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THE ECONOMIC IMPACT OF COVID-19*

Adapting to the COVID-19 Pandemic’

By MICHAEL DROSTE AND JAMES H. STOCK*

From early in the COVID-19 pandemic, econ-
omists have stressed the importance of individu-
als endogenously changing their behavior, both
economic and noneconomic, to reduce their risk
of infection. Starting with Eichenbaum, Rebelo,
and Trabandt (2020), a literature studying the
pandemic through the lens of calibrated struc-
tural models has found that this endogenous
response is an important channel mediating the
spread of the pandemic: fear of infection reduces
both labor supply and demand for high-contact
services, which in turn reduces contacts and
transmission and dampens spread of the virus.

As of this session, ten months into the pan-
demic, there is reason to suspect that the strength
of this behavioral response has changed. The
initial spring wave of the pandemic saw a plunge
in economic activity, which a large body of
research convincingly shows to be largely a con-
sequence of individuals’ endogenous responses
(see the survey in Gupta, Simon and Wing 2020).
As the pandemic progressed, additional waves
of deaths—a small, regional wave in the sum-
mer and a much larger late-fall wave—were not,
however, associated with comparable declines
in economic activity. For example, the US daily
death rate (seven-day moving average) hit 2,714
on December 22, 2020, 20 percent above the
spring peak. At the same time, high-frequency
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measures of economic activity (e.g., the New
York Fed/Dallas Fed Weekly Economic Index)
remained roughly constant over November and
December. A change in the endogenous behav-
ioral response, if it occurred, has important
implications going forward both for the poten-
tial economic impact on future waves of deaths
and for the effectiveness of future economic
lock-downs to control transmission.

This paper quantifies the time-variation in the
endogenous behavioral response of economic
activity to the prevalence of the virus. Because
current infections are unobserved, we examine
the response of activity to the observed daily death
rate. We do so using a behavioral SIR model with
four time-varying parameters. The time-varying
parameters allow us to distinguish between
four sources of time variation: the endogenous
self-protective response, the effect of economic
activity on transmission (such as masking while
shopping), nondeath shocks to economic activity
(such as fiscal shocks), and nonactivity shocks
to transmission (such as churchgoing and social
gatherings).

We fit the model to daily data on deaths and
labor hours for the United States using a rolling
eight-week estimation window. Figure 1 dis-
plays our rolling estimates of the self-protective
response—specifically,  the  semi-elasticity
of daily labor hours with respect to an addi-
tional 1,000 deaths on the previous day. The
early months of the pandemic saw a strong
self-protective response: 1,000 additional daily
deaths led to a 6-7 percent reduction in hours.
This semi-elasticity diminished to nearly zero
over the summer, before returning to its initial
value by August. In late fall, this self-protective
response again abated and remained close to zero
throughout the late-fall wave.

In a closely related paper also in this ses-
sion, Atkeson, Kopecky, and Zha (2021) use
regional and international evidence to show that
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FIGURE 1. ESTIMATED SEMI-ELASTICITY OF ECONOMY-
WIDE HOURS WITH RESPECT TO THE PRIOR DAY’S DEATH
RATE, ESTIMATED BY ROLLING SYSTEM ESTIMATION OF A

BeHAVIORAL SEIRD MoODEL

Note: Rolling estimates based on an eight-week window,
with 67 percent and 95 percent heteroskedasticity- and
autocorrelation-robust pointwise confidence bands.

Source: Authors’ calculations

behavioral SIR models without time variation
cannot fit the path of the pandemic. Here, we
quantify this time variation for the United States
in terms of interpretable parameters that reflect
technical and psychological adaptations to the
pandemic.

I. Model and Estimation

We use a susceptible-infected-recovered
(SIR) epidemiological model, augmented with
an exposed (E) state in which individuals are
not yet infectious and a deceased state (D). We
incorporate a seasonal factor of transmission, cal-
ibrated from Tzampoglou and Loukidis (2020).
In addition, we allow for time variation in the
population infection-fatality rate resulting from
improvements in medical treatment, calibrated
from Ledford (2020). For details, see the online
Appendix.

Our SEIRD model has seven equations. The
first five are transition equations for the S, E, 1,
R, and D compartments. For example, the transi-
tion equation for the S state describes the rate at
which susceptible individuals become exposed
to the SARS-CoV-2 virus:

(1) as/dt = —pBo(L,/N)S,
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where ¢, is the seasonal factor in contagion; S,
and /, are the numbers of susceptible and infected
individuals, respectively; and N, is the total
population.

The remaining two equations characterize the
relationship between the economic activity and
virus prevalence. In principle, self-protection
should depend on the current risk of infection.
However, the true number of infections is unob-
served, and time variation in confirmed infection
is difficult to interpret due to time-varying testing
rates and selection into testing. In contrast, deaths
are highly salient and reported promptly. We
therefore model economic activity as a function
of deaths:

(2) s, = kKor+ ki DRy,

where s, is an index of daily labor hours, rel-
ative to hours in February 2020, and DR,_; is
the average daily death rate on the previous two
days. The time-varying coefficient x;; is the
semi-elasticity of economic activity with respect
to daily deaths and is the object of primary inter-
est in this paper. The parameter r, collects all
shocks to hours other than deaths and infections,
such as fiscal shocks and general adaptation to
the pandemic in ways that are not linked to cur-
rent deaths.

The final equation describes the effect of eco-
nomic activity on viral transmission:

(3) B = exp(ﬁOt + ﬁltst)’

where (3, is the coefficient of transmission in
equation (2) and [, and (3, are time-varying
parameters. In the SIR model, the time-varying
current reproduction number, R, is propor-
tional to 3, so [y, is the elasticity of R, with
respect to a change in labor hours. This elas-
ticity captures multiple channels, such as
reduced contacts from reduced economic activ-
ity and reduced probability of transmission for
a given level of economic transmission, such
as by wearing masks while shopping. The
coefficient [3) represents time-varying factors
affecting transmission unrelated to economic
activity.

The full system of nonlinear equations has
seven equations, two observable variables (daily
deaths and s,), four latent state variables, and six
parameters: Eg, Iy, Ko, K1 Bop» and 3y, where
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E, and [, are initial conditions for the number of
exposed and infected.!

In this model, death and economic activity are
simultaneously determined. We rely on a com-
bination of timing restrictions, cross-equation
restrictions, and functional form restrictions to
identify the parameters in equations (2) and (3).
The timing restrictions arise from the disease
progression: economic activity contemporane-
ously determines exposure, but becoming infec-
tious and dying occur with a lag. Also, deaths are
only known with a one-day lag. The SIR model
provides cross-equation restrictions. We view
the functional form restrictions in equations (2)
and (3) as technical; we adopt those functional
forms for ease of interpretation.

We estimate our model with nonlinear least
squares, fit to daily data on deaths (seven-day
moving average) and labor hours, using rolling
eight-week estimation windows. Daily labor
hours are total labor hours for production and
nonsupervisory workers, fixed to the twelfth of
each month (the establishment survey reference
date) and interpolated to daily frequency using
the daily employment data provided by Chetty
et al. (2020) and, when those data are unavail-
able, a mobility index using Google cell phone
data. Standard errors are heteroskedasticity-
and autocorrelation-robust. The full estimation
sample is March 15 to December 17, 2020. For
additional detail on the model, refer to the online
Appendix.

II. Time-Varying Estimates

Figure 1 plots our baseline estimates of xy;,
the time-varying semi-elasticity of labor hours
with respect to 1,000 additional daily deaths.
These estimates are obtained with rolling
eight-week estimation samples. In the spring,
the semi-elasticity is large. For example, on
April 18, when a seven-day moving average of
deaths reached a peak of 2,241 deaths/day, our

! The initial number of susceptibles S is also an unknown
free parameter. Because this evolves slowly as a fraction of
N, we avoid estimating another parameter by absorbing S,
into 3. See the online Appendix for additional discussion.

2 As shown in the online Appendix, using a six-week win-
dow yields similar results, with larger standard errors. The
local fit deteriorates substantially using a 12-week window,
indicating that the time variation in the parameters is too
rapid to be picked up by the longer window.
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FIGURE 2. ESTIMATED ELASTICITY OF THE REPRODUCTION
NUMBER R, WITH RESPECT TO ECONOMY-WIDE LABOR
HouRrs, ESTIMATED BY ROLLING SYSTEM ESTIMATION OF A
BEHAVIORAL SEIRD MODEL

Note: Rolling estimates of (3;, based on an eight-week win-
dow, with 67 percent and 95 percent heteroskedasticity- and
autocorrelation-robust pointwise confidence bands.

Source: Authors’ calculations

estimate of k, is —0.062. This implies that the
endogenous response to deaths was responsible
for a 13.3 percent decline in labor hours relative
to February 2020. The actual shortfall in labor
hours was 18.2 percent, leaving 5 percentage
points of the decline due to other factors. In con-
trast, in the last two weeks of October and the
first two weeks of November, the semi-elasticity
was close to, and statistically indistinguishable
from, zero, leaving factors other than the death
rate to explain the 4.4 percent decline in labor
hours.

Figure 2 documents our estimates of the
elasticity of the basic reproduction number, R,
with respect to economic activity; that is, 5y, in
equation (3). This elasticity is initially large,
averaging 10.1 through April, then falls sharply
and fluctuates more or less randomly around its
mean of 2.3 from June through November.

III. Counterfactuals

We conduct two counterfactual exercises to
assess the significance of our estimates.

In the first, we suppose that all the parameters
in (2) and (3) remained constant from June 6
through the end of our sample. Figure 3 docu-
ments the resulting predicted and actual values
for weekly deaths. Had those spring values held
through the summer and fall, deaths would have
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FIGURE 3. WEEKLY COVID-19 DEATHS: ACTUAL AND
COUNTERFACTUAL PREDICTION WITHOUT TIME-VARYING
PARAMETERS

Note: Vertical lines denote parameter estimation window;
subsequent predicted values are model simulation using
those parameters.

Source: Authors’ calculations

continued their late-spring decline, with only
a small seasonal uptick as winter approached.
The summer and late fall waves of deaths there-
fore are both associated with time variation in
the parameters in the behavioral SIR, consistent
with the findings of Atkeson, Kopecky, and Zha
(2021). In addition, under this counterfactual,
economic activity would have been higher than
it was in July and August because of the lower
level of deaths (see the online Appendix).

Our second counterfactual decomposes
deaths and economic activity during the onset
of the summer wave (June 21-August 15) into
contributions by the time-varying parameters.
Specifically, we evaluate the effect of holding
constant one or more parameters at their spring
(April 12-June 6) values, allowing the remain-
ing parameters to take on their June 21-August
15 values.

The results of this exercise are summarized in
Table 1. Notably, the attenuation of the behav-
ioral response (k1;) from the spring to the sum-
mer increased deaths very modestly, and that
contribution was offset by the other shocks to
hours (k). In contrast, the model associates
30,700 deaths with the change in the transmis-
sion parameters (3, and (3),. These findings are
reversed for economic activity, where the dim-
inution of ky, contributed significantly to the
increase in hours over the summer, although
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TABLE 1— DECOMPOSITION OF CONTRIBUTIONS OF
PARAMETER CHANGES IN THE EARLY WEEKS OF THE SUMMER

WAVE

Parameters held at Total deaths Mean hours
spring values: (thousands) (index)
Kip —34 —0.065
Ko 3.8 0.055
Ko and Ky, -0.2 —-0.015
By and By, -30.7 —0.008
All -30.0 0.023

Notes: The entries are the deviation of the counterfactual
prediction specified in the row from the baseline predic-
tion using the estimated time-varying parameters. The hours
index is normalized to equal 1 on February 12, 2020. Each
counterfactual is specified in terms of the row parameter
being held constant at its April 12-June 6 (“spring”) value,
with the others taking on their time-varying values. Total
deaths over this summer period are 46,700, and the mean
value of the hours index is 0.909. Values do not add due to
nonlinearity of the model.

that effect was partially offset by other shocks
(Kqy). Collectively, the changes to 3, and 3;, had
little effect on hours. Overall, had the spring val-
ues of all the parameters persisted, deaths would
have been lower by 30,000 and hours would
have been higher by 2.3 percentage points.

IV. Discussion

To be sure, this highly aggregated model
misses many important features of the pandemic,
such as its regional variation and its differen-
tial threat to the elderly. Moreover, this model
focuses on dynamics during the pandemic, and
assessing the postpandemic recovery would
require incorporating more normal business
cycle dynamics. Even with these caveats, the
four time-varying parameters provide a coherent
interpretation of the evolution of the pandemic
and economic crisis.

Taken together, the time-variation in the
parameters shows an initially strong reaction of
economic activity to deaths and of transmission
to economic activity. With the advent of pro-
tective measures—for instance, shopping using
masks, working from home, and goods deliv-
ery replacing in-person purchases—the effect
of economic activity on transmission fell by
a factor of five and remained low through the
end of our sample. The summer’s diminution
of the strongly protective economic response to
deaths has some responsibility for the summer
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wave, although that surge is mainly associated
with other activity that permitted the virus to
spread. The near-zero value of the behavioral
elasticity xy, at the end of the sample is consis-
tent with psychological adaptation to the high
level of deaths and pandemic fatigue.

Our results suggest two observations that are
relevant for the next stage of the pandemic. First,
given the low value of 3, exogenous actions to
reduce activity (such as lock-downs) are likely
to have only a limited effect on reducing con-
tagion and spread, although they could reduce
activity as a negative shock to kg, This is con-
sistent with a large body of evidence in favor of
low-cost mechanisms for controlling the virus
that simultaneously support public health and
economic activity, for instance, universal mask
mandates and low-cost screening test programs
(see Chernozhukov, Kasahara, Schrimpf 2020
and Atkeson et al. 2020 for a discussions of mask
mandates and screening tests, respectively). The
US failure to control the virus has largely been a
failure to embrace known, feasible technologies
to mitigate the spread of the virus.

Second, the near-zero economic response
(k1,) at the end of the sample suggests that even
if the more contagious UK variant leads to a
midwinter surge of deaths, that surge would be
associated with an extended plateau in the eco-
nomic recovery, not a second contraction. The
end-of-sample estimate of ~(, however, is only
0.938, indicating that a large amount of slack
remains regardless of the insensitivity of hours
to deaths. This slack reflects adaptations to the
pandemic, such as reluctance to fly and purchase
high-contact in-person services, that seem likely
to persist at least until the pandemic itself is
defeated.
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