
t ∂1η

∣∣∣2 +
�∫

−�

∂�2RJ1√
1 + |∂1ζ0|2

∣∣∣∂2
t ∂1η

∣∣∣2 . (7.3)

Our next result shows various comparability results for these functionals.

Lemma 7.1. There exists a universal constant ϑ > 0 such that if

sup
0≤t≤T

E(t) ≤ ϑ, (7.4)

then

E� E‖ � E, D� D̃‖ �D, and |F| ≤ 1

2
E. (7.5)

Proof. The first two inequalities in (7.5) follow directly from Lemma C.2. It remains to prove 
the estimate of F. Lemma C.3 implies that

|F1| =

∣∣∣∣∣∣∣
�∫

−�

J1 − 1(√
1 + |∂1ζ0|2

)3

∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣∣∣∣� ‖η‖H 0(−�,�)

∥∥∥∂2
t η

∥∥∥2

H 1(−�,�)
�

√
EE, (7.6)

|F2| =
∣∣∣∣∣∣

�∫
−�

∂�2RJ1√
1 + |∂1ζ0|2

∣∣∣∂2
t ∂1η

∣∣∣2
∣∣∣∣∣∣�
∣∣∂�2R

∣∣ ∥∥∥∂2
t ∂1η

∥∥∥2

H 0(−�,�)
(7.7)

� ‖η‖H 2(−�,�)

∥∥∥∂2
t η

∥∥∥2

H 1(−�,�)
�

√
EE.

Hence, for ϑ small, the desired estimate follows directly. �
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Next we state a synthesized version of the energy-dissipation equation.

Lemma 7.2. There exists a universal constant ϑ > 0 such that if

sup
0≤t≤T

E(t) +
T∫

0

D(t)dt ≤ ϑ, (7.8)

then there exists a universal constant C > 0 such that

d

dt
(E− F) + CD ≤ 0. (7.9)

Proof. Let ϑ be as in Lemma 7.1. The linearized energy-dissipation structure (3.13) for ∂2
t , ∂t

and no time derivatives, combined with the estimates in Lemmas 5.3–5.11, imply that

d

dt
(E− F) + CD ≤ √

ED. (7.10)

In Lemma 7.1, we have shown

D� D̃‖ � D, (7.11)

Theorem 4.1 and Lemma 5.12 imply the pressure estimate

‖p‖2
H 0(�0)

+ ‖∂tp‖2
H 0(�0)

+
∥∥∥∂2

t p

∥∥∥2

H 0(�0)
� D̃‖ + √

ED. (7.12)

Theorem 4.4 and Lemmas 5.12 and 5.13, imply the free surface estimate

‖η‖2

H
3
2 (−�,�)

+ ‖∂tη‖2

H
3
2 (−�,�)

+
∥∥∥∂2

t η

∥∥∥2

H
3
2 (−�,�)

(7.13)

�‖p‖2
H 0(�0)

+ ‖∂tp‖2
H 0(�0)

+
∥∥∥∂2

t p

∥∥∥2

H 0(�0)
+ D̃‖ + √

ED � D̃‖ + √
ED.

Theorems 4.6 and 4.7 imply the contact point estimate

2∑
j=0

(∣∣∣∂j
t ∂1η(−�)

∣∣∣2 +
∣∣∣∂j

t ∂1η(�)

∣∣∣2)+
2∑

j=0

(∣∣∣∂j
t u(−�,0) ·N

∣∣∣2 +
∣∣∣∂j

t u(�,0) ·N
∣∣∣2) (7.14)

� D̃‖ + √
ED.

Combining these, we deduce that

D‖ � D̃‖ + √
ED � D+ √

ED. (7.15)

The Stokes problem estimate in Theorem 4.8 for at most ∂t , combined with the estimates in 
Lemma 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6, imply
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‖u‖2
W 2

δ (�0)
+ ‖p‖2

W 1
δ (�0)

+ ‖η‖2

W
5
2

δ (−�,�)

+ ‖∂tu‖2
W 2

δ (�0)
+ ‖∂tp‖2

W 1
δ (�0)

+ ‖∂tη‖2

W
5
2

δ (−�,�)

(7.16)
� D‖ + (E2 + E)D.

Using the transport equation in (3.1), we may further obtain

∥∥∥∂2
t η

∥∥∥2

W
3
2

δ (−�,�)
+
∥∥∥∂3

t η

∥∥∥2

W
1
2

δ (−�,�)
� D‖ + (E2 + E)D. (7.17)

Collecting all above, we have

D � D‖ + √
ED � D̃‖ + √

ED � D+ √
ED. (7.18)

Then we have

d

dt
(E− F) + CD ≤ √

ED. (7.19)

Thus, if ϑ is sufficiently small, then we may conclude that

d

dt
(E− F) + CD ≤ 0. � (7.20)

We now present the main a priori decay estimates.

Theorem 7.3. There exists a universal constant ϑ > 0 such that if

sup
0≤t≤T

E(t) +
T∫

0

D(t)dt ≤ ϑ, (7.21)

then there exists a universal constant λ > 0 such that

sup
0≤t≤T

eλt

(
E‖(t) + ‖u(t)‖2

H 1(�0)
+ ‖u(t) · τ0‖2

H 0(�0b)
+ ‖p(t)‖2

H 0(�0)
+ |∂t l(t)|2 (7.22)

+
∣∣∣∂t r(t)

2
∣∣∣+ |∂1η(t,−�)|2 + |∂1η(t, �)|2 + |u(t,−�,0) ·N |2 + |u(t, �,0) ·N |2

)
� E‖(0).

Proof. In Lemma 7.2, we have shown that

d

dt
(E− F) + CD ≤ 0. (7.23)

Also, in Lemma 7.1, we have proved that

E� E‖ � E and 0 <
1

2
E≤ E− F ≤ 3

2
E. (7.24)
715



I. Tice and L. Wu Journal of Differential Equations 272 (2021) 648–731
On the other hand, it is clear that E �D, and so we deduce the bound

d

dt
(E− F) + λ(E− F) ≤ 0. (7.25)

Upon integrating this differential inequality, we find that

E(t) � E(t) − F(t) � e−λt
(
E(0) − F(0)

)
� e−λtE(0), (7.26)

which, in light of (7.24), then implies that

E‖(t) � e−λtE‖(0). (7.27)

Next we consider the linearized energy-dissipation structure given in Theorem 3.2 for the 
problem with no derivatives applied. Using the transport equation in (1.25), and following similar 
arguments as Lemma 5.11, 5.7, 5.8, 5.9, 5.10, noting η(±�) = 0, we obtain the bounds

∣∣∣∣∣∣∣σ
∫
�0

∂1R(u ·N )

∣∣∣∣∣∣∣�
√
E
(

‖η‖2
H 1(−�,�)

+ ‖∂tη‖2
H 1(−�,�)

+ |∂t l|2 + |∂t r|2
)

(7.28)

�
√
EE‖ + √

E
(

|∂t l|2 + |∂t r|2
)

,

∣∣∣∣∣∣∣
�∫

−�

⎛
⎜⎝gη − ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3

⎞
⎟⎠
⎞
⎟⎠S

∣∣∣∣∣∣∣ (7.29)

�
√
E
(

‖η‖2
H 1(−�,�)

+ ‖∂tη‖2
H 1(−�,�)

+ |∂t l|2 + |∂t r|2
)

�
√
EE‖ + √

E
(

|∂t l|2 + |∂t r|2
)

,

and ∣∣∣∣−σQ
(
∂t l +O

)∣∣∣∣
�

+ σQ
(
∂t r +O

)∣∣∣∣−�

∣∣∣∣� √
E
(

|∂t l|2 + |∂t r|2
)

, (7.30)

∣∣∣∣κ
(

∂t rO
∣∣∣∣
�

+ ∂t lO
∣∣∣∣−�

)∣∣∣∣� √
E
(

|∂t l|2 + |∂t r|2
)

, (7.31)

∣∣∣∣−F7

(
∂t r +O

)∣∣∣∣
�

+F6

(
∂t l +O

)∣∣∣∣−�

∣∣∣∣� √
E
(

|∂t l|2 + |∂t r|2
)

. (7.32)

Therefore,

∂t

⎛
⎜⎝

�∫
−�

σ

2

(
k1∂1ζ0 + ∂1η

)2

(√
1 + |∂1ζ0|2

)3 + k2
1

2

⎛
⎝P0M + σ

�∫
−�

|∂1ζ0|2√
1 + |∂1ζ0|2

⎞
⎠+ g

2

�∫
−�

(k1ζ0 − η)2

⎞
⎟⎠ (7.33)

� ‖η‖2
1 + ‖∂tη‖2

1 � E‖,
H (−�,�) H (−�,�)
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and hence Theorem 3.2 allows us to bound∫
�0

Jμ

2
|DAu|2 +

∫
�0b

β(u · τ0)
2 + κ

(
(∂t l)

2 + (∂t r)
2
)

� E‖ +√
E
(

|∂t l|2 + |∂t r|2
)

, (7.34)

which in turn means that for E small,∫
�0

Jμ

2
|DAu|2 +

∫
�0b

β(u · τ0)
2 + κ

(
(∂t l)

2 + (∂t r)
2
)

� E‖. (7.35)

Using the pressure estimate in Theorem 4.1, we know

‖p(t)‖2
H 0(�0)

� ‖u(t)‖2
H 1(�0)

� E‖. (7.36)

Using the contact point estimates in Theorem 4.6 and 4.7, we know

|∂1η(t,−�)|2 + |∂1η(t, �)|2 �‖η‖2
H 0(−�,�)

+ |∂t l|2 + |∂t r|2 � E‖, (7.37)

|u(t,−�,0) ·N |2 + |u(t, �,0) ·N |2 �‖η‖2
H 0(−�,�)

+ |∂t l|2 + |∂t r|2 � E‖. (7.38)

Combining the above, we conclude that the stated estimates hold. �
Next we present the a priori bounds at the higher level of regularity.

Theorem 7.4. There exists a universal constant ϑ > 0 such that if

sup
0≤t≤T

E(t) +
T∫

0

D(t)dt ≤ ϑ, (7.39)

then

sup
0≤t≤T

E(t) +
T∫

0

D(t)dt � E(0). (7.40)

Proof. Again, we know from Lemmas 7.1 and 7.2 that, provided ϑ is sufficiently small, we have 
the bounds

d

dt
(E− F) + CD ≤ 0, E� E‖ � E, and 0 <

1

2
E≤ E− F≤ 3

2
E. (7.41)

This allows us to integrate in time to deduce that

1

2
E(t) + C

t∫
0

D(s)ds ≤ 3

2
E(0), (7.42)
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which implies for any t ∈ [0, T ],

E‖(t) +
t∫

0

D(s)ds � E‖(0). (7.43)

For a Hilbert space X and f ∈ H 1([0, T ]; X), we know that

‖f (t)‖2
X � ‖f (0)‖2

X +
t∫

0

(
‖f (s)‖2

X + ‖∂tf (s)‖2
X

)
ds. (7.44)

Hence, we have

‖u(t)‖2
W 2

δ (�0)
+ ‖∂tu(t)‖2

W 2
δ (�0)

+ ‖p(t)‖2
W 1

δ (�0)
(7.45)

+‖∂tp(t)‖2
W 1

δ (�0)
+ ‖η(t)‖2

W
5
2

δ (−�,�)

+ ‖∂tη(t)‖2

H
3
2 (−�,�)

+
1∑

j=0

(∣∣∣∣∂j
t ∂1η(t)

∣∣∣−�

∣∣∣∣
2

+
∣∣∣∂j

t ∂1η(t)

∣∣∣
�

∣∣∣2)+
1∑

j=0

(∣∣∣∣∂j
t u(t) ·N

∣∣∣−�

∣∣∣∣
2

+
∣∣∣∂j

t u(t) ·N
∣∣∣
�

∣∣∣2)

�
t∫

0

D(s)ds + ‖u(0)‖2
W 2

δ (�0)
+ ‖∂tu(0)‖2

W 2
δ (�0)

+‖p(0)‖2
W 1

δ (�0)
+ ‖∂tp(0)‖2

W 1
δ (�0)

+ ‖η(0)‖2

W
5
2

δ (−�,�)

+ ‖∂tη(0)‖2

H
3
2 (−�,�)

+
1∑

j=0

(∣∣∣∣∂j
t ∂1η(0)

∣∣∣−�

∣∣∣∣
2

+
∣∣∣∂j

t ∂1η(0)

∣∣∣
�

∣∣∣2)+
1∑

j=0

(∣∣∣∣∂j
t u(0) ·N

∣∣∣−�

∣∣∣∣
2

+
∣∣∣∂j

t u(0) ·N
∣∣∣
�

∣∣∣2).

Then (7.43) and (7.45) may be combined to conclude that (7.40) holds. �
Now we record the local well-posedness result without giving detailed proof. It can be done 

using a variant of the argument developed in [20].

Theorem 7.5. There exists a universal constant ϑ > 0 and T0 > 0 such that if 0 < T < T0 and 
E(0) ≤ ϑ , then there exists a unique solution (u, p, η) on the interval t ∈ [0, T ] such that

sup
t∈[0,T ]

E(t) +
T∫

0

D(t)dt �E(0). (7.46)

Now we provide the global well-posedness result.
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Proof of Theorem 2.1. This follows from the local well-posedness, Theorem 7.5, and a standard 
continuation argument using the a priori estimates of Theorem 7.3 and 7.4. For details we refer 
to [9]. �
Appendix A. Analysis tools

The proofs in this section can be found in Appendix C and Appendix D in [9].

A.1. Weighted Sobolev spaces

Let M = dist (·, M) where M =
{
(−�, 0), (�, 0)

}
is the set of the corner points. Define the 

weighted Sobolev norm

‖f ‖2
Wk

δ (�0)
=
∑
|α|≤k

∫
�0

(
dist (x,M)

)2δ ∣∣∂αf
∣∣2 dx. (A.1.1)

Then we say f ∈ Wk
δ (�0) if and only if ‖f ‖W<

δ (�0)
∞. We will define the trace space 

‖f ‖
W

k− 1
2

δ (∂�0)

in the obvious way and it can be shown that

∫
∂�0

f (v · τ0) � ‖f ‖
W

1
2

δ (∂�0)

‖v‖H 1(�0)
. (A.1.2)

Finally, define the zero-average space

W̊ k
δ (�0) =

⎧⎪⎨
⎪⎩f ∈ Wk

δ (�0) :
∫
�0

f (x)dx = 0

⎫⎪⎬
⎪⎭ . (A.1.3)

Lemma A.1. We have the continuous embedding

W 1
δ (�0) ↪→ H 0(�0), W 2

δ (�0) ↪→ H 1(�0), H−1(�0) ↪→ W 0−δ(�0). (A.1.4)

Lemma A.2. Let k ∈N and δ1, δ2 ∈ R with δ1 < δ2. Then we have that

Wk
δ1

(�0) ↪→ Wk
δ2

(�0). (A.1.5)

Lemma A.3. Let k ∈N and 0 < δ < 1. Then for 1 ≤ q < 2
1+δ

we have that

Wk
δ (�0) ↪→ Wk,q(�0). (A.1.6)

In particular, for 1 ≤ q < 2
δ

we have

W 1(�0) ↪→ Lq(�0). (A.1.7)
δ
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Lemma A.4. Suppose that 0 < δ < 1 and 1 ≤ q < 2
1+δ

. Then we have that

W
1
2
δ (∂�0) ↪→ Lq(∂�0). (A.1.8)

Lemma A.5. Suppose that 0 < δ < 1. Then we have that

W 1
δ (�0) ↪→ W 0

δ−1(�0). (A.1.9)

Lemma A.6. Suppose that 0 < δ < 1. Then for each q ∈ [1, ∞), we have that

∥∥∥∥(dist (·,M)
)δ

f

∥∥∥∥
Lq(�0)

� ‖f ‖W 1
δ (�0)

. (A.1.10)

Corollary A.7. Assume 1 < s < min
{π

ω
,2
}

. Then we have

W 2
δ (�0) ↪→ Hs(�0), W 1

δ (�0) ↪→ Hs−1(�0), W
5
2
δ (�0) ↪→ Hs+ 1

2 (�0). (A.1.11)

A.2. Product estimates

Lemma A.8. Let �0 ∈ R2. Suppose that f ∈ Hr(�0) for r ∈ (0, 1) and g ∈ H 1(�0). Then 
fg ∈ Hσ (�0) for every σ ∈ (0, r), and

‖fg‖Hσ (�0)
≤ C(r,σ )‖f ‖Hr(�0)

‖g‖H 1(�0)
. (A.2.1)

Lemma A.9. Suppose that f ∈ W 1
δ (�0) for 0 < δ < 1 and that g ∈ H 1+κ (�0) for 0 < κ < 1. 

Then fg ∈ W 1
δ (�0) and

‖fg‖W 1
δ (�0)

� ‖f ‖W 1
δ (�0)

‖g‖H 1+κ (�0)
. (A.2.2)

Lemma A.10. Suppose that f ∈ W
1
2
δ (�0) for 0 < δ < 1 and that g ∈ H

1
2 +κ(�0) for 0 < κ < 1. 

Then fg ∈ W
1
2
δ (�0) and

‖fg‖
W

1
2

δ (�0)

� ‖f ‖
W

1
2

δ (�0)

‖g‖
H

1
2 +κ

(�0)
. (A.2.3)

Appendix B. Energy-dissipation structure and equilibrium

B.1. Proof of Theorem 1.1

Proof of Theorem 1.1. We multiply u on both sides of the Stokes equation and integrate it over 
�(t) to obtain
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I =
∫

�(t)

(
∇z · S(P,u)

)
· u = 0. (B.1.1)

We divide it into several steps.

Step 1: Diffusion and fixed boundary terms: Integrating by parts implies

I =
( ∫

�(t)

μ

2
|Dzu|2 −

∫
�(t)

P (∇z · u)

)
+
∫

�b(t)

(
S(P,u)ν

)
· u +

∫
�(t)

(
S(P,u)ν

)
· u (B.1.2)

= I1 + I2 + I3,

where we may use the divergence-free condition and the boundary condition to simplify

I1 =
∫

�(t)

μ

2
|Dzu|2 −

∫
�(t)

P (∇z · u) =
∫

�(t)

μ

2
|Dzu|2 , (B.1.3)

I2 =
∫

�b(t)

(
S(P,u)ν

)
· u (B.1.4)

=
∫

�b(t)

((
S(P,u)ν

)
· ν
)

(u · ν) +
∫

�b(t)

((
S(P,u)ν

)
· τ
)

(u · τ)

=
∫

�b(t)

((
S(P,u)ν

)
· τ
)

(u · τ) =
∫

�b(t)

β |u · τ |2 .

Step 2: Free surface terms: We directly simplify to obtain

I3 =
∫

�(t)

(
S(P,u)ν

)
· u =

∫
�(t)

⎛
⎜⎝gζ − σ∂z1

⎛
⎜⎝ ∂z1ζ√

1 + ∣∣∂z1ζ
∣∣2
⎞
⎟⎠
⎞
⎟⎠ (u · ν) (B.1.5)

=
∫

�(t)

⎛
⎜⎝gζ − σ∂z1

⎛
⎜⎝ ∂z1ζ√

1 + ∣∣∂z1ζ
∣∣2
⎞
⎟⎠
⎞
⎟⎠ ∂t ζ√

1 + ∣∣∂z1ζ
∣∣2

=
R(t)∫

L(t)

⎛
⎜⎝gζ − σ∂z1

⎛
⎜⎝ ∂z1ζ√

1 + ∣∣∂z1ζ
∣∣2
⎞
⎟⎠
⎞
⎟⎠ ∂t ζ = I3,1 + I3,2.
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Step 3: Gravitational term: We have

I3,1 =
R(t)∫

L(t)

gζ∂t ζ =
R(t)∫

L(t)

g

2
∂t |ζ |2 = ∂t

R(t)∫
L(t)

g

2
|ζ |2 − g

2
|ζ(R)|2 ∂tR + g

2
|ζ(L)|2 ∂tL (B.1.6)

= ∂t

R(t)∫
L(t)

g

2
|ζ |2 ,

since ζ(L) = ζ(R) = 0.

Step 4: Surface tension terms: Integrating by parts and using Reynold’s transport equation 
imply

I3,2 = −
R(t)∫

L(t)

σ∂z1

⎛
⎜⎝ ∂z1ζ√

1 + ∣∣∂z1ζ
∣∣2
⎞
⎟⎠ ∂t ζ (B.1.7)

=
R(t)∫

L(t)

σ
∂z1ζ√

1 + ∣∣∂z1ζ
∣∣2 ∂t ∂z1ζ − σ

∂z1ζ(R)√
1 + ∣∣∂z1ζ(R)

∣∣2 ∂t ζ(R) + σ
∂z1ζ(L)√

1 + ∣∣∂z1ζ(L)
∣∣2 ∂t ζ(L)

= A + B + C,

where we may simplify

A =
R(t)∫

L(t)

σ
∂z1ζ√

1 + ∣∣∂z1ζ
∣∣2 ∂t ∂z1ζ =

R(t)∫
L(t)

σ∂t

√
1 + ∣∣∂z1ζ

∣∣2 (B.1.8)

= ∂t

R(t)∫
L(t)

σ

√
1 + ∣∣∂z1ζ

∣∣2 − σ∂tR

√
1 + ∣∣∂z1ζ(R)

∣∣2 + σ∂tL

√
1 + ∣∣∂z1ζ(L)

∣∣2
= A1 + A2 + A3,

and using the transport equation with u2(L) = u2(R) = 0, we have

B = −σ
∂z1ζ(R)√

1 + ∣∣∂z1ζ(R)
∣∣2 ∂t ζ(R) = −σ

∂z1ζ(R)√
1 + ∣∣∂z1ζ(R)

∣∣2
(

− u1(R)∂z1ζ(R) + u2(R)
)

(B.1.9)

= σu1(R)

∣∣∂z1ζ(R)
∣∣2√

1 + ∣∣∂z1ζ(R)
∣∣2 ,

and
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C = σ
∂z1ζ(L)√

1 + ∣∣∂z1ζ(L)
∣∣2 ∂t ζ(L) = σ

∂z1ζ(L)√
1 + ∣∣∂z1ζ(L)

∣∣2
(

− u1(L)∂z1ζ(L) + u2(L)
)

(B.1.10)

= −σu1(L)

∣∣∂z1ζ(L)
∣∣2√

1 + ∣∣∂z1ζ(L)
∣∣2 .

Step 5: Contact point terms: Note that fact that ∂tR = u1(R) and ∂tL = u1(L), we have

A2 + B = −σ∂tR

√
1 + ∣∣∂z1ζ(R)

∣∣2 + σu1(R)

∣∣∂z1ζ(R)
∣∣2√

1 + ∣∣∂z1ζ(R)
∣∣2 (B.1.11)

= −σ∂tR

⎛
⎜⎝√1 + ∣∣∂z1ζ(R)

∣∣2 −
∣∣∂z1ζ(R)

∣∣2√
1 + ∣∣∂z1ζ(R)

∣∣2
⎞
⎟⎠= −σ∂tR

1√
1 + ∣∣∂z1ζ(R)

∣∣2 ,

A3 + C = σ∂tL

√
1 + ∣∣∂z1ζ(L)

∣∣2 − σu1(L)

∣∣∂z1ζ(L)
∣∣2√

1 + ∣∣∂z1ζ(L)
∣∣2 (B.1.12)

= σ∂tL

⎛
⎜⎝√1 + ∣∣∂z1ζ(L)

∣∣2 −
∣∣∂z1ζ(L)

∣∣2√
1 + ∣∣∂z1ζ(L)

∣∣2
⎞
⎟⎠= σ∂tL

1√
1 + ∣∣∂z1ζ(L)

∣∣2 .

(B.1.13)

Using the contact point condition, we have

A2 + B = − σ∂tR
1√

1 + ∣∣∂z1ζ(R)
∣∣2 = −∂tR

(
[γ ] −W(∂tR)

)
, (B.1.14)

A3 + C =σ∂tL
1√

1 + ∣∣∂z1ζ(L)
∣∣2 = ∂tL

(
W(∂tL) + [γ ]

)
. (B.1.15)

Hence, we have

A2 + A3 + B + C = −∂t

(
[γ ](R − L)

)
+
(
W(∂tL)∂tL +W(∂tR)∂tR

)
. (B.1.16)

Step 6: Synthesis: Collecting all terms, we arrive at (1.12). �
B.2. Proof of Theorem 1.2

Proof of Theorem 1.2. It is well known (see for instance [8]) that, given the width of the droplet 
domain, there exists a unique solution to the second and third equations in (1.14) that is smooth, 
even, and monotonically decreasing from the center. In the present context, we must choose 
the equilibrium width in order to satisfy the fourth and fifth equations. Here for the sake of 
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completeness, we will give a quick sketch of the construction of solutions and details of how to 
determine P0 and R0 − L0 given that we specify the mass M .

Due to horizontal translational invariance, we may assume without loss of generality that 
(R0 + L0)/2 = 0, i.e. the droplet is centered at the origin. Then consider the new unknown 
� = (R0 − L0)/2, in which case L0 = −� and R0 = �. After integrating on both sides of the 
equilibrium equation, we find that P0 is determined by M and � via

P0 = Mg + 2
√

σ 2 − [γ ]2

2�
> 0. (B.2.1)

It remains to construct the solution with given mass M , and � chosen so that the equilibrium 
equations are satisfied for P0 determined by (B.2.1).

Due to reflectional symmetry, it suffices to construct the solution for z1 ∈ [−�, 0]. Let r = −z1

and tanψ = −∂rζ0 = ∂z1ζ0. The variable ψ is the angle formed between the tangent line of ζ0

and a line parallel to the z1 axis through (z1, ζ0(z1)), which ranges from ψ = 0 at the maximum 
of ζ0 in the center to ψ = ψ0 for

ψ0 := arctan

(√
σ 2 − [γ ]2

[γ ]

)
∈ (0,π/2) (B.2.2)

at the contact point. Then in these coordinates the equilibrium equation is

−σ∂r(sinψ) = gζ0 − P0, (B.2.3)

which, considering 
dr

dψ
=
(

dψ

dr

)−1

and 
dζ0

dψ
= dζ0

dr

dr

dψ
, is equivalent to

dr

dψ
= − σ cosψ

gζ0 − P0
,

dζ0

dψ
= σ sinψ

gζ0 − P0
. (B.2.4)

Setting ζ0 = 0 at ψ0, we may solve 
dζ0

dψ
equation to get

g

2
ζ 2

0 − P0ζ0 − [γ ] + σ cosψ = 0 and hence ζ0(ψ) =
P0 −

√
P 2

0 − 2g(σ cosψ − [γ ])
g

.

(B.2.5)
Then plugging this into the dr/dψ equation and setting r = 0 at ψ = 0, we obtain

r(ψ) =
ψ∫

0

σ cosψ√
P 2

0 − 2g(σ cosψ − [γ ])
dψ. (B.2.6)
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It remains only to enforce the condition r(ψ0) = �, which, in light of (B.2.1), is equivalent to

1 =
ψ0∫

0

2σ cosψ√(
Mg + 2

√
σ 2 − [γ ]2

)2 − 8g�2(σ cosψ − [γ ])
dψ. (B.2.7)

When � → 0, we have

ψ0∫
0

2σ cosψ√(
Mg + 2

√
σ 2 − [γ ]2

)2 − 8g�2(σ cosψ − [γ ])
dψ (B.2.8)

→
ψ0∫

0

2σ cosψ

Mg + 2
√

σ 2 − [γ ]2
dψ = 2

√
σ 2 − [γ ]2

Mg + 2
√

σ 2 − [γ ]2
< 1.

Also, as � → Mg + 2
√

σ 2 − [γ ]2
√

8g(σ − [γ ]) , considering the Taylor expansion of cosψ around ψ = 0, the 

integral monotonically increases to ∞. Hence, there exists a unique � such that the integral is 
exactly 1. With this choice of � and P0, the equilibrium equations are satisfied. �
Appendix C. Nonlinear quantities

In this section we record a number of results about the nonlinear terms appearing in our 
analysis.

C.1. Estimates of J1, J2, and A

Recall that are J1, J2, and A given by (1.23).

Lemma C.1. Suppose that ‖η(t)‖
H

1
2 (−�,�)

< ϑ for some ϑ > 0 sufficiently small. Then

|J1 − 1| � ‖η‖H 0(−�,�) and |J2| + |A| � ‖η‖
H

1
2 (−�,�)

. (C.1.1)

Proof. Using the conservation of mass in (1.45),

J1

�∫
−�

η(t, x1)dx1 =
−�∫

−�

(1 − J1)ζ0(x1)dx1, (C.1.2)

we have
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J1 − 1 = −

−�∫
−�

η(x1)dx1

−�∫
−�

ζ0(x1)dx1 +
−�∫

−�

η(x1)dx1

. (C.1.3)

Hence, when

∣∣∣∣∣∣
−�∫

−�

η(x1)dx1

∣∣∣∣∣∣� ‖η‖H 0(−�,�) <
1

2

−�∫
−�

ζ0(x1)dx1 = M

2
, (C.1.4)

we know

|J1 − 1| � 2

M

−�∫
−�

η(x1)dx1 � ‖η‖H 0(−�,�) . (C.1.5)

We now turn to the proof of the J2 estimate, noting first that

J2(x) = 1 + η̄(x)

ζ0(x1)
+ x2

ζ0(x1)
∂2η̄(x). (C.1.6)

The difficulty lies in when x is close to the contact point. In a neighborhood of the contact points, 

for �0 � x = (x1, x2), let s = x2

x1 ∓ �
. Using Cauchy’s Mean Value Theorem, we know that,

η̄(x)

ζ0(x1)
=

η̄
(
x1, s(x1 ∓ �)

)
− η̄(±�,0)

ζ0(x1) − ζ0(±�)
=

∂1η̄
(
c, s(c ∓ �)

)
+ s∂2η̄

(
c, s(c ∓ �)

)
∂1ζ0(c)

, (C.1.7)

for some c close to ±�. Since x ∈ �0 and �0 is convex, we may directly estimate that s ≤
|∂1ζ0(±�)| and

∣∣∣∣ η̄(x)

ζ0(x1)

∣∣∣∣� ‖η̄‖H 1(�0)
� ‖η‖

H
1
2 (−�,�)

. (C.1.8)

Also, since for x ∈ �0, 0 ≤ x2 ≤ ζ0(x1), we have

∣∣∣∣ x2

ζ0(x1)

∣∣∣∣≤ 1. (C.1.9)

In total, we have

|J2| � ‖η̄‖H 1(�0)
� ‖η‖

H
1
2 (−�,�)

. (C.1.10)
726



I. Tice and L. Wu Journal of Differential Equations 272 (2021) 648–731
Finally, we turn to the A estimate. We begin by decomposing

A(x) = x2

ζ0(x1)

(
∂1η̄(x) − η̄(x)

ζ0(x1)
∂1ζ0(x1)

)
. (C.1.11)

As in the estimate of J2 above, we have ∣∣∣∣ x2

ζ0(x1)

∣∣∣∣≤ 1. (C.1.12)

Hence

|∂1η̄(x)| � ‖η̄‖H 1(�0)
� ‖η‖

H
1
2 (−�,�)

. (C.1.13)

Also, we know ∣∣∣∣ η̄(x)

ζ0(x1)

∣∣∣∣� ‖η̄‖H 1(�0)
� ‖η‖

H
1
2 (−�,�)

. (C.1.14)

Combining these then provides the desired bound. �
Using a similar argument as in Lemma C.1, we obtain the following:

Lemma C.2. Let 0 < δ < 1. There exists a universal ϑ ∈ (0, 1) such that if ‖η‖
W

5
2

δ (−�,�)

≤ ϑ , 

then

‖J − 1‖L∞(�0)
+ ‖A‖L∞(�0)

≤1

2
, (C.1.15)

‖N − 1‖L∞(∂�0)
+ ‖K − 1‖L∞(�0)

≤1

2
, (C.1.16)

‖K‖L∞(�0)
+ ‖A‖L∞(�0)

�1. (C.1.17)

Also, the map � is a diffeomorphism.

C.2. Nonlinear terms in the energy-dissipation estimates

In this subsection we record the nonlinearities that appear in (3.1). We begin with the form 
when ∂t is applied. In this case we have:

F1 = −∇∂tA ·
(
pI − μDAu

)
+ μ∇A ·D∂tAu, (C.2.1)

F2 = −∇∂tA · u, (C.2.2)

F3 = μD∂tAuN − (p̃I − μDAu)∂tN + gη∂tN (C.2.3)

− σ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3 +R

⎞
⎟⎠ ∂tN ,
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F4 = μD∂tAuν · τ, (C.2.4)

F5 = (u · ∂tN )

√
1 + |∂1ζ0|2, (C.2.5)

F6 = −κW̃ ′(∂t l)∂
2
t l, (C.2.6)

and

F7 = −κW̃ ′(∂t r)∂
2
t r. (C.2.7)

Next we record the form when ∂2
t is applied:

F1 = −2∇∂tA ·
(
∂tpI − μDA∂tu

)
+ 2μ∇A ·D∂tA∂tu − ∇∂2

t A ·
(
pI − μDAu

)
(C.2.8)

+2μ∇∂tA ·D∂tAu + μ∇A ·D∂2
t Au,

F2 = −∇∂2
t Au − 2∇∂tA · ∂tu, (C.2.9)

F3 = μD∂2
t AuN + μD∂tAu∂tN + 2μD∂tA∂tuN (C.2.10)

− (pI − μDAu)∂2
t N − 2(∂tpI − μDA∂tu)∂tN

+gη∂2
t N − σ∂1

⎛
⎜⎝ k1∂1ζ0√

1 + |∂1ζ0|2
+ k1∂1ζ0 + ∂1η(√

1 + |∂1ζ0|2
)3 +R

⎞
⎟⎠ ∂2

t N

+2g∂tη∂tN − 2σ∂1

⎛
⎜⎝ ∂tk1∂1ζ0√

1 + |∂1ζ0|2
+ ∂tk1∂1ζ0 + ∂t ∂1η(√

1 + |∂1ζ0|2
)3 + ∂tR

⎞
⎟⎠ ∂tN ,

F4 = μD∂2
t Auν · τ + 2μD∂tA∂tuν · τ, (C.2.11)

F5 = (u · ∂2
t N )

√
1 + |∂1ζ0|2 + 2(∂tu · ∂tN )

√
1 + |∂1ζ0|2, (C.2.12)

F6 = −κW̃ ′(∂t l)∂
3
t l − κW̃ ′′(∂t l)(∂

2
t l)2, (C.2.13)

and

F7 = −κW̃ ′(∂t r)∂
3
t r − κW̃ ′′(∂t r)(∂

2
t r)2. (C.2.14)

C.3. Estimates of R, Q, S and O

In this section we record estimates for the terms R, Q, S and O, which we recall are defined 
in (1.37), (1.40), (1.43), and (1.42), respectively. To arrive at the estimates we first expand each 
term using the fundamental theorem of calculus. With the expansions in hand, the estimates then 
follow from elementary applications of the product rule and Sobolev embedding. As such we 
will omit the proofs of the bounds and only expansions and the form of the estimates.
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We begin with the term R, rewriting it as

R=
K2

1

(
∂1ζ0 + ∂1η

)
(

1 + K2
1

(
∂1ζ0 + ∂1η

)2) 1
2

− ∂1ζ0(
1 + |∂1ζ0|2

) 1
2

− k1∂1ζ0(
1 + |∂1ζ0|2

) 1
2

− k1∂1ζ0 + ∂1η(
1 + |∂1ζ0|2

) 3
2

(C.3.1)

=
1∫

0

⎛
⎜⎜⎝2k1

(
k1(∂1ζ0 + ω∂1η) + 2(1 + ωk1)∂1η

)
(

1 + (1 + ωk1)2
(
∂1ζ0 + ω∂1η

)2) 3
2

(C.3.2)

−
3(1 + ωk1)

2(∂1ζ0 + ω∂1η)
(
k1(∂1ζ0 + ω∂1η) + (1 + ωk1)∂1η

)2

(
1 + (1 + ωk1)2

(
∂1ζ0 + ω∂1η

)2) 5
2

⎞
⎟⎟⎠ (1 − ω)dω.

The estimates for R are recorded in the following lemma.

Lemma C.3. We have the bounds

|R| � |k1|2 + |∂1η|2 , (C.3.3)

|∂tR| � |k1| |∂tk1| + |∂tk1| |∂1η| + |k1| |∂t ∂1η| + |∂1η| |∂t ∂1η| , (C.3.4)∣∣∣∂2
t R
∣∣∣� |k1|

∣∣∣∂2
t k1

∣∣∣+ |∂tk1|2 +
∣∣∣∂2

t k1

∣∣∣ |∂1η| + |k1|
∣∣∣∂2

t ∂1η

∣∣∣+ |∂1η|
∣∣∣∂2

t ∂1η

∣∣∣+ |∂t ∂1η|2 ,

(C.3.5)

|∂1R| � |∂1η|
∣∣∣∂2

1 η

∣∣∣+ |k1|
∣∣∣∂2

1 η

∣∣∣ , (C.3.6)

|∂t ∂1R| � |∂tk1|
∣∣∣∂2

1 η

∣∣∣+ |k1|
∣∣∣∂t ∂

2
1η

∣∣∣+ ∣∣∣∂2
1 η

∣∣∣ |∂t ∂1η| + |∂1η|
∣∣∣∂t ∂

2
1 η

∣∣∣ . (C.3.7)

We now expand the Q term via

Q = 1(
1 + K2

1

(
∂1ζ0 + ∂1η

)2) 1
2

− 1(
1 + |∂1ζ0|2

) 1
2

+ ∂1ζ0(k1∂1ζ0 + ∂1η)(
1 + |∂1ζ0|2

) 3
2

(C.3.8)

=
1∫

0

⎛
⎜⎜⎝−
(
k1(∂1ζ0 + ω∂1η) + (1 + ωk1)∂1η

)2 + 2k1∂1η(1 + ωk1)(∂1ζ0 + ω∂1η)(
1 + (1 + ωk1)2

(
∂1ζ0 + ω∂1η

)2) 3
2

+
3(1 + ωk1)

2(∂1ζ0 + ω∂1η)2
(
k1(∂1ζ0 + ω∂1η) + (1 + ωk1)∂1η

)2

(
1 + (1 + ωk1)2

(
∂1ζ0 + ω∂1η

)2) 5
2

⎞
⎟⎟⎠ (1 − ω)dω.

The estimates for Q are then recorded in the following lemma.
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Lemma C.4. We have the estimates

|Q| � |k1|2 + |∂1η|2 , (C.3.9)

|∂tQ| � |k1| |∂tk1| + |∂tk1| |∂1η| + |k1| |∂t ∂1η| + |∂1η| |∂t ∂1η| , (C.3.10)∣∣∣∂2
t Q
∣∣∣� |k1|

∣∣∣∂2
t k1

∣∣∣+ |∂tk1|2 +
∣∣∣∂2

t k1

∣∣∣ |∂1η| + |k1|
∣∣∣∂2

t ∂1η

∣∣∣+ |∂1η|
∣∣∣∂2

t ∂1η

∣∣∣+ |∂t ∂1η|2 ,

(C.3.11)

|∂1Q| � |∂1η|
∣∣∣∂2

1 η

∣∣∣+ |k1|
∣∣∣∂2

1η

∣∣∣ , (C.3.12)

|∂t ∂1Q| � |∂tk1|
∣∣∣∂2

1 η

∣∣∣+ |k1|
∣∣∣∂t ∂

2
1η

∣∣∣+ ∣∣∣∂2
1 η

∣∣∣ |∂t ∂1η| + |∂1η|
∣∣∣∂t ∂

2
1 η

∣∣∣ . (C.3.13)

Next we write the S term as

S = (J1 − 1)∂tη +
(
ã∂1ζ − a∂1ζ0

)
= (J1 − 1)∂tη + ã∂1η + (ã − a)∂1ζ0. (C.3.14)

The estimates for S are in the following lemma.

Lemma C.5. We have the bounds

|S| � |k1| |∂tη| +
(

|∂tL| + |∂tR|
)

|∂1η| + |O| , (C.3.15)

|∂tS| � |k1|
∣∣∣∂2

t η

∣∣∣+ ( |∂tL| + |∂tR|
)

|∂t ∂1η| +
( ∣∣∣∂2

t L

∣∣∣+ ∣∣∣∂2
t R

∣∣∣ ) |∂1η| + |∂tO| , (C.3.16)∣∣∣∂2
t S
∣∣∣� |k1|

∣∣∣∂3
t η

∣∣∣+ ( |∂tL| + |∂tR|
) ∣∣∣∂2

t ∂1η

∣∣∣+ ( ∣∣∣∂3
t L

∣∣∣+ ∣∣∣∂3
t R

∣∣∣ ) |∂1η| +
∣∣∣∂2

t O
∣∣∣ . (C.3.17)

Finally, we write the term O as

O = a − ã = −(∂t r − ∂t l)

(
1

2�
− 2�

(2� + r − l)2

)
x1 (C.3.18)

= −(∂t r − ∂t l)
(r − l)(4� + r − l)

2�(2� + r − l)2 x1

= k1(∂t r − ∂t l)
4� + r − l

2�(2� + r − l)
x1 = k1(∂t r − ∂t l)

(
1

2�
+ 1

2� + r − l

)
x1.

The O estimates are recorded in the following.

Lemma C.6. We have the bounds

|O| � |k1|
(

|∂tL| + |∂tR|
)
, (C.3.19)

|∂tO| �
(

|∂tL|2 + |∂tR|2
)

+ |k1|
( ∣∣∣∂2

t L

∣∣∣+ ∣∣∣∂2
t R

∣∣∣ ), (C.3.20)∣∣∣∂2
t O
∣∣∣� ( |∂tL| + |∂tR|

)( ∣∣∣∂2
t L

∣∣∣+ ∣∣∣∂2
t R

∣∣∣ )+ |k1|
( ∣∣∣∂3

t L

∣∣∣+ ∣∣∣∂3
t R

∣∣∣ ). (C.3.21)
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