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Abstract In this paper we concern ourselves with an incompressible, viscous, isotropic, and
periodic micropolar fluid. We find that in the absence of forcing and microtorquing there
exists an infinite family of well-behaved solutions, which we call potential microflows, in
which the fluid velocity vanishes identically, but the angular velocity of the microstructure is
conservative and obeys a linear parabolic system. We then prove that nearby each potential
microflow, the nonlinear equations of motion are well-posed globally-in-time, and solutions
are stable. Finally, we prove that in the absence of force and microtorque, solutions de-
cay exponentially, and in the presence of force and microtorque obeying certain conditions,
solutions have quantifiable decay rates.
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1 Introduction

1.1 Overview

The theory of micropolar fluids, first introduced by Eringen [6] to describe the mechanics
of a microcontinuum, is an extension of the classical theory of fluid mechanics. Among
the novelties of the former theory are the effects of microstructure on the fluid. In essence,
the angular velocity and rotational inertia of the microstructure are accounted for at each
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point in the fluid, and the dynamics of these quantities couples to the bulk dynamics. In
the case of a viscous and incompressible fluid, the system is governed by a variant of the
Navier-Stokes equations, coupled to dissipative evolution equations for the microangular
momentum. Micropolar fluids are common, and examples include: blood [3, 19, 22], certain
lubricants [1, 4, 20, 24], liquid crystals [6, 11, 14], and ferrofluids [21].

In this paper we shall concern ourselves with the viscous and incompressible microp-
olar model. For the sake of simplicity, our fluids are taken to be spatially periodic, and
our microstructure is assumed to be isotropic and homogeneous. Thus, our micropolar fluid
occupies the three dimensional flat torus, T3 = R

3/Z3, and the microstructure has no pre-
ferred direction of rotation nor spatial dependence modulo proper rotation. The state of our
micropolar fluid is described by three variables related via a system of nonlinear partial
differential equations. The velocity and microangular velocity are a pair of evolving vec-
tor fields u,ω : R+ × T

3 → R
3. The pressure, on the other hand, is an evolving scalar field

p :R+ ×T
3 → R. The equations for such a fluid evolving from initial data u0,ω0 : T3 → R

3,
and subject to applied force and microtorque fields f,g :R+ ×T

3 →R
3 read:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divu = 0 in R
+ ×T

3

�(∂tu + u · ∇u) − (ε + κ
2

)
�u − κ curlω + ∇p = f in R

+ ×T
3

j (∂tω + u · ∇ω) − (α + γ )�ω − ( α
3 + β − γ

)∇ divω

+2κω − κ curlu = g in R
+ ×T

3

(u (0) ,ω (0)) = (u0,ω0) on T
3.

(1.1)

In the above, the physical parameters are as follows: �, j ∈ R
+ are the fluid density and

microrotational inertia, ε,α,β, γ ∈ R
+ are coefficients of viscosity and microviscosity, and

κ ∈ R
+ is the asymmetric viscosity coefficient. Note that κ is what creates the coupling

between the velocity and microangular velocity fields.
The appearance of these various coefficients in the problem (1.1) might appear awkward

at first. Clarity can be found by rephrasing (1.1) in terms of stress tensors. First we need a
quick definition: given a vector in v ∈R

3 we define the antisymmetric matrix ten(v) ∈R
3×3

as the unique one satisfying the identity ten(v)w = v × w for all w ∈ R
3. Then, if we define

the stress and stress-couple tensors S,C ∈ R
3×3 via

{
S = −pI + ε

(
Du + Dut

)+ κ
(

1
2

(
Du − Dut

)− ten(ω)
)

C = α
(
Dω + Dωt − 2

3 divωI
)+ β divωI + γ

(
Dω − Dωt

)
,

(1.2)

where the coefficients ε, κ , α, β and γ appear more naturally, then we can rewrite system
(1.1) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

divu = 0 in R
+ ×T

3

� (∂t + u · ∇)u − divS = f in R
+ ×T

3

j (∂t + u · ∇)u − divC + κ (2ω − curlu) = g in R
+ ×T

3

(u (0) ,ω (0)) = (u0,ω0) on T
3.

(1.3)

Note that another one of the novelties of the micropolar model is that the stress tensor S,
which is symmetric for standard fluids, has an antisymmetric contribution κ ten(ω) due to
the exchange of bulk angular momentum and microangular momentum.

Our first goal in this paper is to construct special solutions to (1.1), which we call po-
tential microflows. These consist of solutions of the form u = 0, ω = ζ , p = 0, where ζ
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is a solution to a related parabolic problem. The moniker potential microflow comes from
the fact that ζ is a spatial gradient for all time. The second goal of the paper is to construct
global-in-time solutions to (1.1) near the potential microflows and to study their long time
asymptotics.

1.2 Some Previous Work

Since the introduction of the micropolar model by Eringen [6] in the 1960s, the mathematics
community has taken interest in the governing equations. A full review of the math litera-
ture would be impractical, so we will only attempt a brief summary of the results related to
the present paper. We refer to the book of Łukaszewicz [17] for some mathematical refer-
ences. Eringen’s books [7, 8] contain a wealth of references in the physical and engineering
literature.

The earliest result on global well-posedness of the micropolar equations in three dimen-
sions is due to Galdi and Rionero [12]. Łukaszewicz [15, 16, 18] studied global solutions
and their asymptotics in three and two dimensions. Rojas-Medar and Ortega-Torres [23] and
Yamaguchi [26] constructed global solutions with other techniques. Ferreira and Villamizar-
Roa [10] constructed distributional solutions. Villamizar-Roa and Rodríguez-Bellido [25]
constructed global solutions near stationary solutions and proved asymptotic stability. Chen
and Miao [5] constructed solutions in critical Besov spaces.

To the best of our knowledge, neither the potential microflow solutions nor the nearby
solutions to (1.1) constructed in this paper have been studied previously. We will prove that
every sufficiently regular conservative vector field gives rise to a potential microflow so-
lution, and that these solutions display notable stability properties, which shows that such
solutions play a key role in demonstrating the generic physical behavior of isotropic microp-
olar fluids.

1.3 Statement of Main Results and Discussion

There are three main results in this paper. For the sake of brevity we neglect to provide fully
detailed statements here, and instead give informal abbreviated forms of the results. The
proper statements can be found later in the indicated theorems.

Our first result proves the existence of global-in-time potential microflow solutions to
(1.1).

Theorem 1 (Proved in Theorem 2.18) Given any conservative (curl-free) initial configura-
tion for the angular velocity of the microstructure, ζ0 : T3 →R

3, there exists a microangular
velocity ζ : R+ × T

3 → R
3 such that the triple (u,ω,p) = (0, ζ,0) is the unique solu-

tion to the system (1.1) with data (u0,ω0) = (0, ζ0) and vanishing force and microtorque,
f = g = 0. These potential microflows are smooth in R

+ ×T
3 and decay to zero as t → ∞.

Our second result proves that nearby the potential microflow data the equations of motion
in (1.1) are well-posed globally-in-time.

Theorem 2 (Proved in Theorem 4.3) If ζ0 : T3 → R
3 is a sufficiently regular conserva-

tive generator for a potential microflow ζ as in Theorem 1, then the problem (1.1) is
globally well-posed near ζ0 in the sense that to each tuple of data/forcing/microtorquing
(u0,ω0, f, g) belonging to an open subset of an appropriate function space that contains
(0, ζ0,0,0), there exists a unique global-in-time solution (u,ω,p) to (1.1) that belongs to
another appropriate function space. Moreover, the map (u0,ω0, f, g) �→ (u,ω,p) is smooth.
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Our final result shows that nearby potential microflow data, the corresponding solutions
to (1.1) are Lipschitz stable and gives sufficient conditions for attractiveness.

Theorem 3 (Proved in Theorem 4.4) If ζ0 : T3 → R
3 is a sufficiently regular conservative

generator for a potential microflow ζ as in Theorem 1, then in a neighborhood of (0, ζ0,0,0)

in the space of data/forcing/microtorquing, the solutions to (1.1) are Lipschitz stable with
respect to an appropriate norm. Moreover, in the case we are given quantitative decay of
the forcing and microtorquing, we find that the solutions satisfy corresponding quantitative
decay estimates.

The potential microflows from Theorem 1 are found as solutions to a time-dependent
Lamé system, subject to the extra constraint that the field is conservative for all time. In or-
der to solve this system, we use the Leray projector (see Definition 1.5) to decouple the PDE
into a pair of vectorial heat equations. In Section 2 we study these equations and record var-
ious standard parabolic estimates in terms of isomorphisms between certain Sobolev spaces.
These isomorphisms form the foundation of our subsequent analysis and also yield the ex-
istence of the desired potential microflow solutions in Theorem 2.18.

With the potential microflow solutions in hand, we then turn to the construction of so-
lutions to (1.1) nearby. In order to control the behavior of the fluid velocity average for all
time, we posit that a feature of the potential microflow forcing, f = 0, persists in the general
forcing; namely, we assume that f has vanishing spatial average for all time. This allows us
to reduce, without loss of generality, to studying the problem (1.1) with the extra hypothesis
that u0 has vanishing spatial average. We record the proof of this reduction in Appendix A.

Our strategy for proving the global well-posedness assertion in Theorem 2 is to pick
appropriate container spaces for data/forcing/microtorquing and velocity/angular veloc-
ity/pressure and show that the natural nonlinear mapping from the latter to the former in-
duced by (1.1) is smooth and a local diffeomorphism near each potential microflow. Natu-
rally, this is verified using the inverse function theorem. This leads us to study the lineariza-
tion of (1.1) around a potential microflow in Section 3. The resulting linearization (see (3.2))
is a coupled vectorial parabolic system with coefficients that have nontrivial space-time de-
pendence. This precludes the use of semigroup techniques to construct solutions. Instead,
we take advantage of our analysis in Section 2 and construct solutions with the help of the
isomorphisms developed there and the Banach fixed point theorem.

The fixed point scheme is most conveniently realized in the context low temporal regu-
larity and integrability, and it is in this setting that we construct solutions. We then exploit
the natural energy-dissipation structure associated to (1.1) and its linearization (3.2) to begin
a bootstrap argument that ultimately shows that these solutions enjoy better temporal regu-
larity and integrability. With these results in hand, we then prove in Theorem 3.10 that the
linearization (3.2) induces an isomorphism between appropriate spaces.

In Section 4 we present the nonlinear analysis of (1.1). We employ some analysis tools
from Appendix B to show that the nonlinear map associated to (1.1) is smooth on the spaces
from Theorem 3.10. The theorem then shows that the linearization around a potential mi-
croflow is a linear homeomorphism, and so in Theorem 4.3 we employ the inverse function
theorem to produce solutions to (1.1) near the potential microflows.

Finally, we prove Theorem 4.4, which establishes the stability and attractiveness asser-
tions of Theorem 3. The proof relies on a synthesis of estimates provided by the inverse
function theorem and by the energy-dissipation structure of (1.1).
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1.4 Conventions of Notation

Here we record notation used throughout the paper. The naturals, integers, reals, and com-
plex numbers are denoted N, Z, R, C, respectively. We assume that 0 ∈ N and write N

+ for
the set N\ {0}. Similarly, R+ = (0,∞) is the interval of positive real numbers. R is the usual
two-point compactification of R, created by adding the lower and upper endpoints of ∓∞.
We say a constant C is universal if it depends on the various physical parameters appearing
in (1.1), the physical dimension, or regularity parameters.

Next we recall how distributions work on the torus.

Definition 1.1 (Test functions and distributions) Let d, � ∈N
+.

(1) For each m ∈N we define a seminorm [·]m : C∞ (
T

d;C)→R via

[f ]m =
∑

α∈Nd

|α|=m

sup
x∈Td

|∂αf (x)| . (1.4)

This countable family of seminorms induces a Fréchet vector topology on C∞ (
T

d;C).
When equipping C∞ (

T
d;C) with this topology we shall use the notation D

(
T

d;C) and
refer to this space as the space of test functions.

(2) We denote the space of linear and continuous mappings D
(
T

d;C)→C
� by D∗ (

T
d;C�

)

and refer to this set as the C
�-valued periodic distributions.

(3) We shall use the standard bracket notation to denote the pairing between the spaces of
distributions and test functions, i.e. we define

〈·, ·〉 : D∗ (
T

d;C�
)×D

(
T

d;C)→ C
� via 〈T ,ψ〉 = T (ψ) . (1.5)

Next we recall the distributional Fourier transform.

Definition 1.2 (Complex exponentials and the Fourier transform) Let d, � ∈N
+.

(1) For each k ∈ Z
d we define ek : Td → C via ek (x) = e2πik·x . Clearly, ek ∈ D

(
T

d;C) for
each k.

(2) We define ·̂ : D∗ (
T

d;C�
) → (

C
�
)Zd

via T̂ (k) = 〈T , e−k〉 for k ∈ Z
d and T ∈

D∗ (
T

d;C�
)
. This mapping is called the Fourier transform.

The decay at infinity of the Fourier transform of some distribution encodes regularity
properties of the distribution. The following family of spaces exploits this fact.

Definition 1.3 (Spatial Sobolev spaces) Let s ∈R, d, � ∈R
+.

(1) The C
�-valued spatial Sobolev space is the set

Hs
(
T

d;C�
)=

⎧
⎨

⎩
T ∈ D∗ (

T
d;C�

) |
∑

k∈Z3

(
1 + |k|2)s/2

∣
∣
∣T̂ (k)

∣
∣
∣
2
< ∞

⎫
⎬

⎭
, (1.6)

equipped with the inner-product

(T0, T1)Hs =
∑

k∈Zd

(
1 + |k|2)s

(
T̂0 (k) , T̂1 (k)

)

C�
(1.7)

and norm ‖·‖Hs , generated by the above inner-product. It is well known that Hs
(
T

d;C�
)

is a separable Hilbert space.
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(2) The R
�-valued spatial Sobolev space is the closed subspace

Hs
(
T

d;R�
)= {T ∈ Hs

(
T

d;C�
) | T = T

}
. (1.8)

We recall that the complex conjugate of a distribution T ∈ D∗ (
T

d;C�
)

is also a distri-

bution T ∈ D∗ (
T

d;C�
)

with action on ψ ∈ D
(
T

d;C) via
〈
T ,ψ

〉= 〈T ,ψ
〉
.

(3) For K = R or C, the K
�-valued and mean zero spatial Sobolev space is the closed

subspace

H̊ s
(
T

d;K�
)=

{
T ∈ Hs

(
T

d;K�
) | T̂ (0) = 0

}
. (1.9)

We equip this space with a slightly modified inner-product

(T0, T1)H̊ s =
∑

k∈Zd\{0}
|k|2s

(
T̂0 (k) , T̂1 (k)

)

C�
(1.10)

and let ‖·‖H̊ s denote the corresponding norm, which is equivalent to the usual one.

Next we recall the a useful pseudo-differential operator, which acts on distributions in
the spatial Sobolev spaces.

Definition 1.4 If r, s ∈ R and d, � ∈ N
+ we define the operator J s : Hr

(
T

d;C�
) →

Hr−s
(
T

d;C�
)

via

J sT =
∑

k∈Zd

(
1 + |k|2)s/2

T̂ (k) ek. (1.11)

Note that for K= C or R J s is an isometric isomorphism from Hr
(
T

d;K�
)

to Hr−s
(
T

d;K�
)
.

Next, we wish to decompose the real spatial Sobolev spaces as orthogonal direct sum of
solenoidal and conservative vector fields.

Definition 1.5 (Leray projection) If s ∈ R and d ∈ R
+ we define an operator, called the

Leray projector, P : Hs
(
T

d;Rd
)→ Hs

(
T

d;Rd
)

via

PT = T̂ (0) +
∑

k∈Zd\{0}

(

I − k ⊗ k

|k|2
)

T̂ (k) ek. (1.12)

It can be shown that P is well-defined (see Lemma B.1), self-adjoint in Hs
(
T

d;Rd
)
, and

satisfies P
2 = P. Therefore, by basic Hilbert space theory, it must be a projection onto its

image. Moreover, Hs
(
T

d;Rd
)

can be realized as the orthogonal direct sum of the image and
kernel of P. Indeed, we define PHs

(
T

d;Rd
) = Hs

⊥
(
T

d;Rd
)

and (I − P)H s
(
T

d;Rd
) =

Hs
‖
(
T

d;Rd
)
, which yields the decomposition

Hs
(
T

d;Rd
)= Hs

⊥
(
T

d;Rd
)⊕ Hs

‖
(
T

d;Rd
)
. (1.13)

This notation indicates that if T ∈ Hs
⊥
(
T

d;Rd
)
, then T̂ (k) ∈ C

d points orthogonally (in

the C
d sense) to k ∈ Z

d . On the other hand, if T ∈ Hs
‖
(
T

d;Rd
)
, then T̂ (k) is parallel (in

the C
d sense) to k (and, in particular, T ∈ H̊ s

(
T

d;Rd
)
). We shall refer to Hs

⊥
(
T

d;Rd
)

as
being a space of solenoidal fields, since each member of this space has trivial distributional



Global Well-Posedness Near Potential Microflows 909

divergence. Similarly, each member of Hs
‖
(
T

d;Rd
)

is said to be conservative, as they are
distributional gradients (see Proposition B.2).

Finally, we need some notions of the theory of (infinite dimensional) Banach-valued
Sobolev spaces on subsets of the real line.

Definition 1.6 (Space-time Sobolev spaces) Let s ∈ R, d, � ∈ N
+, n ∈ N, K = C or R,

X ⊆ Hs
(
T

d;K�
)

be a closed subspace, and ∅ �= I ⊆ R be an open set.
(1) If f,g ∈ L1

loc (I ;X ), we say that g is the nth weak derivative of f , if for all ψ ∈
C∞ (I ;K) it holds that

∫

I

f ψ(n) = (−1)n

∫

I

gψ. (1.14)

In this case we write g = f (n), and when n = 1 we write g = f ′.
(2) The temporal Sobolev space or order n is the set

Hn (I ;X ) = {f ∈ L1
loc (I ;X ) : ∀ j ∈ {0,1, . . . , n} ,

f (j) exists in the weak sense, and
∫

I

∥
∥f (n)

∥
∥2

X < ∞
}

, (1.15)

equipped with inner-product

(f0, f1)Hn(I ;X ) =
n∑

j=0

∫

I

(
f

(j)

0 , f
(j)

1

)

X
. (1.16)

2 Parabolic Isomorphisms and Construction of the Potential Microflows

The first goal of this section is to construct solution operators to two different linear
parabolic equations between the spaces from Definitions 1.3, 1.5, and 1.6. With these in
hand, we then present the construction of the potential microflow solutions to (1.1).

2.1 Vectorial Heat Flow

In this subsection we are interested in solutions u : I ×T
3 →R

3 to the initial value problem

{
∂tu − α�u = f in I ×T

3

u (0, ·) = u0 on T
3,

(2.1)

where I = (0, T ) for T ∈ (0,∞], α ∈ R
+, and we are given initial data u0 ∈ H 1+r (T3;R3)

and average-zero forcing f ∈ L2(I ; H̊ r (T3;R3)) ∩ Hn(I ; H̊ r−2n(T3;R3)) for r ∈ R and
n ∈ N. Of course, (2.1) is a vectorial variant of the standard heat equation, and most of what
we present here is well-known. Our goal here is thus to quickly present the main features of
(2.1) in a functional analytic form useful for our subsequent work in the paper.
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We begin by defining the solution operator for (2.1).

Definition 2.1 Let α ∈R
+ and r∈R. We define the α-heat flow mapping Sα : H̊ r(T3;R3)→

L1
loc(R

+; H̊ r (T3;R3)) via

Sα (g) (t) =
∑

k∈Z3

exp
(−4π2α |k|2 t

)
ĝ (k) ek, (2.2)

where the series clearly converges in H̊ r (T3;R3) for each t > 0 and defines an R
3-valued

distribution thanks to Lemma B.1.

The next result establishes the essential properties of the map Sα .

Proposition 2.2 Let α ∈R
+, r ∈R, and consider the mapping Sα from Definition 2.2. Then

the following hold.
(1) If s ∈ R with r ≤ s, then there exists a constant C > 0, depending on α, r , and s, such

that

‖Sα (g) (t)‖H̊ s ≤ C
exp
(−2π2αt

)

t
s−r

2
‖g‖H̊ r (2.3)

for every g ∈ H̊ r
(
T

3;R3
)

and t ∈ R
+. In particular, Sα is smoothing: if g ∈

H̊ r
(
T

3;R3
)
, then Sα (g) (t) ∈ C∞(T3;R3) for every t ∈R

+.
(2) If n ∈N and 0 < T ∈R, then

Sα : H̊ 1+r
(
T

3;R3
)→ L2

(
(0, T ) ; H̊ 2+r

(
T

3;R3
))∩ Hn

(
(0, T ) ; H̊ 2+r−2n

(
T

3;R3
))

(2.4)
is a bounded linear mapping.

(3) If g ∈ H̊ r
⊥
(
T

3;R3
)
, then for each t ∈R

+ we have Sα (g) (t) ∈ H̊ r
⊥
(
T

3;R3
)
. Similarly, if

g ∈ Hr
‖
(
T

3;R3
)
, then for each t ∈R

+ we have Sα (g) (t) ∈ Hr
‖
(
T

3;R3
)
.

(4) For any g ∈ H̊ r
(
T

3;R3
)

we have

lim
t→0+ ‖Sα (g) (t) − g‖H̊ r = 0 (2.5)

and

∂tSα (g) (t) = α�Sα (g) (t) for t ∈R
+. (2.6)

Proof Let s ∈R with r ≤ s. We then compute

‖Sα(g)(t)‖2
H̊ s =

∑

k∈Z3\{0}
|k|2s exp

(−8π2α|k|2t) ∣∣ĝ(k)
∣
∣2

≤ sup
ρ∈Z3\{0}

{|ρ|2(s−r) exp
(−4π2α|ρ|2t)}

∑

k∈Z3\{0}
|k|2r exp

(−4π2α|k|2t) ∣∣ĝ(k)
∣
∣2

≤ C
exp
(−4π2αt

)

t s−r
‖g‖2

H̊ r

(2.7)



Global Well-Posedness Near Potential Microflows 911

for the constant

C = (4π2α
)r−s

sup
{
|ρ̃|2(s−r) exp

(
−|ρ̃|2

)
| ρ̃ ∈ R

3
}

∈ R
+. (2.8)

This constant depends only on r , s, and α, which proves the first item.
We now turn to the proof of the second item. We will present only a sketch in the case

T = ∞, as the case T < ∞ follow directly from this. Let g ∈ H̊ 1+r (T3;R3). We first use
Tonelli’s theorem to compute

‖Sα(g)‖2
L2H̊ 2+r =

∫

R+
‖Sα (g) (t)‖2

H̊ 2+r dt =
∫

R+

∑

k∈Z3\{0}
|k|2r+4 exp

(−8π2α|k|2t) ∣∣ĝ(k)
∣
∣2 dt

= 1

8π2α

∑

k∈Z3\{0}
|k|2r+2

∣
∣ĝ(k)

∣
∣2 = 1

8π2α
‖g‖2

H̊ 1+r , (2.9)

which shows that Sα(g) ∈ L2(R+; H̊ 2+r
(
T

3;R3
)
). Next we note that a direct computation,

which we omit for the sake of brevity, shows that if Sα(g)(k) denotes the kth weak partial
time derivative of Sα(g), then

Sα(g)(k)(t) = (α�)kSα(g)(t) for t ∈R
+. (2.10)

From this we then deduce that

∥
∥Sα(g)(k)

∥
∥2

L2H̊ 2+r−2k = (4π2α
)k ‖Sα(g)‖2

L2H̊ 2+r = 1

2

(
4π2α

)k−1 ‖g‖2
H̊ 1+r (2.11)

for each 0 ≤ k ≤ n. This prove that Sα(g) ∈ Hn(R+; H̊ 2+r−2n
(
T

3;R3
)
), which completes

the proof of the second item.
The third item follows directly from the definition of Sα , and the fourth item follows

from the dominated convergence theorem and the above calculations. �

Next we wish to define ‘convolution’ with Sα as a solution operator to the inhomoge-
neous problem (2.1) with zero initial data.

Definition 2.3 For (r, n) ∈R×N and 0 < T ∈ R we define

Sα∗ : L2
(
(0, T ) ; H̊ r

(
T

3;R3
))∩ Hn

(
(0, T ) ; H̊ r−2n

(
T

3;R3
))

→ L2
(
(0, T ) ; H̊ 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ; H̊ r−2n

(
T

3;R3
))

(2.12)

via

Sα ∗ f (t) =
∑

k∈Z3

ek

∫

(0,t)

exp
(−4π2α |k|2 (t − τ)

)
f̂ (τ, k) dτ (2.13)

for t ∈ (0, T ). Note that this defines an R
3-valued distribution by Lemma B.1.

It’s not a priori clear that Sα∗ actually takes values in the codomain listed in Definition
2.3. We verify this and some other basic properties now.



912 N. Stevenson, I. Tice

Proposition 2.4 Let (r, n) ∈ R × N, 0 < T ∈ R, and consider Sα∗ given by Definition 2.3.
Then Sα∗ is well-defined with the codomain stated in the definition. Moreover, Sα∗ is a

bounded linear map, and for any f ∈L2
(
(0, T ) ;H̊ r (T3;R3)

)
∩Hn

(
(0, T ) ;H̊ r−2n(T3;R3)

)

we have that

lim
t→0+ ‖Sα ∗ f (t)‖H̊ 1+r = 0 (2.14)

and

∂tSα ∗ f (t) = α�Sα ∗ f (t) + f (t) for t ∈ (0, T ). (2.15)

Proof Linearity of Sα∗ is clear, so it suffices to prove boundedness. Let f ∈
L2
(
(0, T ) ; H̊ r (T3;R3)

)
∩ Hn

(
(0, T ) ; H̊ r−2n(T3;R3)

)
. Using Tonelli’s theorem and

Young’s convolution inequality, we compute

‖Sα ∗ f ‖2
L2((0,T );H̊ 2+r )

≤
∑

k∈Z3\{0}
|k|2r+4

∫

(0,T )

(∫

(0,T )

exp
(−4π2α|k|2(t − τ)

) ∣∣
∣f̂ (τ, k)

∣
∣
∣dτ

)2

dt

≤
∑

k∈Z3\{0}
|k|2r+4

(∫

(0,T )

exp
(−4π2α|k|2t)dt

)2 ∫

(0,T )

∣
∣
∣f̂ (τ, k)

∣
∣
∣
2

dτ

= 1

4π2α

∑

k∈Z3\{0}
|k|2r

∫

(0,T )

∣
∣
∣f̂ (τ, k)

∣
∣
∣
2

dτ

= 1

4π2α
‖f ‖2

L2((0,T );H̊ r )
.

(2.16)

On the other hand, a simple computation shows that for all φ ∈ C∞
c ((0, T ) ;C) we have

−
∫

(0,T )

φ′ Sα ∗ f =
∫

(0,T )

(α�Sα ∗ f + f )φ (2.17)

and hence Sα ∗ f is weakly differentiable in time with (Sα ∗ f )′ = α�Sα ∗ f + f . Arguing
as above, we deduce from this identity that

∥
∥(Sα ∗ f )′∥∥

L2((0,T )H̊ r )
≤ C ‖f ‖L2((0,T );H̊ r ) . (2.18)

Iterating and applying Proposition B.4, we deduce the existence of a constant C > 0, de-
pending on s, r , n, α, such that

‖Sα ∗ f ‖L2((0,T );H̊ 2+r ) + ‖Sα ∗ f ‖Hn+1((0,T );H̊ r−2n)

≤ C
(
‖f ‖L2((0,T );H̊ r ) + ‖f ‖Hn((0,T );H̊ r−2n)

)
. (2.19)

This proves that Sα∗ is well-defined and gives rise to a bounded linear map.
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It remains to prove (2.14). For this we use Tonelli’s theorem and the Cauchy-Schwarz
inequality to bound, for t ∈R

+,

‖Sα ∗ f (t)‖2
H̊ 1+r ≤

∑

k∈Z3\{0}
|k|2r+2

(∫

R+
exp(−8π2α |k|2 τdτ)

)(∫

(0,t)

∣
∣
∣f̂ (τ, k)

∣
∣
∣
2

dτ

)

= 1

8π2α
‖f ‖2

L2((0,t);H̊ r )
. (2.20)

Then (2.14) follows from this and the monotone convergence theorem. �

The data flow operator from Definition 2.1 and the convolution operator from Definition
2.3 sum to create a solution operator to (2.1). We prove this now.

Theorem 2.5 Let (r, n) ∈R×N, 0 < T ∈R, and consider the mapping

ϒ : L2
(
(0, T ) ; H̊ 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ; H̊ r−2n

(
T

3;R3
))

→ H̊ 1+r
(
T

3;R3
)×
(
L2
(
(0, T ) ; H̊ r

(
T

3;R3
))∩ Hn

(
(0, T ) ; H̊ r−2n

(
T

3;R3
)))

(2.21)

defined via

ϒ (u) = (u (0) , ∂tu − α�u) , (2.22)

where u (0) is understood as limt→0+ u (t) in the H̊ 1+r
(
T

3;R3
)

topology (see Proposition
B.4). Then the following hold.
(1) ϒ is well-defined and a linear isomorphism.
(2) The inverse of ϒ is given explicitly as ϒ−1 (g, f ) = Sαg + Sα ∗ f for Sα and Sα∗ as

defined in Definitions 2.1 and 2.3, respectively.

Proof Proposition B.4 ensures us that if u belongs to the domain of ϒ , then after modifica-

tion on a null set u ∈ UC0
b

(
(0, T ) ; H̊ 1+r

(
T

3;R3
))

. Thus there exists u (0) ∈ H̊ 1+r
(
T

3;R3
)

for which limt→0+ u (t) = u (0) in the H̊ 1+r
(
T

3;C3
)

topology. Moreover, there is a constant
C ∈ R

+ depending only on T and α for which we may estimate:

‖u (0)‖H̊ 1+r ≤ sup
t∈(0,T )

‖u (t)‖H̊ 1+r ≤ C
(
‖u‖L2((0,T );H̊ 2+r ) + ‖u‖Hn+1((0,T );H̊ r−2n)

)
(2.23)

and

‖∂tu − α�u‖L2((0,T );H̊ r ) + ‖∂tu − α�u‖Hn((0,T );H̊ r−2n)

≤ C
(
‖u‖L2((0,T );H̊ 2+r ) + ‖u‖Hn+1((0,T );H̊ r−2n)

)
. (2.24)

Hence ϒ is well defined and bounded.
We now turn to the proof that ϒ is surjective. Propositions 2.2 and 2.4 ensure us that

for a pair (g, f ) belonging to the codomain of ϒ we have that Sαg + Sα ∗ f belongs to the
domain of ϒ , limt→0+ (Sαg + Sα ∗ f ) = g in H̊ 1+r

(
T

3;R3
)
, and

∂t (Sαg + Sα ∗ f ) = (Sαg + Sα ∗ f )′ = α�(Sαg + Sα ∗ f ) + f. (2.25)
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Together, these imply that ϒ (Sαg + Sα ∗ f ) = (g, f ), which establishes surjectivity.
We now turn to injectivity. Suppose that u is in the kernel of ϒ . Then for all almost every

t ∈ (0, T ) we have ∂tu (t) − α�u(t) = 0. We take the inner-product with u (t) in the space
H̊ r
(
T

3;R3
)

in order to observe that for almost every t ∈ (0, T ),

1

2

(‖u (t)‖2
H̊ r

)′ + 4π2α ‖u (t)‖2
H̊ 1+r = 0. (2.26)

Integrating and using the fact that limt→0+ ‖u (t)‖H̊ 1+r = 0, we deduce that u = 0. Hence ϒ

is injective, and thus an isomorphism. �

The final result in this subsection concerns the restriction of ϒ from Theorem 2.5 to
spaces of the form H̊ r

�

(
T

3;R3
)
, where � ∈ {⊥,‖}, as defined in Definition 1.5.

Theorem 2.6 Let (r, n) ∈R×N and 0 < T ∈R. For � ∈ {⊥,‖} define

ϒ� :
(
L2
(
(0, T ) ; H̊ 2+r

�

(
T

3;R3
))∩ Hn+1

(
(0, T ) ; H̊ r−2n

�

(
T

3;R3
)))

→ H̊ 1+r
�

(
T

3;R3
)× L2

(
(0, T ) ; H̊ r

�

(
T

3;R3
))∩ Hn

(
(0, T ) ; H̊ r−2n

�

(
T

3;R3
))

(2.27)

via

ϒ�(u) = (u(0), ∂tu − α�u) = ϒ(u). (2.28)

Then ϒ� are well-defined, bounded, and linear isomorphisms.

Proof This follows directly from the fact that the Leray projector P, as given in Definition
1.5, commutes with the isomorphism ϒ from Theorem 2.5. �

2.2 Time-Dependent Lamé System

We now turn our attention to solutions ω : I ×T
3 →R

3 of the time-dependent Lamé system

{
∂tω − (α + γ )�ω − (β − γ )∇ divω + δω = f in I ×T

3

ω (0, ·) = ω0 on T
3,

(2.29)

where I = (0, T ) for T ∈ (0,∞], α,β ∈R
+, γ ∈R

+ ∪{0}, and we are given initial data ω0 ∈
H 1+r (T3;R3) and forcing f ∈ L2(I ;Hr(T3;R3)) ∩ Hn(I ;Hr−2n(T3;R3)) for r ∈ R and
n ∈ N. As in the previous subsection, we intend to show that (2.29) induces an isomorphism
between appropriate spaces. The analysis is sufficiently similar to that associated to the
problem (2.1) that we omit most of it here. The main difference between (2.1) and (2.29) is
the nontrivial evolution of the spatial averages for the latter, which warrants recording the
following results separately.

We begin by observing how (2.29) interacts with the Leray projector, at least for smooth
solutions. This motivates our strategy for solving (2.29).
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Lemma 2.7 Suppose that ω,f ∈ C∞ (I ×T
3;R3

)
and define Pω = ω⊥, Pf = f⊥

(I − P)ω = ω‖, (I − P) f = f‖. Then ω and f satisfy the first equation of (2.29) if and
only if

{
∂tω⊥ − (α + γ )�ω⊥ + δω⊥ = f⊥ in I ×T

3

∂tω‖ − (α + β)�ω‖ + δω‖ = f‖ in I ×T
3.

(2.30)

Proof The symbol of the differential operator − (α + γ )� − (β − γ )∇ div+δ is

4π2 (α + γ ) |k|2 + 4π2 (β − γ ) k ⊗ k + δ

= (4π2 (α + β) |k|2 + δ
)
(I − P) + (4π2 (α + γ ) |k|2 + δ

)
P, (2.31)

from which the result follows. �

The key point of this result is that the decoupled problems (2.30) are both damped heat
equations. We thus turn our attention to the solution operators associated to damped heat
equations. We begin by introducing a data flow operator, analogous to the one in Defini-
tion 2.1.

Definition 2.8 Let (r, n) ∈ R×N and 0 < T ∈ R. For parameters μ,ν ∈ R
+ we define the

mapping

Sμ,ν : H 1+r
(
T

3;R3
)→ L2

(
(0, T ) ;H 2+r

(
T

3;R3
))∩ Hn

(
(0, T ) ;H 2+r−2n

(
T

3;R3
))

(2.32)
for t ∈ R

+ via

Sμ,ν (g) (t) = exp (−νt)
∑

k∈Z3

ek exp
(−4π2μ |k|2 t

)
ĝ (k) . (2.33)

This defines an R
3-valued distribution by Lemma B.1.

We now record the essential properties of the operator Sμ,ν , including the proof that the
codomain of the operator is as stated in the definition.

Proposition 2.9 Let (r, n) ∈R×N, 0 < T ∈ R, and μ,ν ∈R
+. Consider the operator Sμ,ν

from Definition 2.8. Then the following hold.
(1) Sμ,ν is well-defined, linear, and bounded.
(2) If s ∈ R is such that r ≤ s, then there exists a constant C > 0, depending on μ, ν, r , s,

such that
∥
∥Sμ,ν (g) (t)

∥
∥

H 1+s ≤ C
exp (−νt)

t
s−r

2
‖g‖H 1+r (2.34)

for every g ∈ H 1+r (T3;R3) and t ∈ R
+. In particular, Sμ,ν is smoothing in the sense

that if g ∈ Hr
(
T

3;R3
)
, then Sμ,ν (g) (t) ∈ C∞(T3;R3) for every t ∈R

+.
(3) If g ∈ Hr

⊥
(
T

3;R3
)
, then for each t ∈ R

+ we have Sμ,ν (g) (t) ∈ Hr
⊥
(
T

3;R3
)
. Similarly,

if g ∈ Hr
‖
(
T

3;R3
)
, then for each t ∈ R

+ we have Sμ,ν (g) (t) ∈ Hr
‖
(
T

3;R3
)
.

(4) For any g ∈ Hr
(
T

3;R3
)

we have

lim
t→0+

∥
∥Sμ,ν (g) (t) − g

∥
∥

Hr = 0, (2.35)
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and

∂tSμ,ν (g) (t) = μ�Sμ,ν (g) (t) − νSμ,ν (g) (t) for t ∈R
+. (2.36)

Proof The proof follows from minor modification of the one given for Proposition 2.2. We
omit the details for the sake of brevity. �

Next we define the related convolution operator, analogous to the one given in Defini-
tion 2.3.

Definition 2.10 For (r, n) ∈R×N, 0 < T ∈R, and μ,ν ∈ R
+ we define

Sμ,ν∗ : L2
(
(0, T ) ;Hr

(
T

3;R3
))∩ Hn

(
(0, T ) ;Hr−2n

(
T

3;R3
))

→ L2
(
(0, T ) ;H 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

(
T

3;R3
))

(2.37)

via

Sμ,ν ∗ f (t) =
∑

k∈Z3

ek

∫

(0,t)

exp (−ν (t − τ)) exp
(−4π2μ|k|2(t − τ)

)
f̂ (τ, k)dτ (2.38)

for t ∈ (0, T ). Again, this defines an R
3-valued distribution by Lemma B.1.

The next result shows that the stated codomain for Sμ,ν is valid and establishes some
other essential properties of this map.

Proposition 2.11 Let (r, n) ∈ R × N, 0 < T ∈ R, μ,ν ∈ R
+, and consider the map

Sμ,ν∗ given in Definition 2.10. Then Sμ,ν∗ is well-defined with the stated codomain,
and it defines a bounded linear map. Moreover, for any f ∈ L2

(
(0, T ) ;Hr

(
T

3;R3
)) ∩

Hn
(
(0, T ) ;Hr−2n

(
T

3;R3
))

we have that

lim
t→0+

∥
∥Sμ,ν ∗ f (t)

∥
∥

H 1+r = 0, (2.39)

and

∂tSμ,ν ∗ f (t) = μ�Sμ,ν ∗ f (t) − νSμ,ν ∗ f (t) + f (t) for t ∈ (0, T ). (2.40)

Proof The proof similar to that of Proposition 2.4, and so we omit it. �

We now employ the operators Sμ,ν and Sμ,ν∗ to build an isomorphism associated to the
damped heat equation.

Theorem 2.12 Let (r, n) ∈R×N, 0 < T ∈R, and μ,ν ∈R
+. Define the mapping

χμ,ν : L2
(
(0, T ) ;H 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

(
T

3;R3
))

→ H 1+r
(
T

3;R3
)× (L2

(
(0, T ) ;Hr

(
T

3;R3
))∩ Hn

(
(0, T ) ;Hr−2n

(
T

3;R3
)))

(2.41)

via

χμ,ν(u) = (u(0), ∂tu − μ�u + νu) , (2.42)
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where u(0) is understood in the H 1+r topology by way of Proposition B.4. Then χμ,ν is
well-defined and is a bounded linear isomorphism. Moreover, the following hold.
(1) We have the explicit inverse formula

χ−1
μ,ν (g, f ) = Sμ,νg + Sμ,ν ∗ f. (2.43)

(2) If � ∈ {⊥,‖}, g ∈ H 1+r
�

(
T

3;R3
)
, and f ∈ L2

(
(0, T ) ;Hr

�

(
T

3;R3
)) ∩

Hn
(
(0, T ) ;Hr−2n

�

(
T

3;R3
))

, then χ−1
μ,ν (g, f ) ∈ L2

(
(0, T ) ;H 2+r

�

(
T

3;R3
)) ∩

Hn+1
(
(0, T ) ;Hr−2n

�

(
T

3;R3
))

.

Proof As in the proof of Theorem 2.5, we use Proposition B.4 to deduce that χμ,ν is well-
defined and gives a bounded linear map. Then Propositions 2.9 and 2.11 show that χμ,ν is
an isomorphism with inverse given by (2.43). The second stated item follows from the fact
that the Leray projector commutes with all of the operators used to define χμ,ν . �

With Theorem 2.12 in hand, we can construct an isomorphism associated to (2.29).

Theorem 2.13 Let (r, n) ∈ R × N, 0 < T ∈ R, α,β, δ ∈ R
+, and γ ∈ R

+ ∪ {0}. Define the
mapping

�(α,β,γ,δ) : L2
(
(0, T ) ;H 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

(
T

3;R3
))

→ H 1+r
(
T

3;R3
)× L2

(
(0, T )H r

(
T

3;R3
))∩ Hn

(
(0, T ) ;Hr−2n

(
T

3;R3
))

(2.44)

via

�(α,β,γ,δ)(u) = (u(0), ∂tu − (α + γ )�u − (β − γ )∇ divu + δu) , (2.45)

where u(0) is understood in the sense of Proposition B.4. Then �α,β,γ,δ is well-defined and
is a bounded linear isomorphism.

Proof The Leray projector (see Definition 1.5) induces the following natural isomorphisms:

I : H 1+r
(
T

3;R3
)× (L2

(
(0, T ) ;Hr

(
T

3;R3
))∩ Hn

(
(0, T ) ;Hr−2n

(
T

3;R3
)))

→ (
H 1+r

⊥
(
T

3;R3
)× L2

(
(0, T ) ;Hr

⊥
(
T

3;R3
))∩ Hn

(
(0, T ) ;Hr−2n

⊥
(
T

3;R3
)))

⊕ (H 1+r
‖
(
T

3;R3
)× L2

(
(0, T ) ;Hr

‖
(
T

3;R3
))∩ Hn

(
(0, T ) ;Hr−2n

‖
(
T

3;R3
)))

(2.46)

and

J : L2
(
(0, T ) ;H 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

(
T

3;R3
))

→ (
L2
(
(0, T ) ;H 2+r

⊥
(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

⊥
(
T

3;R3
)))

⊕ (L2
(
(0, T ) ;H 2+r

‖
(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

‖
(
T

3;R3
)))

. (2.47)

It is then a simple matter to verify that

�(α,β,γ,δ) = J −1 ◦ (χα+γ,δ, χα+β,δ

) ◦ I, (2.48)

and hence �(α,β,γ,δ) is an isomorphism by virtue of Theorem 2.12. �
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Theorem 2.13 provides us with a solution operator to (2.29). It will be useful later to
decompose this operator into two parts: one that flows initial data, and one that acts as a
‘convolution’ on forcing.

Definition 2.14 Let (r, n) ∈ R×N, 0 < T ∈ R, α,β, δ ∈R
+, and γ ∈R

+ ∪ {0}. We define

Tα,β,γ,δ : H 1+r
(
T

3;R3
)→ L2

(
(0, T ) ;H 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

(
T

3;R3
))

(2.49)
and

Tα,β,γ,δ∗ : L2
(
(0, T ) ;Hr

(
T

3;R3
))∩ Hn

(
(0, T ) ;Hr−2n

(
T

3;R3
))

→ L2
(
(0, T ) ;H 2+r

(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

(
T

3;R3
))

(2.50)

via

Tα,β,γ,δ(v) = �−1
(α,β,γ,δ) (v,0) and Tα,β,γ,δ ∗ w = �−1

(α,β,γ,δ) (0,w) , (2.51)

where �(α,β,γ,δ) is as in Theorem 2.13. These are well-defined and bounded linear mappings
according to Theorem 2.13.

To conclude this subsection we state two results about these operators. The first is anal-
ogous to Proposition 2.6.

Proposition 2.15 Let (r, n) ∈ R × N, 0 < T ∈ R, α,β, δ ∈ R
+, and γ ∈ R

+ ∪ {0}.
If � ∈ {⊥,‖} and v ∈ H 1+r

�

(
T

3;R3
)
, and w ∈ L2

(
(0, T ) ;Hr

�

(
T

3;R3
)) ∩ Hn

(
(0, T ) ;

Hr−2n
�

(
T

3;R3
))

, then

Tα,βγ,δ (v) + Tα,β,γ,δ ∗ w ∈ L2
(
(0, T ) ;H 2+r

�

(
T

3;R3
))∩ Hn+1

(
(0, T ) ;Hr−2n

�

(
T

3;R3
))

.

(2.52)

Proof This follows directly from the structure of �(α,β,γ,δ) recorded in the proof of Theo-
rem 2.13. �

The second result is analogous to Proposition 2.9.

Proposition 2.16 Let (r, n) ∈ R × N, α,β, δ ∈ R
+, γ ∈ R

+ ∪ {0}, and s ∈ R with r ≤ s.
Then there exists a constant C > 0, depending on α, β , γ , δ, r , and s, such that

∥
∥Tα,β,γ,δ(f )(t)

∥
∥

Hs ≤ C
exp (−δt)

t
s−r

2
‖f ‖Hr (2.53)

for every f ∈ Hr
(
T

3;R3
)

and t ∈R
+. In particular, Tα,β,γ,δ is smoothing.

Proof This follows from the structure of �(α,β,γ,δ) recorded in the proof of Theorem 2.13,
coupled with the second item of Proposition 2.9. �
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2.3 Potential Microflow Solutions to (1.1)

We now have all of the tools needed to rigorously construct the micropotential solutions to
(1.1) with u = f = g = 0.

Definition 2.17 Given a regularity parameter q ∈ R and a conservative field ζ0∈H
q

‖
(
T

3;R3
)
,

we define the potential microflow solution generated by ζ0 via

ζ = T α
j

,
α+3β

3j
,
γ
j

, 2κ
j

(ζ0) , (2.54)

where T α
j

,
α+3β

3j
,
γ
j

, 2κ
j

is as in Definition 2.14.

The following summarizes the essential facts about these special solutions.

Theorem 2.18 Let q ∈ R, ζ0 ∈ H
q

‖
(
T

3;R3
)
, and let ζ be as in Definition 2.17. Then the

following hold.

(1) For each n ∈ N we have the inclusion ζ ∈ L2
(
R

+;H
1+q

‖
(
T

3;R3
)) ∩

Hn+1
(
R

+;H
q−2n−1
‖

(
T

3;R3
))

, and there exists a constant C > 0, independent of ζ0,
such that

‖ζ‖
L2H

1+q
‖

+ ‖ζ‖
Hn+1H

q−2n−1
‖

≤ C ‖ζ0‖H
q
‖ . (2.55)

(2) ζ is smooth on the space-time domain, i.e. ζ ∈ C∞ (
R

+ ×T
3;R3

)

(3) ζ solves the initial-value problem
⎧
⎪⎨

⎪⎩

j∂t ζ − (α + γ )�ζ − ( α
3 + β − γ

)∇ div ζ + 2κζ = 0 in R
+ ×T

3

curl ζ = 0 in R
+ ×T

3

ζ (0) = ζ0 on T
3,

(2.56)

where the initial condition is understood in the H
q

‖
(
T

3;R3
)

topology via Proposition
B.4. In particular, the triple u = 0, p = 0, ω = ζ solves (1.1) with f = g = 0.

Proof The first and third items follow from the definition of T α
j

,
α+3β

3j
,
γ
j

, 2κ
j

and Proposi-

tion 2.15. The second item follows from Proposition 2.16 and the first item. �

3 Linearization of (1.1) Around a Potential Microflow

In this section we consider a linearization of (1.1) around a potential microflow from Def-
inition 2.17. More precisely, we assume that ζ0 ∈ H

q

‖
(
T

3;R3
)

is given for some q ∈ R
+

and we consider the potential microflow ζ ∈ L2
(
R

+;H
1+q

‖
(
T

3;R3
))

as in Definition 2.17

(see also Theorem 2.18 for the properties of ζ ). We then consider the problem of finding
u,ω :R+ ×T

3 → R
3 and p :R+ ×T

3 →R solving the linear initial-value problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divu = 0 in R
+ ×T

3

�∂tu − (ε + κ
2

)
�u − κ curlω + ∇p = f in R

+ ×T
3

j∂tω + ju · ∇ζ − (α + γ )�ω − ( α
3 + β − γ

)∇ divω

+2κω − κ curlu = 1
j
g in R

+ ×T
3

(u (0) ,ω (0)) = (u0,ω0) on T
3

(3.1)
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for given data u0,ω0 : T3 → R
3 and f,g : R+ ×T

3 → R
3 in certain regularity classes, with

f having vanishing spatial average for all time and u0 having vanishing spatial average and
divergence.

The evolution of the pressure is essentially trivial since the forcing term in known. If we
apply the operator (I − P) to the second equation in (3.1) we are left with: ∇p = (I − P) f .
As
∫

T3 p (t, x) dx = 0 for almost every t ∈ R
+, we are in a position to use Proposition B.2

to deduce that p = �(I − P) f . To streamline the linear existence theory, we will posit in
addition that (I − P) f = 0 on the space-time domain. Thus, we shall study the system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divu = 0 in R
+ ×T

3

�∂tu − (ε + κ
2

)
�u − κ curlω = f in R

+ ×T
3

j∂tω + ju · ∇ζ − (α + γ )�ω − ( α
3 + β − γ

)∇ divω

+ 2κω − κ curlu = g in R
+ ×T

3

(u (0) ,ω (0)) = (u0,ω0) on T
3.

(3.2)

We will see later that the well-posedness of this reduced linear system is sufficient for our
intended purpose.

Since (3.2) is a non-constant coefficient problem, the Fourier transform is not a particu-
larly convenient technique for producing a solution. Instead, our strategy for solving (3.2)
is to employ a fixed-point argument. For this it’s convenient to initially work in a functional
setting with minimal temporal regularity and integrability and to subsequently bootstrap.

3.1 Locally Integrable Solutions and Bootstrapping

We now define a notion of solution to (3.2) that we call a locally integrable solution. It has
all of the desired spatial regularity but lacks high-order temporal regularity and integrability.

Definition 3.1 Let s ∈R
+ ∪ {0} and

q ∈
{

(3/2,∞) if 0 ≤ s ≤ 1/2

(s,∞) if 1/2 < s.
(3.3)

Let ζ0 ∈ H
q

‖
(
T

3;R3
)
, and let ζ be the associated potential microflow from Definition 2.17.

Suppose that u0 ∈ H̊ 1+s
⊥
(
T

3;R3
)
, ω0 ∈ H 1+s

(
T

3;R3
)
, f ∈ L2

(
R

+; H̊ s
⊥
(
T

3;R3
))

, and g ∈
L2
(
R

+;Hs
(
T

3;R3
))

. A locally integrable solution to (3.2) is a pair u,ω : R+ × T
3 → R

3

such that

u ∈
⋂

T ∈R+
L2
(
(0, T ) ; H̊ 2+s

⊥
(
T

3;R3
))∩ H 1

(
(0, T ) ; H̊ s

⊥
(
T

3;R3
))

(3.4)

and

ω ∈
⋂

T ∈R+
L2
(
(0, T ) ;H 2+s

(
T

3;R3
))∩ H 1

(
(0, T ) ;Hs

(
T

3;R3
))

, (3.5)

satisfying (3.2) in the strong sense, with the initial data (u0,ω0) achieved in the H 1+s topol-
ogy as in Proposition B.4.
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Locally integrable solutions have minimal temporal regularity and integrability, but we
will show that the structure of (3.2) automatically promotes solutions to higher temporal
integrability. To prove this we begin by introducing some useful functionals

Definition 3.2 Suppose that s, q , ζ0, ζ , f , g, u0, ω0, u, and ω are as in Definition 3.1. We
define E ,D,F :R+ →R via

E (t) =
∫

T3

�

2
|J su (t)|2 + j

2
|J sω (t)|2 , (3.6)

D (t) =
∫

T3
ε |DJ su (t)|2 + (α + γ ) |DJ sω (t)|2

+
∫

T3

(α

3
+ β − γ

)
|divJ sω (t)|2 + 2κ

∣
∣
∣
∣
1

2
curlJ su (t) − J sω (t)

∣
∣
∣
∣

2

, (3.7)

and

F (t) =
∫

T3
J sf (t) · J su (t) + J sg (t) · J sω (t) − J s (u (t) · ∇ζ (t)) · J sω (t) , (3.8)

where J s is the operator given in Definition 1.4. Note that the properties of the locally
integrable solution show that E ∈⋂T ∈R+ H 1 (0, T ) and D,F ∈⋂T ∈R+ L2 (0, T ). We shall
call E the energy functional, D the dissipative functional, and F the forcing functional.

Our next result shows how E , D , and F are related to one another.

Lemma 3.3 The functionals E , D , and F from Definition 3.2 are related by the identity

E ′ + D = F almost everywhere in R
+. (3.9)

Proof By hypothesis, a locally integrable solution pair (u,ω) is a strong solution to (3.2).
We apply the operator J s to the second and third equations in (3.2), take the L2 inner-
product with J su (t) and J sω (t) in Hs

(
T

3;R3
)
, respectively, and then sum. This results in

the following identity (omitting the t -dependence for brevity):
∫

T3
� (J su)

′ · J su + j (J sω)
′ · J sω −

(
ε + κ

2

)
�J su · J su

− (α + γ )�J sω · J sω −
(α

3
+ β − γ

)
∇ divJ sω · J sω

+
∫

T3
2κJ sω · J sω − κ curlJ sω · J su − κ curlJ su · J sω

=
∫

T3
J sf · J su + J sg · J sω − J s (u · ∇ζ ) · J sω. (3.10)

Since divJ su = 0, the square norm of the ∇J su is equal to the square norm of curlJ su.
Consequentially, we can recognize the perfect square

∫

T3

κ

2
�J su · J su − κ curlJ sω · J su − κ curlJ su · J sω + 2κJ sω · J sω
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= 2κ

∫

T3

∣
∣
∣
∣
1

2
curlJ su − J sω

∣
∣
∣
∣

2

. (3.11)

On the other hand, integration by parts shows that

∫

T3
−ε�J su · J su − (α + γ )�J sω · J sω −

(α

3
+ β − γ

)
∇ divJ sω · J sω

=
∫

T3
ε |DJ su|2 + (α + γ ) |DJ sω|2 +

(α

3
+ β − γ

)
|divJ sω|2 . (3.12)

The result now follows by noting that for almost every time t ∈R
+

E ′ =
∫

T3
� (J su)

′ · J su + j (J sω)
′ · J sω. (3.13)

�

Next we prove that the dissipation functional is coercive over the energy functional.

Lemma 3.4 Let the functionals E and D be as defined in Definition 3.1. Let

C0 = min

{
π2ε

�
,

εκ

2j (ε + κ)

}

and C1 = min

{
π2ε

2
,

εκ

4 (ε + κ)
,2α,3β,2γ

}

. (3.14)

Then for a.e. t ∈R
+ we have that

D (t) ≥ C0

(
�

2
‖u (t)‖2

H̊ s⊥
+ j

2
‖ω (t)‖2

Hs

)

+ C1

(
‖u (t)‖2

H̊ 1+s
⊥

+ ‖ω (t)‖2
H 1+s

)

= C0E (t) + C1 ‖(u (t) ,ω (t))‖2
H̊ 1+s

⊥ ×H 1+s
. (3.15)

In particular, we have that D ≥ 0.

Proof We again suppress the time dependence for brevity. We compute that

div

(

α

(

Dω + Dωt − 2

3
divωI

)

+ β divωI + γ
(
Dω + Dωt

)
)

= (α + γ )�ω +
(α

3
+ β − γ

)
∇ divω. (3.16)

Taking the inner-product of this equation with ω in the space Hs
(
T

3;R3
)

and integrating
by parts yields the identity

∫

T3
div
(
α
(
DJ sω + DJ sωt

)+ β divJ sωI + γ
(
DJ sω + DJ sωt

)) · J sω

= −
∫

T3
(α + γ ) |DJ sω|2 +

(α

3
+ β − γ

)
|divJ sω|2 . (3.17)

We write

Dω = 1

2

(

Dω + Dωt − 2

3
divωI

)

+ 1

3
divωI + 1

2

(
Dω − Dωt

)
, (3.18)
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which is an orthogonal decomposition relative to the usual Frobenius inner-product on ma-
trices. Thus the previous identity yields

∫

T3
(α + γ ) |DJ sω|2 +

(α

3
+ β − γ

)
|divJ sω|2

=
∫

�

2α

∣
∣
∣
∣
1

2

(

DJ sω + DJ sωt − 2

3
divJ sωI

)∣
∣
∣
∣

2

+ 3β

∣
∣
∣
∣
1

3
divJ sωI

∣
∣
∣
∣

2

+ 2γ

∣
∣
∣
∣
1

2

(
DJ sω − DJ sωt

)
∣
∣
∣
∣

2

≥ min {2α,3β,2γ }
∫

T3
|DJ sω|2 . (3.19)

Let δ = 1
4

(
1 + ε

κ

) ∈R
+. We may use Cauchy’s inequality and the fact that u is solenoidal

to bound

∫

T3
ε |DJ su|2 + 2κ

∣
∣
∣
∣
1

2
curlJ su − J sω

∣
∣
∣
∣

2

=
∫

T3

(
ε + κ

2

)
|DJ su|2 + 2κ |J sω|2 − 2κ curlJ su · J sω

≥
∫

T3

(
ε + κ

2
− 2κδ

)
|DJ su|2 +

(
2κ − κ

2δ

)
|J sω|2

=
∫

T3

ε

2
|DJ su|2 + εκ

2 (ε + κ)
|J sω|2 . (3.20)

Since u has zero spatial average, J su does as well, and so we have the Poincaré inequality

∫

T3
|DJ su|2 ≥ 4π2

∫

T3
|J su|2 . (3.21)

Putting the above estimates together, we arrive at the bound

D (t) ≥ min

{
π2ε

�
,

εκ

2j (ε + κ)

}(∫

T3

�

2
|J su (t)|2 + j

2
|J sω (t)|2

)

+ min

{
π2ε

2
,

εκ

4 (ε + κ)
,2α,3β,2γ

}(∫

T3

∣
∣J s+1u (t)

∣
∣2 + ∣∣J s+1ω (t)

∣
∣2
)

,

(3.22)

which is the desired result. �

We now have the tools needed to begin bootstrapping. We will do so in two steps.

Theorem 3.5 (First promotion of locally integrable solutions) Suppose that s, q , ζ0, ζ , f ,
g, u0, ω0, u, and ω are as in Definition 3.1. Then we have the inclusions

u ∈ L∞
(
R

+; H̊ s
⊥
(
T

3;R3
))∩ L2

(
R

+; H̊ 1+s
⊥
(
T

3;R3
))

(3.23)
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and

ω ∈ L∞ (
R

+;Hs
(
T

3;R3
))∩ L2

(
R

+;H 1+s
(
T

3;R3
))

. (3.24)

Moreover, there exists a constant C ∈ R
+, independent of u, ω, f , g, u0, and ω0, such that

‖u‖L∞H̊ s⊥ + ‖ω‖L∞Hs + ‖u‖
L2H̊ 1+s

⊥
+ ‖ω‖L2H 1+s

≤ C
(
‖u0‖H̊ 1+s

⊥
+ ‖ω0‖H 1+s + ‖f ‖L2H̊ s⊥

+ ‖g‖L2Hs

)
. (3.25)

Proof Due to the dependence of q on s in Definition 3.1 we must break to two cases: 0 ≤
s ≤ 1/2 and 1/2 < s. We begin with the harder case, 0 ≤ s ≤ 1/2, in which case ζ0 ∈
H

q

‖
(
T

3;R3
)

for q ∈ ( 3
2 ,∞).

Lemmas 3.3 and 3.4 imply the differential inequality

E ′ (t) + C0E (t) + C1 ‖(u (t) ,ω (t))‖2
H̊ 1+s

⊥ ×H 1+s
≤ F (t) (3.26)

for a.e. t ∈R
+.

We now turn to an estimate of the functional F . Picking q̃ ∈ ( 3
2 , q
)

and using Proposi-
tions B.3 and 2.16, we learn that there are universal constants C0,C1 ∈ R

+ such that

‖u (t) · ∇ζ (t)‖2
Hs ≤ C0 ‖u (t)‖2

Hs ‖∇ζ (t)‖2
Hq̃ ≤ 4π2C0 ‖u (t)‖2

Hs ‖ζ (t)‖2
Hq̃+1

≤ 4π2C0C1

exp
(
− 4κ

j
t
)

tmin{0,1+q̃−q} ‖u (t)‖2
Hs ‖ζ0‖2

Hq . (3.27)

From this, the definition of E , and Cauchy’s inequality, we obtain the bound

∫

T3
J s (u (t) · ∇ζ (t)) · J sω (t)

≤ 2π
√

C0C1

exp
(
− 2κ

j
t
)

t
1
2 min{0,1+q̃−q} ‖ζ0‖Hq ‖ω (t)‖Hs ‖u (t)‖Hs

≤ 2π
√

C0C1 max

{
1

�
,

1

j

} exp
(
− 2κ

j
t
)

t
1
2 min{0,1+q̃−q} ‖ζ0‖Hq E (t) . (3.28)

Set C2 = 2π
√

C0C1 max
{

1
�
, 1

j

}
‖ζ0‖Hq ∈ R

+ ∪ {0}. With this and another use of the

Cauchy’s inequality, we obtain a good upper bound on the functional F :

F (t) ≤
⎛

⎝
C0

2
+ C2

exp
(
− 2κ

j
t
)

t
1
2 min{0,1+q̃−q}

⎞

⎠E (t) + 1

C0
max

{
1

�
,

1

j

}

‖(f (t) , g (t))‖2
H̊ s⊥×Hs . (3.29)

Now set

J0 (t) = C1 ‖(u (t) ,ω (t))‖2
H̊ 1+s

⊥ ×H 1+s
and J1 (t) = 1

C0
max

{
1

�
,

1

j

}

‖(f (t) , g (t))‖2
H̊ s⊥×Hs .

(3.30)
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Combining (3.26) and (3.29) then provides us with the differential inequality

E ′ (t) + C0

4
E (t) + J0 (t) ≤ J1 (t) +

⎛

⎝−C0

4
+ C2

exp
(
− 2κ

j
t
)

t
1
2 min{0,1+q̃−q}

⎞

⎠E (t) . (3.31)

Now, thanks to monotonicity, there exists a T � ∈ R
+ ∪ {0} depending only on C0, C2, κ , j ,

q , q̃ , such that

−C0

4
+ C2

exp
(
− 2κ

j
t
)

t
1
2 min{0,1+q̃−q} < 0 ⇐⇒ t ∈ (T �,∞) . (3.32)

Since min {0,1 + q̃ − q} < 1, we have that

C3 =
∫

(0,T �)

∣
∣
∣
∣
∣
∣
−C0

4
+ C2

exp
(
− 2κ

j
τ
)

τ
1
2 min{0,1+q̃−q}

∣
∣
∣
∣
∣
∣

dτ < ∞. (3.33)

Thus, upon integrating (3.31) on the interval (0, t) for some t ∈R
+, we arrive at the bound

E (t) − E (0) +
∫

(0,t)

J0 (τ ) dτ ≤
∫

(0,t)

J1 (τ ) dτ + C3 sup
τ∈(0,T �)

E (τ ) . (3.34)

We then take the supremum over all t ∈R
+ to obtain

sup
t∈R+

E (t) +
∫

R+
J0 ≤ E (0) +

∫

R+
J1 + C3 sup

τ∈(0,T �)

E (τ ) . (3.35)

Next we aim to estimate the right-most term in (3.35) in terms of the initial data and
forcing. Set η ∈ L1 ((0, T �)) via

η (t) = C0

2
− C2

exp
(
− 2κ

j
t
)

t
1
2 min{0,1+q̃−q} . (3.36)

Returning to (3.31), we find that a.e. t ∈ (0, T �)

E ′ (t) + η (t)E (t) ≤ J1 (t) . (3.37)

Applying Gronwall’s lemma and taking the supremum, we arrive at the estimate

sup
t∈(0,T �)

E (t) ≤ sup
t∈(0,T �)

[

exp

(

−
∫

(0,t)

η (τ ) dτ

)

E (0)

+
∫

(0,t)

exp

(

−
∫

(τ,t)

η (μ) dμ

)

J1 (τ ) dτ

]

≤ exp (C3)

(

E (0) +
∫

R+
J1

)

. (3.38)

Combining this with (3.35) proves the theorem in the cases where s ∈ [0, 1
2

]
.
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In the second case s ∈ ( 1
2 ,∞), in which case we are assuming that ζ0 ∈ H

q

‖
(
T

3;R3
)

with
q ∈ (s,∞). The only difference in the argument is that for any δ ∈R

+ we can now bound
∫

T3
J s (u (t) · ∇ζ (t)) · J sω (t) ≤ c

(
‖u (t)‖

H̊ 1+s
⊥

‖ω (t)‖Hs ‖ζ (t)‖H 1+s

)

≤ c

(

δ ‖u (t)‖2
H̊ 1+s

⊥
+ 1

4δ
‖ω (t)‖2

Hs ‖ζ (t)‖2
H 1+s

)

, (3.39)

where c ∈R
+ is a constant depending only on s from Proposition B.3. We then choose δ so

small that the term with u can be absorbed onto the left within the dissipative functional D ,
and then we repeat the same argument as above to conclude. �

We can further exploit the structure of (3.2) to improve the result of the previous theorem.

Theorem 3.6 (Second promotion of locally integrable solution) Suppose that s, q , ζ0, ζ , f ,
g, u0, ω0, u, and ω are as in Definition 3.1. Then we have the inclusions

u ∈ L2
(
R

+; H̊ 2+s
⊥
(
T

3;R3
))∩ H 1

(
R

+; H̊ s
⊥
(
T

3;R3
))

(3.40)

and

ω ∈ L2
(
R

+;H 2+s
(
T

3;R3
))∩ H 1

(
R

+;Hs
(
T

3;R3
))

. (3.41)

Moreover, there is a constant K ∈R
+, independent of u, ω, f , g, u0, and ω0, such that

‖(u,ω)‖
L2H̊ 2+s

⊥ ×L2H 2+s + ‖(u,ω)‖H 1H̊ s⊥×H 1Hs

≤ K
(
‖(u0,ω0)‖H̊ 1+s

⊥ ×H 1+s + ‖(f, g)‖L2H̊ s⊥×L2Hs

)
. (3.42)

Proof Recall the heat flow and convolution operators of Definitions 2.1, 2.3, and 2.14. For

any T ∈R
+, we have that u ∈ L2

(
(0, T ) ; H̊ 2+s

⊥
(
T

3;R3
))∩ H 1

(
(0, T ) ; H̊ s

⊥
(
T

3;R3
))

and

that u is a strong solution to the initial value problem
{

∂tu − 2ε+κ
2�

�u = 1
�
f + κ

�
curlω in t ∈ (0, T ) ×T

3

u (0) = u0 on T
3.

(3.43)

Here we know that u0 ∈ H̊ 1+s
⊥
(
T

3;R3
)

and curlω,f ∈ L2
(
(0, T ) ; H̊ s

⊥
(
T

3;R3
))

by hy-

pothesis. Thus, Theorems 2.5 and 2.6 imply that

u (t) = S (u0) (t) + S ∗
(

1

�
f + κ

�
curlω

)

(t) (3.44)

for all t ∈ (0, T ), where we have abbreviated S = S 2ε+κ
2�

. Since T ∈ R
+ was arbi-

trary, this identity holds for all t ∈ R
+. By Theorem 3.5 we have that 1

�
f + κ

�
curlω ∈

L2
(
R

+; H̊ s
⊥
(
T

3;R3
))

. Hence, Propositions 2.2 and 2.4 guarantee that u ∈
L2
(
R

+; H̊ 2+s
⊥
(
T

3;R3
)) ∩ H 1

(
R

+; H̊ s
⊥
(
T

3;R3
))

and that there is a universal constant

K1 ∈R
+ such that

‖u‖
L2H̊ 2+s

⊥
+ ‖u‖H 1H̊ s⊥

≤ K1

(
‖u0‖H̊ 1+s

⊥
+ ‖f ‖L2H̊ s⊥

+ ‖curlω‖L2H̊ s⊥

)
. (3.45)
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To perform similar estimates with ω, we need to estimate the product term u · ∇ζ . If
s ∈ [0, 1

2

]
, then we pick q̃ ∈ ( 3

2 , q
)

and use Propositions B.3 and 2.16 to bound

‖u · ∇ζ‖2
L2(R+;H̊ s⊥)

≤ c

(∫

R+
‖u‖2

Hs ‖∇ζ‖2
Hq̃

)

≤ c′

⎛

⎝‖u‖2
L∞(R+;H̊ s⊥)

‖ζ0‖2
H

q
‖

∫

R+

exp
(
− 4κ

j
t
)

tmin{0,1+q̃−q} dt

⎞

⎠ . (3.46)

If s ∈ ( 1
2 ,∞) then s + 1 > 3/2, which allows us to again use Propositions B.3 and 2.16 to

bound

‖u · ∇ζ‖2
L2(R+;Hs)

≤ c

(∫

R+
‖u‖2

H̊ 1+s
⊥

‖∇ζ‖2
Hs

)

≤ c′

⎛

⎝‖u‖2

L∞
(
R+;H̊ 1+s

⊥
) ‖ζ0‖2

H
q
‖

∫

R+

exp
(
− 4κ

j
t
)

tmin{0,s+1−q} dt

⎞

⎠ ; (3.47)

where c, c′ ∈ R
+ are constants depending only on s and q . In either case there is a constant

K2 ∈R
+, independent of u, ω, u0, ω0, f , and g, such that

‖u · ∇ζ‖L2(R+;Hs) ≤ K2 ‖u‖
L∞

(
R+;H̊ 1+s

⊥
) , (3.48)

which is finite by Theorem 3.5 and Proposition B.4. Hence, we can argue exactly as with
the velocity field, u, to deduce that for all t ∈R

+ we have the identity

ω (t) = T (ω0) (t) + T ∗
(

1

j
g + κ

j
curlu − u · ∇ζ

)

(t) , (3.49)

where we have abbreviated T = T α
j

,
α+3β

3j
,
γ
3 , 2κ

j
. Since g, curlu,u ·∇ζ ∈L2

(
R

+;Hs
(
T

3;C3
))

and ω0 ∈ H 1+s
(
T

3;R3
)
, we are in a position to use Theorem 2.13 to deduce that ω ∈

L2
(
R

+;H 2+s
(
T

3;R3
))∩H 1

(
R

+;Hs
(
T

3;R3
))

with the estimate, for some universal K3 ∈
R

+,

‖ω‖L2H 2+s + ‖ω‖H 1Hs ≤ K3

(
‖ω0‖H 1+s + ‖g‖L2Hs + ‖curlu‖L2H̊ s⊥ + ‖u · ∇ζ‖L2Hs

)
.

(3.50)

The proof is complete upon summing (3.45) and (3.45) and using Theorem 3.5 to bound
the right-hand-side in terms of a universal constant times the appropriate norms of the data,
forcing, and microtorquing. �

3.2 Existence of Locally Integrable Solutions to (3.2)

We now turn our attention to the question of the existence of locally integrable solutions
to (3.2). The low level of temporal regularity and integrability required in the definition of
locally integrable solutions makes them amenable to a fairly simple fixed point argument.
We begin by introducing a map used in the fixed point argument. Note, though, that the
requirements of q relative to s are slightly stricter in the following than in Definition 3.1.
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Definition 3.7 Let s ∈R
+,

q ∈
{

(5/2,∞) if s ∈ [0,3/2
]

(s,∞) if s ∈ (3/2,∞) ,
(3.51)

T0 ∈R
+ ∪ {0}, and T ∈R

+. Let ζ0 ∈ H
q

‖
(
T

3;R3
)

and let ζ be a potential microflow starting
from ζ0 as in Definition 2.17. We then define the map

�T0,T : H̊ 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)

×
(
L2
(
(T0, T0 + T ) ; H̊ s

⊥
(
T

3;R3
))× L2

(
(T0, T0 + T ) ;Hs

(
T

3;R3
)))2

→ L2
(
(T0, T0 + T ) ; H̊ s

⊥
(
T

3;R3
))× L2

(
(T0, T0 + T ) ;Hs

(
T

3;R3
))

(3.52)

via

�T0,T (u0,ω0, f, g,u,ω)

=
(

S (u0) + S ∗
(

1

�
f + κ

�
curlω

)

,T (ω0)

+ T ∗
(

1

j
g + κ

j
curlu − u · ∇ζ

))∣
∣
∣
∣
(T0,T0+T )

, (3.53)

where we have abbreviated S = S 2ε+κ
2�

and T = T α
j

,
α+3β

3j
,
γ
j

, 2κ
j

(see Definitions 2.1, 2.3, and

2.14).

Our next result establishes conditions under which this map is contractive.

Proposition 3.8 Let s, q , ζ0, and ζ be as in Definition 3.7, and let μ ∈ (0,1). Then there
exists a T ∈ R

+ such that for every time T0 ∈ R
+ ∪ {0}, initial data u0 ∈ H̊ 1+s

⊥
(
T

3;R3
)

and ω0 ∈ H 1+s
(
T

3;R3
)
, forcing f ∈ L2

(
(T0, T0 + T ) ; H̊ s

⊥
(
T

3;R3
))

, and microtorquing

g ∈ L2
(
(T0, T0 + T ) ;Hs

(
T

3;R3
))

it holds that
∥
∥�T0,T (u0,ω0, f, g,u,ω) − �T0,T (u0,ω0, f, g, ũ, ω̃)

∥
∥

L2((T0,T0+T );H̊ s⊥)×L2((T0,T0+T );Hs)

≤ μ‖(u − ũ,ω − ω̃)‖L2((T0,T0+T );H̊ s⊥)×L2((T0,T0+T );Hs) (3.54)

for all pairs of pairs (u,ω) , (ũ, ω̃) ∈ L2
(
(T0, T0 + T ) ; H̊ s

⊥
(
T

3;R3
)) × L2

(
(T0, T0 + T ) ;

Hs
(
T

3;R3
))

.

Proof We exhibit the argument for T0 = 0 only, as the argument for general T0 ∈ R
+ is

similar. Fix (u,ω), (ũ, ω̃), (u0,ω0, f, g) as in the hypotheses. Observe that for any T ∈ R
+

we have

�0,T (u0,ω0, f, g,u,ω) − �0,T (u0,ω0, f, g, ũ, ω̃) = �0,T (0,0,0,0, u − ũ,ω − ω̃) .

(3.55)

For the sake of brevity write u − ũ = v ∈ L2
(
(0, T ) ; H̊ s

⊥
(
T

3;R3
))

, ω − ω̃ = χ ∈
L2
(
(0, T ) ;Hs

(
T

3;R3
))

, � (v,χ)=�0,T (0,0,0,0, v,χ), and X=L2
(
(0, T ) ;H̊ s

⊥
(
T

3;R3
))

× L2
(
(0, T ) ;Hs

(
T

3;R3
))

.
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We claim that there exists a function R
+ � T �→ CT ∈ R

+ (depending on s, q , and ζ0)
such that ‖� (v,χ)‖X ≤ CT ‖(v,χ)‖X and limT →0 CT = 0. Once the claim is established,
the estimate (3.54) follows directly from taking T sufficiently small for given μ.

We now turn to the proof of the claim. First note that

� (v,χ) =
(

S ∗
(

κ

�
curlχ

)

,T ∗
(

κ

j
curlv − v · ∇ζ

))∣
∣
∣
∣
(0,T )

. (3.56)

To handle the first component of � (v,χ), we let α0 = 2ε+κ
2�

and use the Cauchy-Schwarz
inequality to bound

‖S ∗ curlχ‖2
L2((0,T );H̊ s⊥)

≤
∫

(0,T )

∑

k∈Z3

|k|2s

∣
∣
∣
∣

∫

(0,t)

exp
(−4π2α0 |k|2 (t − τ)

)
2πik × χ̂ (t, k) dτ

∣
∣
∣
∣

2

dt

≤ 4π2T
∑

k∈Z3

|k|2s+2

(∫

R+
exp
(−8π2α0 |k|2 t

)
dt

)(∫

(0,T )

∣
∣χ̂ (t, k)

∣
∣2 dt

)

= 1

2α0
T
∑

k∈Z3\{0}
|k|2s

∫

(0,T )

∣
∣χ̂ (t, k)

∣
∣2 dt = 1

2α0
T ‖χ‖2

L2((0,T );H̊ s⊥)
. (3.57)

In the same manner, we deduce that up to a universal c ∈ R+ we may bound:
⎧
⎨

⎩

‖T ∗ curlv‖2
L2((0,T );Hs)

≤ cT ‖v‖2
L2((0,T );Hs)

‖T ∗ (v · ∇ζ )‖2
L2((0,T );Hs)

≤ cT ‖v · ∇ζ‖2
L2((0,T );Hs−1)

.
(3.58)

To handle the latter product term we break to cases based on s. If 0 ≤ s ≤ 3/2, then s ≤
3/2 ≤ q − 1 and so Proposition B.3 allows us to estimate for c′ ∈ R

+ depending on s and q

‖v · ∇ζ‖2
L2

T
Hs−1 ≤ ‖v · ∇ζ‖2

L2
T

Hs ≤ c′ ‖v‖2
L2((0,T );Hs)

‖∇ζ‖2
L∞((0,T );Hq−1)

. (3.59)

On the other hand, if 3/2 < s, then s − 1 < q − 1, and so we again use Proposition B.3 to
obtain c′ ∈R

+ and bound

‖v · ∇ζ‖2
L2((0,T );Hs−1)

≤ c′ ‖v‖2
L2((0,T );Hs)

‖∇ζ‖2
L∞((0,T );Hs−1)

≤ c′ ‖v‖2
L2((0,T );Hs)

‖∇ζ‖2
L∞((0,T );Hq−1)

. (3.60)

In either case we may combine the resulting estimate with Proposition 2.16 to see that:

‖v · ∇ζ‖2
L2((0,T );Hs−1)

≤ 4π2c′ ‖v‖2
L2((0,T );Hs)

‖ζ‖2
L∞((0,T );Hq) ≤ c̃ ‖v‖2

L2((0,T );Hs)
‖ζ0‖2

H
q
‖

(3.61)

holds for a universal constant c̃ ∈ R
+. Hence we may take CT to be scalar, whose size

depends on c̃ and ‖ζ0‖H
q
‖ , multiple of

√
T . �

As a corollary, we can now produce locally integrable solutions to (3.2) under slightly
stronger hypotheses on q relative to s than stated in Definition 3.1.
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Corollary 3.9 Let s ∈R
+,

q ∈
{(

5
2 ,∞) if s ∈ [0, 3

2

]

[s + 1,∞) if s ∈ ( 3
2 ,∞) . (3.62)

Let ζ0 ∈ H
q

‖
(
T

3;R3
)

and let ζ be the corresponding potential microflow as in Definition
2.17. Then for each data quadruple

(u0,ω0, f, g) ∈ H̊ 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
⊥
(
T

3;R3
))

× L2
(
R

+;Hs
(
T

3;R3
))

(3.63)

there exists a unique pair (u,ω) that is a locally integrable solution to (3.2) in the sense of
Definition 3.1.

Proof Fix (u0,ω0, f, g) as in the hypotheses. Proposition 3.8 provides us with a T∗ ∈ R
+

such that for all T0 ∈ R
+ ∪ {0} the mapping �T0,T∗ (u0,ω0, f, g, ·, ·) is a contraction on

L2
(
(T0, T0 + T∗); H̊ s

⊥
(
T

3;R3
)) × L2

(
(T0, T0 + T∗);Hs

(
T

3;R3
))

. Thus, for each n ∈ N

we may apply the Banach fixed point theorem to produce a unique pair
(
u(n),ω(n)

)
, defined

on the temporal interval (nT∗, (n + 1)T∗), such that

(
u(n),ω(n)

)= �nT∗,(n+1)T∗
(
u0,ω0, f, g,u(n),ω(n)

)
. (3.64)

We then define

(u,ω) ∈
⋂

n∈N

(
L2
(
(nT∗, (n + 1)T∗) ; H̊ s

⊥
(
T

3;R3
))× L2

(
(nT∗, (n + 1)T∗) ;Hs

(
T

3;R3
)))

=
⋂

T ∈R+

(
L2
(
(0, T ) ; H̊ s

⊥
(
T

3;R3
))× L2

(
(0, T ) ;Hs

(
T

3;R3
)))

(3.65)

to be the function equal to
(
u(n),ω(n)

)
on the interval (nT∗, (n + 1)T∗). By construction, we

have that

(u,ω) =
(

S (u0) + S ∗
(

1

�
f + κ

�
curlω

)

,T (ω0) + T ∗
(

1

j
g + κ

j
curlu − u · ∇ζ

))

(3.66)

almost everywhere in R
+. To prove that (u,ω) is a locally integrable solution, it remains to

improve the spatial and local temporal regularity.

Since curlω ∈⋂T ∈R+ L2
(
(0, T ) ; H̊ s−1

⊥
(
T

3;R3
))

, f ∈ L2
(
R

+; H̊ s
⊥
(
T

3;R3
))

, and u0 ∈
H̊ 1+s

⊥
(
T

3;R3
)
, we are in a position to promote the spatial regularity of u using Propositions

2.4 and 2.2. Applying these shows that

u ∈
⋂

T ∈R+

(
L2
(
(0, T ) ; H̊ 1+s

⊥
(
T

3;R3
))∩ H 1

(
(0, T ) ; H̊ s−1

⊥
(
T

3;R3
)))

. (3.67)

In particular, we learn from this that curlu ∈⋂T ∈R+ L2
(
(0, T ) ;Hs

(
T

3;R3
))

. By the prod-
uct estimates from Proposition B.3 and the constraints on q , it is also the case that u · ∇ζ
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belongs to this same space; indeed, for any T ∈R
+ we may bound for some c ∈R

+ depend-
ing on s and q

‖u · ∇ζ‖L2((0,T );Hs) ≤ c ‖u‖L2((0,T );H̊ s⊥) ‖∇ζ‖L∞((0,T );Hq−1)

≤ 4π2c ‖u‖L2((0,T );H̊ s⊥) ‖ζ‖L∞((0,T );Hq) , (3.68)

and the latter is finite by the construction of u and Proposition 2.16.
Now, we also have the inclusions g ∈ L2

(
R

+;Hs
(
T

3;R3
))

and ω0 ∈ H 1+s
(
T

3;R3
)
, so

Theorem 2.13 yields the inclusion

ω ∈
⋂

T ∈R+
L2
(
(0, T ) ;H 2+s

(
T

3;R3
))∩ H 1

(
(0, T ) ;Hs

(
T

3;R3
))

. (3.69)

Finally, we can promote the spatial regularity of u once more to

u ∈
⋂

T ∈R+
L2
(
(0, T ) ; H̊ 2+s

⊥
(
T

3;R3
))∩ H 1

(
(0, T ) ; H̊ s

⊥
(
T

3;R3
))

(3.70)

using this new information on the spatial regularity of ω. Differentiation of the fixed point
identity confirms that (u,ω) is a strong solution to (3.2). Hence the pair (u,ω) is indeed a lo-
cally integrable solution as in Definition 3.1. The uniqueness assertion is now a consequence
of Theorem 3.5. �

3.3 Isomorphism Associated to (3.2)

We now have all of the tools needed to construct an isomorphism corresponding to the
global-in-time well-posedness of (3.2).

Theorem 3.10 Let s ∈ R
+ ∪ {0} and q ∈ R

+ satisfy (3.62). Let ζ0 ∈ H
q

‖
(
T

3;R3
)

and let ζ

be the corresponding potential microflow as in Definition 2.17. Define the map

M :
(
L2
(
R

+; H̊ 2+s
⊥
(
T

3;R3
))∩ H 1

(
R

+; H̊ s
⊥
(
T

3;R3
)))

× (L2
(
R

+;H 2+s
(
T

3;R3
))∩ H 1

(
R

+;Hs
(
T

3;R3
)))

→ H̊ 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
⊥
(
T

3;R3
))× L2

(
R

+;Hs
(
T

3;R3
))

(3.71)

via

M(u,ω) =

⎛

⎜
⎜
⎜
⎝

u (0)

ω (0)

�∂tu − (ε + κ
2

)
�u − κ curlω

j (∂tω + u · ∇ζ ) − (α + γ )�ω − ( α
3 + β − γ

)∇ divω + 2κω − κ curlu

⎞

⎟
⎟
⎟
⎠

,

(3.72)

where u (0) = limt→0+ u (t) and ω (0) = limt→0+ ω (t) are understood in the H 1+s
(
T

3;R3
)

topology via Proposition B.4. Then M is well-defined and yields a bounded linear isomor-
phism.
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Proof We begin by showing that M is well-defined. The only term we need to examine is
the product term u · ∇ζ . The inclusion u · ∇ζ ∈ L2

(
R

+;Hs
(
T

3;R3
))

follows directly from
the assumptions on q and s and Propositions B.3 and 2.16:

‖u · ∇ζ‖L2(R+;Hs) ≤ c ‖u‖L2(R+;Hs+2) ‖∇ζ‖L∞(R+;Hq−1) ≤ c′ ‖u‖L2(R+;Hs+2) ‖ζ0‖Hq .

(3.73)
Where c, c′ ∈R

+ are constants depending only on s, q , and various coefficients of viscosity.
Thus M is well-defined.

Note that M(u,ω) = (u0,ω0, f, g) implies that (u,ω) is a locally integrable solution to
(3.2) with initial data (u0,ω0) and forcing/microtorquing (f, g). Consequently, the injec-
tivity of M follows from the estimate in Theorem 3.5 and the surjectivity of M follows
from Corollary 3.9 and Theorems 3.5 and 3.6. Thus M is an isomorphism, and the claim is
proved. �

4 Nonlinear Analysis

In this section we first identify the natural nonlinear mapping associated to problem (1.1) and
prove that it is globally smooth with respect to our choices of domain and codomain. Then,
we show that the linear well-posedness achieved in the previous section is sufficiently strong
to prove, with the aid of the inverse function theorem, that around sufficiently regular poten-
tial microflows this mapping is in fact a smooth diffeomorphism. Finally, we answer some
questions related to the nonlinear stability and attractiveness of the potential microflows.

4.1 Construction of Solutions to (1.1) Near Potential Microflows

We now turn our attention to solving (1.1).

Definition 4.1 Let s ∈ R
+ ∪ {0}. We define the nonlinear map associated to the problem

(1.1) to be

Q :
(
L2
(
R

+; H̊ 2+s
⊥
(
T

3;R3
))∩ H 1

(
R

+; H̊ s
⊥
(
T

3;R3
)))

× (L2
(
R

+;H 2+s
(
T

3;R3
))∩ H 1

(
R

+;Hs
(
T

3;R3
)))× L2

(
R

+; H̊ 1+s
(
T

3;R)
)

→ H̊ 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
(
T

3;R3
))× L2

(
R

+;Hs
(
T

3;R3
))

(4.1)

given by

Q (u,ω,p) =

⎛

⎜
⎜
⎝

u (0)

ω (0)

� (∂t + u · ∇)u − (ε + κ
2

)
�u − κ curlω + ∇p

j (∂tω + u · ∇ω) − (α + γ )�ω − ( α
3 + β − γ

)∇ divω + 2κω − κ curlu

⎞

⎟
⎟
⎠ ,

(4.2)

where u (0) = limt→0+ u (t) and ω (0) = limt→0+ ω (t) are understood in the H 1+s
(
T

3;R3
)

topology as in Proposition B.4.
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The following result shows, among other things, that Q is well-defined.

Proposition 4.2 Let s ∈ R
+ ∪ {0}. Then the map Q from Definition 4.1 is well-defined,

smooth, and satisfies

DQ (v,χ, q) (u,ω,p)

=

⎛

⎜
⎜
⎝

u (0)

ω (0)

� (∂tu + v · ∇u + u · ∇v) − (ε + κ
2

)
�u − κ curlω + ∇p

j (∂tω + v · ∇ω + u · ∇χ) − (α + γ )�ω − ( α
3 + β − γ

)∇ divω + 2κω − κ curlu

⎞

⎟
⎟
⎠

(4.3)

for every (v,χ, q) and (u,ω,p) in the domain of Q.

Proof The well-definedness of the first two components of Q follows from Proposition B.4.
To complete the proof that Q is well-defined, we only have to worry about the product
terms, as the rest all clearly belong to the codomain. More precisely, given (u,ω) be-
longing to the first two components of the domain of Q, we need to prove that u · ∇u ∈
L2
(
R

+; H̊ s
(
T

3;R3
))

and u · ∇ω ∈ L2
(
R

+;Hs
(
T

3;R3
))

.

As a first step, we note that u · ∇u has vanishing spatial average as a consequence of u

being solenoidal:
∫

T3
u · ∇u = −

∫

T3
udivu = 0. (4.4)

Next we use Propositions B.3 and B.4 to estimate

∫

R+
‖u (t) · ∇u (t)‖2

H̊ s dt ≤ c

∫

R+
‖u (t)‖2

H̊ 2+s ‖u (t)‖2
H̊ 1+s dt

≤ c′ ‖u‖2
L∞(R+;H̊ 1+s)

‖u‖2
L2(R+;H̊ 2+s)

≤ c̃ ‖u‖4
L2(R+;H̊ 2+s)∩H 1(R+;H̊ s)

< ∞, (4.5)

where c, c′, c̃ ∈R
+ are constants depending on s. A similar computation shows the inclusion

u · ∇ω ∈ L2
(
R

+;Hs
(
T

3;R3
))

, . (4.6)

and we conclude that Q is indeed well-defined.
Next, suppose that (v,χ, q) and (u,ω,p) belong to the domain of Q. With an abuse of

notation, we let DQ (v,χ, q) be the linear operator defined by (4.3). The same arguments
used above show that this defines a bounded linear map. Then we compute

Q (v + u,χ + ω,q + p) −Q (v,χ, q) − DQ (v,χ, q) (u,ω,p) = (0,0, u · ∇u,u · ∇ω) ,

(4.7)
and so we may again use the estimates from Propositions B.3 and B.4 to deduce that Q is
differentiable with derivative DQ. The map (v,χ, q) �→ DQ (v,χ, q) is affine and contin-
uous, thus smooth. Hence we conclude that Q is smooth. �

We now have all of the tools needed to produce solutions to (1.1) with an application of
the inverse function theorem.
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Theorem 4.3 Let s ∈R
+ ∪ {0} and q ∈R

+ satisfy (3.62). Let ζ0 ∈ H
q

‖
(
T

3;R3
)

and let ζ be
the corresponding potential microflow as in Definition 2.17. Then there exist open sets

W ⊆ H̊ 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
(
T

3;R3
))× L2

(
R

+;Hs
(
T

3;R3
))

(4.8)
and

V ⊆
(
L2
(
R

+; H̊ 2+s
⊥
(
T

3;R3
))∩ H 1

(
R

+; H̊ s
⊥
(
T

3;R3
)))

× (L2
(
R

+;H 2+s
(
T

3;R3
))∩ H 1

(
R

+;Hs
(
T

3;R3
)))× L2

(
R

+; H̊ 1+s
(
T

3;R)
)

(4.9)

such that the following hold.
(1) (0, ζ0,0,0) ∈ W and (0, ζ,0) ∈ V with Q (0, ζ,0) = (0, ζ0,0,0).
(2) Q (V) = W and Q : V → W is a smooth diffeomorphism.
(3) Q : V → W is bi-Lipschitz, i.e. there exists constants C0,C1 ∈ R

+ such that if we ab-
breviate X and Y for the domain and codomain of Q, respectively, then

C0 ‖(u,ω,p) − (v,χ, q)‖X ≤ ‖Q (u,ω,p) −Q (v,χ, q)‖Y

≤ C1 ‖(u,ω,p) − (v,χ, q)‖X (4.10)

for all (u,ω,p) , (v,χ, q) ∈ V ⊆ X.
(4) For each (u0,ω0, f, g) ∈ W the triple (u,ω,p) = Q−1(u0,ω0, f, g) ∈ V is the unique

(in V) strong solution to (1.1), achieving the initial data u0 = limt→0 u(t) and ω0 =
limt→0 ω(t) in the H 1+s topology as in Proposition B.4.

Proof Write X and Y for the domain and codomain of Q. Proposition 4.2 ensures that
Q : X → Y is smooth and that we have the identity for (u,ω,p) ∈ X

DQ (0, ζ,0) (u,ω,p) = M (u,ω) + (0,0,∇p,0) , (4.11)

where M is the bounded linear isomorphism from Theorem 3.10.
To see that this map is injective, suppose that (u,ω,p) belongs to the kernel of

DQ (0, ζ,0). The third component of the equation (0,0,0,0) = DQ (0, ζ,0) (u,ω,p) reads

�∂tu +
(
ε + κ

2

)
�u − κ curlω = −∇p. (4.12)

At almost every time in R
+ the left hand side belongs to the image of the Leray projector P

over Hs
(
T

3;C3
)

and the right hand side belongs to the kernel. Since P induces an orthog-
onal decomposition Hs

(
T

3;R3
)∼= Hs

⊥
(
T

3;R3
)⊕ Hs

‖
(
T

3;R3
)

(see Definition 1.5), in fact

both sides of this equation vanish almost everywhere. Since ∇ : L2
(
R

+; H̊ 1+s
(
T

3;R)
)

→
L2
(
R

+;Hs
‖
(
T

3;R3
))

is a bounded linear isomorphism by Proposition B.2, we deduce that
p = 0. We now learn that M (u,ω) = (0,0,0,0), so an application of Theorem 3.10 implies
u = ω = 0. Thus, DQ (0, ζ,0) has trivial kernel and is therefore injective.

We now turn to the proof of surjectivity. Pick data/forcing/microtorquing (u0,ω0, f, g) ∈
Y . Then we have the inclusion
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(u0,ω0,Pf,g) ∈ H 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
⊥
(
T

3;R3
))

× L2
(
R

+;Hs
(
T

3;R3
))

. (4.13)

Again using Theorem 3.10, we can define (u,ω) = M−1 (u0,ω0,Pf,g). We then use Propo-
sition B.2 to define p = �(I − P) f . It follows that (u,ω,p) ∈ X, so

DQ (0, ζ,0) (u,ω,p) = MM−1 (u0,ω0,Pf,g) + (0,0,∇�(I − P) f,0)

= (u0,ω0,Pf,g) + (u0,ω0, (I − P)f, g)

= (u0,ω0, f, g) , (4.14)

and surjectivity is proved.
We now know that DQ(0, ζ,0) is an isomorphism. Consequently, the inverse function

theorem (see, for instance, Theorem 2.5.2 in [2]) provides for the existence of open sets
W ⊆ Y and V ⊆ X satisfying the first three stated results. The fourth item then follows from
the second item and the definition of Q. �

4.2 Stability and Asymptotic Stability

We now turn our attention to the stability and attractiveness of the potential microflows and
nearby solutions.

Theorem 4.4 Let s, q ∈ R
+ ∪ {0} and ζ0, ζ be as in Theorem 4.3. Let X and Y denote

the domain and codomain, respectively, of the map Q from Definition 4.1. Let W ⊆ Y and
V ⊆ X be the open sets from Theorem 4.3. Fix (u0,ω0, f, g) ∈ W and let (u,ω,p) ∈ V be
the associated solution to (1.1) given by Theorem 4.3. Then the following hold.
(1) Stability: There exists a universal constant B ∈ R

+ such that if (v0, χ0, ϕ,ψ) ∈ W and
(v,χ, q) ∈ V is the associated solutions to (1.1) given by Theorem 4.3, then

‖(u − v,ω − χ,p − q)‖X ≤ B ‖(u0 − v0,ω0 − χ0, f − ϕ,g − ψ)‖Y . (4.15)

In particular, the solution (u,ω,p) is stable.
(2) Attractiveness: We have that

lim
t→∞ u (t) = 0 in H̊ 1+s

⊥
(
T

3;R3
)

and lim
t→∞ (ω (t) − ζ (t)) = 0 in H 1+s

(
T

3;R3
)
. (4.16)

Moreover, if s ∈ (1/2,∞), then

lim
t→∞ p (t) = 0 in H̊ 1+s

(
T

3;R) ⇐⇒ lim
t→∞ (I − P) f (t) = 0 in Hs

‖
(
T

3;R3
)
.

(4.17)

(3) Exponential decay without forcing: Suppose that f = g = 0. Then there exists a uni-
versal constant λ ∈ R

+ and a constant K ∈ R
+, depending on ζ0, s, q , and the various

physical parameters, such that for all ϑ ∈ [0,1] we have the exponential decay estimate

‖u (t)‖2
H̊

(1−ϑ)(1+s)
⊥

+ ‖ω (t) − ζ (t)‖2
H(1−ϑ)(1+s)

≤ K exp (−λϑt)
(
‖u0‖2

H̊ 1+s
⊥

+ ‖ω0 − ζ0‖2
H 1+s

)
(4.18)

for almost every t ∈R
+.
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(4) Algebraic decay with forcing: Suppose the forcing and microtorquing decay alge-
braically in the sense that there exist μ,C ∈ R

+ such that
∫

T3
|f (t)|2 + |g (t)|2 ≤ C

(1 + t)μ for a.e. t ∈ R
+. (4.19)

Then there exists a constant K ∈R
+, depending on ‖u0‖H̊ 1+s

⊥
, ‖ω0 − ζ0‖2

H 1+s , ‖f ‖2
L2H̊ s ,

‖g‖2
L2Hs , μ, C, s, q , and the various physical parameters, such that for all ϑ ∈ [0,1]

we have the algebraic decay estimate

‖u (t)‖2
H̊

(1−ϑ)(1+s)
⊥

+ ‖ω (t) − ζ (t)‖2
H(1−ϑ)(1+s) ≤ K

(1 + t)μϑ
for almost every t ∈R

+.

(4.20)
(5) Exponential decay with forcing: Suppose the forcing and microtorquing decay exponen-

tially in the sense that there exist μ,C ∈R
+ such that

∫

T3
|f (t)|2 + |g (t)|2 ≤ C exp (−μt) for a.e. t ∈R

+. (4.21)

Then there exists a constant λ ∈ R
+, depending on μ and the physical parameters,

and a constant K ∈ R
+, depending on ‖u0‖H̊ 1+s

⊥
, ‖ω0 − ζ0‖2

H 1+s , ‖f ‖2
L2H̊ s , ‖g‖2

L2Hs , μ,
C, s, q , and the various physical parameters, such that for all ϑ ∈ [0,1] we have the
exponential decay estimate

‖u (t)‖2
H̊

(1−ϑ)(1+s)
⊥

+ ‖ω (t) − ζ (t)‖2
H(1−ϑ)(1+s) ≤ K exp (−λϑt) (4.22)

for almost every t ∈R
+.

Proof The first item is a mere rephrasing of (4.10) from Theorem 4.3.
We now prove the second item. The assertions in (4.16) follow from the inclusion

(u,ω − ζ ) ∈
(
L2
(
R

+; H̊ 2+s
⊥
)

∩ H 1
(
R

+; H̊ s
⊥
))

× (L2
(
R

+;H 2+s
)∩ H 1

(
R

+;Hs
))

(4.23)
and the second item of Proposition B.4. Next we prove (4.17). Applying (I − P) to the third
component of the identity Q (u,ω,p) = (u0,ω0, f, g) reveals that

∇p = (I − P) (f − u · ∇u) . (4.24)

Hence, by Propositions B.2 and B.3 we find that up to suitable constants A0,A1,A1 ∈ R
+

(independent of time) it holds for almost every t ∈R
+:

‖p (t)‖H̊ 1+s = ‖�(I − P) (f (t) − u (t) · ∇u (t))‖H̊ 1+s

≤ A0

(
‖(I − P) f (t)‖H̊ s‖ + ‖u (t) · ∇u (t)‖H̊ s

)

≤ A1

(
‖(I − P) f (t)‖

H̊ 1+s
‖

+ ‖u (t)‖2
H̊ 1+s

)
(4.25)

and

‖(I − P) f (t)‖H̊ s‖
= ‖∇p (t) + (I − P) (u (t) · ∇u (t))‖H̊ s

≤ A2
(‖p (t)‖H̊ 1+s + ‖u (t)‖2

H̊ 1+s

)
. (4.26)
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In light of (4.16), these estimates imply the equivalence asserted in (4.17). This proves the
second item.

We now turn to the proof of the decay estimates in the third, fourth, and fifth items. We
know from Theorem 4.3 that (0, ζ,0) ∈ V is the solution corresponding to (0, ζ0,0,0) ∈ W .
From this, (4.15), and Proposition B.4 we then find that there is a universal constants K1 ∈
R

+ for which we have the bound

‖u (t)‖2
H̊ 1+s

⊥
+ ‖ω (t) − ζ (t)‖2

H 1+s

≤ K1

(
‖u0‖2

H̊ 1+s
⊥

+ ‖ω0 − ζ0‖2
H 1+s + ‖f ‖2

L2H̊ s + ‖g‖2
L2Hs

)
(4.27)

for t ∈ R
+.

We next study the time evolution of the L2 norms. We have Q (u,ω − ζ,p) =
(u0,ω0 − ζ0, f, g − u · ∇ζ ). With the aid of the Leray projector, this tells us that the pair
(u,ω − ζ ) is a strong solution to the initial value problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divu = 0 in R
+ ×T

3

�∂tu − (ε + κ
2

)
�u − κu + �P (u · ∇u) = f in R

+ ×T
3

j∂t (ω − ζ ) − (α + γ )�(ω − ζ ) − ( α
3 + β − γ

)∇ div (ω − ζ )

+2κ (ω − ζ ) − κ curlu + ju · ∇ (ω − ζ ) = g − ju · ∇ζ in R
+ ×T

3

(u (0) ,ω (0) − ζ (0)) = (u0,ω0 − ζ0) on T 3.

(4.28)

Note that integration by parts shows
∫

T3
P (u · ∇u) · u =

∫

T3
(u · ∇u) · u = −

∫

T3
(u · ∇u) · u (4.29)

and
∫

T3
(u · ∇ (ω − ζ )) · (ω − ζ ) = −

∫

T3
(u · ∇ (ω − ζ )) · (ω − ζ ) , (4.30)

and hence all of these quantities vanish. We may then argue as in Lemmas 3.3 and 3.4 to
arrive at the following differential inequality for almost every t ∈ R

+:

(∫

T3

�

2
|u (t)|2 + j

2
|ω (t) − ζ (t)|2

)′

+ C0

∫

T3

�

2
|u (t)|2 + j

2
|ω (t) − ζ (t)|2 + C1 ‖(u (t) ,ω (t))‖2

H̊ 1⊥×H 1

≤
∫

T3
− (u (t) · ∇ζ (t)) · (ω (t) − ζ (t)) + u (t) · f (t) + (ω (t) − ζ (t)) · g (t) .

(4.31)

Let

C0 = min

{
π2ε

�
,

εκ

2j (ε + κ)

}

, C1 = min

{
π2ε

2
,

εκ

4 (ε + κ)
,2α,3β,2γ

}

, (4.32)

and C2 be an embedding constant from Hq−1
(
T

3;R3
)

↪→ L∞ (
T

3;R3
)

(note q − 1 > 3
2 ).

Using these, Cauchy’s inequality, and the properties of ζ , we may then estimate the forcing
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term:
∫

T3
− (u (t) · ∇ζ (t)) · (ω (t) − ζ (t)) + u (t) · f (t) + (ω (t) − ζ (t)) · g (t)

≤ C0

4

∫

T3

j

2
|ω (t) − ζ (t)|2 + 2

jC0
‖∇ζ (t)‖2

L∞(T3;R3)

∫

T3
|u (t)|2

+ C0

4

∫

T3

�

2
|u (t)|2 + j

2
|ω (t)|2 + 2

C0
max

{
1

�
,

1

j

}∫

T3
|f (t)|2 + |g (t)|2

≤ C0

2

(∫

T3

�

2
|u (t)|2 + j

2
|ω (t) − ζ (t)|2

)

+ 4π2C2

jC0
‖ζ (t)‖2

Hq(T3;R3)

∫

T3
|u (t)|2 + 2

C0
max

{
1

�
,

1

j

}∫

T3
|f (t)|2 + |g (t)|2

≤ C0

2

(∫

T3

�

2
|u (t)|2 + j

2
|ω (t) − ζ (t)|2

)

+ 4π2C2

jC0
exp

(

−4κ

j
t

)

‖ζ0‖2
Hq

∫

T3
|u (t)|2 + 2

C0
max

{
1

�
,

1

j

}∫

T3
|f (t)|2 + |g (t)|2 .

(4.33)

Now define E, ξ,F :R+ →R via

E (t) =
∫

T3

�

2
|u (t)|2 + j

2
|ω (t) − ζ (t)|2 , ξ (t) = C0

2
− 4π2C2

�jC0
exp

(

−4κ

j
t

)

‖ζ0‖2
Hq

(4.34)
and

F (t) = 2

C0
max

{
1

�
,

1

j

}∫

T3
|f (t)|2 + |g (t)|2 . (4.35)

The previous two estimate then imply that

E ′ + ξE ≤ F in R
+. (4.36)

Applying Gronwall’s lemma to (4.36), we find that for almost every t ∈ R
+ we have the

bound
∫

T3
|u (t)|2 + |ω (t) − ζ (t)|2 ≤ exp

(
C2π

2

4C0κ�
‖ζ0‖2

Hq

)

×
(

max {�, j}
min {�, j} exp

(

−C0

2
t

)(∫

T3
|u0|2 + |ω0 − ζ0|2

)

+
∫

(0,t)

exp

(

−C0

2
(t − s)

)

F (s) ds

)

. (4.37)

We now break to cases based on the decay assumptions of the force and microtorque. If
f = g = 0, then (4.18) follows by combining (4.27), (4.37), and the Sobolev interpolation
bound for h ∈ H 1+s

(
T

3;R3
)

‖h‖H(1−ϑ)(1+s) ≤ ‖h‖1−ϑ

H 1+s ‖h‖ϑ

L2 . (4.38)
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Now suppose that f , g decay algebraically, i.e. (4.19) holds. Then we can choose D ∈R
+

such that F (t) ≤ D (1 + t)−μ for almost every t ∈ R
+. Using a change of coordinates, we

can then estimate the convolution-like term appearing above as follows:

∫

(0,t)

exp

(

−C0

2
(t − s)

)

F (s) ds ≤ D exp

(

−C0

2
t

)∫

(
1,exp

( C0
2 t
))

1
(

1 + 2
C0

log (r)
)μ dr.

(4.39)
The right-most integrand is convex over the interval of integration, so we can bound it from
above with a simple two-trapezoid estimate:

∫

(
1,exp

( C0
2 t
))

1
(

1 + 2
C0

log (r)
)μ dr ≤ 1

2

(

exp

(
C0

4
t

)

− 1

)(
1

(
1 + t

2

)μ + 1

)

+ 1

2

(

exp

(
C0

2
t

)

− exp

(
C0

4
t

))(
1

(1 + t)μ + 1
(
1 + t

2

)μ

)

≤ exp

(
C0

4
t

)

+ 2μ + 1

2
exp

(
C0

2
t

)
1

(1 + t)μ

≤ exp

(
C0

2
t

)(

C3 + 2μ + 1

2

)
1

(1 + t)μ , (4.40)

where

C3 = sup
t∈R+

(1 + t)μ exp

(

−C0

4
t

)

∈R
+. (4.41)

Hence, if we let C4 = D
(
C3 + 2μ+1

2

)
, then we can combine these bounds with (4.37) to see

that for t ∈R
+,

∫

T3
|u (t)|2 + |ω (t) − ζ (t)|2

≤ exp

(
C2π

2

4C0κ�
‖ζ0‖2

Hq

)(
max {�, j}
min {�, j} exp

(

−C0

2
t

)∫

T3
|u0|2 + |ω0 − ζ0|2 + C4

(1 + t)μ

)

.

(4.42)

Then (4.20) follows by combining this with (4.27) and (4.38).
Finally, we handle the exponentially decaying case, in which case (4.21) holds. Then we

can pick D ∈R
+ such that F (t) ≤ D exp (−μt) for t ∈ R

+. Now we can explicitly compute

∫

(0,t)

exp

(

−C0

2
(t − s)

)

F (s) ds ≤ D exp

(

−C0

2
t

)∫

(0,t)

exp

((
C0

2
− μ

)

s

)

ds

=

⎧
⎪⎨

⎪⎩

Dt exp
(−C0

2 t
)

if C0
2 = μ

D
exp
(
− C0

2 t
)
−exp(−μt)

μ− C0
2

if C0
2 �= μ.

(4.43)

Using this and the mean-value theorem, we may then argue as above to deduce that (4.22)
holds. �
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Appendix A: Reduction to Velocity Fields with Vanishing Average

The natural setting for the initial data, force, and microtorque in (1.1) is the space

H 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
(
T

3;R3
))× L2

(
R

+;Hs
(
T

3;R3
))

for s ∈R
+ ∪ {0} . (A.1)

However, as we will see below, the corresponding solutions are globally integrable in time if
and only if u0 has vanishing average. It is thus convenient to introduce a change of unknowns
that allows us to reduce to studying this case. This is possible due to the invariance of the
micropolar equations (1.1) under Galilean transformations.

Lemma 1.1 Let s ∈ R
+ ∪ {0}. Suppose that u0,ω0 ∈ H 1+s

(
T

3;R3
)

are initial data with
divu0 = 0, f,g ∈ L2

(
R

+;Hs
(
T

3;R3
))

are forcing and microtorquing with
∫

T3f (t, x)dx=
0 for almost every t ∈R

+. Suppose that (u,ω,p) are a corresponding strong solution triple
to system (1.1). Then the following hold.
(1) For almost every t ∈R

+ it holds that
∫

T3 u (t, x) dx = ∫
T3 u0 (x) dx.

(2) Given any b ∈R
3, the triple (v,χ, q) :R+ ×T

3 → R
3 ×R

3 ×R defined by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v (t, x) = −b + u (t, x + tb)

χ (t, x) = ω (t, x + tb)

q (t, x) = p (t, x + tb)

ϕ (t, x) = f (t, x + tb)

ψ (t, x) = g (t, x + tb)

(A.2)

is a strong solution to system (1.1) with initial data (u0 − b,ω0) and forcing/micro-
torquing (ϕ,ψ). Moreover, if we posit the space-time regularity of (u,ω,p) to be en-
coded with the inclusion:
(

u −
∫

T3
u0,ω,p

)

∈
(
L2
(
R

+; H̊ 2+s
⊥
(
T

3;R3
))∩ H 1

(
R

+; H̊ s
⊥
(
T

3;R3
)))

× (L2
(
R

+;H 2+s
(
T

3;R3
))∩ H 1

(
R

+;Hs
(
T

3;R3
)))×

(
L2
(
R

+; H̊ 1+s
(
T

3;R3
)))

,

(A.3)

then the same inclusion is true for
(
v − ∫

T3 (u0 − b) ,χ, q
)
. Also, (ϕ,ψ) belong to the

same space-time regularity class as (f, g).
As a consequence, to understand the solvability of (1.1) with respect to data and forcing /
microtorquing quadruples belonging to the space

H 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
(
T

3;R3
))× L2

(
R

+;Hs
(
T

3;R3
))

, (A.4)

it is sufficient to understand the system’s solvability for data/forcing/microtorquing belong-
ing to the smaller space

H̊ 1+s
⊥
(
T

3;R3
)× H 1+s

(
T

3;R3
)× L2

(
R

+; H̊ s
(
T

3;R3
))× L2

(
R

+;Hs
(
T

3;R3
))

. (A.5)
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Proof Suppose that we are given a strong solution triple (u,ω,p) corresponding to the data /
forcing / microtorquing quadruple (u0,ω0, f, g) as in the hypotheses. Averaging the second
equation in (1.1), and then integration by parts yields the identity for almost everywhere
on R

+:

0 =
∫

T3
� (∂tu + u · ∇u) −

(
ε + κ

2

)
�u − κ curlω + ∇p

= �

(∫

T3
u

)′
+
∫

T3
udivu = �

(∫

T3
u

)′
. (A.6)

Thus, the first item now follows from the fundamental theorem of calculus.
Now, if μ ∈ N

2 is a multi-index with |μ| ≤ 2, then for almost every (t, x) ∈ R
+ × T

3

we have that ∂μv (t, x) = ∂μu (t, x + tb) and ∂μχ (t, x) = ∂μω (t, x + tb), and ∇q (t, x) =
∇p (t, x + tb). We next compute the discrepancy in the time derivatives: ∂tv (t, x) =
∂tu (t, x + tb) + b · ∇u (t, x + tb), and ∂tχ (t, x) = ∂tω (t, x) + b · ∇ω (t, x + tb). Finally,
using the previous remarks we verify the following equality between the two material deriva-
tive terms:
{

(∂t + v (t, x) · ∇) v (t, x) = ∂tu (t, x + tb) + u (t, x + tb) · ∇u (t, x + tb)

(∂t + v (t, x) · ∇) v (t, x) = ∂tω (t, x + tb) + u (t, x + tb) · ∇ω (t, x + tb) .
(A.7)

Thus, evaluation of the system (1.1) at points (t, x + tb) for (t, x) ∈R
+ ×T

3 yields that the
triple (v,χ, q) is a strong solution to (1.1) with data (u0 − b,ω0) and forcing/microtorquing
(ϕ,ψ). The space-time regularity assertions in the latter part of the second item are now a
trivial verification given that the first item shows that the velocity’s average is constant in
time. The consequence follows by: changing coordinates and unknowns, taking b equal to
the spatial average of u0; solving the new system using the hypothesized solvability of (1.1)
in the average-zero spaces; and finally transforming back with b equal to the negative of the
average of u0 and citing the conclusion of the second item. �

Appendix B: Tools from Analysis

In this section we record a number of analysis results used throughout the paper.

B.1 Real-Valued Distributions and Fourier Coefficients

The following lemma characterizes when a distribution T ∈ D∗ (
T

d;C�
)

is actually R
�-

valued. To state the result we recall a few definitions. First, for a sequence z : Zd → C
� we

define its reflection Rz : Zd → C
� via Rz(k) = z(−k) for k ∈ Z

d . Second, for a distribution
T ∈ D∗ (

T
d;C�

)
we define its complex conjugate as the distribution T ∈ D∗ (

T
d;C�

)
given

by
〈
T ,ψ

〉= 〈T ,ψ
〉

for each ψ ∈ D(Td;C).

Lemma B.1 Let �, d ∈N
+ The following hold.

(1) If f ∈ L2(Td;C�), then f is R�-valued, i.e. f = f , if and only if f̂ ∈ �2(Zd;C�) satisfies

f̂ = Rf̂ .

(2) If T ∈ D∗ (
T

d;C�
)
, then T is R�-valued, i.e. T = T , if and only if T̂ = RT̂ holds on the

lattice Z
d .
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Proof If f = f , then we have that

f̂ (k) =
∫

Td

f (x)ek (x) dx =
∫

Td

f (x)ek (x)dx = f̂ (−k), (B.1)

and if f̂ = Rf̂ , then for almost every x ∈ T
d

f (x) =
∑

k∈Zd

f̂ (k)e−k (x) =
∑

k∈Zd

f̂ (−k)e−k (x) =
∑

k∈Zd

f̂ (k)ek = f (x). (B.2)

This proves the first item.
We now turn to the proof of the second item. If ψ ∈ D

(
T

d;C), then the series
∑

k∈Zd ψ̂ (k) ek converges absolutely in the topology of Hs
(
T

3;C�
)

for all s ∈ R. In par-
ticular, for each m ∈N we have the convergence:

lim
K→∞

⎡

⎢
⎢
⎣ψ −

∑

k∈Zd

|k|≤K

ψ̂ (k) ek

⎤

⎥
⎥
⎦

m

= 0, (B.3)

where [·]m is the seminorm from Definition 1.1. Thus, given T ∈ D∗ (
T

d;C�
)

such that

T̂ = RT̂ , we can compute its action on ψ via the series:

〈T ,ψ〉
= lim

K→∞

∑

k∈Zd

|k|≤K

ψ̂ (k) 〈T , ek〉 = lim
K→∞

∑

k∈Zd

|k|≤K

ψ̂ (k) T̂ (−k)

= lim
K→∞

∑

k∈Zd

|k|≤K

ψ̂ (k)RT̂ (k) = lim
K→∞

∑

k∈Zd

|k|≤K

ψ̂ (k) T̂ (k)

= lim
K→∞

∑

k∈Zd

|k|≤K

ψ̂ (−k) T̂ (k) = lim
K→∞

∑

k∈Zd

|k|≤K

ψ̂ (−k) 〈T , e−k〉 =
〈

T , lim
K→∞

∑

k∈Zd

|k|≤K

ψ̂ (k) ek

〉

= 〈T ,ψ
〉= 〈T ,ψ

〉
. (B.4)

This gives the sufficient condition for the second item. To see that it is also necessary, sup-
pose now that we have T ∈ D∗ (

T
d;C�

)
satisfying T = T . We compute for k ∈ Z

d :

T̂ (k) = 〈T , e−k〉 = 〈T , ek〉 = 〈T , ek

〉= 〈T , ek〉 = T̂ (−k) = RT̂ (k) . (B.5)
�

B.2 Fractional Sobolev Spaces

Here we record some results in fractional Sobolev spaces, as defined in Definition 1.3.
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Proposition B.2 Let s ∈R. Then the map � : Hs
‖
(
T

3;R3
)→ H̊ 1+s

(
T

3;R) defined by

�f =
∑

k∈Z3\{0}

(
k · f̂ (k)

2πi |k|2
)

ek (B.6)

is well-defined, bounded, and linear, and ∇�f = f for all f ∈ Hs
‖
(
T

3;R3
)
. Moreover, �

extends to a bounded linear map from L2
(
R

+;Hs
‖
(
T

3;R3
))

to L2
(
R

+; H̊ 1+s
(
T

3;R)
)

with

the same properties.

Proof First we compute

‖�f ‖2
H̊ 1+s =

∑

k∈Z3\{0}
|k|2+2s

∣
∣
∣
∣
∣

k · f̂ (k)

2πi |k|2
∣
∣
∣
∣
∣

2

≤ 1

4π2

∑

k∈Z3\{0}
|k|2s

∣
∣
∣f̂ (k)

∣
∣
∣
2 = 1

4π2
‖f ‖2

H̊ s , (B.7)

and then we use Lemma B.1 to see that

�̂f (k) = −k · f̂ (k)

2πi |k|2 = −k · f̂ (−k)

2πi |−k|2 = �̂f (−k), (B.8)

which then implies that �f is a real-valued distribution. From this we deduce that � is a
well-defined bounded linear map. Then for f ∈ Hs

‖
(
T

3;R3
)

we compute

∇̂�f (k) = 2πik
k · f̂ (k)

2πi |k|2 = k ⊗ k

|k|2 f̂ (k), (B.9)

to deduce that ∇�f = (I − P)f = f . The extension result then follows trivially. �

Next we record a useful product estimate in fractional Sobolev spaces.

Proposition B.3 Let d ∈ N
+, and suppose that s, t ∈ R

+ ∪ {0} satisfy s > d
2 and s ≥ t .

Then there exists a constant C > 0, depending on s and t , such that if f ∈ Hs
(
T

d
)

and
h ∈ Ht

(
T

d
)
, then f h ∈ Ht

(
T

d
)

and

‖f h‖Ht ≤ C ‖f ‖Hs ‖h‖Ht . (B.10)

Proof Since s > d/2 we have that Hs(Td) is an algebra and that Hs(Td) ↪→ C0
b (Td). Con-

sequently, for a fixed f ∈ Hs(Td), if we define the linear operator Tf via Tf g = fg, then
Tf is bounded linear map from L2

(
T

d
)

to L2
(
T

d
)

and from Hs
(
T

d
)

to Hs
(
T

d
)

satisfying
∥
∥Tf

∥
∥
L(L2)

≤ ‖f ‖C0
b
� ‖f ‖Hs and

∥
∥Tf

∥
∥
L(Hs )

� ‖f ‖Hs . (B.11)

If s = t , then we’re done. Otherwise 0 < t < s, and so the theory of complex interpolation
(see, for instance, Theorem 6.23 in [9]) implies that Tf is a bounded linear map from Ht(Td)

to Ht(Td) and that there exists θ ∈ (0,1), depending on t , s, such that

∥
∥Tf

∥
∥
L(H t )

≤ C
∥
∥Tf

∥
∥θ

L(L2)

∥
∥Tf

∥
∥1−θ

L(Hs )
≤ C ‖f ‖Hs (B.12)

for a constant C > 0 depending only on s, t . Then for h ∈ Ht(Td) we have that f h = Tf h ∈
Ht(Td) with the stated estimate. �
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B.3 Space-Time Sobolev Spaces

Here we consider some useful embedding properties of the space-time Sobolev spaced de-
fined in Definition 1.6.

Proposition B.4 Suppose that r ∈R, n ∈N, and I = (0, T ) for T ∈ (0,∞]. Then following
hold.
(1) For every N � k ≤ n and for all f ∈ L2

(
I ;H 2+r

(
T

3;R3
)) ∩ Hn+1

(
I ;Hr−2n

(
T

3;R3
))

we have that f ∈ Hk
(
I ;H 2+r−2k

(
T

3;R3
))

. Moreover, there exists a constant C inde-
pendent of f such that

‖f ‖HkH 2+r−2k ≤ C
(‖f ‖L2H 2+r + ‖f ‖Hn+1Hr−2n

)
. (B.13)

(2) If N � k ≤ n, then for every f ∈ L2
(
I ;H 2+r

(
T

3;R3
)) ∩ Hn+1

(
I ;Hr−2n

(
T

3;R3
))

we
may redefine f on a null set to arrive at the inclusion f ∈ UCk

b

(
I ;Hr−2k+1

(
T

3;R3
))

.
Moreover, there exists a constant C depending on only k such that

‖f ‖Ck
b
Hr−2k+1 ≤ C

(‖f ‖L2H 2+r + ‖f ‖Hn+1Hr−2n

)
. (B.14)

Finally, if T = ∞, then we have limt→∞ ‖f (t)‖Hr−2k+1 = 0.

Proof This is proved in Theorem 2.3 and 3.1 of [13]. �
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