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Recent experimental studies performed in the normal state of iron-based

superconductors have discovered the existence of the C4-symmetric (tetragonal)

itinerant magnetic state. This state can be described as a spin density wave with

two distinct magnetic vectors EQ1 and EQ2. Given an itinerant nature of magnetism

in iron-pnictides, we develop a quasiclassical theory of tetragonal magnetic order in

disordered three-band metal with anisotropic band structure. Within our model we find

that the C4-symmetric magnetism competes with the C2-symmetric state with a single
EQ magnetic structure vector. Our main results is that disorder promotes tetragonal

magnetic state which is in agreement with earlier theoretical studies.

Keywords: superconducitivity, magnetism, pnictide, 74.45. c, 74.50. r, 74.20.Rp, spin-density-wave order,

multiband electronic systems

1. INTRODUCTION

Quasiclassical approach to interacting many-body systems has proved to be a powerful tool in
describing their transport and thermodynamic properties. Within this method, the quantum
mechanical averages of an operator corresponding to a physical quantity are replaced with the
averages of its classical counterpart over all classical trajectories. Alternatively, one can formulate
the quasiclassical theory by using the quasiclassical functions which are obtained from the quantum
mechanical single-particle propagators by integrating them over all single particle energies.
Qualitatively, for a superconductor with pairing gap 1 and quasiparticles with Fermi momentum
pF and Fermi velocity vF , this procedure corresponds to averaging over the short length scales of
the problem ∼ p−1

F and retaining the physics at long scales ∼ vF/1. Quasiclassical theory was
particularly useful in the comparatively recent analysis of the problem of far-from-equilibrium
order parameter dynamics in charge-neutral superfluids [1–5].

Most recently, several non-trivial phenomena have been observed in a family of iron-based
superconductors and their alloys [6]. One example of such phenomena is an observation of the
peak in the penetration depth in BaFe2(As1−xPx)2 as a function of phosphorus concentration
[7–10], in Ba1−xKxFe2As2 as a function of potassium concentration [11] and, most recently in
Ba(Fe1−xCox)2As2 as a function of cobalt concentration [12]. Another example is the experimental
observation of the spin-density-wave order which is characterized by two magnetic ordering
vectors, EQ1 and EQ2, in various iron-based superconducting alloys [13–20].

Due to the fact that in iron-based superconductors the superconductivity is often observed near
magnetic instability, quasiclassical approaches initially developed for the purely superconducting
states have been re-formulated to specifically include the effects of competition between
superconducting and magnetic phases as well as the effects of disorder [21–24]. The experimental
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observations of the peak in the London penetration depth
remains only partially understood [25, 26] which provides
an additional motivation to look for possible explanations of
this effect.

In turn, the experimental discovery of the double-EQmagnetic
state in iron-based superconductors has lead to an appearance of
many theoretical works discussing the emergence of this state and
its various properties as well as its relation with other magnetic
states [27–35]. Most recently, the effects of disorder on the
stability of the single- and double-EQ states have been discussed
[36]. In particular, it was found that disorder leads to suppression
of the single-EQ state in favor the double-EQ one.

Inspired by the earlier work on this problem, in this paper
we use a slightly simplified version of the model introduced
in reference [36] to formulate a quasiclassical theory of the
double-EQ state in iron-based superconductors. Specifically,
we consider the disordered model which incorporates both
interband and intraband disorder. In agreement with the earlier
results [36], we find that when the interband disorder can be
ignored, the intraband disorder promotes the emergence of the
double-EQ state.

This paper is organized as follows. In the next section II
introduce the model Hamiltonian. Section III is devoted to the
formulation of the quasiclassical approach with the derivation
of the quasiclassical equations. In section IV contains the
results of the Landau expansion for the free energy using the
quasiclassical equations. Section V contains the discussion of the
results and comments related to the further development of the
presented formalism in the context of the physics of iron-based
superconductors. Sections with acknowledgments andAppendix
with some technical details conclude the paper.

2. MODEL

In what follows we first introduce the model Hamiltonian, which
consists of three terms:

Ĥ = Ĥ0 + Ĥsdw + Ĥdis. (1)

The first term on the right hand side of this expression is a
single-particle Hamiltonian which describes the band-structure
consisting of three bands: hole-like band at the Ŵ point and
two electron-like bands centered at EQX = (π , 0), EQY = (0,π)
of the two-dimensional Brillouin zone. We use the compact
notations to write down Ĥ0 using the six-component spinor

9̂
†
k =

(
ĉ†k↑, ĉ

†
k↓, d̂

†
k↑, d̂

†
k↓, f̂

†
k↑, f̂

†
k↓

)
:

Ĥ0 =
∑

k

9̂
†
k




εŴ(k)σ̂0 0 0
0 εX(k)σ̂0 0
0 0 εY (k)σ̂0


 9̂k, (2)

where σ̂0 is a unit 2 × 2 matrix and single particle energy
spectra are given by εŴ(k) = ξk, ξk = ǫ0 − k2/2, εX(k) =
−ξk + δ0 + δ2 cos 2φk, εY (k) = −ξk + δ0 − δ2 cos 2φk, ǫ0 is
the energy which amounts to the off-set between the bands and
k = (k cosφk, k sinφk). Here δ0 is a parameter which is defined
relative to the chemical potential µ and describes the deviation

from nesting: the bands are perfectly nested when δ0 = 0. Lastly,
δ2 is an anisotropy parameter which accounts for the ellipticity of
the corresponding Fermi pockets [36].

The second term, Ĥsdw, appearing in (1) accounts for the
spin-density-wave order within the mean-field approximation:

Ĥsdw = −
∑

k

9̂
†
k




0 EmX · Eσ EmY · Eσ
EmX · Eσ 0 0
EmY · Eσ 0 0


 9̂k. (3)

Here EmX , EmY are the magnetizations corresponding to two
structure vectors EQX and EQY . In what follows, we will assume that
magnetic state has Ising-like anisotropy, so we replace EmX,Y · Eσ →
mX,Y σ̂3. Within the mean-field approach we have adopted here,
the order parametersmX,Y must be computed self-consistently.

Finally, the last term on the r.h.s. side of Equation (1)
introduces the disorder potential in a system. In principle,
the disorder should scatter quasiparticles within each band
(intraband scattering) as well as between the bands (interband
scattering). The disorder unavoidably leads to the suppression
of itinerant magnetism. In this paper we will limit ourselves
to the case of an intraband disorder only, for an interband
disorder scattering only plays a crucial role in the problem of co-
existence of magnetism and superconductivity [21–23], while for
the problem at hand it will only lead the faster suppression of the
magnetic order. Thus, we write for the last term in (1)

Ĥdis = u

∫
d2r9†(r)9(r)

∑

i

δ(r− Ri) (4)

and the summation is performed over the impurity sites.

3. QUASICLASSICAL EQUATIONS

In order to formulate the quasiclassical theory, we first introduce
a single-particle correlation function

Gαβ (x, x
′) = −

〈
T̂τ

(
9̂α(x)9̂

†
β (x

′)
)〉

g.s.
(5)

in the Matsubara representation, 9̂α(x) = 9̂α(r, τ ), and the
averaging is performed over the ground state of the Hamiltonian
(Equation 1). Next step consists in employing the equations of
motion for the propagator (5):

− ∂

∂τ
Ĝ− ĤrĜ− 6̂ ◦ Ĝ = δ(x− x′)11,

∂

∂τ ′
Ĝ− ĜĤr′ − Ĝ ◦ 6̂ = δ(x− x′)11.

(6)

Here Ĥr acts on r, the self-energy part 6̂ is generated by the
disorder potential and its action on the propagator is

6̂ ◦ Ĝ =
1/T∫

0

dτ ′′
∫

d2r′′6αγ (x, x
′′)Gγβ (x

′′, x′). (7)
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The summation over the repeated indices is assumed. Next, we
perform the Wigner transformation

Ĝ(x, x′) =
∫

d2k

(2π)2
eik·(r−r′)Ĝ

(
τ − τ ′; r+ r′

2
, k

)
. (8)

In the presence of the quenched disorder, propagators will be
dependent on R = (r+ r′)/2. In what follows we assume that the
disorder in uncorrelated and will average the propagator over the
disorder distribution which corresponds to self-consistent Born
approximation. Lastly, we introduce the following matrices:

M̂1 =



0 0 0
0 σ̂0 0
0 0 σ̂0


 , M̂2 =



0 0 0
0 σ̂0 0
0 0 −σ̂0


 ,

M̂3 =




σ̂0 0 0
0 −σ̂0 0
0 0 −σ̂0


 , P̂X =




0 σ̂3 0
−σ̂3 0 0
0 0 0


 ,

P̂Y =




0 0 σ̂3
0 0 0

−σ̂3 0 0


 , Q̂X =



0 0 0
0 0 σ̂0
0 σ̂0 0


 .

(9)

Quasiclassical equations can now be derived after we multiply
the first equation (6) from the left and the second equation from
the right by M̂3. Subtracting the resulting first equation from the
second one we find

[
ωnM̂3, Ĝ(iωn,φk)

]
+ iδ0

[
M̂1, Ĝ(iωn,φk)

]

+ iδ2 cos(2φk)
[
M̂2, Ĝ(iωn,φk)

]

+ i
[(

Ĥsdw + 6̂dis(iωn)
)
M̂3, Ĝ(iωn,φk)

]
= 0,

(10)

where we introduced the quasiclassical function, [f̂ , ĝ] implies the
usual commutation relation and

Ĝ(iωn,φk) =
i

π

∫
M̂3Ĝ(iωn, k)dξk, (11)

where Ĝ(iωn, k) is the Matsubara transform of the matrix
function Ĝ(τ , k). The self-energy part is determined by the
quasiclassical function and disorder scattering rate Ŵ = πνF|u|2
(νF is the density of states at the Fermi level per valley per spin):

6̂dis(iω) = −iŴ

2π∫

0

dφ

2π
M̂3Ĝ(iω, iφk). (12)

In the absence of disorder, quasiclassical equation (10) is linear
in Ĝ and therefore is not sufficient to find Ĝ unambiguously. In
order to define the problem completely, one has to complement
(11) with a certain constraint. To derive this constraint, we
introduce a new (matrix) function [37]

B̂(τ , τ ′;φk) =
1/T∫

0

Ĝ(τ , τ ′′;φk)Ĝ(τ
′′, τ ′;φk)dτ

′′.

Equation for this matrix function can be easily derived from
(10). It then follows that quasiclassical functions must satisfy the
following normalization condition:

Ĝ
2(iωn,φk) = 11. (13)

As we will demonstrate below, inclusion of disorder potential
does not violate this condition. In order to solve the quasiclassical
equations (10) self-consistently, we need to specify the matrix
structure of the function Ĝ.

3.1. Clean System
We start by setting the disorder scattering rate to zero, Ŵ = 0, for
it would allow us to keep the resulting expressions more compact.
Most of the results derived in this section are easily generalized
for the case when Ŵ 6= 0 (see below).

In the absence of the magnetic order, the expression for
the function Ĝ follows from (11) by comparing the solution
of the quasiclassical equations with the expression found from
the expression for the single-particle propagator, so that a
term proportional to M̂3 must appear in the expression for
Ĝ. This conjecture also implies that there should also appear
two other terms proportional to M̂1 and M̂2 so we write the
following ansatz

Ĝ0 =
1

2
(g1 + g2)M̂1 +

1

2
(g2 − g1)M̂2 + g3M̂3. (14)

The commutators which include Ĥsdw must lead to the
appearance of the three more terms in Ĝ: each one of the two
of them being proportional to the corresponding magnetizations,
while the third one being proportional to the product of mX and
mY . The calculation yields the following expression

Ĝ − Ĝ0 = pxP̂X + pyP̂Y + qxQ̂X . (15)

After plugging this ansatz into the quasiclassical equations
and collecting the terms proportional to the same matrices
(these matrices are different from those introduced above
and will not be listed here), we derive the following set of
quasiclassical equations:

[
2i�n + δ2 cos(2φ)

]
px +mX(g2 − 2g3) = −mYqx,[

2i�n − δ2 cos(2φ)
]
py +mY (g1 − 2g3) = −mXqx,

2δ2 cos(2φ)qx = mYpx −mXpy

(16)

and �n = ωn − iδ0/2. Furthermore, given the expression (15)
the constraint condition (13) reduces to the set of the following
simple relations:

qx = −g1
py

px
= −g2

px

py
, (g3 − g1 − g2)

2 = 1,

p2x = g1(2g3 − g1 − g2), p2y = g2(2g3 − g1 − g2).

(17)

Note, that by combining the first two relations with the last
two ones one also finds q2x = g1g2. With the help of relations
(17) it is also straightforward to show that the third equation
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in (16) is redundant, so overall we have got the system of six
non-linear equations with six unknowns. These equations must
also be supplemented by the self-consistency conditions for the
magnetizations, which in terms of the quasiclassical functions
have the following form:

mX,Y = −2πνFgsdwTIm
∑

ωn>0

〈px,y(iωn,φk)〉, (18)

where 〈f 〉 denotes averaging over φk and gsdw is the
coupling constant.

The first two quasiclassical equations (16) can be re-written in
a compact form using relations (17). Indeed, by introducing the
auxiliary variables

u1 =
mX

√
g1√

2+ g1 + g2
, u2 =

mY
√
g2√

2+ g1 + g2
, (19)

the quasiclassical equations acquire the following form

u1
[
2i�n + δ2 cos(2φ)− u1 − u2

]
= m2

X ,

u2
[
2i�n − δ2 cos(2φ)− u1 − u2

]
= m2

Y .
(20)

Perhaps, for the clarity of our subsequent discussion it would
be useful to mention that in the case when magnetizations are
vanishingly small, mX,Y ≪ πT, functions g1,2 ∝ m2

X,Y , qx ∝
mXmY , while px,y ∝ mX,Y .

We have to analyze the solution of the equations (20) in two
special cases only: (i) single-EQ state for which we setmY = 0 and
mX = m1 and (ii) double-EQ state in whichmX = mY = m2/

√
2.

3.1.1. Single- EQ State
Since in this case py = qx = g2 = 0, we have

px(iωn,φ) =
(
m2

1 + u21
m2

1 − u21

)
2m1

2i�n + δ2 cos(2φ)
. (21)

In turn, function u1(iωn,φ) is determined by one of the two
roots of the quadratic equation [first equation in (20) with
u2 = 0] which recovers the correct expression for the
non-interacting propagator:

u1 = Zn(φ)− γ

√
Z2
n(φ)−m2

1, (22)

where Zn(φ) = i�n + (δ2/2) cos(2φ) and γ is the pre-
factor which guarantees that in the limit when m1 → 0, u1
also vanishes.

3.1.2. Double- EQ State
The solution of the equations (20) in this cases reduces to the
solution of a single cubic equation

(x+ 2i�n)[x
2 − δ22 cos

2(2φ)+m2
2] = 2i�nm

2
2. (23)

Functions u1 and u2 can then be computed from

u1,2 =
1

2

(
1+ 2i�n

xa

) [
xa ± δ2 cos(2φ)

]
, (24)

where xa is one of the roots of Equation (23).
It is a priori not clear which one of the three roots must

be chosen. An additional difficulty in choosing the correct root
consists in the fact that after finding an analytic expressions
for the roots (23) it turns out that depending on the limiting
case (mX,Y → 0 or δ2 → 0, for example) different roots
recover the correct expressions for the quasiclassical functions.
The procedure we have adopted consisted in analyzing all
three complex roots of (23) and picking up the one for
which all the equations (16,17) are satisfied and in addition
Im[px,y] < 0. The latter condition guarantees the positive
contribution to magnetization (Equation 18), and minimum in
free energy.

3.1.3. Results
We have used these expressions to evaluate the dependence of the
order parameters m1 and m2 on the anisotropy parameter δ2 for
a fixed value of δ0 and fixed temperature. Naturally, we find that
both m1 and m2 are the same for the same values of the model
parameters. The results of the calculations for the temperature
dependence of the magnetizations m1 and m2 are presented on
Figure 1A. Perhaps it is not too surprising that we found the
values of m1 and m2 equal to each other within the error bars of
the numerical calculations. Therefore, self-consistency equations
cannot be used to determine which of the two states would be
more favorable and we will have to compute the free energy for
each state.

3.2. Disordered System
Quasiclassical equations for the disordered system naturally have
similar form as equations (16) for the fact that the matrix
structure of the quasiclassical function does not change as soon
as Ŵ becomes non-zero. The calculation of the commutation
relations (10) yields

[
2i�̃n + 1n(φ)

]
px + (mX − iŴ〈px〉)(g2 − 2g3)

= iŴ〈qx〉py − (mY − iŴ〈py〉)qx,[
2i�̃n − 1n(φ)

]
py + (mY − iŴ〈py〉)(g1 − 2g3)

= iŴ〈qx〉px − (mX − iŴ〈px〉)qx.

(25)

In these equations �̃n = �n + (Ŵ/4)(4〈g3〉 − 〈g1〉 − 〈g2〉) and
1n(φ) = δ2 cos(2φ) + i(Ŵ/2)(〈g1〉 − 〈g2〉). Just like in the case
Ŵ = 0 the third equation is redundant and therefore is not
listed here.

Equations (25) show that disorder renormalization plays out
differently for single-EQ and double-EQ states. Given these disorder
renormalizations, in order to solve the self-consistency equation
(18), the angular averages (〈g3〉 and 〈px〉 in a single-EQ state,
for example) had to be computed by iterations. We found that
the values of the corresponding magnetizations still remain
essentially identical for non-zero Ŵ (Figure 1B). We also found,
that qualitative behavior of both m1(δ2) and m2(δ2) does not
change with an inclusion of disorder.

Lastly, we would like to mention that the inclusion of the
interband disorder with scattering rate Ŵπ would not change the
dependence of the magnetization on the anisotropy parameters,
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FIGURE 1 | Dependence of magnetizations m1 and m2 on temperature and

anisotropy parameter δ2 obtained by the numerical analysis of the

self-consistency equations (18). Within the numerical accuracy, we found that

m1 = m2. (A) Magnetization as a function of temperature are plotted for

various values of scattering rate Ŵ and δ2 = 0.5δ0 with δ0 = 2πTs where Ts is

a Curie temperature in isotropic system without impurities. (B) Magnetization

as a function of the Fermi surface anisotropy parameter δ2 and T = 0.1Ts.

but only leads to a faster suppression of the magnetization with
an increase in Ŵπ .

4. FREE ENERGY

To derive an expression for the free energy in terms of
the quasiclassical functions, we can employ an expression for
the effective action corresponding to the model Hamiltonian
(1). Omitting the disorder potential for now, we have [36]
F(mX ,mY ) = (m2

X +m2
Y )/gsdw − S(λ = 1) with

S(λ) = T
∑

iωn

∫

k
Tr log

(
1̂1+ λĜ0(iωn, k)Ŵ

)
. (26)

Here Ĝ0(iωn, k) is the single-particle propagator for the non-
interacting system, Ŵ = −mXŜX −mY ŜY and

ŜX =




0 σ̂3 0
σ̂3 0 0
0 0 0


 , ŜY =




0 0 σ̂3
0 0 0
σ̂3 0 0


 . (27)

The expression for the free energy in terms of the
quasiclassical functions can be derived by following the steps in
the calculation of reference [38]. First, we note

∂S

∂λ
= −iπνF

π∫

0

dφk

π
Tr

[
M̂3Ĝλ(iωn,φk)Ŵ

]
, (28)

where Ĝλ(iωn,φk) is found from solving the quasiclassical
equations (10) in which order parameters have been rescaled by
parameter λ, mX,Y → λmX,Y . The resulting expression for the
free energy reads

F(mX ,mY ) =
m2

X +m2
Y

gsdw

− 2iπνFT
∑

iωn

1∫

0

dλ
(
mX〈pλx〉 +mY〈pλy〉

)
.

(29)

This expression can also be employed for the case of non-
zero disorder by using the solution of equations (25) with the
rescaled magnetizations.

It is a hopeless task to evaluate the free energy (29) analytically,
but it is amenable to the numerical analysis. However, our
numerical computation of the free energy for the single-Q
and double-Q states ran into an unexpected problem: the
difference between the free energies of the corresponding states
fall within the numerical error of the calculation. Thus, in order
to determine which one of the two magnetic states will be
energetically favorable, below we derive the Landau expansion.

4.1. Free Energy Expansion in Powers of
the Magnetization
Having found an expression for the free energy, we consider the
temperatures slightly below the critical temperature, so that both
magnetizations are sufficiently small compared to πT. Then, we
can formally obtain the solution of the quasiclassical equations
(25) by expanding functions px and py in powers ofmX andmY .

4.1.1. Clean Case
In the case of the clean system the expression up to the fourth
order in powers of magnetization reads

F(mX ,mY ) = a2
(
m2

X +m2
Y

)
+ b4

(
m2

X +m2
Y

)2

− g4
(
m2

X −m2
Y

)2 + O(m6),
(30)

Frontiers in Physics | www.frontiersin.org 5 September 2020 | Volume 8 | Article 356

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Dzero and Khodas Checkerboard Magnetism Induced by Disorder

where the corresponding coefficients are given by b4 = (a4 +
aXY )/2, g4 = (aXY − a4)/2 with

a2 =
1

gsdw
− 8νFT

∑

ωn>0

π∫

0

ωndφk

4ω2
n + (δ0 ± δ2 cos(2φk))2

,

a4 = 4νFIm



T

∑

ωn>0

π∫

0

dφk[
2i�n ± δ2 cos(2φk)

]3



 ,

aXY = −8νFRe



T

∑

ωn>0

π∫

0

�ndφk[
4�2

n + δ22 cos
2(2φk)

]2



 .

The sign of the coefficient g4 is crucial for it determines which one
of the two states becomes energetically more favorable. Indeed,
let us assume that we choose the model parameters such that
both m1 and m2 are much smaller than πT. For a fixed value
of m1 = m2 it follows that when g4 > 0 the single-EQ will have
the lower energy compared to the double-EQ one. However, one
needs to keep inmind that this line of arguments holds only when
the coefficients in the free energy expansion are all of the order
O(1) and coefficient b4 remains positive for a given set of values
of parameters δ0/2πT and δ2/2πT.

4.1.2. Disordered Case
The question arises as to how non-zero disorder will affect
the stability of the single-EQ state [36]. The calculation of the
quasiclassical functions is similar to the one in the clean case,
with the only exception that the averages over the angle φ need
to be computed self-consistently. For example, the first order
corrections to functions px and py are

p(1)x =
2
(
mX − iŴ〈p(1)x 〉

)

2i (|ωn| + Ŵ) sign(ωn)+ δ0 + δ2 cos(2φ)
,

p(1)y =
2
(
mY − iŴ〈p(1)y 〉

)

2i (|ωn| + Ŵ) sign(ωn)+ δ0 − δ2 cos(2φ)
.

(31)

After integrating both parts of these expressions over φ, we can

easily solve for 〈p(1)x 〉 and 〈p(1)y 〉.
The calculation of the expressions for the coefficients of the

Landau expansion in this case gives

A4 = 4νFIm



T

∑

ωn>0

(
η(iωn)− iŴ

η(iωn)+ iŴ

)3

×
π∫

0

dφk[
2i(�n + Ŵ)± δ2 cos(2φk)

]3



 ,

(32)

AXY = −8νFRe



T

∑

ωn>0

(
η(iωn)− iŴ

η(iωn)+ iŴ

)3

×
π∫

0

(�n + Ŵ)dφk[
4(�n + Ŵ)2 + δ22 cos

2(2φk)
]2





− 2πνFŴRe



T

∑

ωn>0

(
η(iωn)− iŴ

η(iωn)+ iŴ

)3

z2(iωn)



 .

Functions η(iωn) and z(iωn) appear as a result of disorder
renormalization and are listed in Appendix. The coefficient
g4 in free energy is now given by g4 = (AXY − A4)/2.
Compared with the clean case, we see that expression for the
coefficient AXY contains an extra term proportional to Ŵ. The
dependence of g4 on disorder can be easily analyzed numerically.
The results of the numerical computations are shown
in Figure 4.

4.2. Phase Diagram
To determine the phase diagram in the space of anisotropy
parameters δ0 and δ2, we need to find a point where the free
energies of both states become degenerate, g4(δ0c, δ2c) = 0. In
Figure 2 we show the phase diagram for the clean system. It
agrees qualitatively with the one obtained previously [36] for
small values of δ2/2πT≪ 1, single-EQ state becomes energetically
favorable when the value of electron-hole asymmetry δ0 is above
a critical value δ0c/2πT ∼ 0.3.

With an addition of disorder, phase diagram is modified
and the results are presented on Figure 3 For small
disorder the critical line separating two phases slightly
moves to higher values of δ2. Perhaps unexpectedly, a
small region of single-EQ state appears at large (compared
to δ2) values of δ0. Upon further increase in the values

FIGURE 2 | Results of the numerical analysis of the coefficient g4 in the free

energy expansion for the clean system, Ŵ = 0. The solid line marks the first

order transition line along which the coefficient g4 is zero and the energies of

the single- EQ and double- EQ states are degenerate.
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FIGURE 3 | Plot of the nematic coupling constant g4 which appears in free

energy as a function of the disorder scattering rate for various values of the

parameters δ0 and δ2.

of the disorder scattering rate, the phase boundary
separating two states moves to higher values of δ2 and
also extends to higher values of δ0. Overall, we may
conclude that disorder promotes double-EQ state over the
single-EQ state.

5. DISCUSSION

As we have already pointed out in the Introduction, our
main goal was to demonstrate how the quasi-classical method
can be applied to analyse the competition between magnetic
states in multiband metals in the presence of disorder. Having
accomplished that goal, we can now generalize it to investigate
the problem of an interplay between superconductivity and
magnetism. It is already well-established that by including
the interband disorder scattering Anderson-Abrikosov-Gor’kov
theorem makes it possible for superconductivity and magnetism
to co-exist in a certain region of the phase diagram, which
size is determined by the ratio of the intra- and inter-band
scattering rates [22, 23]. The question is then would be to check if
superconducting order may provide an additional contribution
in determining which of the two competing magnetic states
would be energetically favorable. These results may be employed
to provide a qualitative understanding as to why nematicity
has been observed in stoichiometric iron selenide in contrast to
electron-doped iron selenide.

Lastly, we would like to mention that the inclusion of the
interband disorder scattering would not affect our results in
any substantial way. Indeed, compared to the case of intraband
disorder, the inclusion of the interband scattering leads primarily
to the faster suppression of the critical temperature, without
affecting the ground state energies of the single- and double-EQ
states significantly.

FIGURE 4 | Results of the numerical analysis of the coefficient g4 in the free

energy expansion for the disordered system: (A) Ŵ/2πT = 0.16; (B)

Ŵ/2πT = 0.32; (C) Ŵ/2πT = 0.48. With the increase in the value of the

disorder scattering rate, the single- EQ state is a ground state for higher and

higher values of the anisotropy parameter δ2 which accounts for the ellipticity

of the electron-like pockets.

To summarize, in this paper we have formulated the
quasi-classical approach to analyze the relative stability of the
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single- and double-EQ spin-density-wave states with respect to
band and effective mass anisotropy as well as disorder scattering.
Generally, we find that with an increase in intraband disorder
scattering rate, the system favors the single-EQ formoderately high
values of the Fermi surface anisotropy parameter, δ2.
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A. COEFFICIENTS IN THE FREE ENERGY
EXPANSION

In this section we provide the details of the calculation for
the Landau free energy expansion. Both pλx and pλy can be
determined approximately for small values of mX and mY from
the quasiclassical equations. We start with the derivation for the
clean case, Ŵ = 0.

A.1. First Order Corrections
Up to the linear order in mj from Equation (16) I find g

(0)
3 =

sign(ωn) and

p
(1)
λx = 2λmXsign(ωn)

2iωn + δ0 + δ2 cos(2φ)
, p

(1)
λy = 2λmYsign(ωn)

2iωn + δ0 − δ2 cos(2φ)
.

(A1)

A.2. Third Order Corrections
The second order correction to pλj is zero. To determine the
third order correction, we first need to compute the second order
corrections to gj’s. To do that, we first use equations (20) (and
presume for simplicity that ωn > 0):

u
(2)
λ1 = λ2m2

X

2iωn + δ0 + δ2 cos(2φ)
, u

(2)
λ2 = λ2m2

Y

2iωn + δ0 − δ2 cos(2φ)
,

(A2)

so that

g
(2)
λ1 = 2(λmX)

2

[
2iωn + δ0 + δ2 cos(2φ)

]2 ,

g
(2)
λ2 = 2(λmY )

2

[
2iωn + δ0 − δ2 cos(2φ)

]2 ,

g
(2)
λ3 = g

(2)
λ1 + g

(2)
λ2 .

(A3)

In addition, for the function qx we find

q
(2)
λx = − 2λ2mXmY

(2iωn + δ0)
2 − δ22 cos

2(2φ)
. (A4)

The choice of sign follows from considering the trivial case of
δ2 = 0.

Given all these expressions, we go back to equations (16) to
obtain the following expression:

p
(3)
λx = 4(λmX)

3

[
2i�n + δ2 cos(2φ)

]3

+ 8iλ3�nmXm
2
Y[

2i�n + δ2 cos(2φ)
]2 [

2i�n − δ2 cos(2φ)
]2 .

(A5)

Similarly, for p
(3)
λy we found

p
(3)
λy = 4(λmY )

3

[
2i�n − δ2 cos(2φ)

]3

+ 8iλ3�nmYm
2
X[

2i�n + δ2 cos(2φ)
]2 [

2i�n − δ2 cos(2φ)
]2 .

(A6)

After plugging these expressions into Equation (29) and grouping
the similar terms, we arrive to Equation (30).

A.3. Functions η(iωn) and z(iωn)
The formulas for the coefficients in Landau free energy expansion
(32) include the following functions:

η−1(iωn) =
1

π

π∫

0

dφ

2i (ωn − iδ0/2+ Ŵ) ± δ2 cos(2φ)
,

z(iωn, δ0) = − 1

π

π∫

0

dφ

4(ωn − iδ0/2+ Ŵ)2 + δ22 cos
2(2φ)

.

(A7)
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