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Abstract
Highly unconventional behavior of the thermodynamic response functions has been
experimentally observed in a narrow gap semiconductor samarium hexaboride. Motivated by
these observations, we use renormalization group technique to investigate many-body
instabilities in the f-orbital narrow gap semiconductors with band inversion in the limit of
weak coupling. By projecting out the double occupancy of the f-states we formulate a
low-energy theory describing the interacting particles in two hybridized electron- and hole-like
bands. The interactions are assumed to be weak and short-ranged. We take into account the
difference between the effective masses of the quasiparticles in each band. Upon carrying out
the renormalization group analysis we find that there is only one stable fixed point
corresponding to the excitonic instability with time-reversal symmetry breaking for small
enough mismatch between the effective masses.

Keywords: strongly correlated electronic systems, Kondo insulators, topological materials

(Some figures may appear in colour only in the online journal)

1. Introduction

Anomalous behavior of thermodynamic response functions
at low temperatures more often than not remains a hallmark
of strong interparticle correlations in quantum materials [1].
Amongmany examples of suchmaterials are cerium- and iron-
based superconductors which develop superconducting order
and exhibit unusual temperature dependence in heat capac-
ity and in London penetration depth correspondingly [2–6].
These thermodynamic anomalies are likely governed by the
system’s proximity to the underlyingmagnetic quantum phase
transition which mediates a strong interactions between the
constituent quasiparticles [7–10].

Correlated insulators, just like superconductors discussed
above, may also exhibit anomalous thermodynamic properties
which are not necessarily related to the strong exchange inter-
actions between the local magnetic moments. In a most recent
example, quantum oscillations in magnetization and a low-
temperature upturn in the heat-capacity have been observed in
a correlated narrow gap semiconductor samarium hexaboride

∗ Author to whom any correspondence should be addressed.

[11, 12]. The experimental interest in thismaterial, which dates
back to 1960s [13, 14], has been recently revived in relation to
its unconventional transport properties: below T ∗ � 5 K the
Ohm’s law breaks down so that the bulk develops a gap with
respect to the current carrying excitations while only surfaces
remain metallic [15]. Theory proposals which would explain
such a behavior focus on the possibility of the inversion of
even- and odd-parity bands in the high-symmetry points of the
Brillouin zone [16–20]. As a result of the band inversion, the
surfaces of the sample remain metallic even though the bulk
remains fully insulating.

The model with an inverted band structure can also be used
in the calculation of the quantum oscillations in magnetiza-
tion [21–26]. A self-consistent theory of the low-temperature
upturn in the heat capacity likely demands that one would
need to go beyond a non-interacting low-energy theory. Such
an attempt was made by Knolle and Cooper, who formulated
a low-temperature theory first by projecting out the double
occupation on the f-orbitals and, then included the interac-
tion terms, which ultimately lead to the formation of excitons
and magnetoexcitons [27]. It is not a priori clear, however,
which instability—if any of the two—would be the leading
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one. Furthermore, onemay consider a scenario in which super-
conductivity competes with the excitonic-type of instability
upon doping these materials with carriers.

In what follows, we address this problem by formulating
the low-energy theory with an effective action which includes
the short-ranged interactions allowed by symmetry of the
problem. Specifically, we consider a generic two-band model
with a hybridization gap as a starting point. The one band
is assumed to be electron-like, while the other one is hole-
like. The hybridization depends linearly on momentum,which
corresponds to the case of the d- and f-orbital bands, while
the parabolic dispersion relation is assumed for both bands.
We will not make any specific assumptions on the position
of the chemical potential at the beginning of the renormal-
ization group (RG) flow. Importantly, since within our the-
ory the band parameters as well as hybridization amplitude
have been renormalized from their bare values by projecting
out the doubly occupancy on f-orbitals, so that the effective
masses for conduction and valence band quasiparticles are not
equal. Consequently, the emergingmany-body instabilities can
be studied by employing the RG technique [28]. We find that
for an arbitrary ratio between the effective masses of the con-
duction and valence bands there is a fixed point which cor-
responds to an instability favoring the formation of magnetic
excitons.

This paper has been structured as follows. In the next
section we provide the details on the model, discuss the rel-
evant approximations and write down the low-energy theory
with the two-particle interactions included. In section 3 we
analyze the low-energy theory using the RG approach and
derive the RG flow equations for the corresponding coupling
constants in both particle–hole and particle–particle chan-
nels. Section 4 is devoted to the discussion of the results and
conclusions.

2. Model

When discussing the materials with partially filled f-orbitals,
the Anderson lattice model is usually the starting point. Since
the contact interactions between the f-electrons is the largest
energy scale in the problem, in order to formulate the low-
energy theory one usually projects out the doubly occupied
states on f-orbitals [1]. This procedure leads to the renormal-
ization of the parameters in the Anderson model Hamiltonian.
This low-energy model Hamiltonian is our starting point.

2.1. Single-particle action

We consider the following single particle Hamiltonian
[20, 25]:

Ĥ0 =
∑
k

Ψ†
a(k)

[
εc(k)τ̂ 0 Φ̂k

Φ̂†
k −ε f (k)τ̂ 0

]
ab

Ψb(k), (1)

where Ψ†
k = (c†k↑, c

†
k↓, f †k↑, f †k↓), k = (kx, ky, kz) is the

momentum, τ̂ 0 is a 2 × 2 unit matrix, Φ̂k is a 2 × 2 hybridiza-
tion matrix to be specified below and c, f are fermionic
annihilation operators for the conduction and valence bands.

Figure 1. Schematic plot of the band structure corresponding the
tight-binding limit of the model Hamiltonian (1). Here t is
determined by the band widthW of the conduction (d-orbital band),
t = W/6.

It is convenient to write the single particle dispersion relation
as [25]

εc(k) =
k2

2mc
+
Eg

2
+ μ0, ε f (k) =

k2

2mf
+
Eg

2
− μ0,

(2)
where Eg < 0 is the energy gap, μ0 is the energy shift and it is
implicitly assumed thatmf > mc. It will be convenient to intro-
duce m±

−1 = mc
−1 ± mf

−1 and k2F = −2m+Eg. If we now set
μ0 = −k2F/4m− it follows

εc(k) =
k2 − k2F
4m+

+
k2 − k2F
4m−

≡ ξk + εk,

ε f (k) =
k2 − k2F
4m+

− k2 − k2F
4m−

≡ εk − ξk. (3)

The specific form and momentum dependence of matrices
entering into (1) is determined by the type of the hybridizing
orbitals. Herewe consider the fairly standard form correspond-
ing to the hybridization between even- and odd-parity orbitals
with angular momentum transfer ofΔl = 1:

Φ̂k = V

(
kz kx − iky

kx + iky −kz

)
. (4)

With the help of the Dirac matrices, listed in the
appendix A, the single-particle part of the action reads

S0 =
∫
x
Ψ†(x)

(
∂

∂τ
− μ+ ξk̂𝟙4 +

3∑
a=0

Σada
k̂

)
Ψ(x), (5)

where μ is the chemical potential, x = (r, τ ) and

Σ0 = γ0, Σ1 = γ0γ1, Σ2 = γ0γ2, Σ3 = γ0γ3,

d0k = εk, d1k = Vkx, d2k = Vky, d3k = Vkz. (6)

Clearly, when mc = mf , the term proportional to 𝟙4 is zero.
The plot of the band structure corresponding to the model
Hamiltonian (1) is shown in figure 1.
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2.2. Interactions

The most general form of the Lagrangian density describing
weak repulsive interactions is [29, 30]

Lint = g̃1
(
Ψ†Ψ

)2
+ g̃2

(
Ψ†τ1σ0Ψ

)2
+ g̃3

(
Ψ†τ2σ0Ψ

)2
+ g̃4

(
Ψ†τ3σ0Ψ

)2
+ g̃5

[(
Ψ†τ2σ1Ψ

)2
+
(
Ψ†τ2σ2Ψ

)2
+
(
Ψ†τ2σ3Ψ

)2]
+ g̃6

[(
Ψ†τ3σ1Ψ

)2
+
(
Ψ†τ3σ2Ψ

)2
+
(
Ψ†τ3σ3Ψ

)2]
+ g̃7

[(
Ψ†τ0σ1Ψ

)2
+
(
Ψ†τ0σ2Ψ

)2
+
(
Ψ†τ0σ3Ψ

)2]
+ g̃8

[(
Ψ†τ1σ1Ψ

)2
+
(
Ψ†τ1σ2Ψ

)2
+
(
Ψ†τ1σ3Ψ

)2]
.

Here �τ are Pauli matrices act in the band space, while �σ are
Pauli matrices in spin space. Since L = T − U, the generic
behavior corresponds to the case when all coupling constants
g̃i are negative, i.e. all interactions are assumed to be repul-
sive from the outset. Furthermore, I introduce basis matrices
�Γ according to

Γ1 = 𝟙4, Γ2 = τ0σ1, Γ3 = τ0σ2, Γ4 = τ0σ3,

Γ5 = τ1σ0, Γ6 = τ1σ1, Γ7 = τ1σ2, Γ8 = τ1σ3,

Γ9 = τ2σ0, Γ10 = τ2σ1, Γ11 = τ2σ2, Γ12 = τ2σ3,

Γ13 = τ3σ0, Γ14 = τ3σ1, Γ15 = τ3σ2, Γ16 = τ3σ3. (7)

Importantly, each of these matrices satisfies

(Γa)† = Γa = (Γa)−1. (8)

Below we will show that not all interaction terms are inde-
pendent from each other and, as a result, equation (7) can be
further simplified [29–31].

2.3. Fierz identity

Thus, we have eight coupling constants, g j < 0, However, only
four of these matrices (and the corresponding couplings) are
independent. To prove this, let us employ the following Fierz
identity[29–31]

(
Ψ†(x)MΨ(x)

) (
Ψ†(y)MΨ(y)

)
= − 1

16

∑
ab

Tr
(
MΓaMΓb

) [
Ψ†(x)ΓbΨ(y)

]
×
[
Ψ†(y)ΓaΨ(x)

]
(9)

along with the relation

δilδk j =
1
4

16∑
a=1

ΓaikΓ
a
jl. (10)

Figure 2. RG flow of the coupling constant ratios for the case of
small mismatch between the effective masses, η = 0.125. We find
that there are six fixed points overall in this case. Five fixed points
(light green circles) are always unstable. The remaining one (solid
red circle) is stable when g4 > 0 and becomes unstable when
g4 < 0. Without loss of generality we chose to limit the presentation
to a case of g2 = g3 = g2(3) and we also assumed that at the
beginning of the RG flow (mΛ/4π2)g4 = 0.1.

Consider now the following vector

�V =
{(

ΨΓ1Ψ
)2
,
(
ΨΓ2Ψ

)2
+
(
ΨΓ3Ψ

)2
+
(
ΨΓ4Ψ

)2
,

(
ΨΓ5Ψ

)2
,
(
ΨΓ6Ψ

)2
+
(
ΨΓ7Ψ

)2
+
(
ΨΓ8Ψ

)2
,(

ΨΓ9Ψ
)2
,
(
ΨΓ10Ψ

)2
+
(
ΨΓ11Ψ

)2
+
(
ΨΓ12Ψ

)2
,(

ΨΓ13Ψ
)2
,
(
ΨΓ14Ψ

)2
+
(
ΨΓ15Ψ

)2
+
(
ΨΓ16Ψ

)2}
.

This choice is matched by the following vector of couplings
�g = (g̃1, g̃7, g̃2, g̃8, g̃3, g̃5, g̃4, g̃6). Employing (9) along with the
definition of vector �V above, the following system of linear
equations

∑8
j=1Fi jV j = 0 obtains with

F =
1
8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 1 1 1 1
3 3 3 −1 3 −1 3 −1
1 1 5 1 −1 −1 −1 −1
3 −1 3 3 −3 1 −3 1
1 1 −1 −1 5 1 −1 −1
3 −1 −3 1 3 3 −3 1
1 1 −1 −1 −1 −1 5 1
3 −1 −3 1 −3 1 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

the eigenvalues of this matrix is�λ = (1, 1, 1, 1, 0, 0, 0, 0).Since
there are four zero eigenvalues, we have only four indepen-
dent coupling constants. It will be convenient to keep the
interaction terms with couplings g̃1, g̃2, g̃3 and g̃4. Lastly,
with the help of (11) we can express the remaining inter-
action terms in terms of the independent ones, which is
equivalent to the following change of the coupling con-
stants: g1 = g̃1 − g̃5 − g̃6 − 2g̃7 − g̃8, g2 = g̃2 + g̃5 + g̃6 −
g̃7 − 2g̃8, g3 = g̃3 − 2g̃5 + g̃6 − g̃7 + g̃8 and g4 = g̃4 + g̃5 −
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2g̃6 − g̃7 + g̃8. Thus, the interaction part of the Lagrangian
density becomes

Lint(r, τ ) = g1
(
Ψ†Ψ

)2
+ g2

(
Ψ†τ1σ0Ψ

)2
+ g3

(
Ψ†τ2σ0Ψ

)2
+ g4

(
Ψ†τ3σ0Ψ

)2
. (12)

Note, that even though g̃ j < 0, the renormalized coupling
constants gi can be either positive or negative.

3. Renormalization group analysis

In what follows we adopt the RG procedure which closely
follows the one presented in references [30, 31].

3.1. Scaling at the tree level

Each fermionic field is separated into slow (k < Λ/s) and fast
(Λ/s < k < Λ) mode, Ψ = Ψ< +Ψ>. At the tree level, we
need to integrate out the fermions within the shell of momenta
Λ/s < |k| < Λ. I have

S0< =

β∫
0

dτ
∫
|k|<Λ/s

d3k
(2π)3

Ψ†
<(k, τ )

(
∂

∂τ
− μ

+ ξk𝟙4 +
∑
a

Σadak

)
Ψ<(k, τ ). (13)

Let us rescale momentum back to its initial region k′ � Λ
with k = k′/s and τ = s2τ ′ and replace the fermionic fields
accordingly to keep the action invariant:

Ψ(k′, τ ′) =
1
ζ
Ψ<(k′/s, s2τ ′). (14)

It follows

S0 =
ζ2

s3

β/s2∫
0

dτ
∫
|k|<Λ

d3k
(2π)3

Ψ†(k, τ )

(
∂

∂τ
− s2μ

+Σ0d0k + s
3∑

a=1

Σadak

)
Ψ(k, τ ). (15)

Thus, the action remains invariant under the following
scale transformation (s = et): T ′ = s2T, μ′ = s2μ, V ′ = sV ,
m′

± = s2m±, k′F = skF, ζ = s3/2, where the last expression
ensures that the action will remain invariant and T is the
temperature. Clearly, with respect to tree-level perturbations,
hybridization coupling V is a relevant variable under the RG
flow. However, hybridization grows slower than the chemical
potential.

3.2. RG equations: particle–hole channel

We now proceed with expanding the action in the powers of
the interaction up to the second order in powers of gj’s and
integrating out the ‘fast’ modes. The effective action in terms
of the ‘slow’ modes is

〈
e−S[Ψ]

〉
0>

= e−S0[Ψ<]−Sint[Ψ<]〈e−Sint[Ψ< ,Ψ>]〉0>

= e−S0[Ψ<]−δS[Ψ<], (16)

where the 〈. . .〉0 denotes the averaging over the Gaussian
action and the interaction part of the action Sint is determined
by the Lagrangian density (12).

We continue with the computation of the average over
the fast modes (16) using the cumulant expansion. Integrat-
ing out the fast modes in the momentum shell k ∈ [Λ/s,Λ]
and rescaling the resulting correction to the effective action
using (14) one may find the corrections to the coupling
constants. The details of the calculation are presented in
appendix B. The resulting flow equations for the four coupling
constants are

dg1
d ln s

= −mΛ
4π2

[
2g1g4 + η(g1 + g4)

2

+ η
(
g2 − g3)2

)]
,

dg2
d ln s

=
mΛ
2π2

[
(1− η)g1g2 + ηg1g3 + (1+ η)g3g4

− g2g3 − (2+ η)g2g4 − g22
]
,

dg3
d ln s

=
mΛ
2π2

[
(1− η)g1g3 + ηg1g2 + (1+ η)g2g4

− g2g3 − (2+ η)g3g4 − g23
]
,

dg4
d ln s

= −mΛ
4π2

{
(1+ η)

[
g21 + (g2 − g3)

2 + g24
]

+ 2ηg1g4
}
. (17)

Here we use m = m+ for brevity, Λ is the ultraviolet cutoff.
Note, that the second and third equation are symmetric with
respect to g2 ↔ g3. Lastly, parameter η describes themismatch
between the effective masses, equation (B23), so that the case
of two bands with equal effective masses corresponds to the
limit η → 0.

To analyze equation (17) it will be convenient to work
with the coupling ratios [31]. It will be convenient to choose
the following coupling ratios: v1 = g1/g4, v2 = g2/g4 and
v3 = g3/g4. The flow equations in terms of these variables are
easily derived from (17), so we will write these compactly as

g4
dv1
dg4

= R1(η; v1, v2, v3)− v1,

g4
dv2
dg4

= R2(η; v1, v2, v3)− v2,

g4
dv3
dg4

= R2(η; v1, v3, v2)− v3. (18)

Since the second and third equations are symmetric with
respect to an interchange of v2 and v3, we can determine the
fixed points analytically since in order to satisfy the second
and third equation simultaneously, we need to require that
v∗2 = v∗3 = v∗⊥. The fixed point for the first equation is given

4
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by the roots of the following equation:

(v∗1 − 1)(v∗1 + 1)

(
v∗1 +

η

1+ η

)
= 0, (19)

while the fixed point for the remaining two equations is either
v∗⊥ = 0 or v∗⊥ = (1/4)[(1+ η)(v∗1 + 1)2 − 2]. Thus, indepen-
dent of the value of the parameter η, equation (19), there are
six fixed points.

Our stability analysis of the flow equations around each
fixed point shows that there is only one stable fixed point

(‘sink’),
(
− η

1+η , 0, 0
)
when the initial value of the coupling

constant g4 > 0. The remaining five fixed points are all unsta-
ble at least in one of the directions in the space of coupling con-
stants. When the initial value of the coupling g4 < 0 the flow
of the couplings reverses and a stable fixed point becomes a
source. The resulting RG flow diagram is presented in figure 2.

Given the nature of the materials under discussion, this case
is not physically relevant for us. Nevertheless, for complete-
ness, we note that the value of |g1/g4| at the stable fixed point
equals zero for η = 0 and then it increases with an increase
in η, which means that in the absence of mass anisotropy the
stable fixed point is a non-interacting one, provided g4 > 0.
Lastly, we note that the chemical potential does not effect the
flow of the coupling constants as long as μ � Λ2

2m holds.

3.3. Particle–hole channel susceptibilities

To investigate the leading instability at the stable fixed point
in the particle–hole channel we need to analyze the flow of
the corresponding susceptibilities. To do that, we modify the
action S→ S +ΔS with [31]

ΔSp–h = −χ(1)
ph

∫
dτ
∫

d3k
(2π)3

Ψ†(k, τ )Ψ(k, τ )

−
16∑
a=2

χ(a)
ph

∫
dτ
∫

d3k
(2π)3

Ψ†(k, τ )Γ̂aΨ(k, τ ).

(20)

Each terms here can be written as a sum of two momentum
integrals: one with k � Λ/s and another with Λ/s � k � Λ.
The goal is to determine the change of the susceptibilities
under the RG flow by perturbation theory in powers of the
coupling constants. The flow equations for the susceptibili-
ties are obtained by expanding the exponent (16) in powers
of Sint[Ψ<,Ψ>]+ΔS[Ψ>] and integrating fermions whose
momenta lie in the outer shell Λ/s � k � Λ. Thus the part of
the action with the susceptibilities becomes

ΔSp−h = s2
β∫
0

dτ
∫
|k|�Λ

d3k
(2π)3

16∑
a=1

χ(a)
ph

{
Ψ†
kΓ̂

aΨk

+
∑
S
gSΠΓaSΨ

†
kΓ̂

aΨk −
∑
S
gSΨ

†
kΥΓaSΨk

}
,

(21)

where k = (k, τ ), the summation is performed over the set
S = {Γ1,Γ5,Γ9,Γ13} and we use the following notations

ΠUS =

∞∫
−∞

dωn
2π

∫
Λ/s�p�Λ

Tr
[
Gp(iωn)UGp(iωn)S

]
,

ΥUS =

∞∫
−∞

dωn
2π

∫
Λ/s�p�Λ

SGp(iωn)UGp(iωn)S.

After we rescale the momenta and the fermionic fields so that
the action takes its original form, the following equations for
the corresponding susceptibilities are

d ln χ( j)
ph

d ln s
= 2, (1 � j � 4, 13 � j � 16),

d ln χ(5)
ph

d ln s
= 2+

mΛ
2π2

(1− v1 + 3v2 + v3)g4,

d ln χ(6,7,8)
ph

d ln s
= 2+

mΛ
2π2

(1− v1 − v2 + v3)g4,

d ln χ(9)
ph

d ln s
= 2+

mΛ
2π2

(1− v1 − v2 + 3v3)g4,

d ln χ(10,11,12)
ph

d ln s
= 2+

mΛ
2π2

(1− v1 + v2 − v3)g4. (22)

By performing the numerical solution of the flow equation (17)
around the stable fixed point, we find that when both
v2(s) and v3(s) approach zero from above or when v3(s)
approaches zero from above, while v2(s) approaches zero
from below, the fastest growing susceptibility corresponds
to the order parameter φs = 〈Ψ†

α((τ1 ± iτ2)σ0)αβΨβ〉, which
describes the spin-singlet excitonic order. In the opposite
case, when both v2(s) and v3(s) approach zero from below
the fastest growing susceptibility describes the emergence
of the magneto-excitonic order with the order parameter
�φt = 〈Ψ†

α((τ1 ± iτ2)�σ)αβΨβ〉. Thus, we confirm that the lead-
ing instabilities in the particle–hole channel are the insta-
bilities leading to the formation of an excitonic insulator. It
remains to be seen whether the superconducting instability
may develop faster or not.

3.4. Particle–particle channel: renormalization group
equations

In order to investigate the superconducting instability, the
Lagrangian density (12) can be recast into the form describ-
ing the interactions in the particle–particle channel. This goal
can be accomplished with the help of the Fierz identity

(
Ψ†(x)MΨ(x)

) (
Ψ†(x)MΨ(x)

)
=

1
16

∑
ab

Tr
(
ΓaMΓbMT

)
×
(
Ψ†(x)ΓaΨ∗(x)

)
×
(
ΨT(x)ΓbΨ(x)

)
. (23)

The fermionic nature of the fieldsΨ implies that the only non-
vanishing terms are those with Γa such that Γai j = −Γaji: this

5
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Figure 3. RG flow of the coupling constant ratios in the
particle–particle channel for the case of small mismatch between
the effective masses, η = 0.125. We find that there are six fixed
points overall in this case. Five fixed points (solid orange circles) are
always unstable. The remaining one (solid red circle) is stable when
u4 < 0 and becomes unstable when u4 > 0. Without loss of
generality we chose to limit the presentation to a case of
u1 = u2 = us and we also assumed that at the beginning of the RG
flow (mΛ/4π2)u4 = −0.1.

relation holds for only six matrices (a = 3, 7, 9, 10, 12, 15).
Furthermore, with the help of the Fierz identities we have

⎡
⎢⎢⎢⎣

(
Ψ†Ψ

)2(
Ψ†τ1σ0Ψ

)2(
Ψ†τ2σ0Ψ

)2(
Ψ†τ3σ0Ψ

)2

⎤
⎥⎥⎥⎦

=
1
4

⎛
⎜⎜⎝

1 1 1 1 1 1
1 1 −1 −1 −1 −1
−1 1 −1 −1 −1 1
1 −1 −1 −1 −1 1

⎞
⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎢⎢⎣

(
Ψ†(x)Γ3Ψ∗(x)

) (
ΨT(x)Γ3Ψ(x)

)(
Ψ†(x)Γ7Ψ∗(x)

) (
ΨT(x)Γ7Ψ(x)

)(
Ψ†(x)Γ9Ψ∗(x)

) (
ΨT(x)Γ9Ψ(x)

)(
Ψ†(x)Γ10Ψ∗(x)

) (
ΨT(x)Γ10Ψ(x)

)(
Ψ†(x)Γ12Ψ∗(x)

) (
ΨT(x)Γ12Ψ(x)

)(
Ψ†(x)Γ15Ψ∗(x)

) (
ΨT(x)Γ15Ψ(x)

)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(24)

Introducing the following notations:

S1(r, τ ) = iΨT(x)Γ3Ψ(x) = ΨT(x)(iτ0σ2)Ψ(x),

S2(r, τ ) = iΨT(x)Γ15Ψ(x) = ΨT(x) (iτ3σ2)Ψ(x),

T3(r, τ ) = iΨT(x)Γ7Ψ(x) = ΨT(x) (iτ1σ2))Ψ(x),

T (1)
4 (r, τ ) = iΨT(x)Γ9Ψ(x) = ΨT(x) (iτ2σ0)Ψ(x),

T (2)
4 (r, τ ) = iΨT(x)Γ10Ψ(x) = ΨT(x) (iτ2σ1)Ψ(x),

T (3)
4 (r, τ ) = iΨT(x)Γ12Ψ(x) = ΨT(x) (iτ2σ3)Ψ(x).

we can now write down the Lagrangian density describing the
interactions in the particle–particle channel:

Lint =

2∑
j=1

u jS†
j (r, τ )S j(r, τ )+ u3T †

3 (r, τ )T3(r, τ )

+ u4

3∑
m=1

T (m)†
4 (r, τ )T (m)

4 (r, τ ). (25)

where the newly introduced (pairing) coupling constants
are u1 = (g1 + g2 − g3 + g4)/4, u2 = (g1 − g2 + g3 + g4)/4,
u3 = (g1 + g2 + g3 − g4)/4 and u4 = (g1 − g2 − g3 − g4)/4.
Thus, just like in the case of particle–hole channel, we have
ended up with four independent couplings. By expanding the
operators (25) we can interpret S1(r, τ ) as the pairing operator
in the s-wave channel, while S2(r, τ ) as the pairing operator
leading to s±-wave pairing. The remaining operators account
for the pairing in either odd-parity and/or spin-triplet channel.

The RG equations for the couplings uj can now be derived
following the same procedure used to derive equation (17). It
is worthmentioning here that in this case, that the first four dia-
gram in figure 5 give the same contribution (up to a numerical
pre-factor) to the effective action and, importantly, only a con-
tribution from the diagram (E) contains the mass anisotropy
parameter η. The resulting RG equations in this case read:

du1
d ln s

=
mΛ
2π2

[
(u1 − u2)(u3 + 3u4)− 2(1+ 2η)u21

]
,

du2
d ln s

=
mΛ
2π2

[
(u2 − u1)(u3 + 3u4)− 2(1+ 2η)u22

]
,

du3
d ln s

=
mΛ
4π2

[
(u1 − u2)2 + u23 − 3u24 + 6u3u4

]
,

du4
d ln s

=
mΛ
4π2

[
(u1 − u2)2 + (u3 − u4)2 + 4u24

]
. (26)

As we have mentioned above these equations have been
obtained independently of our earlier calculation, so one can
readily check that upon expressing the coupling u j’s in terms
of the coupling constants gj’s for the particle–hole channel
interactions, we recover the RG equation (17).

The fixed point(s) of the equations above (26) can be found
using the same strategy as we have used above. Since the
right-hand side of the last equation (26) can be written as a
sum of the squares, we consider the ratio of the couplings
λa = ua/u4. We find that just like in the particle–hole case,
there are six fixed points: five unstable ones and one sta-
ble (‘sink’) when initial value of the coupling u4 < 0. The
results for the flow of the couplings are presented in figure 3.
The stable fixed point—‘sink’—is determined by λ∗

3 = 1 and
λ∗
1 = λ∗

2 = (1/4)(2λ∗
3 − (λ∗

3)
2 − 5)/(1+ 2η).

3.5. Particle–particle channel susceptibilities

To determine the leading channel for the pairing instabil-
ity, we need to evaluate the corresponding susceptibilities.
Introducing the source terms into the action

ΔSp–p = −
∑
i

ΔΓi

∫
k
ΨT (k, τ ) Γ̂iΨ (k, τ ) , (27)

6
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Here the summations is performed over matrices i = 3, 7,
9, 10, 12, 15 and k = (τ , k). The subsequent calculation is
completely analogous to the one above for the susceptibilities
in the particle–hole channel. Specifically, after integrating out
the fast modes for the renormalization of the source term (20)
and keeping in mind that Γiνμ = −Γiμν we find

ΔΓi(s)Ψ
T
<(k)Γ̂Ψ<(k) = s2ΔΓi(1)Ψ

T(k)Γ̂iΨ(k)

− s2ΔΓi(1)
∑
S
gS

∫
dω
2π

Λ∫
Λ/s

p2 Tp
2π2

Γ(i)
νμGμγ(p, iω)SγδΨδ(k)Gνα(−p,−iω)SαβΨβ(k).

(28)
The momentum and frequency integrals appearing here have
been computed already (see equations (B17) and (B21) in
appendixB). The equations for the flow of the functionsΔ(i)

pp(s)
are

d ln ΔΓ3

d ln s
= 2− (1+ 2η)(u1 + u2 + u3 − u4)

mΛ
π2

,

d ln ΔΓ15

d ln s
= 2− (1+ 2η)(u1 + u2 − u3 + u4)

mΛ
π2

,

d ln ΔΓa

d ln s
= 2, (a = 7, 9, 10, 12). (29)

Since the only stable fixed point exists for u4 < 0, the fastest
divergent susceptibility is clearly determined by the ratio
(u1 + u2 + u3 − u4)/(u1 + u2 − u3 + u4). Numerical analysis
of these equations shows that susceptibility ΔΓ3 correspond-
ing to the singlet s-wave pairing is the one diverging fastest.
Furthermore, we find that while the leading divergence corre-
sponds to the singlet pairing, the strongest divergence is still
governed by the excitonic instability.

4. Conclusions

As the recent experimental studies have shown, the materials
which may exhibit the physical effects we have discussed so
far are disordered either due to alloying or due to the pres-
ence of vacancies in the nominally stoichiometric compounds.
This is especially relevant for the excitonic instabilities, which
are prone to slightest anisotropy of the underlying band struc-
ture let alone the presence of disorder. Since our results so far
ignored the presence of disorder, we cannot claim with cer-
tainty that the excitonic instability will still be the leading one
in that case. This problem, however, requires a thoughtful and
careful treatment and, as such, goes beyond the scope of the
present study.

In the context of the recent experimental observations of
quantum oscillations in SmB6, our results clearly support the
conjecture, which was put forward by Knolle and Cooper [27],
that emergence of the magnetic excitons contributes to the
quantum oscillations in magnetization as well as anomalous
temperature dependence of the heat capacity. Given the sim-
ilarities between the model we have used and those of refer-

ences [23, 25, 27] one can use simplified mean-field analysis
to describe the available experimental data.

Other avenues for further investigation of the problems
related to the one discussed here concern the renormalization
of the chemical potential especially when the system has been
doped and, as a result, the superconducting instability develops
faster than the excitonic one. Lastly, we would like to mention
the situation when the s-orbital band inverts with the f-orbital
one, which would mean the hybridization matrix element will
have Vk ∝ k3, so upon integrating out the fast modes it will be
the leading determining factor in renormalization of the cou-
pling constants. With this being said, the specific focus of our
the future studies depend mainly on the appearance of new
experimental data.

To conclude,we have studied the problemofweak coupling
many-body instabilities in narrow gap semiconductors with
odd-parity band inversion. Our study has been mainly moti-
vated by recent experimental and theoretical work address-
ing thermodynamic properties of samarium hexaboride. By
employing the RG technique we find that the leading instabil-
ity is towards the formation of an excitonic order. Depending
on the microscopic details of the model the leading excitonic
instability may or may not break the time-reversal symmetry.
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Appendix A. Dirac matrices

We use the following definition of the Dirac matrices

γ0 =

(
σ̂0 0
0 −σ̂0

)
, γ1 =

(
0 σ̂x

−σ̂x 0

)
,

γ2 =

(
0 σ̂y

−σ̂y 0

)
, γ3 =

(
0 σ̂z

−σ̂z 0

)
,

γ5 =

(
0 σ̂0

σ̂0 0

)
. (A1)
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Here σ̂0 is a 2 × 2 unit matrix and σ̂a (a = x, y, z) are
Pauli matrices.

Appendix B. Renormalization group equations:
auxiliary expressions

B.1. Cumulant expansion

To calculate the average entering into equation (16) we will
employ the cumulant expansion. It reads:

〈e−Sint[Ψ<,Ψ>]〉0> ≈ e−〈Sint〉+ 1
2 (〈S2int〉−〈Sint〉2)+···. (B1)

To avoid the complications arising from the antisymmetriza-
tion of the interaction (12), we will formally consider the
interaction part of the action for general coupling in the
form

Sint =
∑
ST

∏
j=1,2

∫
dr j

∫
dτ jUST (12)

×
(
Ψ†(1)SΨ(1)

) (
Ψ†(2)T Ψ(2)

)
, (B2)

where we used the notation

UST (12) =
gST
2

∫
dτ
∫

dr
2∏
j=1

δ(r− r j)δ(τ − τ j) (B3)

andwe definedΨ( j) = Ψα j(r j, τ j) ( j = 1, 2).Using these nota-
tions, for the correction to the action we find

1
2

(
〈S2int〉 − 〈Sint〉2

)
=

1
2

∑
SS′

∑
T T ′

∑
1234

UST (12)US′T ′(34)

× 〈
(
Ψ†(1)SΨ(1)

) (
Ψ†(2)T Ψ(2)

)
×
(
Ψ†(3)S′Ψ(3)

) (
Ψ†(4)T ′Ψ(4)

)
〉

− 1
2

∑
SS′

∑
T T ′

∑
1234

UST (12)US′T ′(34)

× 〈
(
Ψ†(1)SΨ(1)

) (
Ψ†(2)T Ψ(2)

)
〉

× 〈
(
Ψ†(3)S′Ψ(3)

) (
Ψ†(4)T ′Ψ(4)

)
〉

and eachΨ = Ψ< +Ψ>. Note that the correction to the action
is defined as

ΔSint = −1
2
(〈S2int〉 − 〈Sint〉2). (B4)

There are five different non-zero contributions to (B4).
The diagram describing the fist contribution is shown on
figure 5.

Figure 4. Diagram containing a single fermionic loop, which appear
in the expansion of the effective action (B4). The solid lines
represent the single-particle propagators, while the dashed lines
represent the interaction (B2). The momenta of the internal solid
lines lie on the ‘fast’ momentum shell Λ/s � k � Λ.

(a) DiagramA. Analytical expression for the diagramfigure 4
is given by

1
2

∑
US1T1 (12)US2T2 (34)〈

(
Ψ†(1)S1Ψ(1)

) (
Ψ†(2)T1Ψ(2)

)
×
(
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉A

= −1
8

∑
S1T1

∑
S2T2

gS1T1gS2T2

∫
1

∫
2

{(
Ψ†(1)S1Ψ(1)

)
Tr

× [T1G(1− 2)S2G(2− 1)]
(
Ψ†(2)T2Ψ(2)

)
+
(
Ψ†(1)S1Ψ(1)

)
Tr [T1G(1− 2)T2G(2− 1)]

×
(
Ψ†(2)S2Ψ(2)

)
+
(
Ψ†(1)T1Ψ(1)

)
× Tr [S1G(1− 2)T2G(2− 1)]

(
Ψ†(2)S2Ψ(2)

)
+
(
Ψ†(1)T1Ψ(1)

)
Tr [S1G(1− 2)S2G(2− 1)]

×
(
Ψ†(2)T2Ψ(2)

)}
= −1

2

∑
S1S2

gS1gS2

∫
1

∫
2

(
Ψ†(1)S1Ψ(1)

)

× Tr [S1G(1− 2)S2G(2− 1)]
(
Ψ†(2)S2Ψ(2)

)
.

(B5)

(b) Diagrams B & C. The correction to the action from the
diagram (B), figures 5(b) and (c), reads:

1
2

∑
US1T1 (12)US2T2 (34)〈

(
Ψ†(1)S1Ψ(1)

)(
Ψ†(2)T1Ψ(2)

)
×
(
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉B

=
1
8

∑
S1T1

∑
S2T2

gS1T1gS2T2

∫
1

∫
2

{(
Ψ†(1)S1G(1− 2)S2

× G(2− 1)T1Ψ(1))
(
Ψ†(2)T2Ψ(2)

)
+
(
Ψ†(1)T1G(1− 2)S2G(2− 1)S1Ψ(1)

)
×
(
Ψ†(2)T2Ψ(2)

)
+ (S2 ↔ T2)

}
=

1
2

∑
S1S2

gS1gS2

∫
1

∫
2

(
Ψ†(1)S1G(1− 2)S2G(2− 1)

× S1Ψ(1))
(
Ψ†(2)S2Ψ(2)

)
. (B6)

8
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Finally, the last two contributions to the action can be
described by the two diagrams in figures 5(d) and (e). For
the diagram (D) we derive the following expression

1
2

∑
US1T1 (12)US2T2 (34)〈

(
Ψ†(1)S1Ψ(1)

) (
Ψ†(2)T1Ψ(2)

)
×
(
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉D

=
1
2

∑
S1S2

gS1gS2

∫
1

∫
2

(
Ψ†(1)S1G(1− 2)S2Ψ(2)

)

×
(
Ψ†(2)S2G(2− 1)S1Ψ(1)

)
. (B7)

Similarly, for the diagram (E) we find

1
2

∑
US1T1 (12)US2T2 (34)〈

(
Ψ†(1)S1Ψ(1)

) (
Ψ†(2)T1Ψ(2)

)
×
(
Ψ†(3)S2Ψ(3)

) (
Ψ†(4)T2Ψ(4)

)
〉E

=
1
4

∑
S1S2

gS1gS2

∫
1

∫
2

{(
Ψ†(1)S1G(1− 2)S2Ψ(2)

)2

+
(
Ψ†(1)S2G(1− 2)S1Ψ(2)

)2}
. (B8)

We would like to remind the reader that the integration in
the internal fermionic lines is limited to the momentum
shell [Λ/s,Λ].

B.2. Single-particle propagator

These expressions can now be used integrate out the fast
modes. To do that, we use the expression for the single particle
propagator

Gk(iωn) =

(
(iωn + μ− ξk)𝟙4 −

∑
a

Σadak

)−1

= −
(iωn + μ− ξk)𝟙4 + γ0d

0
k +

∑
a
γ0γad

a
k

(ωn − iμ+ iξk)2 + E2
k

,

(B9)

where ωn = πT(2n+ 1) are Matsubara frequencies and Ek =√
(d0k)2 + (dxk)2 + (dyk)

2 + (dzk)
2 is the renormalized single-

particle spectrum.

B.3. Particle–hole channel at T = 0

Here we will evaluate the one-loop diagrams on the momen-
tum shell p ∈ [Λ/s,Λ]. Recall that in the limit T → 0

T
∑
ωn

→
∫

dω
2π

. (B10)

We adopted the following notations s = et, so for the infinites-
imally narrow shell Λ/s = Λe−δt ≈ Λ(1− δt). Next we con-
sider an expression for the fermionic loop in particle–hole
channel

P̂ l(Λ,μ) =

Λ∫
Λ(1−δt)

k2 dk
2π2

∫
dΩk

4π

∞∫
−∞

dω
2π

Gk(iω)⊗ Gk(iω)

(B11)
and here we use the compact notation G⊗ G ≡ Gα1α2Gα3α4 .
Integration over frequency

∞∫
−∞

dωn
2π

(iωn + μ− ξk)2

[(ωn + i(ξk − μ)2 + E2
k]

2

=
1

4E3
k
[ϑ(x1 + 1)− ϑ(x1 − 1)] , (B12)

where x1 = (μ− ξk)/Ek. It will also be convenient to work
with function F1(x) which is defined according to:

F1(x) =
1
2
sign(1+ x1)+

1
2
sign(1− x1). (B13)

It is straightforward to integrate over frequency which
yields (δt � 1):

P̂1(Λ,μ) =

Λ∫
Λ(1−δt)

k2 dk
2π2

∫
dΩk

4π
F1

(
μ− ξk
Ek

)

×
{
− 1
4Ek

(𝟙4 ⊗ 𝟙4)+
1

4E3
k

∑
ab

dakd
b
k

(
Σa ⊗ Σb

)}
.

(B14)

To the leading order in powers of Λ � kF the hybridization
term is much smaller than the kinetic energy:

P̂1(Λ,μ) =

Λ∫
Λ(1−δt)

k2 dk
8π2

F1

(
μ− ξk
Ek

)

×
{
ε2k
E3
k

(
Σ0 ⊗ Σ0

)
− 𝟙4 ⊗ 𝟙4

Ek

}
. (B15)

The value of the remaining integral can be estimated by taking
Λ→∞ and δt � 1. I have

P̂1(Λ,μ) ≈
m+Λ

4π2
F1

(
−m+

m−

)
{γ0 ⊗ γ0 − 𝟙4 ⊗ 𝟙4} δt.

(B16)

Since m+/m− = (mf − mc)/(mf + mc), in the limit
mf � mc it follows that m+/m− ≈ 1− 2mc/mf , so that
F1(−m+/m−) ≈ 1. Note that the pre-factor is proportional to
the density of states at the Fermi level per spin for the free
electrons in three-dimensions.

B.4. Particle–particle channel at T = 0

For the computation of the diagrams (D) and (E) I will also
need to compute the following integral (δt � 1):

9
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Figure 5. Remaining four diagrams in one-loop approximation, which appear in the expansion of the effective action (B4). The solid lines
represent the single-particle propagators, while the dashed lines represent the interaction (B2). The momenta of the internal solid lines lie on
the ’fast’ momentum shell Λ/s � k � Λ.

K̂1(Λ,μ) =

Λ∫
Λ(1−δt)

k2 dk
2π2

∫
dΩk

4π

×
∞∫
−∞

dω
2π

Gk(iω)⊗ G−k(−iω). (B17)

Just like for the calculation of the particle–hole loop, we will
integrate over ω first and write down the results in terms of the
following functions:

∞∫
−∞

dω
2π

1
[(ω + iμ− iξk)2 + E2

k][(ω − iμ+ iξk)2 + E2
k]

=
C(1)
1 [(μ− ξk)/Ek]

4E3
k

,

∞∫
−∞

dω
2π

[ω2 + (μ− ξk)2]
[(ω + iμ− iξk)2 + E2

k][(ω + iξk − iμ)2 + E2
k]

=
C(2)
1 [(μ− ξk)/Ek]

4Ek
. (B18)

where functions C(1)
1 and C(2)

1 are defined by

C(1)
1 (x) =

xϑ(1− x)− ϑ(x − 1)
x(1− x2)

,

C(2)
1 (x) =

xϑ(1− x)+ (1− 2x2)ϑ(x − 1)
x(1− x2)

. (B19)

We find

K̂1(Λ,μ) =

Λ∫
Λ(1−δt)

k2 dk
2π2

{
ε2k
4E3

k

(
Σ0 ⊗ Σ0

)
C(1)
1

(
μ− ξk
Ek

)

+
1

4Ek
(𝟙4 ⊗ 𝟙4) C(2)

1

(
μ− ξk
Ek

)}
. (B20)

Just like in our analysis of the particle–hole channel, by taking
into consideration Λ2/2 mμ � 1 and δt � 1, we arrive to the
following expression

K̂1(Λ,μ) ≈
m+Λ

4π2

{
(γ0 ⊗ γ0) C(1)

1

(
−m+

m−

)

+ (𝟙4 ⊗ 𝟙4) C(2)
1

(
−m+

m−

)}
δt + O(δt2).

(B21)

This expression can be further simplified since is usually
mf � mc so that:

m+

m−
=

mfmc

(mf + mc)
(mf − mc)
mfmc

=
mf − mc

mf + mc
� 1. (B22)

Then it follows

C(1)
1

(
−m+

m−

)
= C(2)

1

(
−m+

m−

)

=
(mf + mc)2

4mfmc
≈ mf

4mc
≡ 1+ 2η.

(B23)

We use these results to compute the corrections to the coupling
constants.
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