
Deriving �ests from Open World Mechanics
Ryan Alexander

North Carolina State University
rjalexan@ncsu.edu

Chris Martens
North Carolina State University

martens@csc.ncsu.edu

ABSTRACT
Open world games present players with more freedom than games
with linear progression structures. However, without clearly-de�ned
objectives, they o�en leave players without a sense of purpose. Most
of the time, quests and objectives are hand-authored and overlaid
atop an open world’s mechanics. But what if they could be gener-
ated organically from the gameplay itself? �e goal of our project
was to develop a model of the mechanics in Minecra� that could
be used to determine the ideal placement of objectives in an open
world se�ing. We formalized the game logic of Minecra� in terms
of logical rules that can be manipulated in two ways: they may be
executed to generate graphs representative of the player experience
when playing an open world game with li�le developer direction;
and they may be statically analyzed to determine dependency order-
ings, feedback loops, and bo�lenecks. �ese analyses may then be
used to place achievements on gameplay actions algorithmically.

CCS CONCEPTS
•�eory of computation →Program analysis;

KEYWORDS
procedural content generation, quests, Minecra�, game modeling
ACM Reference format:
Ryan Alexander and Chris Martens. 2017. Deriving �ests from Open
World Mechanics. In Proceedings of FDG’17, Hyannis, MA, USA, August
14-17, 2017, 7 pages.
DOI: 10.1145/3102071.3102096

1 INTRODUCTION
In an open world game, players enjoy a great deal of autonomy in
selecting from a complex system of mechanics, explorable spaces,
and goals. Rather than experiencing a prescribed linear (or partially-
ordered) progression of challenges and plot points orchestrated by
a game designer, players are free to experiment with the conse-
quences of the game’s mechanics and exhibit more creativity in
deciding what to do, frequently devising their own goals. In the
framework of Jesper Juul [6], open world games emphasize emer-
gence over progression: they are more interested in opening a wide
space of explorable consequences of the game’s mechanics than in
delivering a speci�c sequential experience.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’17, Hyannis, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5319-9/17/08. . .$15.00
DOI: 10.1145/3102071.3102096

Minecra� is a popular example of such a game, whose open world
mechanics are supported by procedurally generated terrain: players
canmine the terrain for natural resources, which they then cra� into
new tools necessary for survival, exploration, and additional mining.
Minecra� also comes with a hand-authored achievement tree (see
Figure 1) that serves to overlay some progression structure on top
of the open world mechanics: the player is noti�ed Achievement
Unlocked when they reach certain points in their exploration of the
game’s mechanics, and eventually they may be led down any of
several branches to �nd special items and characters.

Clearly, although open worlds without prescriptive goals have
wide appeal, progression structures such as quests provide some-
thing that players are missing: a sense of purpose or progress
as they navigate the game’s mechanics. However, once players
complete Minecra�’s hand-authored achievement tree and special
quests, they are back to where they started in a directionless open
world. �is quandary leads us to our problem statement: could
we procedurally generate quests based purely on an open world
game’s mechanics?

Examination of Minecra�’s hand-authored achievement tree
suggests that much of it could be derived algorithmically. �e
tool cra�ing portion of the tree is a prime example of this, due to
the cyclical nature of the cra�ing system. Making new tools and
using new materials for tools are rewarded with achievements. By
examining these gameplay elements we can determine why they
were chosen to have achievements and how to apply that decision
making to other elements.

We present a formal computational model of Minecra�’s min-
ing and cra�ing rules that is amenable to algorithmic treatment
analogous to a topological sort of these mechanics. �e results
align naturally to progression structures in the game and suggest
locations in game traces where achievements might be placed. Fur-
thermore, we show how two distinct analyses of the rules provide
distinct progression structures.

Our results constitute a novel approach to quest generation,
based not on a model of story distinct from a game’s mechanics, but
in fact derived from them and directly leveraging their emergent
behavior. As a secondary contribution, we illustrate the method-
ological value in using a formal modeling tool based on logic to
gain insight into a game’s mechanics.

2 RELATED WORK
On a broad level, the context for this work is the �eld of procedural
content generation (PCG). Within this �eld, we observe a shi� in
interest from algorithms that can create artbitrary, varied content
to those that can generate to �t a spec�cation, such as the argument
for generating with ASP [9], a framework whose primary edge is
its rich constraint speci�cation capabilities.

Others have also observed that, while PCG traditionally has
centered on cra�ing content to �t with the emergent dynamics of a

FDG’17, August 14-17, 2017, Hyannis, MA, USA Ryan Alexander and Chris Martens

game (such as level generation), generating progression structures
such as narrative and quests poses novel and important challenges.
For instance, the Grail framework [10] addresses the problem of
constructing quests whose goals may have emergent solutions
based on the game’s mechanics, rather than scripted solutions
based on the author’s intended path for the player. Likewise, the
Symon project [5] procedurally generates fetchquest-style narrative
puzzles from a �exible de�nition of object interactions. Compared
to our work, the goals of these projects were di�erent: rather than
starting with an open world and building quest content atop it, they
aim to allow an author to specify only enough world rules for the
generator to create a �exible range of playable story content.

�e “mission/space” dichotomy [3] explicitly formulates the inte-
gration of generating spatial content (e.g. levels) with progression
content (e.g. missions). First author Dormans also provides a more
thorough theoretical account of integrating emergence and pro-
gression [2]. Dormans et al.’s work closely relates to ours in that
it explicitly addresses co-generation of an open, explorable world,
and an ordered, �nite progression, including consideration of how
to generate a space to �t a provided mission, or an emergent struc-
ture from a progression. Our work explores the opposite direction,
generating progression structures from emergent ones, and further
considers richer world mechanics (cra�ing, mining) than the lock-
and-key-based level exploration primarily explored by Dormans et
al.

Recent interest in general level generation [7] poses a problem
quite similar to the one we are addressing: how can a program,
given a game’s mechanics (speci�ed in VGDL), generate a level
(including a goal condition) for the game? In this framework, the
level serves as the progression structure (an initial condition and a
goal) whereas the games rules, speci�ed in terms of which entities
exist, their properties, and how they interact with other properties,
create emergence. �is problem aligns very well with the case we
examine of taking Minecra�’s open world rules and generating a
beginning and end condition for a player to interact with them.

Finally, others have considered the problem of the quest in a
generated world [1], which is similar to the idea of generating quests
for an open world in that what a player can do within the world
is not known at the outset. �ey formulate a quest in terms of
spatial progression, and their system considers randomly generated
levels and generates lock-and-key puzzles for them. In this work,
the actions that make up the quest (collecting keys and unlocking
doors) are layered atop a generated world without a pre-existing set
of emergent rules. Our work seeks to construct quests not by adding
a�ordances (keys, locks) to a generated world but by making use of
existing game world rules, which permits us to directly integrate
the actions a player takes to complete a quest with the mechanics
that permit open play.

3 BACKGROUND
3.1 Emergence and Progression in Minecra�
Emergence and progression are terms used by Jesper Juul [6] to
describe two di�erent modes of gameplay. Progression structures
engage the player through a structured set of objectives or quests.
Emergent play revolves around the naturally occurring events that
stem from a small number of simple rules. �ere are drawbacks to

Figure 1: �e achievement menu. Hovering the cursor over
the icon for a visible achievement shows a brief description.

both methodologies used in isolation: games of pure progression
may feel “railroaded” to the player, and furthermore demand more
time from developers to hand cra� the desired experience, while
games of pure emergence risk overwhelming players with the vast
space of possibilities available to them, or alternatively boring them
with no clear direction for advancement. �us, many games, such
as Minecra�, utilize elements of both: they provide a simple set
of open-ended mechanics for exploratory play while also adding
quests and achievements to give the player a sense of progression.

Minecra� is an open world survival game, where players can
traverse an in�nite terrain of blocks. �ese blocks come in a variety
of materials and can be collected by the player then used to build
structures or make items. Due to the open world se�ing, there are
no restrictions on where the player can go, which lends more free-
dom to the playing experience. Alongside this lack of boundaries,
also comes a lack of explanation. Upon spawning into the game,
players have “no clear idea of what he or she can do within the
world” [4]. �e only hint is a message informing players that they
have unlocked an achievement upon opening their inventory. �ese
achievements are the main source of progression in this mostly
emergent game.

In Minecra�, achievements are optional objectives that the player
can choose to accomplish. �e achievement menu displays them
as a tree where one achievement will serve as a requirement for
completing another. �ere is no in-game reward for completing
an achievement, other than unlocking the ability to see the next
achievements in the tree. As shown in Figure 1, each achievement
has a square icon linked to other achievements by a line. �e colors
of the icons and lines represent the status of the achievement. Bright
icons indicate that the achievement has been unlocked, darker icons
mean that the achievement is not unlocked but can be unlocked and
its details are visible to the player. �e darkest icons signal that an
achievement cannot be unlocked yet and the player does not have
access to information about the achievement. Similarly, gray lines
link unlocked achievements, green join unlocked achievements
to those that can be unlocked, while black lines connect locked
objectives.

Deriving�ests from Open World Mechanics FDG’17, August 14-17, 2017, Hyannis, MA, USA

3.2 �ests, Achievements, and Objectives
So far, we have been using the terms quest, achievement system,
and objective placement relatively interchangeably. In this work,
we adopt a simpli�ed notion of quest meaning, essentially, a subset
of the nodes in a gameplay trace that are recognized by the game
system as progress (e.g. with “achievement” messages). An objec-
tive in this framework is simply some communication of the fact
that the player should try to reach achievement nodes. We do not
closely examine these communication mechanisms (e.g. Minecra�’s
achievement tree conveys a great deal of information about achieve-
ments’ inter-dependency, whereas in some games, how to complete
achievements is le� completely opaque).

3.3 Ceptre
Designing quests from the rules of a game requires formalizing
its mechanics in a way that is analyzable by an algorithm. We
created our formal model of Minecra�’s mechanics in Ceptre [8],
which allows us to represent game logic in a high-level, quickly-
prototypable, yet rigorous and formal way.

Ceptre is a rule-based speci�cation language describing how
program states (e.g. game states) may evolve. Each Ceptre rule
consists of a le�-hand side (LHS), its inputs, and a right-hand side
(RHS), its outputs. A collection of rules is interpreted by multiset
rewriting: an initial state is supplied, a multiset of predicates. �en,
each step of execution involves selecting a rule that may �re in the
current state, and �ring it, which means replacing the elements
in the multiset that match the LHS of the rule with new elements
matching the RHS.

Collections of rules within Ceptre programs are called stages,
and each stage may be designated as autonomous or interactive.
When a stage runs manually, Ceptre displays a list of possible
state transitions to the user from which she may choose to step
the program forward. If the program is run autonomously, it will
randomly pick possible transitions until no more remain.

Regardless of which method is used, it is possible to view a
visual representation of the rules that were executed by generating
the trace graph such as the one shown in Figure 5. �ese traces
provide information about how rules �t together to help establish
where any progression occurs. Being able to analyze how rules
interoperate this way is the main reason Ceptre was chosen for this
project. Running Ceptre code autonomously multiple times creates
a random sampling of play trace space and generates corresponding
trace graphs that visually demonstrate how the rules interact, while
manually running the code allows the user to see each step of the
process.

4 A FORMAL MODEL OF MINECRAFT
�e game mechanics we chose to look at in Minecra� fall into two
groups, rules for gathering materials and rules to cra� tools from
those materials. In this section, we discuss the Minecra� rules we
chose to represent and how they are formalized in Ceptre.

First, we encoded various facts about the world, such as the
quantity of materials carried by the player, which tools she has
built out of which materials, and so on, as predicates in Ceptre.
�e mapping from predicate to Minecra� state is shown in Table 1.

Predicate Meaning
tree N �ere are N trees in the environment

wood_block N Player has N wood blocks
cT Player has cra�ing table

plank N Player has N wood planks
stick N Player has N sticks
cobble N Player has N cobblestone pieces

… …
pickaxeM Player has a pickaxe of material M
swordM Player has a sword of material M

… …
Table 1: Predicates used in our model. Predicates used in
the paper are shown; additional predicates included in the
formal model are indicate with ellipses.

craftTable : plank (N + 4) -o cT * plank N.

Figure 2: Cra�ing a cra�ing table using the inventory menu
and its formalization in Ceptre.

Note that predicates with arguments are wri�en in Ceptre with
adjacency, e.g. pred Arg, rather than with parentheses.

4.1 Rules
4.1.1 Rules for Gathering. �e �rst category of rules is based

on taking resources found in the world of Minecra� and re�ning
them into materials for cra�ing items and tools. For the purpose
of this project, a distinction has been made between gathering and
mining. While both involve collecting resources, mining refers to
the materials that can only be collected when using a pickaxe, one
of the tools in the game. Due to this limitation, the gathering rules
only include the recipes needed to make a wood pickaxe and begin
mining.

An example of a gathering rule is one that will allow the player
to gather wood from a tree:
tree : wood (N+1) -o wood_block 1 * wood N.

How to parse this rule: the rule is named tree. �e name is
separated from the rule itself with a colon (:). �e rule’s LHS is
wood (N+1), meaning that for the rule to �re, there must be some
number of trees representable as N + 1 for some N . A�er the rule
�res, this predicate will be consumed, meaning there will no longer
be N + 1 trees. �e rule’s RHS is wood_block 1 * wood N, which
is two predicates conjoined with tensor (*). �e �rst predicate,
wood_block 1, means that �ring the rule results in the player
having 1 wooden block. �e second predicate wood N means that

FDG’17, August 14-17, 2017, Hyannis, MA, USA Ryan Alexander and Chris Martens

a�er the rule �res, there will be N trees, which is 1 fewer than what
we started with.

At an early stage in the game, the player has access to a cra�ing
interface that is a 2x2 grid serving as the input for materials, and
a single square on the right for the recipe’s output. By �lling the
grid with wooden planks, the player is able to produce a cra�ing
table block. Interacting with the cra�ing table is what provides
access to the 3x3 cra�ing menu needed for more complex recipes,
such as tools. �e rule for creating a cra�ing table is shown in both
Minecra�’s cra�ing interface and as a rule in Ceptre in Figure 2.

4.1.2 Rules for Tools and Mining. A�er creating a cra�ing table
and gaining access to the 3x3 interface, the program can move
on to tools and the materials needed to make them. �e tools in
Minecra� are shovels, swords, axes, hoes, and pickaxes. All of these
recipes involve a combination of materials and sticks. �e material
used to create a tool dictates the strength and durability of a tool.
Some materials may only be collected by tools of a certain strength,
so upgrading to a higher tier opens up new cra�ing opportunities
for the player. While Minecra� has a system in place where the
condition of a tool decreases a�er prolonged use until it breaks
and disappears, for the purposes of this project that feature is not
represented in the rules. If the program creates one of a tool at a
certain strength level, it does not need to make another of that same
material. �e strength levels go from wood as the weakest, then
stone, iron/gold, and diamond is the strongest. Gold is a special
case in that it requires an iron pickaxe to be collected, but is not
stronger than iron. All of these materials must be mined using
a pickaxe of the tier directly below it, except for wood which is
already covered under gathering.

craftWoodPickaxe : $cT * stick (N + 2) * plank (F + 3)
-o pickaxe wood * (stick N) * (plank F).

Figure 3: �e recipe for cra�ing a wooden pickaxe in
Minecra� and the Ceptre formalization of this action.

Pickaxes in Minecra� are cra�ed by placing three of a material
in the top row and two sticks in the remaining spots of the middle
column, as shown in Figure 3. �e Ceptre representation of this
recipe is shown underneath the game screenshot. �e rule con-
sumes a cra�ing table, at least two sticks, and at least three wooden
planks, and it produces a wooden pickaxe and any remaining sticks
and planks, as well as the cra�ing table. �e cra�ing table is not
destroyed during this process, so the symbol “$” is used to indicate
that the predicate appears on both sides of the rule. �e term wood
is the material argument to the pickaxe predicate.

�e player can then use a wooden pickaxe to mine stone, codi�ed
by the following rule:
mineStone : $pickaxe M * stone (N + 1) * cobble C -o

cobble (C + 1) * stone N.

When given a pickaxe and at least one block of stone, this
mine/stone rule can be called to return the same pickaxe, one more
piece of cobblestone, and any remaining stone. �e di�erence be-
tween cobblestone (represented by the “cobble” predicate) and stone
in Minecra� is that stone is found more commonly, but becomes
cobblestone when broken with a pickaxe. Cobblestone is used for
cra�ing stone tools, while stone cannot. Also, breaking stone with-
out a pickaxe results in no cobble being dropped, which is why
wooden pickaxes must be cra�ed beforehand. However, a pickaxe
of any material can be used to mine stone, so the “M” signi�es that
any pickaxe may be used as a predicate.

craftStonePickaxe : $cT * stick (N + 2) * cobble (F + 3)
-o pickaxe s * (stick N) * (cobble F).

Figure 4: Cra�ing a stone pickaxe in Minecra� and in Cep-
tre.

Once the player has stone, they are able to use it to make tools
like in Figure 4 where a stone pickaxe is being Cra�ed in Minecra�
and in Ceptre. �e similarities between Figure 3 and Figure 4 are
evident both in the game and in the code. Any wooden planks in
the recipe were replaced by cobblestone. �is basic pa�ern became
a key component in determining quest placement.

5 TRACE ANALYSIS
In order to understand how the rules operate in relationship to
each other, the program was run both autonomously and interac-
tively. �ese procedures provided insight into how the rules were

Figure 5: A portion of a trace graph. Predicate nodes are
shown as blue ellipses, while transition nodes are green rect-
angles. An edge from a predicate to a transition indicates
that the transition consumes the predicate, while an edge
from a transition to a predicate suggests that the transition
produces the predicate.

Deriving�ests from Open World Mechanics FDG’17, August 14-17, 2017, Hyannis, MA, USA

connected, allowing us to analyze the progression elements in the
gameplay. When generating these models, the main pa�erns we
looked for were bo�lenecks and feedback loops. �e gameplay of
Minecra�, speci�cally the mining aspect, tends to be cyclical with
players repetitively making stronger tools and �nding stronger
materials. Running the Ceptre model helped us identify key rules
that stratify this process into stages.

As more rules �re, the number of possible choices in the system
increases. Each run begins with the same rules being necessary,
speci�cally the rules for gathering wood and making the cra�ing
table and sticks—the cra�ing table recipe is an important node in
all play traces, because no tools may be cra�ed until the player has
made it. Such a node represents a bo�leneck in the mechanics.

Once the program has these materials, rules for wooden tools
can be run, which opens access to the mining rules. �e mining
rules must �re multiple times in order to have su�cient resources
to create a tool. �e way that these rules are repeated hints towards
their signi�cance in the player experience. �is interactive model
represents the player experience through text, but is similarly time-
consuming. A�er the initial discovery of how important the mining
rules were and how the cra�ing table expands the player’s options,
we moved on to studying the trace graphs to generate larger batches
of data to compare.

Trace graphs are a visual representation of all rules selected
during a run of the program—see Figure 5. �is trace graph shows
that the tree rule is dependent on itself, since having some number
of trees in the environment is both a requirement for the rule and
an outcome. We can also see that the numeric argument to the
rule decreases on each subsequent �ring of the rule, and that the
other resources generated (the wood blocks) are used in other,
unrelated rules. �ese graphs allowed us to compare multiple
possible outcomes when the program is given the same initial
resources. �ese comparisons reinforced the results found through
the interactive testing and highlighted the signi�cance of the mining
rules. �e high likelihood that a player will perform these actions
multiple times during a playthrough indicates that objectives such
as “Mine X amount of stone” might be worthwhile. While these
quests tend to be viewed as unoriginal and tedious, if the value
for “X” is chosen based on the expected amount of times a player
will perform this action through the course of playing the game
naturally, it can potentially make a task that is tedious in general
more rewarding. Creating multiples of these trace graphs and
analyzing how many times certain rules are run can help determine
what an appropriate “X” value is for that rule.

6 STATIC ANALYSIS
We have identi�ed two di�erent methods for organizing rules that
separate segments of a trace into di�erent phases base on static
analysis of the LHS for each rule. We generated a static dependency
graph between rules, where an edge between R1 and R2 indicates
that R2 consumes predicates that R1 produces. �en, we collapsed
rules with similar LHS together into a single node with a list of
possible alternate arguments. We then interpret the bo�leneck
points and actions immediately following them as game events
that should be rewarded with achievements. �ese bo�lenecks
represent actions that the player takes that open up new possible

gameplay mechanics. �e most noticeable instance of a bo�leneck
occurs when the player makes a cra�ing table and can create tools,
but it also happens when a new material is discovered and new
types of tools can be cra�ed. �e two factors that were used to
determine which LHSes were similar were thematerials represented
as arguments to predicates and the quantities of raw materials that
a rule required, which corresponds to its tool type.

Figure 6: A visualization of the tool rules organized based
on the type of materials used. (A) marks where Minecra�
currently has achievements.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Ryan Alexander and Chris Martens

Figure 7: �e tool rules categorized based on the type of tool that is generated. (A) marks where Minecra� currently has
achievements.

Material-Based Sorting. One way to sort these rules is based
on the type of material they require. All tools in Minecra� are a
combination of sticks and the material that determines the tools
strength. Figure 6 groups rules that have the same inputs together.
�e wood section is all of the rules that take some amount of
sticks and wood as inputs, the stone rules have inputs of sticks
and stone and so on. Objectives based on this type of organization
could reward players for unlocking improved versions of items
or abilities that were previously accessible. An example of this
is the Minecra� achievement ”Ge�ing an Upgrade” that rewards
the player for acquiring a stone pickaxe, which in Figure 6 would
be the seen as moving from the wood group to the stone group.
�ese types of goals reward the player by enhancing an aspect
of the gameplay that they are already familiar with. In Minecra�,
the stone pickaxe performs the same basic mining function as the
wooden one, but does it faster and on resources that are too strong
to be collected by the wood pickaxe. �is method of organizing is
useful for �nding objectives that make the player stronger.

�antity-Based Sorting. A di�erent approach to organizing rules
is based on the number of materials that the rule takes. In Minecra�,
pickaxes are made with two sticks and three of another material,
while swords are one stick and two of a material. Focusing on the
format of the recipe instead of on the speci�c ingredients leads
to grouping tools that have similar functionality , but di�ering
strength. �is method is shown in Figure 7 where rules are grouped
by the type of tool that is produced. �ere are achievements for
the player cra�ing their �rst hoe, sword, and pickaxe, which are all
marked in the �rst node of their respective groups. �ese achieve-
ments all represent the player unlocking a new element of gameplay.
Hoes, swords, and pickaxes are the critical tools for farming, combat,
and mining respectively. Categorizing rules based on the quantities
of inputs aids in the formation of objectives that reward the player
with new ways to play the game.

7 CONCLUSION
�rough our formalization and analysis of the rules of Minecra�
in Ceptre, we have shown that it is possible to re-discover hand-
authored progression structures algorithmically from the open-
world mechanics of the game. �is process can help explain and
identify ideal achievement placement in open world se�ings. We
carried out two analyses: an informal examination of the play
traces resulting from autonomous execution of the rules, and a
formal analysis of the static, syntactic structure of the encoded rules
themselves. �e algorithmic discoveries we have made about the
system dynamics match up with achievements that were manually
authored for Minecra�.

In future work, we hope to apply this process of deriving pro-
gression structures from mechanics to other games, particularly
those that do not already have manually-authored quests or achieve-
ments. We also intend to devise alternative achievement placement
strategies and compare them to the two sorting-based strategies.

�e ultimate goal of such a research programme is to improve
the player’s sense of purpose in open world games by providing
more a�ordances for potential intermi�ent objectives, where those
objectives stem organically from the gameplay itself.

REFERENCES
[1] Calvin Ashmore and Michael Nitsche. 2007. �e quest in a generated world.

In Proc. 2007 Digital Games Research Assoc.(DiGRA) Conference: Situated Play.
503–509.

[2] Joris Dormans. 2011. Integrating emergence and progression. In �ink Design
Play: Proceedings of the 2011 Digital Games Research Association Conference,
Hilversum the Netherlands.

[3] Joris Dormans and Sander Bakkes. 2011. Generating missions and spaces for
adaptable play experiences. IEEE Transactions on Computational Intelligence and
AI in Games 3, 3 (2011), 216–228.

[4] Sean Duncan. 2011. Minecra�, beyond construction and survival. Well Played: a
journal on video games, value and meaning (2011).

[5] Clara Fernández-Vara and Alec �omson. 2012. Procedural generation of narra-
tive puzzles in adventure games: �e puzzle-dice system. In Proceedings of the
�e third workshop on Procedural Content Generation in Games. ACM, 12.

[6] Jesper Juul. 2005. Half-Real: Video Games between Real Rules and Fictional Worlds.
61–87 pages.

[7] Ahmed Khalifa, Diego Perez-Liebana, Simon M Lucas, and Julian Togelius. 2016.
General video game level generation. In Proceedings of the 2016 on Genetic and

Deriving�ests from Open World Mechanics FDG’17, August 14-17, 2017, Hyannis, MA, USA

Evolutionary Computation Conference. ACM, 253–259.
[8] Chris Martens. 2015. Ceptre: A Language for Modeling Generative Interactive

Systems. In Arti�cial Intelligence and Interactive Digital Entertainment.
[9] Adam M Smith, Erik Andersen, Michael Mateas, and Zoran Popović. 2012. A case

study of expressively constrainable level design automation tools for a puzzle
game. In Proceedings of the International Conference on the Foundations of Digital
Games. ACM, 156–163.

[10] Anne Sullivan, Michael Mateas, and Noah Wardrip-Fruin. 2012. Making quests
playable: Choices, CRPGs, and the Grail framework. Leonardo Electronic Almanac
17, 2 (2012).

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Emergence and Progression in Minecraft
	3.2 Quests, Achievements, and Objectives
	3.3 Ceptre

	4 A Formal Model of Minecraft
	4.1 Rules

	5 Trace Analysis
	6 Static Analysis
	7 Conclusion
	References

