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From early in the COVID-19 pandemic, econ-
omists have stressed the importance of individu-
als endogenously changing their behavior, both 
economic and noneconomic, to reduce their risk 
of infection. Starting with Eichenbaum, Rebelo, 
and Trabandt (2020), a literature studying the 
pandemic through the lens of calibrated struc-
tural models has found that this endogenous 
response is an important channel mediating the 
spread of the pandemic: fear of infection reduces 
both labor supply and demand for high-contact 
services, which in turn reduces contacts and 
transmission and dampens spread of the virus.

As of this session, ten months into the pan-
demic, there is reason to suspect that the strength 
of this behavioral response has changed. The 
initial spring wave of the pandemic saw a plunge 
in economic activity, which a large body of 
research convincingly shows to be largely a con-
sequence of individuals’ endogenous responses 
(see the survey in Gupta, Simon and Wing 2020). 
As the pandemic progressed, additional waves 
of deaths—a small, regional wave in the sum-
mer and a much larger late-fall wave—were not, 
however, associated with comparable declines 
in economic activity. For example, the US daily 
death rate (seven-day moving average) hit 2,714 
on December 22, 2020, 20 percent above the 
spring peak. At the same time, high-frequency 

measures of economic activity (e.g., the New 
York Fed/Dallas Fed Weekly Economic Index) 
remained roughly constant over November and 
December. A change in the endogenous behav-
ioral response, if it occurred, has important 
implications going forward both for the poten-
tial economic impact on future waves of deaths 
and for the effectiveness of future economic 
lock-downs to control transmission.

This paper quantifies the time-variation in the 
endogenous behavioral response of economic 
activity to the prevalence of the virus. Because 
current infections are unobserved, we examine 
the response of activity to the observed daily death 
rate. We do so using a behavioral SIR model with 
four time-varying parameters. The time-varying 
parameters allow us to distinguish between 
four sources of time variation: the endogenous 
self-protective response, the effect of economic 
activity on transmission (such as masking while 
shopping), nondeath shocks to economic activity 
(such as fiscal shocks), and nonactivity shocks 
to transmission (such as churchgoing and social 
gatherings).

We fit the model to daily data on deaths and 
labor hours for the United States using a rolling 
eight-week estimation window. Figure  1 dis-
plays our rolling estimates of the self-protective 
response—specifically, the semi-elasticity 
of daily labor hours with respect to an addi-
tional 1,000 deaths on the previous day. The 
early months of the pandemic saw a strong 
self-protective response: 1,000 additional daily 
deaths led to a 6–7 percent reduction in hours. 
This semi-elasticity diminished to nearly zero 
over the summer, before returning to its initial 
value by August. In late fall, this self-protective 
response again abated and remained close to zero 
throughout the late-fall wave.

In a closely related paper also in this ses-
sion, Atkeson, Kopecky, and Zha (2021) use 
regional and international evidence to show that 
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behavioral SIR models without time variation 
cannot fit the path of the pandemic. Here, we 
quantify this time variation for the United States 
in terms of interpretable parameters that reflect 
technical and psychological adaptations to the 
pandemic.

I.  Model and Estimation

We use a susceptible-infected-recovered 
(SIR) epidemiological model, augmented with 
an exposed (E) state in which individuals are 
not yet infectious and a deceased state (D). We 
incorporate a seasonal factor of transmission, cal-
ibrated from Tzampoglou and Loukidis (2020). 
In addition, we allow for time variation in the 
population infection-fatality rate resulting from 
improvements in medical treatment, calibrated 
from Ledford (2020). For details, see the online 
Appendix.

Our SEIRD model has seven equations. The 
first five are transition equations for the S, E, I, 
R, and D compartments. For example, the transi-
tion equation for the S state describes the rate at 
which susceptible individuals become exposed 
to the SARS-CoV-2 virus:

(1)	 dS/dt  =  −​​β​t​​​ ​​φ​t​​​(​​I​t​​​/​​N​t​​​)​​S​t​​​,

where ​​φ​t​​​ is the seasonal factor in contagion; ​​S​t​​​ 
and ​​I​t​​​ are the numbers of susceptible and infected 
individuals, respectively; and ​​N​t​​​ is the total 
population.

The remaining two equations characterize the 
relationship between the economic activity and 
virus prevalence. In principle, self-protection 
should depend on the current risk of infection. 
However, the true number of infections is unob-
served, and time variation in confirmed infection 
is difficult to interpret due to time-varying testing 
rates and selection into testing. In contrast, deaths 
are highly salient and reported promptly. We 
therefore model economic activity as a function 
of deaths:

(2)	​​ s​t​​​  = ​​ κ​0t​​​ + ​​κ​1t​​​ ​​DR​t−1​​​,

where ​​s​t​​​ is an index of daily labor hours, rel-
ative to hours in February 2020, and ​​DR​t−1​​​ is 
the average daily death rate on the previous two 
days. The time-varying coefficient ​​κ​1t​​​ is the 
semi-elasticity of economic activity with respect 
to daily deaths and is the object of primary inter-
est in this paper. The parameter ​​κ​0t​​​ collects all 
shocks to hours other than deaths and infections, 
such as fiscal shocks and general adaptation to 
the pandemic in ways that are not linked to cur-
rent deaths.

The final equation describes the effect of eco-
nomic activity on viral transmission:

(3)	​​ β​t​​​  =  exp(​​β​0t​​​ + ​​β​1t​​​ ​​s​t​​​),

where ​​β​t​​​ is the coefficient of transmission in 
equation (2) and ​​β​0t​​​ and ​​β​1t​​​ are time-varying 
parameters. In the SIR model, the time-varying 
current reproduction number, ​​R​t​​​, is propor-
tional to ​​β​t​​​, so ​​β​1t​​​ is the elasticity of ​​R​t​​​ with 
respect to a change in labor hours. This elas-
ticity captures multiple channels, such as 
reduced contacts from reduced economic activ-
ity and reduced probability of transmission for 
a given level of economic transmission, such 
as by wearing masks while shopping. The 
coefficient ​​β​0t​​​ represents time-varying factors 
affecting transmission unrelated to economic  
activity.

The full system of nonlinear equations has 
seven equations, two observable variables (daily 
deaths and ​​s​t​​​), four latent state variables, and six 
parameters: ​​E​0​​​, ​​I​0​​​, ​​κ​0t​​​, ​​κ​1t​​​, ​​β​0t​​​, and ​​β​1t​​​, where 
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Figure 1. Estimated Semi-elasticity of Economy-
Wide Hours with Respect to the Prior Day’s Death 
Rate, Estimated by Rolling System Estimation of a 

Behavioral SEIRD Model

Note: Rolling estimates based on an eight-week window, 
with 67 percent and 95 percent heteroskedasticity- and 
autocorrelation-robust pointwise confidence bands.

Source: Authors’ calculations
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​​E​0​​​ and ​​I​0​​​ are initial conditions for the number of 
exposed and infected.1

In this model, death and economic activity are 
simultaneously determined. We rely on a com-
bination of timing restrictions, cross-equation 
restrictions, and functional form restrictions to 
identify the parameters in equations (2) and (3). 
The timing restrictions arise from the disease 
progression: economic activity contemporane-
ously determines exposure, but becoming infec-
tious and dying occur with a lag. Also, deaths are 
only known with a one-day lag. The SIR model 
provides cross-equation restrictions. We view 
the functional form restrictions in equations (2) 
and (3) as technical; we adopt those functional 
forms for ease of interpretation.

We estimate our model with nonlinear least 
squares, fit to daily data on deaths (seven-day 
moving average) and labor hours, using rolling 
eight-week estimation windows. Daily labor 
hours are total labor hours for production and 
nonsupervisory workers, fixed to the twelfth of 
each month (the establishment survey reference 
date) and interpolated to daily frequency using 
the daily employment data provided by Chetty 
et al. (2020) and, when those data are unavail-
able, a mobility index using Google cell phone 
data. Standard errors are heteroskedasticity- 
and autocorrelation-robust. The full estimation 
sample is March 15 to December 17, 2020. For 
additional detail on the model, refer to the online 
Appendix.

II.   Time-Varying Estimates

Figure 1 plots our baseline estimates of ​​κ​1t​​​, 
the time-varying semi-elasticity of labor hours 
with respect to 1,000 additional daily deaths. 
These estimates are obtained with rolling 
eight-week estimation samples.2 In the spring, 
the semi-elasticity is large. For example, on 
April 18, when a seven-day moving average of 
deaths reached a peak of 2,241 deaths/day, our 

1 The initial number of susceptibles S0 is also an unknown 
free parameter. Because this evolves slowly as a fraction of 
N, we avoid estimating another parameter by absorbing S0 
into ​​β​0t​​​. See the online Appendix for additional discussion.

2 As shown in the online Appendix, using a six-week win-
dow yields similar results, with larger standard errors. The 
local fit deteriorates substantially using a 12-week window, 
indicating that the time variation in the parameters is too 
rapid to be picked up by the longer window. 

estimate of ​​κ​1t​​​ is −0.062. This implies that the 
endogenous response to deaths was responsible 
for a 13.3 percent decline in labor hours relative 
to February 2020. The actual shortfall in labor 
hours was 18.2 percent, leaving 5 percentage 
points of the decline due to other factors. In con-
trast, in the last two weeks of October and the 
first two weeks of November, the semi-elasticity 
was close to, and statistically indistinguishable 
from, zero, leaving factors other than the death 
rate to explain the 4.4 percent decline in labor 
hours.

Figure  2 documents our estimates of the 
elasticity of the basic reproduction number, ​​R​t​​​, 
with respect to economic activity; that is, ​​β​1t​​​ in 
equation (3). This elasticity is initially large, 
averaging 10.1 through April, then falls sharply 
and fluctuates more or less randomly around its 
mean of 2.3 from June through November.

III.  Counterfactuals

We conduct two counterfactual exercises to 
assess the significance of our estimates.

In the first, we suppose that all the parameters 
in (2) and (3) remained constant from June 6 
through the end of our sample. Figure 3 docu-
ments the resulting predicted and actual values 
for weekly deaths. Had those spring values held 
through the summer and fall, deaths would have 
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Figure 2. Estimated Elasticity of the Reproduction 
Number Rt with Respect to Economy-Wide Labor 

Hours, Estimated by Rolling System Estimation of a 
Behavioral SEIRD Model

Note: Rolling estimates of ​​β​1t​​​ based on an eight-week win-
dow, with 67 percent and 95 percent heteroskedasticity- and 
autocorrelation-robust pointwise confidence bands. 

Source: Authors’ calculations
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continued their late-spring decline, with only 
a small seasonal uptick as winter approached. 
The summer and late fall waves of deaths there-
fore are both associated with time variation in 
the parameters in the behavioral SIR, consistent 
with the findings of Atkeson, Kopecky, and Zha 
(2021). In addition, under this counterfactual, 
economic activity would have been higher than 
it was in July and August because of the lower 
level of deaths (see the online Appendix).

Our second counterfactual decomposes 
deaths and economic activity during the onset 
of the summer wave (June 21–August 15) into 
contributions by the time-varying parameters. 
Specifically, we evaluate the effect of holding 
constant one or more parameters at their spring 
(April 12–June 6) values, allowing the remain-
ing parameters to take on their June 21–August 
15 values.

The results of this exercise are summarized in 
Table 1. Notably, the attenuation of the behav-
ioral response (​​κ​1t​​​) from the spring to the sum-
mer increased deaths very modestly, and that 
contribution was offset by the other shocks to 
hours (​​κ​0t​​​). In contrast, the model associates 
30,700 deaths with the change in the transmis-
sion parameters ​​β​0t​​​ and ​​β​1t​​​. These findings are 
reversed for economic activity, where the dim-
inution of ​​κ​1t​​​ contributed significantly to the 
increase in hours over the summer, although 

that effect was partially offset by other shocks 
(​​κ​0t​​​). Collectively, the changes to ​​β​0t​​​ and ​​β​1t​​​ had 
little effect on hours. Overall, had the spring val-
ues of all the parameters persisted, deaths would 
have been lower by 30,000 and hours would 
have been higher by 2.3 percentage points.

IV.  Discussion

To be sure, this highly aggregated model 
misses many important features of the pandemic, 
such as its regional variation and its differen-
tial threat to the elderly. Moreover, this model 
focuses on dynamics during the pandemic, and 
assessing the postpandemic recovery would 
require incorporating more normal business 
cycle dynamics. Even with these caveats, the 
four time-varying parameters provide a coherent 
interpretation of the evolution of the pandemic 
and economic crisis.

Taken together, the time-variation in the 
parameters shows an initially strong reaction of 
economic activity to deaths and of transmission 
to economic activity. With the advent of pro-
tective measures—for instance, shopping using 
masks, working from home, and goods deliv-
ery replacing in-person purchases—the effect 
of economic activity on transmission fell by 
a factor of five and remained low through the 
end of our sample. The summer’s diminution 
of the strongly protective economic response to 
deaths has some responsibility for the summer 
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Figure 3. Weekly COVID-19 Deaths: Actual and 
Counterfactual Prediction without Time-Varying 

Parameters

Note: Vertical lines denote parameter estimation window; 
subsequent predicted values are model simulation using 
those parameters. 

Source: Authors’ calculations

Table 1— Decomposition of Contributions of 
Parameter Changes in the Early Weeks of the Summer 

Wave

Parameters held at 
spring values:

Total deaths
(thousands)

Mean hours
(index)

​​κ​1t​​​ −3.4 −0.065
​​κ​0t​​​  3.8  0.055
​​κ​0t​​​ and ​​κ​1t​​​ −0.2 −0.015
​​β​0t​​​ and ​​β​1t​​​ −30.7 −0.008

All −30.0  0.023

Notes: The entries are the deviation of the counterfactual 
prediction specified in the row from the baseline predic-
tion using the estimated time-varying parameters. The hours 
index is normalized to equal 1 on February 12, 2020. Each 
counterfactual is specified in terms of the row parameter 
being held constant at its April 12–June 6 (“spring”) value, 
with the others taking on their time-varying values. Total 
deaths over this summer period are 46,700, and the mean 
value of the hours index is 0.909. Values do not add due to 
nonlinearity of the model.
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wave, although that surge is mainly associated 
with other activity that permitted the virus to 
spread. The near-zero value of the behavioral 
elasticity ​​κ​1t​​​ at the end of the sample is consis-
tent with psychological adaptation to the high 
level of deaths and pandemic fatigue.

Our results suggest two observations that are 
relevant for the next stage of the pandemic. First, 
given the low value of ​​β​1t​​​, exogenous actions to 
reduce activity (such as lock-downs) are likely 
to have only a limited effect on reducing con-
tagion and spread, although they could reduce 
activity as a negative shock to ​​κ​0t​​​. This is con-
sistent with a large body of evidence in favor of 
low-cost mechanisms for controlling the virus 
that simultaneously support public health and 
economic activity, for instance, universal mask 
mandates and low-cost screening test programs 
(see Chernozhukov, Kasahara, Schrimpf 2020 
and Atkeson et al. 2020 for a discussions of mask 
mandates and screening tests, respectively). The 
US failure to control the virus has largely been a 
failure to embrace known, feasible technologies 
to mitigate the spread of the virus.

Second, the near-zero economic response 
(​​κ​1t​​​) at the end of the sample suggests that even 
if the more contagious UK variant leads to a 
midwinter surge of deaths, that surge would be 
associated with an extended plateau in the eco-
nomic recovery, not a second contraction. The 
end-of-sample estimate of ​​κ​0t​​​, however, is only 
0.938, indicating that a large amount of slack 
remains regardless of the insensitivity of hours 
to deaths. This slack reflects adaptations to the 
pandemic, such as reluctance to fly and purchase 
high-contact in-person services, that seem likely 
to persist at least until the pandemic itself is 
defeated.
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