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Abstract

In an effort to study the stability of contact lines in fluids, we consider the dynamics of a drop of incom-
pressible viscous Stokes fluid evolving above a one-dimensional flat surface under the influence of gravity.
This is a free boundary problem: the interface between the fluid on the surface and the air above (modeled
by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid,
air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface
and the flat surface is called the contact angle. We consider a model of this problem that allows for fully
dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then
allows us to show that for initial data sufficiently close to equilibrium, the model admits global solutions
that decay to a shifted equilibrium exponentially fast.
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Fig. 1. An example of a droplet domain.

1. Problem formulation

Consider a two-dimensional droplet of viscous incompressible fluid evolving above a one-
dimensional flat surface. Denote the spatial variable z = (z1, z2) € R2. We then assume that at
time ¢ > 0 the fluid occupies the moving droplet domain

Q) :={zeR*:0<z <t z1)} (L.1)

where the free surface of the droplet is given by the unknown function ¢ (¢, -) : [L(¢), R(t)] —
R, which satisfies ¢ (¢, L(¢)) = ¢(t, R(t)) = 0. Here L(¢) and R(¢) are the left and right end
points of the moving droplet domain. We write the free surface at the top of the droplet as

X(t) :={(z1,22) 1 L(t) <21 < R(1), 22 =& (t, 21)}, (1.2)

and at the bottom as

Yp(t) :={(z1,22) : L(t) <71 < R(t), 20 =0}. (1.3)

See Fig. 1 for an example of such a fluid droplet domain. For each ¢ > 0, the fluid is de-
scribed by its velocity and pressure (u(z,-), P(z,-)) : Q(t) — R2 x R. The viscous stress ten-
sor is determined in term of P and u according to S(P,u) = PI — uD,u, where I is the
2 x 2 identity matrix, D,u = V,u + (V,u)T is the symmetric gradient of u, and u > 0 is
the viscosity of the fluid. We note that a simple computation reveals that if V, - u = 0, then
V., -S(P,u)=—pAu+V,P.

Before stating the equations of motion, we define a number of terms that will appear. We will
write g > O for the strength of gravity, o > 0 for the surface tension coefficient along the free
surface, and B > 0 for the Navier slip friction coefficient on the flat surface. The coefficients
Ysv» ¥sf € R are a measure of the free-energy per unit length associated to the solid-vapor and
solid-fluid interaction, respectively. We set [y] = ysy — Y5 and make the crucial assumption that

649



1. Tice and L. Wu Journal of Differential Equations 272 (2021) 648-731

o<y, (1.4)
o

This is equivalent to the classical Young’s law, together with the extra assumption that [y] > 0.
The former is a necessary condition for the existence of any equilibrium state, while the latter is
a technical condition that guarantees that any equilibrium state can be described as above by the
graph of a function. Finally, we define the contact point velocity response function 7 : R — R
to be a C? increasing diffeomorphism such that ¥ (0) = 0. We will refer to its inverse as # =
¥~ e C?(R).

We require that (u, P, ¢, L, R) satisfy the gravity-driven free-boundary incompressible Stokes
equations in Q(¢) for ¢ > O:

V. S(P,u)=—puAu+V,P=0 in Q(1),
V. -u=0 in Q(1),
S(P,u)v=g¢v—oH()v on X(1),
(S(P,u)v—ﬁu)-r:O on (1),
u-v=_0 on Xp(t),
0 ¢ +u10,8 —up=0 on X(1), (1.5)

1
L= 0 — -,

V1+[8¢[ o=t
1

dR="7 [3/1—672 )

V1+]0:] o=k

for v the outward-pointing unit normal vector, T the associated unit tangent vector, and

0:,¢
V1 oz,

being twice the mean-curvature operator. Note that here we have already shifted the gravitational
force to eliminate the atmospheric pressure P, by adjusting the actual pressure P according to
P = P + gzo — Pam- Also, it is easy to see that the contact point equations are equivalent to

H() =0, (1.6)

1
—[yland # (3;R) =[y] — 0o

1
2 2
VI+1]0:¢] =L V1+[0:¢]
The mass of the fluid is conserved in time since the transport equation in (1.5) is equivalent to

¢ = (u-v)/1+ |0, ¢ |

W@ L) =0 (1.7)

21=R
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Fig. 2. Equilibrium contact angle very near the contact point.
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We denote this conserved mass

R(@)
M=|Q@)| = / ¢(t, z1)dzy. (1.9)

L)
1.1. Background and model discussion

The study of triple interfaces between fluid, solid, and vapor phases is rather old, dating to the
work of Young [19], Laplace [13], and Gauss [10] in the nineteenth century. In the subsequent
two centuries this problem has attracted the attention of far too many researchers for us to attempt
a full survey of the literature here. Instead we refer to the exhaustive survey by de Gennes [6] for
a more thorough discussion.

The initial work of Young, Laplace, and Gauss showed that equilibrium configurations not
only solve a particular equation, known as the gravity-capillary equation, but also satisfy fixed
contact angle conditions determined via

cos(@eq)z—[;/—]. (1.10)

See Fig. 2 for a schematic. Note in particular that this, together with our sign assumption (1.4)
allows for the possibility of describing the fluid-vapor interface by a graph.

The dynamics at a contact point are a much more complicated issue. The first issue to deal
with in the context of viscous fluids is that the usual no-slip condition (u# = 0 at the fluid-solid
interface) combines with the free boundary kinematic equation (the sixth equation in (1.5)) to
disallow contact point motion, which is obvious nonsense. The no-slip condition must then be
replaced with the more general Navier-slip conditions, the fourth and fifth equations in (1.5),
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which do allow the fluid to slip along the interface at the expense of a dissipative frictional force
but do not allow the fluid to penetrate the solid.

Much work has gone into the study of contact point (and line) motion: we refer to the surveys
of Dussan [7] and Blake [2] for a thorough discussion of theoretical and experimental studies.
What has emerged from these studies is the understanding that deviation of the dynamic contact
angle 04y, from the equilibrium angle 6., (which we recall is determined via Young’s relation
(1.10)) causes the contact point to move in an attempt to return to the equilibrium value. More
precisely, these quantities are related via

Ve = ¥ (0 (c0s(Bayn) — c0s(Bey))), (L.11)

where V,; is the contact point normal velocity and 7 is the increasing diffeomorphism such that
¥ (0) = 0, mentioned above. Equations of the form (1.11) have been derived in a number of
ways. Blake-Haynes [3] combined thermodynamic and molecular kinetics arguments to arrive at
¥ (z) = Asinh(Bz) for material constants A, B > 0. Cox [5] used matched asymptotic analysis
and hydrodynamic arguments to derive (1.11) with a different ¥ but of the same general form.
Ren-E [14] performed molecular dynamics simulations to probe the physics near the contact
point and also found an equation of the form (1.11). Ren-E [15] also derived (1.11) from con-
stitutive equations and thermodynamic principles. The last pair of equations in (1.5) implement
(1.11) in the context of the droplet problem.

In recent work, Guo-Tice [9] studied a version of (1.5), coupling the incompressible Stokes
equations to the Navier-slip conditions and a contact point equation of the form (1.11), within
the context of the fluid evolving inside a vessel. They proved that for data starting sufficiently
close to equilibrium (measured in an appropriate Sobolev norm), solutions exist globally in time
and decay to equilibrium at an exponential rate. This provides some evidence in support of the
model, which was identified in total for the first time by Ren-E [14], as one expects asymptotic
stability of equilibria for most physically meaningful models. The purpose of the present paper
is to further press the Ren-E model by examining its behavior when used in droplet geometries.
These are more complicated than the vessel geometries of [9] since there is an extra degree of
freedom corresponding to the motion of the droplet endpoints.

There has also been much prior work devoted to studying contact lines and points in simplified
thin-film models; we will not attempt to enumerate these results here and instead refer to the
survey by Bertozzi [1]. By contrast, there are relatively few results in the literature related to
models in which the full fluid mechanics are considered, and to the best of our knowledge none
that allow for both dynamic contact point and dynamic contact angle. Schweizer [16] studied
a 2D Navier-Stokes problem with a fixed contact angle of /2. Bodea [4] studied a similar
problem with fixed 7 /2 contact angle in 3D channels with periodicity in one direction. Kniipfer-
Masmoudi [12] studied the dynamics of a 2D drop with fixed contact angle when the fluid is
assumed to be governed by Darcy’s law. Related analysis of the fully stationary Navier-Stokes
system with free, but unmoving boundary, was carried out in 2D by Solonnikov [18] with contact
angle fixed at m, by Jin [11] in 3D with angle /2, and by Socolowsky [17] for 2D coating
problems with fixed contact angles.

1.2. Energy-dissipation structure

The system (1.5) has a natural energy-dissipation structure, which we present in the following
theorem, the proof of which we postpone to Appendix B.1.
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Theorem 1.1. We have

R R

d

A [Lier+ [oi+ P -iw-n (1.12)
L L

+ / % IDul® + / Blu-t|*+ (V/(B,L)E)[L +7/(8,R)8[R> =0.
() Zp(1)
Note that in light of the assumption (1.4) we have that [y] > 0, and so at first glance it is

possible for the energetic term (the term acted on by the time derivative) in Theorem 1.1 to be
negative. However, this does not happen due to Young’s condition (1.4); indeed,

R R
/0 L+]0,,¢ | —[vI(R— L)>/ —VIR=L)=(0—-[yD(R-L)>0.  (1.13)

L L

1.3. Equilibrium

Note that in light of Theorem 1.1 any steady state equilibrium solution to (1.5) must satisfy
¢(t,z1) =¢o(z1), u(t,z) =0, P(t,z) = Po, and L(t) = Lo, R(t) = Ro, with {p and Py satisfying
a number of equilibrium conditions. Given such a solution, we define the equilibrium domain
to be the set Qo= {(z1,22) : Lo < z1 < Ro, 0 <z2 <p(z1)}. Our next result provides for the
existence of an equilibrium.

Theorem 1.2. Assume (1.4). Then there exists a smooth equilibrium satisfying u =0 and

811 CO

8t = 0dy [ =
I+ |821§0|

= Py,

|2, 60(Lo)| = [8:,S0(Ro)| = o7 fotko) =to(Ro) =0, (1.14)
Ry

[ sz = o =ci(M.g.0.11). K= Lo=Co(M.g.0.171),

Lo

where Cy (M, g,0, [y]) and Cy (M, g, 0, [y]) are positive constants that depends on M, g, o,

[y 1. Moreover, the equilibrium is unique up to a common shift of Lo and Ry and a corresponding
translation of &.

The proof of this theorem may be found in Appendix B.2. Note that there is a translation
invariance in the equilibrium that does not uniquely determine its location on the surface. Once

one of the endpoints is selected, though, the equilibrium is unique.
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1.4. Geometric reformulation

In order to analyze the PDE system (1.5) we will reformulate the equations in the equilib-
rium domain 2¢. The basic idea is to define a time-dependent diffeomorphism transforming the
moving domain €2(¢) into the fixed equilibrium domain €2¢. We intend to construct a geometric
mapping Q2o — Q(f) : x — z. Without loss of generality, we assume the center of the bottom of

Ro— Lo

the equilibrium domain is located at the origin. Let £ = . Then the equilibrium domain

is
Qo={x=01,x):—L<x;<¥f 0<xy<lx)}. (1.15)
Correspondingly, we denote the equilibrium top
2o = {(x1,x2) 1 x0 =o(x1), —€ < x1 < £}, (1.16)
the equilibrium bottom
Yop :={(x1,x2):x0 =0, —€ < x1 < {}. (1.17)

The mapping is constructed as follows.

e Define the mapping from Q@) = {y=0O1,m):—l<yr <, 0<yr<¢(t,y1)}to () as

R(t) — L(1) R(t)+ L(?)
yi+

q):yl—)zlz Y 1 5

, 2> 22=y2. (1.18)

This is a dilation in the horizontal direction.

e Let the free surface be given as a small perturbation of ¢y, i.e. £ = o + n for some n(z, -) :
R+ x [—£, £] — R. Firstly, we extend 1 from H* (Lo, Ry) to H*(R) by means of a standard
extension operator E : H*(Lg, Ry) — H*®(R), which is bounded for all 0 < s < 3. Then we

define the upper harmonic extension of n(¢, x1) from x, =0 to xo > 0 as (¢, x1, x2) given
by

it %) =P Ell] ¢, 301, G0(x1) = x2) (1.19)

for

Pf(z1,22) := / f(&)e 212 2mizg ge (1.20)
R

It is easy to check that ﬁ(t,xl, {o(x1)> = P[E[n]](t, x1,0) = n(t, x1), which means that
n(t, x1) = n(t, x1, x2) at Xo.
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e Define the mapping from 2 to Q(r) as

N t? 9
V:x; — vy, x2—>y2=<1+w)x2 (1.21)
o(x1)
This maps x2 = {p(x1) to y2 =¢(y1) and x; =0to y, =0.
e Then the composition [T=® o ¥: Qy — Q(t)
R(t) — L(t R(t) + L(t n(t, xq,x
Mix oz = O-LO  ROFLO x2—>zg:<l+u)x2, (1.22)
20 2 o(x1)
is the desired geometric mapping.
Write
R(@)— L(t 1 N X007 1 Jin 1o
2¢ Ji %o %o D %o &
(1.23)
1
and define K; = — with i = 1, 2. Then the Jacobi and transform matrices are then
i
_ Jl O _ -T _ Kl —AK
VH_<A Jz) and A = (VII) _< 0 K, , (1.24)

1
with the Jacobian J = det(VII) = J;J; and K = det(A) = 7 = K1 K;. We will work within a

small-energy regime that guarantees that IT is a diffeomorphism and J, K > 0.
In the new coordinates, u(t, x), P(t, x), (¢, x1), L(t), and R(¢) satisfy

V- Sp(P,u)y=0 in Qo,
Va-u=0 in o,
_ 04,¢
SA(P, u)N—gCN—GaAI T N on X,
1+|8A1§|
(SA(P,u)./\/—ﬂu>~T=0 on Xop,
N=0 2ob,
u N on 0b (].25)
0:¢ — K1a01¢ +u104,8 —up =0 on X,
1
V1 04,8] =t
1
W(3zR)=[V]—042 ,
\/1+’3A1C| X1=Z
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where here

. OR-—0/L /R +0,L
= 1.26
a YL + > (1.26)

and V4, A4 and D 4 are weighted operators defined as follows with Einstein summation em-
ployed

(Vaf)i=Aijdjf, Va-8=Aijdjgi, Aaf=Va-Vaf, and Dgu);j = Aixdguj+ Ajxdiu;.

(1.27)
The tensor S4(P,u) = PI — uD qu satisfies V4 - SA(P,u) = —uA qu + V 4 P whenever u is
such that V4 - u = 0. Also, d4, = K101 denotes the weighted derivative in x; direction. More-
over, N' = J Ay and T = J Aty, where vy and 7 are the unit normal and tangential vectors on
029. In particular, on X,

vo = (—01%0, 1) 0= (1, 9120) (1.28)
V1+101500 V1+19150/
We may directly verify that
—01¢,J
N=S08N s (1.29)

V 1+ 18150/

The transport equation can be rewritten as

e — Kiad e =K (u- N1+ 10122, (1.30)

or

J19,8 —adic = (u-N)y 141912012 (1.31)

Note that the mass conservation equation in the new coordinates reads

¢
M=/11§'(t,xl)dxl. (1.32)
—
In these new coordinates, there is a natural variant of energy-dissipation structure of Theo-
rem 1.1. For the sake of brevity we will not prove this here but merely state it.

Theorem 1.3. We have

l Y4
J J
b /5|u|2+f%|4|2+/011\/1+K%|81;|2—[y](R—L) (133)
e

Q0 —L
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J
+ /“7 D qul?® + / Blu-tol® + (W(B,L)B,L+W(8,R)8,R) =0.
Qo Zob
1.5. Perturbation form
We will consider solutions to the full problem as perturbations around the equilibrium state
(0, Py, ¢o, Lo, Rp) given by Theorem 1.1. We will now reformulate the equations in (1.25) in

terms of the perturbed unknowns.
Define the perturbation variables

p=P—Py, n:=¢—¢, l:=L+L, r:=R—1{. (1.34)

Define k = #”(0) > 0, and let

A 1
W (z)= ;W(z) -z (1.35)
Since
2
B) Ki(9150+din
o4, A, 8 . — ( ) - |- (1.36)
1+]04,¢] \/1+K12<81§0+8m>
we may linearize
N 94,¢ _ 0120 k19120 n k19120 +91n LR, (137
1 - 2 2 3 ’ :
,/1+‘3A1;|2 VI+10i6P  V1+1315l (1/1+|31§0|2)
where
=Ky —1= 2t ot (1.38)
AT TR T T 20 '

and the nonlinear terms are included in R. See Appendix C.3 for an alternate expansion of R.
Similarly, since

1 1
5 = = (1.39)
J1+ 0,8 \/1+K]2<81{o+8m)
we may linearize
1 1 k1 181 201* + 81509
k119180l 4 3180817 Lo (1.40)

= 3
Jitloael ViFmal (iagP)
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where Q contains the nonlinear terms. Again we refer to Appendix C.3 for an alternate expansion
of O.

For the convenience of linearized energy-dissipation estimates, we intend to connect k; with
a. Define a modification of a as

. 2((3[7 — 8;[) 8,}” + 3;1

= , 1.41
T etrr—n 2 (141)
which satisfies the relation 9;k; = —0ja, and let
—D4e —1
Oca—a=_LDEEEr =D G o (1.42)

220 +r —1)?

represent the nonlinear perturbation terms. We may linearize the transport equation in (1.25)

dn—adito=u-N)J1+13120>+ S, (1.43)

where S contains the nonlinear terms. See Appendix C.3 for another expression of S.
Considering the conservation of mass

¢ ¢ 2
M= [wenan = [ scwin = [a(oe @), a4
) ) e
we have
¢ ) ¢ ¢
J / 0t x1)dx = f (1= J)go(e)dxi, or / 0t x1)dx; = / (Ky — DeoGrdxr. (1.45)
—¢ —L —L

Hence, we know the linearization of mass conservation:

2 4

/n=k1/§o=k1M. (1.46)
—

—L

Therefore, we can rewrite the system (1.25) in the linearized variables u(z, x), p(¢, x) and
n(t, x1) with [(¢) and r(z):
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Va-Salp,u)=0 in Qo,
Vai-u=0 in Qo,
k19180 n k19180 + 011

V1+ 18150/ </71+|31§0|2>3

Sa(p, )N =gnN —od +R|N  on %,

(SA(p,u)N—ﬁu) -T=0 on Zop,
u-N=0 on Xop,
dm—adilo=w-N)W1+101¢0° +8S on X,

k13150l + 81¢091n
3
(Vi+iaP)
_ ki191¢0l* + 314091n

(Vi+inar)’

K+ kW (1) =0

x1=—¢

Ko + KVA/(Btr) =—0

x1=¢

(1.47)
2. Main results and discussion
2.1. Energy and dissipation

In order to state our main results we must first define a number of energy and dissipation
functionals. We define the basic or parallel (since temporal derivatives are the only ones parallel
to the boundary) energy as

2
2.1

L .
i Hl(—£,0)

2
&=y
=0

Jj=

and the basic dissipation as

3/ ’ 22:( o[
u + ’ +
' o) g\

~ 2
0

j=

2 2
+
HHI(QO) Z
j=0

J
atu‘

. 2
at’“r‘ ) 2.2)

We also define the improved basic dissipation as

2 2

- 2 2
Dy=D)+ E 3/ H + E ) H 23
==l = Pl o) = "Ma3 e @3

. 2 . 2
a,fam(—e)’ + 3 u(—t,0) -N’ n

3zj31n(€)’2) +Z(

Jj=0

8/ u(e,0) -N’z).

é(
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The basic energy and dissipation arise through a version of the energy-dissipation relation (1.12).
However, once we control these terms we are then able to control much more. This extra control
is encoded in the full energy and dissipation, which are defined as follows:

E =&+ Il g + 193100y + 12151 ) + 1921706 2.4)

atf“l(z)(zjt a;'“r(z)f)

1
+inl* s+l +Z(
W2 (—¢,0) H?2(=¢,0) =0

. 2 . 2
a,fam(—e)( + 8 u(—2,0) -N‘ 4

+§< 8tj317’/(€)‘2)+z<

. 2
8l]u(£,0)-N’ )

j=0
and
D =Dy + |lul? + [lBeul? +lipll? + 118, plI? 2.5)
W2(Q0) W2(Q0) Wi (Qo) Wwi(Qo)
2 2
oo RO [ S 1 NS (] IO
! W,;%(—z,e) " Wﬁ(—u) o Wi (=60 o Wy (=6,0)

The spaces Wy are weighted Sobolev spaces, as defined in Appendix A, for a fixed weight pa-
rameter § € (0, 1).

2.2. Main theorems

Our main result establishes the existence of global-in-time solutions that decay to equilibrium
at an exponential rate.

Theorem 2.1. Fix 0 < § < 1. There exists a universal constant 9 > 0 such that if £(0) < ¥, then
there exists a unique global solution (u, p, n) to (1.47) such that

>0

sup (50) +e (a () + @131 g + 1@ - T0l50.5,,) + 17O 500, + 13O (2.6)

+

Btr(t)z‘ + i, =0 + |din(, O + |u(t, —€,0) - N + |u(z, £, 0) -N|2))

+fD(t)dt§€(O).
0

Some remarks are in order. First, the result can be interpreted as saying that the equilibrium
constructed in Theorem 1.2 is asymptotically stable in the dynamics (1.47). Second, although the
equilibrium droplet is asymptotically stable in the sense described in the theorem (namely, in the
fixed coordinate system), its final location in Eulerian coordinates does not have to coincide with
where it began. Indeed, let X = (X1, X3) be the mass center of the fluid. Then we know
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1
X =— [ J(t)u(t,x)dx. 2.7
M
Qo

Based on the exponential decay of u, we know there exists A > 0 such that

e 10, X| < £(0). (2.8)
Therefore, we know
iA(0)
|X(oo)—X(O)|,§% < 0. 2.9)

In other words, the mass center is shifted for a finite distance. This is consistent with the fact that
the equilibrium is only unique once one of its endpoints is fixed. The translation invariance gives
a one-parameter family of equilibria, and our result then says that this family is stable.

Third, the theorem is valid for any weight parameter O < § < 1. This is in contrast with the
result in [9] for the vessel problem, which required § to be tuned to the equilibrium contact angle.
The reason for this is that in the present paper, in order to employ the graph formulation for the
droplet we have had to enforce (1.4), which restricts to 6.4 € (;r/2, 7). In this range there are
no restrictions placed on § € (0, 1) in the weighted elliptic theory. It is only for acute 6,, that
restrictions are needed, as in [9].

Our strategy for proving Theorem 2.1 is in broad strokes the same as that employed for the
vessel problem in [9]: we use a nonlinear energy method based on the physical energy-dissipation
structure of 1.3, coupled to weighted elliptic estimates in the equilibrium domain. This results
in a closed scheme of a priori estimates (Theorems 7.3 and 7.4) that couples to a local existence
theory (Theorem 7.5) via a continuation argument to give global decaying solutions.

All of the difficulties (other than the § restriction issue described above) from the vessel prob-
lem carry over to the droplet problem, so we refer to the introduction of [9] for a summary of
these and the strategy for dealing with them. There are two principal new difficulties caused by
the droplet geometry. The first is due to the extra degree of freedom present in the horizontal mo-
tion of the droplet endpoints. In our geometric coordinate system this motion is manifest in the
first part of the Jacobian, Ji, due to dilation and contraction of the interval (L(¢), R(t)). While
the dissipation provides control of the time derivatives of L, R, it is not clear from Theorem 1.3
that dissipative control of J; is possible. This is analogous to the problem of controlling n with
the dissipation when it naturally only controls ;1. Acquiring dissipative control of J; and 7,
which couple together in a nontrivial way, is one of the key steps in our a priori estimates. The
second new difficulty is manifest in the fact that the free surface graph intersects the flat line on
which the droplet resides. This causes technical problems with the geometric coefficients near
the contact points, and we must resort to delicate analysis to handle these.

The rest of the paper is organized as follows. In Section 3 we develop essential linearized
analysis tools. In Section 4 we record various auxiliary estimates that couple directly to the
energy-dissipation structure to give enhanced control. In Section 5 we estimate the various
nonlinearities appearing in the energy-dissipation structure. For the sake of brevity we have at-
tempted to borrow as many of these as possible from [9], but many terms in the droplet problem
do not appear in the vessel problem and require delicate analysis. In Section 6 we estimate the
various nonlinear terms appearing in the elliptic estimates. Again, we have borrowed what we
could from [9], but much new work was needed. Finally, in Section 7 we synthesize our a priori
estimates and complete the proof of Theorem 2.1.
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3. Linear analysis

In this section we analyze the problem (1.47) and its time derivatives in linear form. To begin
we record the form of (1.47) when time derivatives are applied. Upon doing this we find that
v(t,x) == 0/"u(t,x), q(t,x) :=0/"p(t,x), o(t, x1) := 3/"n(t, x1), L (t) := 9;"1(t) and Z(t) =
a/"r(t) satisfy

Va-Salg,v)=Fi in Q,
Vai-v=05F in Qo,

J10180 n J10180 + 010

V141912002 (,/1 T |31§0|2)3

Sa(g, VN =goN —od; + "R | N +F3 on I,

(Sat@. N =pv) - T=F on o,
v-N=0 on Xop,
30 —adito=(v- NV 1+181%/* +"S + Fs on X,
T |10l + 81200
s —o |- 118160l 1§031Q+8;”Q L F
(VI+TisoP) =
20101801 + 01200
cod——o| - 11918017 + 1§o319+8lmg L F
(Vi+1aP) ¢
3.1
where 71 := 9/"k1 and a := 9;"a satisfying dja = —9,.%1, with the mass conservation

4 4
f@==%/1/§o. (3.2)
— —L

Here, the nonlinear terms 7 — J7 are defined in Appendix C.2.
In what follows we will need the following spaces. We define the time-dependent spaces

oM (Q0) = {u Qo — R2

fQo%'DAM|2+IEOb:3|M‘TO|2<OO, u-N=0 on 201;},

(3.3)
and
W(t):{ve()?-[l(fzo) lv-Ne Hl(—E,E)}, (3.4)
V) =(veW |V v=0}. (3.5)
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3.1. Weak formulation
We now aim to justify a weak formulation of (3.1).

Lemma 3.1. Suppose that n is given and A and N are determined in terms of n. If
v, q,0,%L, ) are sufficiently regular and satisfy (3.1), then for any w € W(t),

J
/%DAUZDAW—/JCI(VA'U))‘F/ﬁ(v'fo)(w‘fo)-i-/gQ(w'N) (3.6)

Qo Qo Zop o
JN0180+ 0
+ [t = geotwan+ [o | LEOTNE A g
<o %o (v 1+ |31§o|2)
+<— “aBw-N)| — —8,.Lw-N) )
o ¢ 910 ' )
T m
=/Ju)~]-'1—/w-]:3—/F4<w~W>—/0818, Rw - N)
Qo 2o Zop %o
0w | - Ew | - A
—_— w. —_—— w. —_—— w.
o _¢ 0160 7 ¢ 01l 0 )

Proof. Multiplying Jw on both sides of the Stokes equation and integrating over 2o imply
/J(VA~SA(q,v)> ~w:/Jw~}'1.
Qo Qo

Using the simple identity

) Jvo on Zgp,
J Ay = {N on . 3.7

and integrating by parts yields

J
/J(VA-SA(q,v))~w=</%]D>Av:]D)Aw—/Jq(VA~w)) (3.8)
Qo

Qo Q0

+ [ (sa@on) w [ (sa@ow) w=t+n+ 1

Zop P
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We may then simplify
L= / (SA(q, v)N) W (3.9)
ob
N T
Zop Zob
T T T T
= [ (o) ) 75) = [ o) (o 70) + [ 50 7
A Zob Zop
- / Bw-0)(w-10) + / f4<w - %)
2ob Zop

On the other hand, we may decompose

13=/(SA(q,v)/\/)~w=/g9(w-N)+H+/w'}'3’ (3.10)

%o o o

where the equilibrium equation (1.14) and integrating by parts yield

a d d

V141910l (/71+|31§0|2>

/ S 0180 + 010
o | ZLeiso T aie

=/«%/1(P0—8§0)(W'J\/)+ 81(w-J\/)—/6818;"R(w-N)
%o

3
2 \(Vi+iazP) 2
10180+ 0 ¢
Y 10140 12@3 w-N)
<\/1+|31§0| ) —¢

In particular, using the contact point equation, we have

VAL 9 ¢

(v I+ |31§0|2)
1

910

(3.12)
—t

1
+—<—K8,$+08,'"Q+]:6)(w-./\f)
¢ a]é-O

—L
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K K
=\ - R w - -N)| — L w-N
( 3120 ¢ T (w )e 31 r 2 (w )()
+L<—68;"Q+]:7>(w~/\/) +L(03th+]:6>(w-./\/')
910 ¢ 910 —¢

Collecting all of the above terms, we have the weak formulation (3.6). O
3.2. Linearized energy-dissipation structure
We have the following equation for the evolution of the energy of (v, ¢, 0, £, Z):

Theorem 3.2. Suppose that n is given and A and N are determined in terms of n. If
v, q, 0,2, %) satisfy (3.1), we have

f o (%31§0+319)2 Vs i 0160 8 6
at /E 3—|—Tl POM+U \/jz +§/(%§O_Q)2
%7 (Vi) s VIl

(3.13)

+ / J7“|DAv|2+ / B+ (@2 + 0,:%)7)

$20 Zop

:f]v-F1+/JqF2—/v~f3—/]—](v-%)
X

Q Qo i} 0b

—0/818}"7%(1)-/\/)—1—(—oa,’“Q(Bziﬁ—l—a,’”O)

o

Z +aa;"Q(a,,%’+ a,’"o)

)

—L

—K (8[%8;"0

— Fo(i2 +91"0)

+0,.29"O
l

) — (0% + 57 0)

—£ 4

¢
/ 10180 J10180 + 010
+ 80 —

01
2 3
’y VIHnoE (V15 016P)

0"S + Fs).

Proof. Letting w = v in the weak formulation (3.6), we know

J
/“7|DAv|2+/ﬂ|v-ro|2)+/gg(v-/\/> (3.14)

Qo Zop P}

/‘0 J10180 + 010 81 (v N)

%o (\/1+|31§0|2)3

)

+/<%/1(Po—g§0)(U'N)+
%o

K

8,3(1)./\[)

K
* <_ 0180 0w N

4_8140
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=/Jv~]-'1+/lq]-'2—/vo}'3—/f4(v~%>—/0818{"7€(v~/\/)

Q0 Q0 o Zop 2o
14

1
——FWw-N
7(v )z 0t

o
+ 9" Q- N
;O )% e

9180

—L

We will focus on the simplification of gravitational, surface tension, and contact point terms. We
may directly verify the relation

da=—0,, (3.15)
which will be used frequently in the following.

Step 1: Gravitational term: We may decompose

4 4
G::/gg(v-N)zng(v~N)\/1+|31§0|2=/8Q<31Q—03150—3,"15—]:5) (3.16)
o — -
L
= G +G2—fg9(8f18+f5).
)

Integration by parts and using (3.15), we obtain

¢ ¢
8
Gi Z/gé?atQ =0 /E lo* | (3.17)
Ze ¢
¢ ¢ ¢ ¢ ¢

G2=—/ggaalio=/ga4“0819+/g§oaala=/gag“oalQ—/gazjﬁCoQ:Al + Aj.

(3.18)

We cannot simplify A; and A; at this stage and have to wait until the surface tension terms.

Step 2: Surface tension term — First stage: The transport equation in (3.1) and integrating by
parts yield

Hid180+ 9
H1:=/a AR PR (3.19)
%0 (V 1+ |31§0|2)
NELET
:/a At die o (e — anso — S - F)
Yo \(Vi+1maP)
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¢
_/a 10180 + 910

ENarrn)

¢
31(3rQ - aalé‘o) —/0

Journal of Differential Equations 272 (2021) 648-731

10180 + 010

Yo \(Vivmar)

We may use (3.15) and (1.14) to simplify

where
¢
B =/O’
—L
14
:fa
—¢
and

We may use (3.15) to directly compute

12
[o
—L

(v 1+ |31§0|2)3

J10180 + 010

(ViFiazr)’

J10180 + 010

(\/ 1+ |31§0|2)3

J10180 + 010

e <v1+|31§0|2>

)4

—L

J10180 + 010

(Vi+imar)’

J10180 + 010

o (o + Hitngo) = f—

=—/aa<xqal;o+alg>al<

01 <3zQ - ﬂ31§0)
<3t319 —91ad1p — aanfo)

((3t319 + 0,£10180) — 0311C0> =B1+ By,

<3z319 + 0,101 Co)

f o (:1/13140 + 319>2

3
(VI+TnzP) 5 (Vi inaP)
; J0 a
Bz:_/g _ANOTN T 411z

0140
¢1+|alco|2>

¢
=/a(=1/131§0+319)(1’0—g€0)=C1+C2+C3+C4-
e
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¢ ¢ ¢
PoM
=«/"i/1P0/a31§0=—%PO/BWCO=%1P0/3t%/1§o—3z<0—%/1 > (3.22)

e 2 e
¢ » ¢ g ¢
Cr=— 1g/ﬂ§031§0=—71g/a31 1Z0l* = T dagd (3.23)
2 2 2
4 ¢ e ¢
S18 8
=5 [ =-a (7 [ )
¢ e
and
¢ ¢ ¢ ¢
PoM
C3=Py | adjo=—Py | dyao =Py | & H10=PoK10,%1 | o=, —Jifl
e e e e
(3.24)
which means
¢
C1+C3=0 (PoM%2> and C4 = — / gagoai 0, (3.25)
2
and so
¢ ¢
Ay +C4=/ga§0319—/gﬂC0319=0~ (3.26)
2 %

Step 3: Surface tension term — Second stage: The transport equation in (3.1) and integrating
by parts imply

Hyi= [ A58 = ge0) (w0 N) = /%(Po—g;o)(azg—aalco—a S-F) 6
P}

=D+ Dyt D+ Ds— [ (P — e (35 + 7).

where by (3.15),
¢ ¢ P
Dy =<%/1Pof3z9=e%/1Po<8z<%/1/§o) =8t< 2 95/2) (3.28)
—¢
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L

¢
Dy =— gt / {00r0 = —gX10; (/ COQ>, (3.29)
Ze

—£

which means

l ¥4 ¥4
Ay+ Dy = —g&%( / é“oQ) _ g0, ( / m) ) (g%/l / cog), (3:30)

—L —L —L

¢ ¢ ¢
PoM
D3Z—%Po[aalfozﬂ/lf’o/&a{o:—P0<%/1/3t=%/1§0=—3z< 2 1/12),
2 e

2
—
(3.31)
from which we see that
and
4 St l P 14
1 1
Dy Zgl/l/foaaléo = gT/aal |Zol* = —%/316@02 (3.33)
— — —
S 4 c%/z 14
871 2 18 2
= 0 1 :at( n /f >,
—¢ —
which in turn implies that
Cr+ D4 =0. (3.34)
In summary, we have
¢ ¢ ¢
G+ Hi + Hy =, (/ S0P + OMAT — g 1 f f0 | - / 40" + Fs) (3.35)
¢ —¢ —L

¢
_/G 1910 + 910

Yo \(ViFTap)’

14
n@rs+ 79 - [ A geo (a5 + 7).
—t

Step 4: Contact point term — First stage: Note that 9,0(—¥£) = 9;0(£) =0, and a(—¥£) = 9, Z +
" O(—1), a(f) = 0;Z + 0, O(£). Using these, we have
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K K
- AW -N)| — 6L w-N 3.36
P ( )z P ( )76 (3.36)
K K
=~ 3.%(%0—adio— IS — Fs)| — —8,2 (80— adigo — oS — F:
e (zQ 180 — 0; 5) . o i ( 10 180 — 0 5) B
=K((at$>2+(a,<@)2)+K<a,%a;"o +8,.20m0 )
4 —L

+<%€_Oat%(a;”3 +75)| 5oz (oS + 7)

¢ 150

)

Step 5: Contact point term — Second stage: Using the transport equation in (3.1), we have

14 14

o
=—9"9(0,0—ad —o"S —
s Q( r0 — ad1 o — o fs)

%8[" O -N) (3.37)

0180

—t
14

3

- <_ o0 Q3 +91"0)

Z +007"Q(8,% +"0)

) saro(ars )

9140 ¢
and
LR )| - 2 Fow- ) (3.38)
—_—— v. —_— — v. .
9180 7 ¢ 9180 o i,
1 m l m
:—mf7(3tg —adio — 0, S—fs) . — Tg_()ff,(i);@-ﬂ({h{o—@[ S—fs) y
m m 1 m
= 75 (3 + 0"0) l+.7‘—6(8z$+3t 0) _;LT&)}H(B, S+7s) l
] m
+T§0f6(at S+}'5> y

Combining the terms related to 9;"S + F5, and using the equilibrium equation (1.14), we can get
(3.13). O

4. Basic estimates

In this section we record a number of essential estimates needed for the nonlinear analysis
of (1.47). These include auxiliary estimates for the pressure, free surface function, and contact
points, as well as elliptic estimates for the Stokes problem.

4.1. Pressure estimates

The linearized energy-dissipation structure cannot control the pressure directly, so we need a
separate argument. It is well-known that the pressure can be regarded as the Lagrangian multiplier
in the fluid equation, and that this gives rise to a pressure estimate. Here we will employ estimates
proved in [9], which we restate without proof here.
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Theorem 4.1. If (v, o) satisfies

J
/%DAUIDAW"F/ﬂ(v'fo)(w'fo)+ng(w'N)

2ob P
J0 d
/%(po—g;om N+ [ [ RRERE oy
g \(Vi+1aaP)
K
a 6L (w-N
+< o 1% (w )5)
T m
Z/Jw-]:]—/w-]%—/]ﬁ(w-W)—/O'a]Bt R(w - N)
Qo %o Zob %o
o) - e FwA| - Fw-a)|
310 Q- )_z 9140 T )e 910 o+ ) —e

for all w € V(t), then there exists a unique q € I-OIO(QO) such that

J
f%DAU3DAW—fJQ(VA'w)+/ﬁ(v'fo)(w‘fo)+/gQ(W'N)

Qo Q0 Zop %o
10180+ 0
+/J£/1(P0—g§o)(W-N)+/U NN N 5y w- A
ho b (\/ 1410 §0|2)
K K
- —— 0 Z(w - - —0,.Lw-N
+< 9o w ¢ 0180 1w )—e)
T m
=/Jw~]-"1—/w-]-"3—/}"4<w W)—/Ualat R(w/\f)
Q0 o Zob o
¢
+—8’” N ——}' N ——]-' N,
0o Q(w - )4 e 7(w - )( e s(w-N) L

for all w € W(t). Moreover,
where F € (H')* is given by
T
(.F,U))Z Jw.Fl— LU'.F?,— .F4 WW .
Q o Zop
Proof. See the proof of [9, Theorem 4.6]. O
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4.2. Free surface estimates

In this section, we prove various estimates regarding the free surface function. We begin with
a useful inequality.

Lemma 4.2. Suppose that ¢ € HO1 (—£,¢) and 2#7 € R satisfy (3.2). Then we have the norm
equivalence

||3IQ||H0(—L£) S #18180 + 31Q||H0(_e,e) S ||31Q||H0(_e,e) . 4.5)

Proof. Assume that the first inequality is not true. Then we can find a sequence {(2", 0")}22 | C
R x H}(—¢, £) such that

14

¢
%/1"/%()61)(1)61 Z/Q"(xl)dXL (4.6)
e

-t

with

A7)

1
|| 81Qn ||H0(—l,€) =1and ||%lnalé‘0 + alQn || HO(—¢,0) < ;

Then by Poincaré’s inequality and the relation (3.2), we have that

¢ ¢ -1
|| = / 0" (x1)dxi / foGendxr| S0 yo gy S 101" [ op ST 48)
12 12

Hence, we know .%#{" is bounded and up to the extraction a subsequence, we may assume 7" —
1. On the other hand, by Poincaré’s inequality, we may estimate

[0+ 0" o S | (004 e)] L, S (49

HO(—¢,0)

Hence, 27"y + 0" — O in H', but since " — 1, we conclude that o" — @ in H'. Sending
n — 00 in (4.6) and using (3.2), we conclude that

¢ ¢ ¢
Jﬁ/(o(xl)dxlzfg(xl)dm Z—Jﬁfio(X1)dx1- (4.10)
¢ —L

—¢
Hence, .#1=0 and 0=0. This contradicts the fact that ||3; o|| HO(—.0) =1imy—00l1010" | o (—g.0) =

1, which proves the first inequality. On the other hand, the second inequality follows trivially
from (3.2). O

Next, we prove an elliptic estimate for the free surface function.

672



1. Tice and L. Wu Journal of Differential Equations 272 (2021) 648-731

Lemma 4.3. Suppose that o € HO1 (—£,2) and 21 € R satisfy (3.2), and

l 4 4
JN 010+ 0
/gg9+f%1<Po—g§o>9+/o ONENC b0 (Fe),  @1D)

¢ ¢ 2 (v 1+ 19 Colz)\
forany 0 € HO1 (=2, 0. If Fe HS(—¢,¢) fors €[0, 1], then o € H(%*S(—Z, £) and
loll g2-s—e.e) + 1K1 SIF I s (—e,e) - (4.12)

Proof. We begin with an H'! estimate for 0. We rearrange the first two terms of (4.11) to see the
structure

J4 4 J4
9150 + 9
/g(Q—%é‘o)@-l-Po%fl/@—l—/G AhtoNe o6 Fey.  @13)

L/ Yo \(VEr)

Then we take the test function 8 = J#] ¢ + ¢ and use Lemma 4.2 to obtain

¢ ¢
J0180 + 010 | #1180 + 3101
o|l ——— |00 = 00—

7, (\/1+|81§0|2)3 1 ’, (\/l+|81§0|2>3

Z 1110160 + 910130 ) 2 10131 gy -

(4.14)

On the other hand,

4 12 4 L
[ele-sa)o+ i [o=¢ [ (o= i) e+ i)+ st [ (o +Hico)
e

—¢ —0 —L
¢ ¢ ¢ ¢ 0 (4.15)
= g/ (92 -~ %124“02) + P /Q + P2 | o= gf lo|* — g7 / ¢+ 2P0 M
iy —¢ 4 4 —L

l ¥4
=g/ |g|2+%2(2PoM—gfc§).
—{

—t
Consider the second equation in (1.14). Multiplying by ¢y and integrating, we obtain the identity

¢
1912012

I V11015l

Therefore, since PgM > 0, we may use Lemma 4.2 to derive

4
PoM — g / 3 =0 (4.16)
—¢
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14 4 l
150+ D
g/99+/<}fl(Po—g§0)9+a[ Aobotoe |y, 4.17)

CA A\ (VT maR)

19120/

J, V1 + 191201

4 L
10180+ d10)?
_o [[A0%+ el 1Q|3+g/|Q|2+%/12 PoM + o
e (\/1+|31€0|2) )

2 2
z ”Q”Hl(fe,i) + <%/1 .
Also, we use Lemma 4.2 to directly estimate
HF O SINF g1y 1011 —e.0) = 1 F -1 —e.0) 1180 +0ll g1 (—p.0) (4.18)
5 ||]:||H71(_g,z) ||Q||H1(—£,£)'

Hence,
loll 1 —.p + 1401 SIF N g-1(—ep) - (4.19)

We now obtain an H? estimate for our solution, supposing that F € HY. Let b(x]) =
3

<\/1 + |81§o|2) and take an arbitrary smooth function ¥ € C°(—¢£, £). Plugging in the test

function 6 = ¥b and rearranging (4.11), we find that

L

l l
o [ Hinco+ ey =(Foub— [ oby— [ Hiv(ro-ga)y @20

—£ —L —£

L
o / o1b <—‘1/lal§2+ 31@) V.
—L

Hence, we know that %19,y + 910 is weakly differentiable and

1 10180 + 9
Ao+ dne= —;(fb — gob — Hib(Po - g;“o)) + b (% SENCEI
Then this and the estimate (4.19) imply that
loll 2.y SNoll gt .0y + 111+ 1101180 + 1101l (¢ 0 (4.22)

S IFN ooy el gi—ee) + 1 STFNgo—ee -

With the bounds (4.19) and (4.22) in hand, we may apply a standard interpolation argument to
get the desired estimate. 0O

The next lemma is a variant of the previous elliptic regularity result.

674



1. Tice and L. Wu Journal of Differential Equations 272 (2021) 648-731

Lemma 4.4. Suppose that o € HO1 (—£,2) and 21 € R satisfy (3.2), and

J0 +d
g/99+%/1/(Po—g§o)9+0/ ANDENC Ny rae),  @23)

3
o o o (v I+ |31§0|2)

forany 6 € Hol(—ﬁ, 0. If fe H%(—Z, £), then g € H%(—E, £) and

lell s S

3 4.24
H2(—£,0) (4.24)

H%(fé,é) ’

Proof. Arguing asin Lemma 4.3, we may deduce the bound (ol y1(_¢.¢) + 1211 S N f Il go—e.0)-
Plugging in the test function 6 =y € C2°(—¢, £) implies that

Ja L L
H10150+ 0
a/(#_f) 31w:—/gg¢—/%(P0—g§0)w. (4.25)
—t

4 —L

10180 + 010

Hence, we know that x = ,

— f is weakly differentiable and

1
oix = —<89+%/1<P0 —g§0)>. (4.26)
o
Then this implies that

XN~ S Mxgo—e,ep + 101X | o) (4.27)
S|Aal+ ||Q||H1(_g,z) + ||f||1-10(_e,z) < ||f||H0(_z,e) .

Therefore, we have

ad < b b 4.28
91l g, SIHTHNSBIy , +lxbly (4.28)

< <
Sy F Iy Sy

The desired estimate follows. O

We have now developed all of the tools needed to state a central estimate of the free surface
function.

Theorem 4.5. If (v, q, 0) satisfies

J
/'MTID)AU:]D)Aw—/Jq(VA-w)+fﬁ(v~r0)(w-ro)+fgg(w-N) (4.29)

Qo Qo Zob o
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J0 0
+/%(po—g;o)<w-/v>+[a AN AE ) w - A
5 5 \(Vi+1anP)

)
:/Jw~f1—/w-F3—/f4(w~%>—/0818,’"72(w-./\f)

Qo %o Zob %o

+(_ R w-N) 0L w - N)
91%o0

¢ 1§o

+Wa Q(w - N)

——]—' N
s 7(w - N)

——]—' N
LT g 6(w-N)

’

—L

Sfor all w € W(t), then for each 6 € HO1 (—4, L), there exists w[0] € W(t) such that the following
hold.:

(1) w[O] depends linearly on 6.
(2) w[f]-N =6 on X.
(3) We have the estimate

[wlONgy SIOIE ) - and 1wlONy) S 101 - (4.30)

(4) We have the identity

JA0 d
[se0+ 51 [(m—gep o [ | FEDEAL o s
% S 2 \(VI+1000P)
= (G w0 + (7wl + [ 0o R,
o

where G is given by

(G, wlo]) = /—DAU DAw[9]+/1q(VA wﬂ)—/ﬂ(v 0) (w[O] - 70),

Qo Qo Zob

(4.32)
and F € (H")* is given by

(F,wlo]) :f Jw[0]- Fi — / wlf]- F3 — f f4<w[9] . %) (4.33)

Qo o Zop

(5) We have the estimate

(4.34)

2 < m
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Proof. Let 0 H& (=2, £). Then we may use standard elliptic arguments (see Theorem 4.11 in
[9]) to find w[O] € W(¢) satisfying

¢
VA-w=C/9(x1)dx1 in Q,

Y, (4.35)
w-N=060 on X,
w-vg=0 on Xop,
where C is chosen depending on €2¢ in order to enforce the compatibility condition for this
equation. The resulting w[6] satisfies the requirements of the statements. An integration by parts
yields

¢
—/Ualaf”R(w-N)=/08{”R81(w-J\/')—08;"R(w-J\/) ) (4.36)

—L
%o o

Also, since 6 € H(} (—¢, £), in the weak formulation, all the contributions at contact points vanish.
Hence, we have

10180+
/899+/e%/1(1’0—g§0)9+f0 AU ERITE 910 (4.37)

SO 4 & \(Viviar)

= (G, wl6]) + (F. wl6]) +/08,’"R819.
o
Then the estimate (4.34) follows in light of Lemmas 4.3 and 4.4. O

4.3. Contact point estimates

In this section, we will prove the estimates of derivatives of 1 and u - A/ at the contact points,
which are much stronger than the results obtained through the usual trace theorem.
We start with the 917 estimates.

Theorem 4.6. There exists a universal & > 0 such that if [|n|l go_g ¢y + 10: L + [0, R| < 1, then

5 2
. 2 I
ool )< 3 [l 0 2
' j=0

2 : 2
Z( ol on(-0| +

. 2 . 2
o/ |+ [0t | )
438)

Proof. First note the simple fact that 9;L = 9,/ and 9; R = 9;r. Consider the equations for d;L
and 9; R in (1.25). Solving for 9;n(—¢) in the 9, L equation, we obtain
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0.2
din(—0) =Jy 5 — 1= 9150(~0), (4.39)

(7 @) +1y1)

where here we assume ¢ is sufficiently small for the term in the square root to be nonnegative.
From the equilibrium equations (1.14), we may compute

Further restricting the value of ¢ if necessary, employing a Taylor expansion, and using
Lemma C.2, we conclude from these that

01 (=O1 S 1Tt = 1+ 10 LI S Inll go—g.e) + 19:1] - (4.41)

When 9, is applied in (4.39), we know

0 (=0 (9160(~0) + dn(—0)) (442)
2 27/ 2
= 119,y g c—1 ]| -2 4 (atL)8’L3.
(7 @+ 1) (7 @) +1r1)

Again restricting the value of ¢ if necessary, and considering 91Zo(—¢) 2, 1, we know

10150(—€) + 017 (=0)| 2 1. (4.43)

Then we may use (4.42) and (4.43) together with (1.45) to estimate

18:917(— 0] < 18, 1] + a?L\ SN0l go_e.e) + 071 (4.44)
When 8,2 is applied in (4.39), we know
2
02000 (n50(=0) + ain(=0)) + (3,0m(-0) (4.45)
o? o2 W' (3, L)d*L
:(Jlafjl n (3111)2) S 1| —na SRS
(7 @) +1y1) (7 @) +1y1)

L 302<W’(8,L))2(8,2L)2 ) EUZ(W’/(BIL)(HEL)z + W/’(a,L)a?L) |

(7o +1)’ (ran +i)’

Hence, as above, we may estimate
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2
B,ZL‘ +

00in(=0)| S ldim(—0) +

02| + Lo i P+ 10, 1|

afL‘ +

afL) (4.46)

< 3?21

52 H +
e HO(—¢,0)

+ |o71].

In summary, we have proved that if ¢ is sufficiently small, then

2 2 2

j j j+1
2 0 5 aln(—e)(g § OHB,n‘HO(_er E O‘at l‘. (4.47)
J= J= J=

A similar argument with the 9; R equation provides the bound
2 2
> [ofam@| sy
‘ —

Jj=0 j=

2
i 5/ ! ‘ . 448
at UH HO(—0.0) + jZO ;o O ( )

Next we consider the u - A/ estimates.

Theorem 4.7. There exists a universal ¥ > 0 such that if ||| o _g.¢) + 00| + [0;r| 4 |[071] +
|8t2r| < 0, then

8/ u(—¢,0) ~N)2 n

8/ ue,0) .N‘z) (4.49)

=

2

2 j+1,]? i1 |2
HO(_ZZ)JFZ()@ z) +‘at r‘ )
0 o

2
s [otn]
j=0

Proof. Throughout the proof we will abuse notation by suppressing the time dependence of the
unknowns; for example, we will write d;1n(%£) in place of d;n(Z¥, ¢). The transport equation
reads

(- N)b = J13m — a3+ dim), (4.50)

forb=+1+ |81§0|2. Hence, noting that d;,n(—¢) = 0, using Theorem 4.6, and taking ¢} to be
sufficiently small, we know

lu(—¢,0) - N =1ad1¢ + dn(=0) S lal (1 + |31n(—£)|) Slal 10+ 19;r] . (4.51)
When 9; is applied in (4.50), we have
@ - NYb =3, J10im + 197 — 9,a(d140 + d1m) — ad; 01 — (u - 3, N)b. (4.52)

It is easy to check that u(—£, 0) = (9,1, 0) and u (¢, 0) = (9,r, 0). Hence, noting that 8,277(—3) =0,
using Theorem 4.6, and taking ¢ to be sufficiently small, we know
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10;u(—£,0) - N < 18;a (@150 + d1n(—0)| + |ad; din(—0)| + |(u(—¢,0) - 3,\)b| (4.53)
S 19.al (1 + |31n(—€)l) + lal 1801 (=O)[ + [u(—=£, 0)] 18; 017 (=)

1 1
af“l)
HO(—¢,0) * ; P Z

1
<13l + 19 (=01 <Y
j=0

Bljn‘ 8,j+1r‘.

When 8,2 is applied in (4.50), we have

(02u - NYb = 02110, + 8, 1920 + 197¢ — 82a(d120 + 01m) — d,addin  (4.54)
—ad?dn — (- PN)b — (du - 3N)b.

Hence, noting that 8377(—6) =0, using Theorem 4.6 and taking ¥ to be sufficiently small, we
know

[0;u(—¢,0) - N| (4.55)
< |07 1010 + D (=) 13,1 [311(~0)| +1al [6701m(—0)|
(=€, 00|52 + 18,u(~, 0)l [0,V
<18%a - G — il [920,n(—
< |2 (1+ 10001 ) + 0.l 10,000~ 0)| +1al [o201n(~0)

(=, 0)l[0701n] + 0,u(~£, 0 [3:17(~0)]

< |o7a

atjn)

2
+ 100 (=01 + |9Fan(-0] S 57|,
j=0

Jj=

2
HO(—¢,0) + Z
j=0

2
a,’“l‘ +>°
j=0

In summary, we have now shown

2

2

j=0

; 2
a,’“l‘ +

2
a{u(—z,O)-N(zgz
=0

. 2 2
57 H n
P o ey Xg
j:

. 2
a,f“r’ > (4.56)

A similar argument with the d; R equation provides the bound

2

2

J=0

2

2
D |
j=0

. 2
a{“l) +

2
. 2 . . 2
8{u(€,0)-J\/” <3 a,fn‘ alf“r‘ ) O @457)
j=0

4.4. Weighted elliptic estimates for the Stokes problem

We now turn our attention to some weighted elliptic estimates for solutions to the Stokes
problem.
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5
Theorem 4.8. There exists a v > 0 such that if n € W52 (Zo) and |In|| s < U, then there is a
W5 (Zo)

o 5
unique solution (v, q, Q) € Waz(Qo) X W;(Qo) X W(;2 (Zo) to the equation

Va-8Sa(q, vIN =G in Q,
Va-v=0G3 in Qo,
v~./\/=G;' on X,
10 J10180+ 0
S (g VN = goN — 0'd) 10140 . 10180 IQ3+8;”R N
V1419150 (,/1+|31;0|2>
N
+G +G5 on EOa
T IV
v-N= Gy on Xop,
(Sat@. N = pv) - T=05 on Zop,
= :0’
ol =,
(4.58)
such that for any § € (0, 1),
2 2
||v|| W20 + ||61||W tan T IIQIIW%(EO) S IIQII HO(—.0) T ||G1||W0(Q yt ||G2||W Ly 499
8
FIGsI? 5 +1Ga?>,  +IGsI>, + ] R wh
W2 (3Q0) W (9S0) W2 (390) 0%0)

Proof. Using Theorem 5.10 in [9], we may find (v, g) € W(SZ(QO) X W; (R20) satisfying

G113 + 1G22,

i@y 10312 s +1G4l?

W;? (990) W (9%2)
(4.60)

12y + 140310y S 1G110gy

The only remaining estimate is for ¢, which satisfies an elliptic equation

: N
g0 —0i | | = (gl —uD AN - o (4.61)
(Vi+1P) W
ad a G
tod, H19180 n H10180 Lo |- G5

t )
\/1+|81§0|2 < /1+|81§0|2>3 |N|

with Dirichlet boundary conditions o(—£) = o(£) = 0. We may use (4.59) to verify that

2

L Sl g - (4.62)

H (qI — uDgv)N -
W (So)

N2

681



1. Tice and L. Wu Journal of Differential Equations 272 (2021) 648-731

Using (3.2), we may directly estimate

2
0 0
oo | oy, AN SIHNS ooy (4.63)
s 0

We then combine (4.61), (4.62), and (4.63) to deduce that

2
loll* 5 H (] — uD Av)N - (4.64)
W2 (%) IV W (Z0)
2
N JH01 80 n 190180
2 3
V1191l (v1+|31§0|2) Wl (g0
8 0
+||ala'"7z||
W (3520) W (Z0)
2 2
Sl + ligl? +llol?, + (019" R|" 1 + 1G5~
W2(S20) W, (Q0) HO(—0,0) || ¢ || W} 0%20) wi oo

Combining (4.60) and (4.64), we get the desired result. O
5. Nonlinear estimates in the energy-dissipation structure

We will employ the basic energy estimate of Theorem 3.2 as the starting point for our a
priori estimates. In order for this to be effective, we must be able to estimate the interaction
terms appearing on the right side of (3.13) when the JF; terms are given as in Appendix C.2.
For the sake of brevity we will only present these estimates when the J; terms are given for the
twice temporally differentiated problem. The corresponding estimates for the once temporally
differentiated problem follow from similar, though often simpler, arguments. When possible, we
will present our estimates in the most general form, as estimates for general functionals generated
by the F; terms. It is only for a few essential terms that we must resort to employing the special
structure of the interaction terms in order to close our estimates.

Throughout this section, we always assume that 7 is given and satisfies

sup <5||(f) + In @)l 3 + 19l 3 ) <v<l, (5.1
w ) Wi (—£,0)

0<t<T

for some ¢ > 0 sufficiently small. Also, throughout this section, we will repeatedly use without
explicit statement the following techniques in our estimates:

e Sobolev embedding theorems and trace theorems for both the usual Sobolev spaces and
weighted Sobolev spaces;
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e the pointwise bound |8,’"k1‘ < <
0kt | S 970l 1r ooy S 07" 01m] 1 (4> Which follow due to (3.2) and Poincaré’s in-
equality; ’ ’

for s > —, the estimate ||7]| ys < : , which is due to the definition of har-
o 5 171 s () S ”77”11“%(4,5)
monic extension;
1
o the bound |VA| < |V2jj| +|Vij| o
0

e Theorems 4.6 and 4.7.

Moreover, we will repeatedly use the following two lemmas:

Lemma 5.1. Let d = dist(-, M), where M = {(—E, 0), (¢, 0)} is the set of the corner points.

2
Suppose that 0 <8 < 1. Then d=% € L™ (Qo) for 1 <r < 3
Proof. See Lemma 6.1in[9]. O
1
Lemma 5.2. Let 1 < p <2. Then §_ € LP(Q).
0

Proof. The difficulty concentrates on the neighborhood of the contact points. Near (—¢, 0), using
the mean value theorem, we have for ¢ € (—¢, x1),

So(x1) = So(—£) + 0180(c) (x1 +£) = 9180(c) (x1 + £). (5.2)

Then using polar coordinates, we compute

© R © R
/ // rdo = // I ———drdd <00, (5.3)
go (Xl) rl’cosl’G rP=lcosP 9
00 00

x€Qp,d<R

where tan ® = 014p(—£). The integral with respect to r is finite since 0 < p — 1 < 1 and the
integral with respect to 6 is finite since 0 <6 < ® < % |

5.1. Estimate of the F| term

The following estimate is the same as that of Proposition 6.2 of [9], but the argument needed
to arrive at this estimate is slightly different due to the different structure of .A. In particular, the
appearance of the term 1/¢p in terms involving VA is novel to the droplet problem.

Lemma 5.3. Let F| be given by (C.2.1) or (C.2.8). We have the estimate

/Jv'fl SIvlla ) (5+\/E)\/5 54

0
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Proof. We will only present the estimate of the term _vaf A ( pl —uD Au) in order to highlight

how to deal with the appearance of 1/¢(. The remaining terms can be handled similarly, following

the general blueprint of Proposition 6.2 of [9] with appropriate modifications to handle 1/¢, as
indicated in what follows,

To estimate _vafA . (pl — ,u]D)Au>, we begin by splitting

f]v(— Vs <p] - ,u]D)Au>) (5.5)
0
024 ({v2u\+|vm)+/|v|
Qo

S/Ivl
Qo
< [ 12wl (|52 +19p1) + [ 10

Qo Qo

8,2,4‘ VA (IVuI + Ipl)

o2vii| |v2i| (1vul +1p1)

1
+/|v|‘B?Vn‘wm‘{—‘(|Vu|+|P|>=:I+II+III.
0
Qo

2 2 1 1
For I, we choose g € [1,00) and 2 <r < 3 such that — + — = 3 Then we have
qg r

I=/|v|‘8,2Vﬁ‘ (‘Vzu‘—i—IVpl) (5.6)
Qo
< 29; . (H 52 ’ s )
Svllzag) |37V L9 |a Lriag \ |4 VU L2€0) +|la VP”U(QO)

2 -
S0l |29, o (Il +1P1wey)

)

Sl ey (||u||Wsz(QO) + ||p||W51(QO)) Sl qy VDVE.

3
H2(—(,0)

For 11, we choose m =

2 1 1
and 2 <r < 3 such that — 4+ — < 1, which is possible since

3 1
6 < 1 < s. Then choosing g € [1, c0) such that — + — 4+ — =1, we have
q m r

1= [ 1olfopvil [ (1vul +11) 57)
Qo
< 295 2—‘ - ( 8 8 )
S vllzaeg) atvn‘m(go) \ Lm0 | L () | Vu||Lq(QO)+“d p”Lq(Qo)
27 = 2=
Sl |79 o 197 o, (Tlwziag + 11 00)
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IS ||U||H1(QO)

2
] 5 Ty (W2 + 1Py )

,S ”U”HI(QO) @\/E\/Ez ”U”HI(QO) g\/ﬁ

2 1 1
For 111, we choose 2 <r < 3 and 1 < p < 2 such that — + — < 1, which is possible since
r

4 1 1
r > 2. Then choosing ¢g € [1, 00) such that — + — + — =1, we have
q p r

111 = [ 1ol 1vil ‘;—10‘ (1vul+1p1) 5.8)
Q0

1

%o

o2Vl |d?

LP(S20)

S vl e (@) L(0) IIVﬁlqu(QO) L7 (Q0)

x ( ”d‘SVu ”Lq(QO) + “d(SP”M(QO))

S ol |92V,

oy IVl (Ml 120y )

S vl g g)

2

1] 3o Iy (liziag + 1710
S”U”HI(QO) \/IZ_)\/E\/EZHUHHI(QO)E@ O

5.2. Estimate of the J» term

The estimate of the J, term is available from [9]. We record it now.

Lemma 5.4. Let F> be given by (C.2.2) or (C.2.9). We have the estimate

0
Proof. The estimate is proved in Theorem 6.8 of [9]. O
5.3. Estimate of the F3 term
We now estimate the F3 term.

Lemma 5.5. Let F3 be given by (C.2.3) or (C.2.10) and R be given by (C.3.1). We have the
estimate

[ v B[Sty (£ + VE)VD. (5.10)

0
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3+4 6+28 9436 1 2
+ _ o andr = + such that — + — =

Proof. In the following, we choose p = ,q =
2426 1-6 1-34 P q

1 3
land — +-=1.
P r
Estimates of the integral involving the terms 1D AUN, uDy, Aud N 2Dy, 48:uN, —(pI —
uD_qu)dZN, —2(3; pI — uD 4d,u)d;N, gnd N, and 2gd;1nd,N may be found in the proof of

Proposition 6.4 of [9]. The remaining three terms are novel, and we will present the estimates
here.

k1910 n k19180 + d1n

N
V1+ 18150/ (,/1 + |31§0|2)3

Term: —o0 0,

We estimate

kid k1120 + 0
/v o 19150 -+ 1000 p2p §/|v|(|k1|+‘812n‘)‘8t2/\/‘
0 V11015l (\/1+|31§OI2) %

(5.11)
< [ 1ot (vt + [o2n] ) [o2un] € Wolzocsy (Walleoer + [, ) [oPon],
2o ’ ’

< v 92 H < v 92 H
ST TN L P ST LU ! ETO
Sl g1 gy VEVD.
Term: —o (3;R)3>N
We may directly bound
ORI S 1019] 030 + Ikl |97 (5.12)
Then we estimate
fu<—a(alR)afN> §/|U||31R| a}N‘ (5.13)
20 %o
< [ tottount |53 2o + [ 111kt [a2n][o7oun]
) P}
<lollr ez 181711 H32 929 ‘
Sllercse) 1910l Lr(—e.0) | 977 Lot 170
< 3 92 H
NIIUIIH%(EO) Il mIIH%(%Z) ”"”Wﬁ(_e,@ 3 Ceo
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3 nll s
H2(-¢,0) W (—£,0)

S ”vHHl(QO) \/E\/E\/'Z_): ||U||H|(QO)£\/5.

S ||U||H1(QO) 7]l

52 ” ‘
o H3(—0.0)

0:k10180 0:k10180 + 0: 017

V141910l (,/1.|_|31;0|2>3

N

Term: —200;

We estimate

wN (5.14)

drk191¢0 0:k10180 + 9: 917
v —2031

V1+10120)? ( /1+|31§0|2)3

ot )10 5 [ 101 (13l +

o

0
< [ 1ol (1ot -+
o

< Mol zaczy) (Wmllioe + |40

0:07n| ) loroin)

0;0 _
LP(—Z,Z)> 119 177||Lq( 2,0)

0, 5
L

<lv <lv B B
<ol y o S0l lml 3 ol

0,
ez o

8

Sl gy VDVE.

Term: —20 (3,01 R)IN
We may directly obtain

000 RI S 610ski | 070 + kil [0:07n| -+ |oFn| 00l + 1010l [ar0Fn|. (5.15)
Then we estimate
/v(—Za(E),&ﬂZ)B,N) §/|v||8,81R||8,N| (5.16)

0 o

< [ (\a%n\wta]mﬂalm(ata%n\) 18,017

%o
Slolro( [98) 00 mllLr ey F 1917 L —py || 0107 0 dmll (-
Sl (20)< IR 10: 3111l Lr (—e,¢) + 1917 1] Lr (—g¢) || 92077 Lr(—e.0) 109 llLr —e.e
g v 1 5 0 3 9 3

l ”H7(20) ”’7”%7 o I ’n”w; o [ mllHj(_w
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5.4. Estimate of the F4 term
The estimate for 4 is again available from [9].

Lemma 5.6. Let F4 be given by (C.2.4) or (C.2.11). We have the estimate

-
/J-'4< W) Sl VEVD. (5.17)

0b

Proof. The estimate is proved in Proposition 6.4 of [9], though there the nonlinearity is named
Fs instead of /4. O

5.5. Estimate of the F¢ and F7 terms
We now turn to the terms Fg and F7.

Lemma 5.7. Let Fg be given by (C.2.6) or (C.2.13), and F7 be given by (C.2.7) or (C.2.14). We
have

‘—ﬂ(aﬁ%ﬁ@) g —]—‘6<8t.$+8,2(9) y < VED. (5.18)
Proof. We know that
16,2 = |831| < /D and 18,2 = 8,3r‘ <D, (5.19)
and that
020| < (1o + 1o ) ([o31| + |o2r| ) + a1 ([o72] + |o7r| ) < VEVD. (5.20)
Hence, we have the estimates
8t$+8,20‘_e'§\/2_)and a,%+a,20‘e’§\/5. (5.21)

We may easily check that ‘7%’ (z)‘ + V/’ ! (z)‘ < z for z small, and so we know

~ 2 2
Fol < [ @[3 02| < 1a.01 |01 82| < VEVD.

+ | 7@

+ 10:1]

Next we bound

~ 2 2
|]-'7|§‘7//(8,r)‘ a}r‘ <19,r] B?r‘—l—lé%rl‘atzr‘ <VEVD, (522

Bfr‘ + ‘7/”(8,1’)‘
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from which we deduce that

‘—ﬂ(at% + a}o) <VED. O (5.23)

~

— Fo(#2 +070)

4 —L

5.6. Estimate of the Fs term
Next we handle Fs5.

Lemma 5.8. Let Fs be given by (C.2.5) or (C.2.12) and S be given by (C.3.14). We have

JK 0 J10 a d
/ 20— Wiy Akt he (8,28+]-‘5)—% S (e+VE)D,
‘ VIHBOE (V5 a0P)
(5.24)
where
¢
Si=— [ ———|oraun] . (5.25)
2 <\/1+I31§0|2>
Proof. It is easy to check that
JK 0 J10 ]
20— 9, 10180 . 10180 + 193 (5.26)
V141018l (,/1 T |31§0|2>
J0 0 a
I 11;’02+ 10140 . s 10 =111
VIF G (VT jagP) (Vi+inaP)
We may directly verify that
2 2
1w Shellimceo + 1 ilmcen < |00 ., + o]0, 62D
e 5 E
NH o Lo(—2.0) ™ o Hi(—t,0) ™
Then we have
¢ ¢ ¢
/1(3,28—1-]—"5) S llpoo—e.e) (/ 3,28)+/|f5|>. (5.28)
¢ —¢ —t

We may directly estimate
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14

2
f 3,23‘ < <|k1| n Z(‘ag“l‘ n ‘a{“r‘)) (5.29)
—¢ Jj=0
2
3 > j+1 j+1
X( 0 77) HO(—2,6) + |9 nHHl(—l,K) il -eo +ZO<‘3’ l) + )a’ r‘))
J=
<VDVD=D,

and

£
/ [Fs| < <||M||H0(—e,e) + ||3tu||H0(_e,e) ) ( ||atﬂ||Hl(_z,z) +
—¢

8’2’7HHI(—1£,15)> (5-30)

~

< <||u||H1(QO) + ||a,u||H1(QO)><||atr;||H1(w) + 3,2;7HH1H e)) <VDVD=D.

Therefore, we know that

4
/1(3,23+f5) SVED. (5.31)
L

Then we turn to the estimate of /7. We integrate by parts to obtain

l 4
9
/11(3}8+f5)=/31 ‘—Q3 (32S + Fs) (5.32)
’y Y \(Vi+inaP)
4 5 4
=—/ L — (afals+a]f5)=fbafam(afals+alf5),

) (\/1 + |31€0|2) e

-3/2
forb(xl)z—(l+|81§o|2> .

First Term of 820, S: 929, ((J] - 1)a,n)
We can directly compute

820, ((Jl _ 1)a,n) = 92J18,017 + 28, 0102011 + (J1 — )33 . (5.33)

For the first two terms we estimate

L
JECGDIGEED|E
£

92y

3201m

19:01mllL2(—g,e) (5:34)

L2(—¢,0) ! H L>®(—£,0)
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2
- ( ) Nl oo

SVEVDVD =VED,

<ot

and

(5.35)

10 J1ll oo (—e.0) H o o

L2(—¢,0) L2(—¢.6)

l
[ b(e2om) (20.0020m) | <
14

(10a1+19.11) 5 (VP) VE=VED.

H ’nHHI( 0,0

For the third term we then write

¢ ¢ ) ¢ )
/b(afam)((fl — a0n) =8t</b(J1 — 1) |o7arm| )—/batjl 070", (536)
) e e
where we have
; 2
bo;J <10; 1]l 1 929 5.37
/ i J1 S0 il oo (—e,e) || OF 177 Lt (5.37)
¢
2
(|8tl|+|8,r|) a}nH <fg(«/5) — VED.
HI(=0,0)
Second Term of 83818: 8381 (&am)
We can directly compute
820, (aam) = 0k 01n + 97a0d7n — 207k19,01m + 20,a,din — d,ky 97 d1n + @d}orn.
(5.38)
We estimate each term as follows
¢
2 3 2
[ v(ezom) (@) | < o], okl 0l (539)
¢
<l (B ) 5 BV = D
¢
b 829 32 92 ) < |la2a 2” Heﬂ 5.40
/ 177 Ao 2oy 19 oo,y 19T 120 (5-40)
¢
< a,anHl(_”)(a?l‘Jr r‘)llnlle( o0 SVEVDVD = VED,
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L
/b(afam) (202k10:01n) | S
£

<

~

2

3201n :

10; 0171 ||L2(—13,£) (5.41)

L2(—¢,0) ! H Lo°(—¢,0)

3|+

2 2
0; '7HH1<_5,4) ( 92| ) Noenll 1 —e.o

SVEVDVD =VED,

l
2 ~ 2 2 ~ 2
f b(9701n) (200,080 )| < | 970 v e Vs |Hdin| L, 542)
l
2 2 2
<lorn] .., o, (o2t +[oPr] ) Vot
< VEJDYD = VED
4
[ v(ezom) (as?ann) | < oo, 10kl [oPorn (5.43)
; ! ~ || % L2(—t.0) (=60 || % L2(~¢,0)
l
slotal ., , (atr+1ae) o]
ol KA Ty 19t +16er1 ) 07 H\(=£,0)
< VEVDND = VED.
For the remaining term we write
J4 4 J4 ¢
2 ~n2q2 ~ 2 2 ~ 2 2 ~ 102 2
b(o70m) (a0potn) = [ baor[o2orm| =~ [ o1(ba) [o20rn] + (b |a701n]
—t —e —t -
(5.44)
and then estimate
4
a1 (ba) [200n[ | < |on (ba 20|’ 5.45
/ 1( a) t 177‘ NH 1( a)HLOO(—Z,Z) o1 L2(~¢,0) (5:45)
4
2 2
S(1ad1+ 171 a}n”m( ”)5\/5(«/1_9) — VED,
and
e 12\ ~ 0. |2 b 2 2
<ba o am‘ ) §|ba|< 5 am‘ + 63 am) )f,\/E(\/'Z_)) — VED. (5.46)
—L —L 14
Third Term of 828, S: 929, (Oalgo)
We can directly compute
2 a2 2/ma2
820, (Oalgo) = 920,091 80 + 92092 (5.47)
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We estimate each term via:

¢
b(o701m) (970109140 | < 20,0| 5.48
/ i 01m (070100150 )| S en % 10 Lt (5.48)
¢
: 1 1 2
2 j+ i+
~ alnHHI(—e,z)(Z( 0 l‘—i_ 0 r‘))
j=0
2
< VE(VB) = VED,
and
¢
baa 82(98 )< 2 2 5.49
/ 177 1;0 ~ 01N Lz(fﬁ,l) t Lz(fe,l) ( )
¢
2 2
2 j+1 j+1
~ B’n“Hl(—z,Z)(Z()at l)—i_‘at r‘))
j=0
2
5«/?(@) =VED.
First Term of 3; Fs: 9, (u : a?/\/)
We can directly compute
9 (u : aEN) = 2N +u- P2ON. (5.50)
344 6426 1 2
For the first term, we choose p:Landq= + such that — + — = 1.
2426 1-6 P q
¢
2 <52 2
[ v(azom) (o 52n) | < oaun], ,, 0wlinen [0, sy
¢
< a2a H o 9 H
~ |9 o1n H%(—Z,ﬁ)“ ul| %( —ep 011 H%(—Ll)
<
~ ’nHHz( M)” w3 @) ’nHHz( —0,0)

< VEVDVD = VED.

For the second term, we have
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)4

J4
/b(afam) (u.a,zalN) :/bulal (a}am)z (5.52)
¢

—{
. 2
3,23177’ >

:—/Bl(bm)

—L

14
—L

5 2
o; 3177’ + <bu1

and then bound

14

2 2
[ anun|gon] | Siobun e o], (5:53)
4
2 2
< 2 H < -
~ ”u”W,sz(Q()) at n H%(—Z,Z) = \/E(\/Y_)> \/ED
and
L
2, |2 < 2, |2 2, |2
buy |07 011 S lwal| A+l 07 01n +(9;91n (5.54)
—¢ —L l —L 14
2 2 2
< (1ad1+ |a,r|)< #2on| ' +[02a1n] )5%(\/5) — JED.
—L 14
Second Term of 9; F5: 9, (8,14 . 8,/\/)
We can directly compute
81<8tu-8,/\/') = 0,911 OGN + Oyt - BN (5.55)

We estimate each term as follows:

4
/ b(o7om) (adr- o) | S [0Pam| ,  NodilLoc e Nodimlie  (5:56)
L

< [a2a H 9 9,9
Sl g, vt s vy

< o]
S K H(—0.0) 10cll w2 ) ”a’n”H%(f&l)
<VEVDVD=VED

and

3,031 (5.57)

] 100l o e

L4(—£,€) LP(—¢,6)

L
/b(afam) (a0 20 V) | 5
L
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< 11979 7]” oru 0;0 ”

~ |[9: 01 %( E,)”t ” %( 0 o1 n 8%( 0
<o 7}” oru 0n

~ || 9% %( 0 )” t ”HI(QO) ” t ” 52( 00

SVEVDYD=VED. O

5.7. Other nonlinear estimates

We now turn our attention to bounding various other nonlinear terms that appear in the anal-
ysis. We begin with O.

Lemma 5.9. Let O be given by (C.3.18). We have

+ 08,2020

K (at%afo

)‘S@D.

t —L

Proof. By definition 3,% = 3} R and 8, = 3 L. Then we estimate

s s

3r|) S VDVDVE +VDVEVD=VED. ©

3’1 921

+

+

83;") (5.58)

K<at%>a,20 + 8,290
4

(s o

Next we consider Q and O.

opr|+ |01 1|+

Lemma 5.10. Let Q be given by (C.3.8) and O be given by (C.3.18). We have

oBEQ(at.f + a}o) - aafg(a,% + a}o) <VED. (5.59)
¢ —L
Proof. By Lemma C.6, we have
‘(at.,sfjua,zo)‘[‘ + ‘(at.,zmrafo)‘_z‘ </D. (5.60)

Also, it is easy to check

09| ‘5|k1|
+¢

B,Zkl‘ 1ok +

02k | 1010 + k1|

a}am(ﬂ)( (5.61)

+ 1917 (£0)]

Q2D + 18,010 S VEVD.
Therefore, our result easily follows. O

We may write R = R(w, w2) where @] = k1 and @ = 91 7. Let 9, R denote the derivative
of R with respect to w; fori =1, 2.
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Lemma 5.11. Let R be given by (C.3.1). We have the estimate

d
afalafR(v-N)— % <VED, (5.62)
o
where
[0 RI 2
&:/m—]z‘afam‘ . (5.63)
4, V141316l

Proof. Using the transport equation in (1.25) and integrating by parts, for v = Btzu, we know

0/818372(1)-/\/)=0/818,2R(bJ18,3n+8,2(b5181n)+8,u~3,N+u~3,2/\/) (5.64)
2o %o

=—0 / afR(al(le afn) + 81(8,2(bd81n))

2o

01 (B0 0, N) + 0y (1 a?/\/))

14

)

+o (8,272(19]1 00 + 02 (baoyn) + dru - 4N +u - 8,2/\/))
—£

where here we have written b(x;) = (1 + |01 §0|2)_1/2.
We may directly verify that
;R = 0y, ROk + 055, RO 017, (5.65)
R = 0o RO k1 + 02, R(31k1)? + O, 0y ROrk1 3,011 + 955, R(3;010)* + 0y RO 1.
(5.66)
It is easy to check that
[0 R| + (800, R| + |02, R| + [0, 0, R| + [02,R| S Ikt | + o] (5.67)

Since the terms related to k; are easier to estimate, we will focus on the terms related to
82,2 (0701 n)2 and 0, 8,28 117. We will proceed with the estimates term by term.

First Integral Term, 9; <b Ji 8?77): We can directly compute
3 (le aﬁn) = 0161070 + bJ103 01, (5.68)
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3434 6428 1 2
In the following, we choose p = Sl and g = + such that — 4+ — = 1. The 91bJ; 8?77
24246 1-4 P q
terms can be directly estimated:
¢
[ . Ra@dm2 (0020)| < Wodunlac o Wodunla oo |#0] G569
, ,
Sl Jois]
SIEE I PRPNL P Y | W
<VEVDVD =VED,
and
¢
2 3.\ < 2 3
[ smRazom(oibn0in)| < Vot eo o], Joi],, 670
¢
s ] o 1271]
~ ”n”H%(—Z,E) CH 3 e 197 Ws% (—0.0)
< VEVDVD = VED.
The bJ; 8,381 n terms require more efforts. We integrate by parts to obtain
¢ ¢
2 2 3 _ 2 2 3
00, R(9 0117\ 0107 011 ) = 0105, R(3;01m)"(bJ1)d; n 5.71)
—t —t
¢ ¢
- / 92, R(3;01m) (397 m) (1)} 0 — / 02 R0 (bJ)n=1+11+111,
—¢ —¢
where the contact point terms vanish since 3,3 n(—=£) = 8,3n(£) = 0. Then we have
¢
1] = / 3105, R (301> (bJ1)} 0| S 119:9101170 g ) a?n\ s (5.72)
, ,
Stomi®,  |odn| S VEVDYD=VED,
H2(=4,0) Wi (—£,0)
¢
1) = [ 82, R@:01m @ 03m BIN3 0| S N0l Lo .0y | 207 o)
[op) 1 t ~ (—=£,0) 1 L9(—0.0) t LP(—.0)
¢
(5.73)
Shonlly ol g odn| S VEVDYD=VeD,
H2(=¢,0) H2(=¢,0 W2 (—¢,0)
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and

)4

111 = / 00y R0 01)*01(BJ1)} 0| S N0:01mlI 70 (g
14

Slaml? 5
H2(—¢(,0)

(5.74)

31317‘

LP(—2,0)

|| | <vEvDVB=VeD.

W2 (—¢,0)
For the remaining term we compute

4 4 L

2
/amm,zam(bmfam) :8,(/8w2RbJ1 a}am‘ )-/ba,(amml)
¢ ¢ Ze

2

)

3201m

(5.75)
and then estimate

)4

[ bortomra)

14

(5.76)

2 2
2ol | < (uay Mliscen+ ||a,am||Loo<_e,@> o],

2
< (10014 11+ 10l ) 020

< VE(VD) = VeD.

H(=2,0)

Second Integral Term, 0; (8,2(19& 91 n)): We begin by computing

829, (baam) = 91b92a0 7 + 91b8,ad, 011 + 91bad>dyn (5.77)
b3} k1310 + bd2adin — 287k, 8,811
+2b8,a0;8%n — bd, k18201 + bad> o7 1.
For the first two of these terms we may bound

)4

[ . Ra@om? (sesiaon)| S ladnii .., |0
14

a 5.78
Lo(—t.0) I 1’7||Lp(_e,4z) ( )

Shaml? s ([od] +[ar| )i
H2(—£,0) W (—€,0)
<VEVDND =VED.
4
2 2~ 2 2~
faszat 31n<81b3,a8m> < & aln‘mw,e) ’“”LWH@ 10l 2y (5.79)

14
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2
) i (
o H(=4,0)

SVEVDVD =VED.

< Rl + |97

) Il et

Arguing similarly for all but the last term, we conclude that

0/3,272(3183(19&3“7)—baafa%n> <VED. (5.80)

o

The last term is much more complicated. To handle it we first integrate by parts to obtain

4 4
/a;zn(a,am)z(baafafn) =—/ala;ZR(atam)%b&)a}am (5.81)
—L —L

4
- / 32;273(2%3117)(8:81277)(19&)8,231n
—L
L
- / 3;272(8[3177)231 (ba)d?d1n + 82,27%(8,8117)2(19&8[231;7)
—e
=14+114+1I1+1V.

14

—t

Then we have

L

1] = / 5, Ry Ga)o o n) S lola e |30, , (582
[ ,
<Nl o 3 SVEVDI/D=VeD,
H2(-¢,0) W2 (—¢,0)
4
111 = [ 82, R@:01m @03m b@o2om| S Ndnla e |40t [a7om
[op) 1 t ~ (—£,0) 1 LP(=£.0) t La(—0,0)
4
(5.83)
Stanll g Mol s |oRn| o SVEVDYD=VED,
H2(—0,0) w2 H2(~.0)

5

and
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4
1111 =| [ 02, R@omaeaon| S ool [Fon],, 689
| ,
Sl | i <VEVDVD=VED.
H2(—¢,0) W (—£,0)
The contact point term
4
Vi< agzn(a,amﬂ(baafam) (5.85)
—L

< <|3t8177(—€)|2 + |atam<z)|2)(

>,§JEJT>J5=JED.

On the other hand,

(5.86)

4 4
/ amRafam(baa?a%n) - f Oy RBG]
e ¢

4 5 ¢
—_ / 3 <8w2RbZz) + <8m7€bd ) :
ey —t
where we have the bounds
4
2
< 2
/ 01 (9, Rb) [0 aln‘ o1 (6. Rba ) . o701 oo (5.87)
L
<(an o s Vo[
~ A\ 10 1 w3 oo My oo
2
<VE (ﬁ) — JED,
and
ann |2 ¢ 3 5 2
(8,,—,2Rba‘8, | ) 5|a|< + o )5\/5(«/5) = VED.
¢ 12
(5.88)
Third Integral Term, 9; (8,u SN ): We can directly compute
3 <8tu : at/\f) — 3911 OGN + Byt - BN . (5.89)
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3+34 6+ 26 1
We estimate each term. In the following, we choose p = Rl and g = + such that — +
2426 1-36 p
2
—=1:
q
¢

/ 02, R (01 - 0N )| S 101 ey 1001 o 0.0 1000 e,y (5:90)
4

Shaaml* gl v 19l e
H?2 0) w2 0)

< 1dnl? du d
~ ” tn”H% 0.0 ” t ||W52(QO) “ tn||H2(7L£)

SVEVDVD =VED,

L
[ smraom(ao- ax)| < [oRon] V@i en 10000 59D
14
Slozom| o laewd 180
H2(=0,0) W2 (—t.0) H2(=6,0)
<lorn] 3, Nerwlyzag Vol s
SVEVDVD =VED,
2
[ . Ra@d2 (30 8.50X)| S Wardunly i Vol e [dia] 92
e ,
SILEE TR L P 0ot
H2(—-¢,t W (=£,0)
< Nl el w2 1001l
Shamll s, Wl ol g
< JEVDYD = VED,
l
/amna,zam(a,u.atau\/) < a?amHLq(_K o ol Ha,a%nHLp(_”) (5.93)
e , ,
<
S RN TP mHW b
S C N LIPS CE T

H3 (~t Wi (—,0)

SVEVDVD =VED.
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Fourth Integral Term, 9; (u . 8?/\/ ): We can directly compute

9 (u : aEN) = 2N +u- 2N, (5.94)
. . 3456 6 ) 1
We estimate each term. In the following, we choose p = ——— and g = such that — +
2428 1-35 p
2
—=1:
q
14
f a;zn(a,am)z(alu-afj\/) (5.95)
4
< 180011l oo 18001711 o g o 181l Lo Haza
S 10:01mll L (—2,8) [0 177||Lq( £,0) I 1u||Lp( £,0) |19 911 La(—t.0)
2 —
Sl loml s, Wz |00 5, < VEVDVD=VED,
14
2 2 | < (a2 2
/awzna, 8177(8114 a,/\f) S E aln‘m(_w 10wl o (_e.py | 0 am‘m(_w (5.96)
4
S T RN L |ozaun]
N KL P I 1MIIW8%(7M) L P
s [t il
S 3 o 1wz |91 3

SVEVDVD =VED.

The last term is much more complicated. We integrate by parts to obtain

4 4
fa;zn(atamﬁ(u-a}au\/) = —/ala;ZR(a,am)zu]afam
—L —L

£
2 2 2
- / 0, RA(D;911) (3,07 )11 97 917
—L
£
- / 02, R0 2011019700 + 03, R0, 01 (1070, n)
—¢

)4

—£

= I+I1I+11I+1V.

Then we have
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14

11| = /alagzn(a,am)zula}am (5.97)
l

3201n

S 10:01m1 oo (—e.0) 19010l a0y Nl Lp(—e.0) Lt

2 —
Sl loml s, ey |00 5, < VEVDVD=VED,
V4
11| = / 32, RA3; 91m) (3, 37 1 87911 (5.98)
4
< 119,917l oo Hasﬂ N ELY
S N0:01mll poc(—g,e) || 9070 Lreen lullpa—e,ey 97917 Lt

| »  SVEVDVD=VED.
H2(—0,0)

SN0l g2—e,0) 10l 5 lull g1
(—6.0 wieo ©0)

and
4
_ 2 2 2
111 = /awzn(a,am) 1020 (5.99)
4
< 118,017l 9,0 9 oo 870
S N0:01mll poo—e,0) 10010l La(—e,0) 1916l Lo (—p,¢) || 017 Lot
2 —
Slomlccoloml,s Wl |0 5, SVEVDVD=VED.

The contact point term

J4

V1S (02, R0 (19701 (5.100)

—e
< <|a,am(—z)|2 + |a,am<m|2)(\afam<—a\ - \a?amw)\)(w,u +10RI)
SVEVDVD =VED.

On the other hand,

929 ?
01 (5.101)

2
afam( )

14 4
/amRafam(u-afa]N) =/8w2Ru181
—£ —L

t
—L

4
:—/81<3w272u1>
2

5 2
iy am‘ + (8W2Ru1

where we have
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4
2 2
/81<8w2Ru1) o2 | S| o (0 Ru) e o701 oo (5.102)
14
Shullyzoy o705 <VE(VD) =vED
~ W2(Qo) ||% 1 H%(_M)N = ,
and
2\ |¢ 2 2
(%Rul 8381n’> S(Iull + lup] )(afaln) ‘ + a}am‘ ) (5.103)
— —¢ ¢ — ¢
20 |2 24 |?
§(|8IL|+|8,R|) a,aln’ + atam‘
—L 14

< JE(@)Z _ JED.

Next we turn to the contact point terms:

o (aER(bJI 00 + 02 (badin) + du - HN +u - 8,21\/))

=0 (aZR(aZ(baam) + 0u - N +u- a}N))

which follows because 8t3 n(—¢£) = E)fn(ﬁ) = 0. Note the fact that

First Contact Point Term, 8,2 (badin): We can directly compute
82 (badn) = bd2adyn + 2bd,ad,d1n + bad’>dn.

Then we have

’bafaam‘ﬂ’ < (‘afz‘ +

aﬁrD 1017(0)| < VDVE,

|+ |9Fr

'2ba,aa,am(ﬂ' 5( >|atam(ﬂ)| <VEVD,

and

baa,zam‘ﬂ‘ < <|azl| + |3t”|> ‘afam(ﬂ)‘ < JVEVD.

REEO| < [02,REO|1:0mEOP + |0, REEO)| [02010(£0)| S VD.

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

Second Contact Point Term, 0, - 9,\': Notice that u(—£, 0) = (9,/, 0) and u (£, 0) = (3,7, 0).

We have
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2]

- 0| ’5( 921 +
+¢

a,zrD 18:017(0)| < VEVD.

Third Contact Point Term, u - 3>\: We have

(0| SVEVD. O

- afN]ﬂ‘ < (|a,l| - |atr|)

5.8. Nonlinear estimates in the pressure estimates and free surface estimates
Lemma 5.12. Define the functional H LQo) s w— (F,w) eR via

(]-',w>=/1w-}'1—/w-}'3—/ﬁ(w'%)-

Qo 2o Zop

Then
F. w)] < lwll gi1g,) VEVD.
Proof. This is a summary of previous estimates for 1, /3 and F4. O

Lemma 5.13. Let R be given by (C.3.1). We have the estimate

oR| <VEVD.

1
H2(—L,0)

1 1
Proof. Similar to the proof of Lemma 5.11, for s — 3 > o we estimate

s 5 (000, ) ol
H e ROm| y S kil + 1l ‘”"Hr%(,w) UL P

SVEVD,

~

s il
Sl B

1 3
St (—0,0) H2(—0,0)

and

02, R < 1, %9
02, R0 I LU IO L XTI

S 0 k
< ol ol 3

1
2 (-0 A

6. Nonlinear estimates in the Stokes problem

= VDVE.

(5.110)

(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

(5.116)

We will now prove the nonlinear estimate in the Stokes problem when applying 9d; on both

sides of the equation. Throughout this section, we always assume 7 is given and satisfies

sup <5||(t)+||n(t)|| 5 + 1301 3 )519 <1,
W, 0) Wy (—£.0)

0<t<T
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for some ¢ > O sufficiently small. Here, we will employ the same techniques as developed in [9]
and Section 5.

6.1. Estimate of the G| term
We now handle the term G.

Lemma 6.1. Let G| = F|. We have the estimate

1G11y00, < (€2 +)P. (6.2)

Proof. We will only present the estimate for the term —V;, 4 - ( pl —uD Au). The term uV 4 -
Dy, 4u may be handled with a similar argument. We begin by bounding

H—Va, (pl _'U“DAM)H W9 (S20) 63)
SN0AV Pl g + a,AAv2u” ooy TIHAVAVI 0 0
8
= [+ 11+111.

For I, we have

I =10,AV Pl o) S 1Al L) 1V P10 00 S 18 Vil o) IV PIG0q,,  (64)
< 2 <
Shol oy -, 1Pl g, S DE-

For 11, we have

2
= o, 44v%u <10 AIR o0 A2 o6 2uH 6.5)
: Wiy ~ 10 ANL @) ML ) W)
< . 2 H < 2 <
STl gy [T g SUUDR, g Tl o, SDE.

1 1 2
For 111, we choose g € [1, 00) such that 2 25 = =5 and also p € [1, c0) such that — +
2—s
= —. Then we have
2 2
1 2
111 = |9 AVAVul o o < [0ViY an L |avavavu 6.6)
S lw
< 18, Vii||2 v2i [ |d*Vu>
S 0 VITLe(Qg) n L%(QO) Ul Lr ()
2 2 2 )
IVl IVl 1V Eaig | 70| L
0
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1062 00 10341 19081 ) F 1007112 W31 g 19001

< 2 2 2 2

SHmi g Wy Wl Iy i el
<DE. O

6.2. Estimate of the G, term

Now we handle the term G».

Lemma 6.2. Let G = F». We have the estimate

1621y g S ED- 6.7)

Proof. The estimate may be proved as in Proposition 7.2 of [9] with minor modifications to
accommodate the 1/¢p term as in the proof of Lemma 6.1. O

6.3. Estimate of the G3 term
Next we handle G3.

Lemma 6.3. Let G3 be given by G5 =0 and

ot o (hom) - (avne) o

> (6.8)
Vv 14196
We have the estimate
||G3||2 3 SDy+ED. (6.9)
W (9S20)
Proof. We estimate
IGslI? ,  S|6EI° (6.10)
W3 (990) W (Zo)
2
(—z 0) Wi (—€,0) W2 (20)
=:I1+I11+1II.
We then bound
2
1=3(Ja )H T <1940 H132 H 6.11
A Nom)| s Ilzlznllw(“)+ ] . P (6.11)
<19, 112 3mlI12 +1 2 o2 H
S1ocl |l anIWA%(_w FARER wh et
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atzi’]” <5'D~|—D”,

311> + 19 2) 2
S(1aa? + 1) mIIHz(”) o

2 2 2 2 2
Il =|9d;(adi¢ + r si” 5 (1817 + 10,717 ) 10:m 1~ 5
Wa = ”) W (—.0) W (=€)
(6.12)
< ? ? 1 2 2 <Dy +ED
S UL +|97r| )+ (107 4+ 10,717 ) 19ml~ 5 SOy +ED,
W (—£,0)
and
HI=1u NP | Sl 0N sy + [ (0| (6.13)
W (o) Wi (Z0)
Shull® 5 l3dml* 5 Fldul® ladml?
W3 (Zo) W3 (—£,0) Wi (Z0) Wi (—,0)
TP e
W2 (S0) Wi (—£,0)
Sl g 1012 5 <ED. D
W (—£,0)

6.4. Estimate of the G4 term

Next to estimate is G4.

Lemma 6.4. Let G4 = Fy4 be given by G, = Fqand GI =F3- % We have the estimate

1Ga*,  s(e2+€)D (6.14)
W2 (9S2)
Proof. It is easy to check that
2
16, =l s  HIGEE L  SIFIP,  HIFP, (6.15)
Wi (9S2) Wi (30) Wy~ (8820) W 090) Wi (9S20)
We will proceed by estimating these term by term.
G, Term ulDy quv - T: We have

(6.16)

2
| g, auv -7 [? Wk o S [Dgauer - e[y q,)

A

2
2
+ |0 AV o 1 VAV o0

13- AV 0, +

~

=I14+1I+1I1

For I, we have
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B B 2
< 2 <
NnamuH%(_& ||u||Wz(Q)ND6-

For 11, we have

7= H G;AVZMHZ (6.18)

2
ot S 1Al @)

_12 2 2
S 10: Vil oo ) ‘V “Hw0<szo>
b

2
V2
W9 (Q0)

2
Shomll” o IIMII
HT2(—,0)

2 1
For 111, we choose g € [1, c0) such that — + m =3 Then we have

1 2
+ |18, Vii— Vu

[11 =3, VAVu|? ;
0

3,Vv?2 nVu

Wiy S (6.19)

WS(QO) WS(QO)

8

d
=12
+||atV77||Lq(QO) a

IVl Za )

gHatv%aHZL |d*vu|)? 2.
L2=5 (Q0) Ls—1 12428 (Q0)

(L0)
S0 51100y V41 ) F 10N T2 ) 1 V205,10

<DE.

< 19,2 ull?

u + 19,71
otz gy + 131 5

First Term of G, uDj, au/N": We have
2 — 2
||M]D)3,AMN||W%(Z : S [ Doaulier +erdim| W) (@0 (6.20)
8 0

2
SI0AVuIg o + |04V oy, 1AV
8

W0 (S2) W9 (Qo) + H 0 AVud; HH Ww0(Q0)

=:I+I1I+11I+1V.

For I, we have

I=8AVu|? (Q)snatAn L450) Hdawumwnazwn 40 Hd‘gw\};(%) (6.21)

2 2
S o~ 5 fluel]
H2(—0,0)

For 11, we have

_ 2 2

11 =8, Av2u Hwo(g S 13A ) ‘v HW()(QO) ||a,vn||Loo(QO)‘v Hwomm (6.22)
< 2 <
SH0miP,,y |l SDE.
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2 1 1
For 111, we choose g € [1, 0o) such that + ——— = —. Then we have
2426 — 2

1
111 = [,V AVl < 0V an i (6.23)
S0 llwd)
slavil o 1evalt 2 10Tt [ 1 Vul}
u 2 — u
~ 77 LQ_(QO) Ls=1(Q0) A L4 (820) ) L2428 (Q0) L4(80)
-2 2 =2 2
S ”8tr]|lH“+l(Qo) ”vu”WI(QO) + Ilatr/”HZ(QO) ||Vu||W51(Qo)
< 2 2 2 <
Sy Nl gy #1012 e g SDE.
For IV, we have
2= 2 <
V= Ha,Awal WH W0(S) 130 Al ) IVl s H 177 L*(Q0)
2_
S 10V ilz @) ”V””W Lo || ’7” W) (@)
< logml? ull? < DE2.
Stonl .y gy Wl s S
Second Term of G, —(pI — D 4u)3;N': We have
=1 = pD A NI | S 1(pl = uDaw)d; ez +erdi) 3 g (6.24)
W2 (Zo) 5
<1+ VR, + [V, woen)
IV ATy g, + |0+ VOB,
=T+ II+TIT+]1V.
For I, we have
(6.25)

I=1(p+Vidiliyo g, S (0 + Vu) 7400 120 Vil 2
8 2 ~ 2 2 2 2
S 120+ V0l a1 Vilac0y S (10500 + 1215y g ) 1012 3 | SED.

For 11, we have

2 2
S|V o N0V S | V2] 10V, (6:26)
W2 (S0) (&0 ~ W2 (S0) €0

1= ”V ua,am)
Wo(20) ~

< lul? [EXI SED.
W2(S0) " Hs+%(_u)
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3 1 1
For 111, we choose g € [1, co) such that + ——— = —. Then we have
2+26 7
2
111 = VAV, il g S Hv nwa,amH v an Vud, o7 (6.27)
Wy (Q0) o w2(Q0)
2
2= 8 2 ~112
S ”V 77‘ L3(Q()) “d Vu ||L3(QO) ||313177||L3(QO)
2 ’ 2 2
+ IVl — [Vul 10 917l
L4(S20) %o L24255) L1(Q0) 1°1 L4(S20)

2
S il s

2 2
u 9 +
e (mn s ||n||H%( Ny

< DE2.

For 1V, we have

IV_H( + V)3, 92 H
P 01 1] W) ~

VUl ) 190171171 g

2
Nz gy 10012y

(6.28)

830,
193 L4(%0)

< (19ul2 ) L
~ (||VM||W51(QO) + ”p”W;(Qo) L Wi (Q0)

< (1l gy + 1211 g ) 0001 s

<ED.

Wi (—6,0)

Third Term of G, gnd;\': We estimate

lgnd NP Sl Igdiql? SIl® 13m0 S ED-
Wy (o) Wi (=£,0) W, <20) Wi (=£,0)
k19160 k10180 + 01n

Fourth Term of G}, 09

k19120 k19180 + 011

+
V1410120)? (/1+|3140|2>3

N

N

2
S Inll” s

lg;01ml* s
W (—£,0)

3?2 ?
],
1 Wi (—£,0) w2 (20)
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+
V1+ 18150/ (,/1_|_|31§0|2)3

9;N': We estimate

2
(6.29)

1
Wi (Zo)

||3r77||W S(—£,0) 55@
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Fifth Term of G, 09, R9,\': We estimate

2
IoBRANTE | S Wl | i) il (630
s 8 0)
ShnlP s 10mliy ey SED. O
Wi (—,0)

6.5. Estimate of the G5 term

Finally, we handle Gs5.

N
Lemma 6.5. Let G5 = F3 - We have the estimate

INT

IGsI>, < (52+5)D. 6.31)
W52 (9S20)

Proof. This estimate follows from an argument similar to that of Lemma 6.2. O
6.6. Other nonlinear estimates
Here we record some other nonlinear estimates.

Lemma 6.6. Let R be given by (C.3.1). We have the estimate

918, RI> | <ED. (6.32)
Wy (—¢,0)
Proof. We have
19,3, R 3k, 0 ” +H 18,0 ” (6.33)
t Wé(—l,Z) e Wi (—£.0) %din W (—€,0)
92n9,0 ‘ Ha 9,92 } — I+ 1T+ 111 +1V.
+” 1N0:011n WS(ZZ)+ mtan(g(lk) + 11+ +
We estimate each term as follows:
rsianalom]l s <(aalcae?) i, Sep. 634)
W (—£.0) W2 (.0
2
N ] O U PN C SéED, (6.35)
Wy (= WS (2,0
2
g loin| 1o Shl? s 1aml®,,  SED. (636
W5 (=¢ W, ( 0,0) Wi (—£,0) W, 2( 2,0

and
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1V<||3177||
W, ( 2,0)

3,07 < lnll? 3% <ED. O (6.37)

1
7 s
=60 w, " ( £,0) W2 (—£,0)

7. Well-posedness and decay

Define the functionals

2 60‘ d/ k131§0+8 8177)
/5 Nerwor (7.1)
=02y Vit TnaoP)
2
Ju ; : . .
@=Z /TIDA&’M +/ﬂ(a,’u.m)2+x((af“$)2+(8,”‘%)2) .2

7=0\q, Zob
and

L

J]—l awRJI 2 2
S=S]+§2=—/ 220im f 2 2om| . (3
( 1+|8§'|2 ‘ ‘ /1+|81§0|2‘ ! ‘

Our next result shows various comparability results for these functionals.

Lemma 7.1. There exists a universal constant ¥ > 0 such that if

sup E(t) <9, (7.4)
0<t<T
then
e Se, ”D<D”<© and |§| < = QE (7.5)

Proof. The first two inequalities in (7.5) follow directly from Lemma C.2. It remains to prove
the estimate of §. Lemma C.3 implies that

Ji—1
151l = f— | < mlloee ,nH <VEe,  (16)
Hl(—¢,¢
4 <\/1+|31§0|2) 6o
; 0 RJ
Sl = | [ oo < fo, . @.7)
1+ 18120l HO(=t.0
S Il -e.0 H3,UHH1( €0 svee

Hence, for ¥ small, the desired estimate follows directly. 0O
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Next we state a synthesized version of the energy-dissipation equation.

Lemma 7.2. There exists a universal constant ¥ > 0 such that if

T
sup E(t) +/D(t)dt <, (7.8)
0<t<T

0
then there exists a universal constant C > 0 such that

d
L€ +cp=<o. (7.9)

Proof. Let # be as in Lemma 7.1. The linearized energy-dissipation structure (3.13) for 82, ;
and no time derivatives, combined with the estimates in Lemmas 5.3-5.11, imply that

%(@—SMLC@ <VED. (7.10)
In Lemma 7.1, we have shown
D <D<, (7.11)
Theorem 4.1 and Lemma 5.12 imply the pressure estimate
2 ‘ 2

9 <D D. 7.12
P o) | +VE (7.12)

1P 000 + 19 P10 gy, +

Theorem 4.4 and Lemmas 5.12 and 5.13, imply the free surface estimate

2
3

2 2 2
T8 +ls H 7.13
GRS CETRPR (] RO (7.13)
2 - ~
S0Py + 10 PPy + 0P| o + D1+ VED S Dy 4 VED.

Theorems 4.6 and 4.7 imply the contact point estimate

,Xi(:)< a,fam(e)(z)+§(

< f)u + VED.

. 2 . 2
a,fam(—e)( n 8/ u(—t,0) -N‘ n

8/ u(e,0) -N(z) (7.14)

Combining these, we deduce that

Dy <Dy +VED D +VED. (7.15)

The Stokes problem estimate in Theorem 4.8 for at most d;, combined with the estimates in
Lemma 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6, imply
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[ O 7] P o [:7772 O 1 SOOI [ )
W5 (€0) Wi (S20) Wi (—e.0) W5 (€0) Wi (Q0) W2 (—6.0)
) (7.16)
SO+ (E-+ED.
Using the transport equation in (3.1), we may further obtain
92 ’2 93 Hz <D+ (E2+ 6D 7.17
3 " 1 . .
i N W82(7€,€)+ i W32<7Z’K)N ||+( +&) ( )
Collecting all above, we have
DD +VEDSD)+VED D+ VED. (7.18)
Then we have
d
a(oz—g)Jrchg«/ED. (7.19)
Thus, if ¢ is sufficiently small, then we may conclude that
d
a(@—&)—f—CDSO. O (7.20)
We now present the main a priori decay estimates.
Theorem 7.3. There exists a universal constant 9 > 0 such that if
T
sup E(t) +/D(r)dt <, (7.21)
0<t<T
0
then there exists a universal constant A > 0 such that
At 2 2 2 2
sup ¢ (8” O+ 131 g, + 110 101305, + 12O 120y, + 1010 (7.22)

+

o (0] + 10100, — O + 00, OF + lu(t, =£,0) - NP + Juts, £,0) -N|2> SE10),
Proof. In Lemma 7.2, we have shown that

%(QE—S’)+CD§O. (7.23)

Also, in Lemma 7.1, we have proved that
1 3
€§5|‘§€and0<§€§€—355(’3. (7.24)
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On the other hand, it is clear that € < D, and so we deduce the bound

%(6—3) +M(E—-F) <0. (7.25)
Upon integrating this differential inequality, we find that
€1 S e - §0) e (€0 - FO)) se e, (7.26)
which, in light of (7.24), then implies that

E1) SeMEN0). (7.27)
Next we consider the linearized energy-dissipation structure given in Theorem 3.2 for the

problem with no derivatives applied. Using the transport equation in (1.25), and following similar
arguments as Lemma 5.11, 5.7, 5.8, 5.9, 5.10, noting n(£¢) = 0, we obtain the bounds

a/almu'm 5¢E<nnniﬂ(_@,@+||am||iﬂ(_l,g)+|afz|2+|atr|2> (7.28)

o
5¢5€|+¢?(|azl|2+|aﬂ|2),
e k10 k10 9
19180 10180 + 017
/ gn—oi (7.29)
2 3
. VIHnoE (V15 00P)

< JE( 17131 gy + 1900131y gy + 10611 + |a,r|2) SVEE + ﬁ( |3:11* + |a,r|2),

and
‘—ag(atwro) Z—I—UQ(Blr—l—O) | 5ﬁ<|a,1|2+|atr|2), (7.30)
K(E)ﬂ’o + 9,10 )‘5«/?(|at1|2+|a,r|2>, (7.31)
L —L
‘—]—"7(8,r +O) l ~|—J-"6<8tl+(f)) | g«/?(wtuz + |8,r|2). (1.32)
Therefore,

14 14

2
G<k181§0+3m> ki 18160/
[ e oo | e
Yt (Vi+1oaP) e Vil

2 2
5 ”T’”Hl(_g![) + ”af}']”HI(_g’g) 5 5”’

l
+¢ f kito—m? | (7.33)
e
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and hence Theorem 3.2 allows us to bound
J
/ 7“ ID_qul® + / Bu-0)* + K((atn2 + (Btr)2> <&+ JE( 18,112 + 0,72 ) (7.34)
Qo Zob
which in turn means that for £ small,
Ju D aul? 2 2 2\ < ¢
7' Aul"+ [ Blu-w0)"+ (O + (Br)7) S &) (7.35)
Qo Zob
Using the pressure estimate in Theorem 4.1, we know

P00 S M@ 131 gy, S EI- (7.36)

Using the contact point estimates in Theorem 4.6 and 4.7, we know

810, =01 + 101, OF Sl _gq + 1007+ 1072 SE, (737

Ju(t, —€,0) - NP+ u(t, £,0) - NP Slinllyjo g g + 10017 + 107> S E. - (738)
Combining the above, we conclude that the stated estimates hold. O
Next we present the a priori bounds at the higher level of regularity.

Theorem 7.4. There exists a universal constant 9 > 0 such that if

T
sup E(t)—i-/D(t)dt <9, (7.39)
0<t<T
0
then
T
sup E@) +/D(t)dt ,S £(0). (7.40)
0<t<T
- 0

Proof. Again, we know from Lemmas 7.1 and 7.2 that, provided ¥ is sufficiently small, we have
the bounds

d 1 3
T(E—H+CD<0, EETE and0 < E<E-F= € (7.41)

This allows us to integrate in time to deduce that

1
%(’E(t) + C/D(s)ds < %(’E(O), (7.42)
0
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which implies for any ¢ € [0, T'],
t
&) +/D(s)ds < &(0). (7.43)
0

For a Hilbert space X and f € H! ([0, T]; X), we know that

t

IFOI% S IFOI% + / (17 @I + o £ @)1 )ds. (7.44)

0

Hence, we have

2 2 2
) 2+ 10Oy g + PO 6 (7.45)

3 p)|I> HI? ()|
+119; p( )IIW;(QO) + lIn( )”W;(—z,@ + 119;m( )IIH%

. 2 . 2
3/6%770)‘_{‘ + 8!u(t)~N(_e' +

+21:< aljam(t)‘Zf)—i-Xl:( 8lju(t)~/\/‘e‘2)
j=0 j=0

t
< f D(s)ds + O 132, ) + 10O
0

2 2 2 2
HIP Oy + 1Py, + IO s +1am O 4
8 ’

‘ 2 ‘ 2 !
8{3177(0)‘_6‘ + ‘afjam(o)‘z‘ ) +Z<
=0

) 2 . 2
agu(O)-/\/‘_g‘ +‘agu(0).N‘z’ )

1
+> (
j=0
Then (7.43) and (7.45) may be combined to conclude that (7.40) holds. O

Now we record the local well-posedness result without giving detailed proof. It can be done
using a variant of the argument developed in [20].

Theorem 7.5. There exists a universal constant ¥ > 0 and Ty > 0 such that if 0 < T < Ty and
E(0) <0, then there exists a unique solution (u, p, n) on the interval t € [0, T] such that

T
sup E(t) + / D(t)dr <E(0). (7.46)
tel0,T] o

Now we provide the global well-posedness result.
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Proof of Theorem 2.1. This follows from the local well-posedness, Theorem 7.5, and a standard
continuation argument using the a priori estimates of Theorem 7.3 and 7.4. For details we refer

to[9]. O
Appendix A. Analysis tools
The proofs in this section can be found in Appendix C and Appendix D in [9].

A.1. Weighted Sobolev spaces

Let M =dist(-, M) where M = {(—Z, 0), (¢, O)} is the set of the corner points. Define the

weighted Sobolev norm

26
1Pty = 2 /(dist(x,M)) 19 1 P dx.

lalSkQO

(A.1.1)

Then we say f € W(é‘(Qo) if and only if || f ||W5<(QO) oco. We will define the trace space

A 1 in the obvious way and it can be shown that
Wy 2 (30)

f-)SIfI 1 vl 1 ) -
/ W2 (3%%) H'(0)

(3820
3 s

Finally, define the zero-average space

W5 (Q0) = { f € W () : f f)dx =0
Qo

Lemma A.1. We have the continuous embedding

Wi (Qo) = HY(Q0), Wi(Q0) = H'(Q0), H '(Q0) = W2(Q0).

Lemma A.2. Let k € N and 61, 5, € R with §1 < 8. Then we have that
Wy (Q20) = W§ (Q0).
Lemma A.3.Let ke N and 0 <6 < 1. Then for 1 <q < % we have that
W5 (Q0) — W5(Qo).
In particular, for 1 <q < % we have
Wi (Q0) = L1(Q).
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Lemma A .4. Suppose that 0 < § < 1 and 1 < q < . Then we have that
1
Wy (9€20) — L9(3%). (A.1.8)
Lemma A.S. Suppose that 0 < § < 1. Then we have that

Wi (Q0) = WY, (Q0). (A.1.9)

Lemma A.6. Suppose that 0 < § < 1. Then for each g € [1, 0), we have that

)
H (dist(-, M)) f Sl (A.1.10)

L1(Q0)

Corollary A.7. Assume 1 < s < min { z, 2}. Then we have
w

5
W,SZ(QO) — H*(Qo), W51 (20) — HS_I(QO), W52 (Xp) — HH'% (Zo). (A.1.11)
A.2. Product estimates

Lemma A.8. Let © € R2. Suppose that f € H"(Q) for r € (0,1) and g € H' (). Then
fg € H° () for every o € (0,r), and

178l 10 00y < Cr ) 1L F 1l ey N8N 271 (2 - (A2.1)

Lemma A.9. Suppose that f € Wal (Q) for 0 < 8 < 1 and that g € H'*(Q) for 0 <k < 1.
Then fg € W} (Q0) and

1780w 00 S 17 Nt oy 181 - (A.2.2)

1
Lemma A.10. Suppose that [ € W52 (o) for0 <6 <1 and that g € H%J”“(Eo) for0 <k < 1.
1
Then fg € Wy (Xo) and

Ifgh o SUAI y gl (A.23)
W,

2 (%) Wi () HY ™ (5g)
Appendix B. Energy-dissipation structure and equilibrium

B.1. Proof of Theorem 1.1

Proof of Theorem 1.1. We multiply « on both sides of the Stokes equation and integrate it over
Q(¢) to obtain
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= f (VZ-S(P,M))-u:O. (B.1.1)

Q)

We divide it into several steps.

Step 1: Diffusion and fixed boundary terms: Integrating by parts implies

1:</ Lt~ [ P(Vz-u)>+ [ (seam)-us [ (souw)ou @12

Q) Q) Zp (1) (1)

=h+hL+15,

where we may use the divergence-free condition and the boundary condition to simplify

I = / %|]D)Zu|2— f P(V, -u) = / %|]D>Zu|2, (B.1.3)
Q(t) Q) Q)
L= / (S(P,u)v)-u (B.1.4)
Zp()
- f ((S(P,u)v)-v)(u-v)—i— / <(S(P,u)v)-r>(u-t)
Zp(1) Zp(t)
= / <<S(P,u)v)-t>(u»t)= / Blu-t|?.
55 0) 5(0)

Step 2: Free surface terms: We directly simplify to obtain

0z, ¢
13=/ (S(P,u)v).uzf gr—od, | —2 | |@-v)  ®B.15
() £ V1+]a ¢
:/ gé‘_aazl 321§ até‘

(1) V1+|811§i2 V1+|821§|2

R(1)

¢ =131+ I3).

= / g{—O'EZI aZ]§

L) \/1+|3z|§|2
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Step 3: Gravitational term: We have

R(t) R(1) R(1)

ni= [ gac= [ SacP=a [ Sip-Sewpar+Sewrar 1o
L(t) L(t) L(t)

R()

=a,/§|c|2,

L(t)

since (L) =¢(R) =

Step 4: Surface tension terms: Integrating by parts and using Reynold’s transport equation
imply

R()

Ba=— [ oo, | =25 |ac B.17)
L) V1+ |321§’2
R(1)
= [ o2t o ey o )
Ly V1+10¢) J1+]o, e V14 o0
=A+B+C,

where we may simplify

R(1) R(t)

/ @%g_/}ﬁM1+mg (B.1.8)
L V 1+ }aZK L(1)

R(1)

oy 140,27 =00 Ry 1+ |0, E (R + 00, L/ 1+ |0, (L)

L)
=A|+ Ay + A3,

and using the transport equation with u>(L) = u>(R) =0, we have

0z 3, C(R
B=—o g rR)= o (R (R +ua(R) (B19)
J1+mgm) V14 1]8:,8(R)|
2
:aul(R)—|3Zl{(R)| >
V1[0 ¢(R)]
and
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Coo 2288 5 ) =0M(— w1 (L)d;, ¢ (L) +u2(L)> (B.1.10)
J1+ o)) NAESEN Ik
2
=—oui(L) 018 ()]

V1o 0@

Step 5: Contact point terms: Note that fact that 9; R = u1(R) and 9; L = u1 (L), we have

2
3., C(R
A2+B=—08,R\/l+|821§(R)|2+au1(R)L)|2 (B.1.11)
I

1+ [3:,¢(R)

2
=-00R V1+’8Z1§(R)’2_LR)|2 =—031R;2,
140, ¢(R)| V1419, ¢(R)|

2
3¢ (L
A3+C=aa,L\/1+\azl;(L)\z—aul(L)L)'z (B.1.12)

149:,¢(L)]

2
d L 1
=0d,L ,/1+|az,;(L)|2—|ZL)’2 :aa,L—z.
14 0:,2(L)] V141920

(B.1.13)
Using the contact point condition, we have
1
A2+B=—aa,R—2:-a,R<[y]—W(a,R)), (B.1.14)
1+ ’3z1§(R)|
1
A3+C=aa,L—2=atL(W(3tL)+[y]). (B.1.15)
V140,00
Hence, we have
Ay+A3+B+C= —8,<[y](R - L)) + (W(a,L)B,L + W(a,R)a,R). (B.1.16)

Step 6: Synthesis: Collecting all terms, we arrive at (1.12). O
B.2. Proof of Theorem 1.2

Proof of Theorem 1.2. Itis well known (see for instance [8]) that, given the width of the droplet
domain, there exists a unique solution to the second and third equations in (1.14) that is smooth,
even, and monotonically decreasing from the center. In the present context, we must choose
the equilibrium width in order to satisfy the fourth and fifth equations. Here for the sake of
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completeness, we will give a quick sketch of the construction of solutions and details of how to
determine Py and Ry — Lo given that we specify the mass M.

Due to horizontal translational invariance, we may assume without loss of generality that
(Ro + Lo)/2 =0, i.e. the droplet is centered at the origin. Then consider the new unknown
£ = (Ro — Lop)/2, in which case Ly = —¢ and Rp = £. After integrating on both sides of the
equilibrium equation, we find that Py is determined by M and ¢ via

_ Mg +202—[y)? -0
a 20 '

Py (B.2.1)

It remains to construct the solution with given mass M, and £ chosen so that the equilibrium
equations are satisfied for Py determined by (B.2.1).

Due to reflectional symmetry, it suffices to construct the solution for z; € [, 0]. Letr = —z;
and tany = —9,8o = 9;,£o. The variable v is the angle formed between the tangent line of ¢
and a line parallel to the z; axis through (z1, ¢o(z1)), which ranges from ¢ = 0 at the maximum
of ¢ in the center to ¥ = ¥ for

€(0,7/2) (B.2.2)
[v]

Yo := arctan (
at the contact point. Then in these coordinates the equilibrium equation is

—0o o, (sinyr) = g&o — Po, (B.2.3)

—— —, is equivalent to

d dy\~'  dgy dgo d
which, considering i <_‘ﬁ> andﬂ— fo dr

dy — \dr dy — dr dy’
d_rz_acosw ’ @Z o sinyr . (B.2.4)
dy go—Py dy  glo—Po
. dgo .
Setting o = 0 at ¥9, we may solve w equation to get
¢, Po =/ P} = 2g(0 cosyy — [y])
Ego — Pyto — [y]+ o cosyy =0 and hence ¢o(¢¥) = P .
(B.2.5)
Then plugging this into the dr/dy equation and setting » = 0 at ¢ = 0, we obtain
h v
0 cos
r(y) :/ dyr. (B.2.6)

s PG —28(o cosy — [y])
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It remains only to enforce the condition r(yg) = £, which, in light of (B.2.1), is equivalent to

Yo )
| = o cosy dy. (B.2.7)

2
0 \/<Mg+2 a2—[y]2) — 8¢02(c cos ¥ — [y])

When ¢ — 0, we have

Yo
20 cosyr

0 \/(Mg +2/02 = [;/]2)2 — 820 cos Y — [y])

dyr (B.2.8)

Yo
/ 20 cos Y ay 202 —[y]? .
— = < 1.
) Mg+2yo?—[yP Mg +2yo? —[y]?
M 202 —[y]?
Also, as £ — g§+vo Ly] , considering the Taylor expansion of cos ¢ around ¥ = 0, the

8g(o — [y
integral monotonically increases to co. Hence, there exists a unique ¢ such that the integral is

exactly 1. With this choice of £ and Py, the equilibrium equations are satisfied. O
Appendix C. Nonlinear quantities

In this section we record a number of results about the nonlinear terms appearing in our
analysis.

C.1. Estimates of J1, Ja, and A
Recall that are Ji, J>, and A given by (1.23).

Lemma C.1. Suppose that IIn(t)IIH%( o < ¥ for some ¥ > 0 sufficiently small. Then

11 =1 S Il goe.ey and 112] + 1AL S IIUIIH%(_M)- (C.L.D

Proof. Using the conservation of mass in (1.45),

14

—¢
Ji / n(t, x)dxy = | (1 = J1)¢o(x)dxy, (C.1.2)
e e

we have
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—L

/ﬂ()ﬂ)dm

—L

Ji—1=— - - (C.1.3)
/Eo(x1)dx1 + / n(x1)dxy
—¢ —¢
Hence, when
—t ¢
1 M
nGx)dxr | Sl go—e,e) < 5 So(xp)dx; = ER (C.1.4)
Y —¢
we know
)7
1 =115 i nGedxr Sl go—e.p - (C.1.5)
—¢
We now turn to the proof of the J, estimate, noting first that
n(x) X2
JHx)=1+ + dn(x). (C.1.6)

So(x1)  Co(x1)

The difficulty lies in when x is close to the contact point. In a neighborhood of the contact points,

for Qo> x = (x1,x2), lets =

X
2 k Using Cauchy’s Mean Value Theorem, we know that,
X1+

i A(xsnF0) =60 ai(eseF0) +stai(eseF0)
Go(x) So(x1) — Go(£0) a d150(c)

, (C.1.7)

for some ¢ close to ££. Since x € ¢ and Q¢ is convex, we may directly estimate that s <
[0180(££)| and

n(x) _
S S . C.1.8
L_O(xl) S llavgy S ”n”H%(—e,E) ( )
Also, since for x € ¢, 0 < x < {p(x1), we have
2 <. (C.1.9)
So(x1)
In total, we have
|J2|5||T_I||H1(szo)§||77||H%(_”)- (C.1.10)

726



1. Tice and L. Wu Journal of Differential Equations 272 (2021) 648-731

Finally, we turn to the A estimate. We begin by decomposing

_ n(x)
Ax) = ( 0 — 19 5 o )) C.111)
e ( 0 1n o) 150(x1
As in the estimate of J, above, we have
= <L (C.1.12)
So(x1)
Hence
|3177(-x)|<||n||H1(QO)<||77”H7( _eny’ (C.1.13)
Also, we know
n(x)
S S C.1.14
e |~ 170l g gy S ||77||H2( e ( )

Combining these then provides the desired bound. O

Using a similar argument as in Lemma C.1, we obtain the following:

Lemma C.2. Let 0 < § < 1. There exists a universal ¥ € (0, 1) such that if ||n|| 3 <79,
W (—£,0)
then '

1

I/ = Tl oo (@q) + 1Al Lo (0q) < =7 (C.1.15)
1

IN = 1l Lo agy) + 1K = 1l o) =3 (C.1.16)

Koo (@) + 1Al oo () S1- (C.1.17)

Also, the map Tl is a diffeomorphism.
C.2. Nonlinear terms in the energy-dissipation estimates

In this subsection we record the nonlinearities that appear in (3.1). We begin with the form
when 9; is applied. In this case we have:

Fi=—Vyu- (pl—,u,ID)Au> +uVy-Dy au, (C2.1)
Fr=—=Vy AU, (C2.2)
F3 = uDy, auN — (pI — uD qu)ON + gnd N (C.2.3)
k10 k10 0
e, 10180 4 f 150 + 1713+R AN,

V14191l (/71+|31§0|2>
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Fy =Dy, quv - 7, (C.2.4)
Fs = (- 3N/ 141912007 (C.2.5)
Fo=—k W' @:D)d]1, (C.2.6)

and
Fr=—kW' (3r)d?r. (C2.7)

Next we record the form when 8t2 is applied:

Fi=—2Vg4- (a,pl — p.]D)Aatu) + 20V Dy 4B — Vi - (pI - /LDAM) (C.2.8)
+2uVy A - Dy, qu+pVy - ]D)atzAu,

Fr= Vi qtt —2Va 4 - o, (C.2.9)

Fz= ;L]D)arzAu./\/+ ubDy Aud N +2uDy A0 uN (C.2.10)

— (pI — uD 4u)3>N —2(3; pI — pD 4d,u), N

k10180 k10180 + 011

V14 18150)? ( /1+|31§0|2)

+gnaf/\/ — o0

T+ RGN

d:k10120 0:k10180 + 0,017

+ R | AN,
V1+101* </1+|3140|2>3

+2g0, N — 200,

Fu= “Da}A”V T+ 2uDy, 40uv - T, (C2.11)
Fs= -2 N 14131801 +2@u - 3Ny 14 1916012, (C.2.12)
Fo=—kW' @)1 — kW (@0,1)(821)2, (C.2.13)
and
Fr=—k W' @0r)3r — kW (0:r)(87r)2. (C.2.14)

C.3. Estimates of R, Q, S and O

In this section we record estimates for the terms R, O, S and O, which we recall are defined
in (1.37), (1.40), (1.43), and (1.42), respectively. To arrive at the estimates we first expand each
term using the fundamental theorem of calculus. With the expansions in hand, the estimates then
follow from elementary applications of the product rule and Sobolev embedding. As such we
will omit the proofs of the bounds and only expansions and the form of the estimates.
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We begin with the term R, rewriting it as

2
- K1(31§0+3177> B 9140 _ kidigo kidigo+in
= N I T 3
(1+ &3 (meo+am) ) (1+1anP)’ (1+100P)" (1+iazP)’
(C3.1)
1
2k (ka (910 + w0dim) +2(1 + wkp)dr )
:/ (C32)
2\3
0 (1+(1+wk1)2<81§0+w8177> )
2
31+ k)@ 0 + 001 (ki @10 + @D + (1 + k)i
— (1 — w)dw.
2%
(14 1+ k(0100 + wdin) )
The estimates for R are recorded in the following lemma.
Lemma C.3. We have the bounds
< 2 2
RIS lkil” + [9im]”, (C.3.3)
10, RIS Tkt 10cky |+ [0:k1101m] + [k1]10;01m] + [91m] 19, 91m], (C.3.4)
OFR| S il 02 |+ 1acki 2+ |92k | 1oun] + Ikl |9201m | + 10101 [0201n| + 1,00,
(C3.5)
I81R|§|8m|‘812n‘+|k1|‘812n , (C3.6)
0,0 RIS 1okl |oFn| + Ikl |08 | + |oFn| 210101 + a1l o0 (€3.7)
We now expand the Q term via
1 1 0120(k1 9120 + 0
_ __ . 10(k18150 4 91m) (C3.8)

3
2

(l—+—K12(81§0+8117>2)7 (1+|31§0|2)7 <1+|31§0|2)

2
/‘ (k1 @160 + wdum) + (1 + ki )+ 2Kidin (1 + k1) (@160 + i)

0 (1 +(1 +wk1)2(81§“0+w81n>2)%

2
31+ k12180 + w01 (ki @10 + wdin) + (1 + ok
+ (1 —w)dw.

(1 +(1 +wk1)2(81;“o +w8177>2)_

2

The estimates for Q are then recorded in the following lemma.
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Lemma C.4. We have the estimates

1QI S 1kil? + 191m 1, (C3.9)
19:Q1 < [kt 1135k ] + 13k | 18] + k118,317l + 317l 13,9l (C3.10)
02Q| < Ikl 021 | + 10k 2 + |92k 101l + ka1 [9201m| + 10101 [001| + 10,21
(C.3.11)
10191 5 10l [oFn] + 1k |90 (€312)
18,01 Q1 S \ack| o3| + ka1 [8,03n| + |oFn| 18:00n1 + 1ovl|or03n (C3.13)
Next we write the S term as
S=(J—1)amn+ (aalg _ aalgo) — (J1 = 1)a,n +adn + (@ — a)d; &. (C.3.14)
The estimates for S are in the following lemma.
Lemma C.5. We have the bounds
115 kil i) + (18,L1+ 13RI ) [o1n] + 1], (C3.15)

0:S1 S Wil [o2n| + (1oLl + (o R ) [0l + ( [o2L] +

92R|) 10l + 10,01, (C3.16)

‘a}s‘gw afn‘+(|a,L|+|a,R|) a}am‘+( afL)Jr afRD|am|+ 3,20‘. (C3.17)
Finally, we write the term O as
1 20
O=a—da=—@r—8)——— " C3.18
a-a=-—0r ’)<2e (ze+r—1)2>x1 (€318
r—D@Ee+r—1)
= — (3 — 31
Or =D =y 1z
ki g — 1) —r e kyoyr — [ & + —
= r— —_——X] = r— — 4+ — |x1.
R = e rr—n ' T T e T2 =1 )
The O estimates are recorded in the following.
Lemma C.6. We have the bounds
OIS Ikl (1L1+ 18RI ). (€3.19)

0,015 (1L +13R1) + il |97L] +

a,ZR) ) (C.3.20)

ol (e ) e ) v e

5 R|). (C3.21)
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