
sensors

Article

A Smartphone-Based Cursor Position System in Cross-Device
Interaction Using Machine Learning Techniques

Juechen Yang 1 , Jun Kong 1 and Chunying Zhao 2,*

����������
�������

Citation: Yang, J.; Kong, J.; Zhao, C.

A Smartphone-Based Cursor Position

System in Cross-Device Interaction

Using Machine Learning Techniques.

Sensors 2021, 21, 1665. https://

doi.org/10.3390/s21051665

Academic Editor: Marco Romano

Received: 29 December 2020

Accepted: 24 February 2021

Published: 28 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA;

juechen.yang@ndsu.edu (J.Y.); jun.kong@ndsu.edu (J.K.)
2 School of Computer Sciences, Western Illinois University, Macomb, IL 61455, USA

* Correspondence: c-zhao@wiu.edu

Abstract: The use of mobile devices, especially smartphones, has become popular in recent years.

There is an increasing need for cross-device interaction techniques that seamlessly integrate mobile

devices and large display devices together. This paper develops a novel cross-device cursor position

system that maps a mobile device’s movement on a flat surface to a cursor’s movement on a large

display. The system allows a user to directly manipulate objects on a large display device through a

mobile device and supports seamless cross-device data sharing without physical distance restrictions.

To achieve this, we utilize sound localization to initialize the mobile device position as the starting

location of a cursor on the large screen. Then, the mobile device’s movement is detected through

an accelerometer and is accordingly translated to the cursor’s movement on the large display using

machine learning models. In total, 63 features and 10 classifiers were employed to construct the

machine learning models for movement detection. The evaluation results have demonstrated that

three classifiers, in particular, gradient boosting, linear discriminant analysis (LDA), and naïve Bayes,

are suitable for detecting the movement of a mobile device.

Keywords: cross-device interaction; motion detection; gestural interaction; large display; mobile device

1. Introduction

With the rapid development of mobile computing technology, mobile devices, es-
pecially smartphones, have become popular in recent decades. According to the Pew
Research Center, 81% of Americans own smartphone and roughly half of U.S adults own
tablet devices in 2020 [1]. The popularity of mobile devices creates an increasing need for
cross-device operations.

Large display devices have been widely deployed in diverse environments in our daily
lives for a better viewing experience. Some of the large screens serve as broadcast platforms
that raise no interest from bypassers [2]. They are static and have barely any user-triggered
interaction. The size of the screen makes it inaccessible for viewers to interact with the
contents on the screen. Viewers can only passively receive information from the screen.
The use of these public displays also raises health concerns due to the high-frequency use
of contaminated input hardware, such as the touchscreen and the game handler. Direct
methods of interaction present numerous issues that cross-device interactions could solve.
As mobile devices are widely used, the idea of using mobile devices to interact with large
screens has been proposed in recent decades.

Many techniques have been proposed for cross-device interactions. Ikematsu and
Siio [3] created a “drag-and-drop” style of interaction that allows the user to transfer data
objects between two touchable devices. Gradual Engagement [4] can automatically detect
transferrable data objects between devices that are physically close to each other. To transfer
the data, this application requires the user to drag the detected data object to the display
zone on the destination screen. These two approaches are only viable when all the screen
regions of the large display device are physically accessible. Current trends, however, have

Sensors 2021, 21, 1665. https://doi.org/10.3390/s21051665 https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 1665 2 of 25

indicated that the size of large display devices will continue to increase because a larger
target display leads to more efficient and effective interactions [5]. If the size of a large
display device is extremely large and not all the regions are physically accessible, it could
be necessary to build a seamless connection between a mobile device and a large display
device. To access unreachable large display screens, Torch projector [6] uses a “pick and
drop” style that allows users to pick the view on a mobile device and project it on a large
display at a distance. Then the user can interact with the object in the view from the mobile
device. In their work, the large display receives information from multiple mobile devices
as a remote and touchable projector.

With the popularity of smart phones and tablets, users often switch between different
devices, which makes it challenging to share information across devices in a collaborative
environment. This paper presents a machine-learning based approach that seamlessly
shares information between a large display and a mobile device and supports simulta-
neous multi-user interaction with the large display. Specifically speaking, a user moves
his/her mobile device on top of a flat surface. The movement that is detected by analyzing
accelerometer data indicates the change of a user’s focus on a large display. Based on
the movement, the contents displayed on the mobile device is updated accordingly. By
clicking on an object on the mobile device, the corresponding object is transferred from
the large display to the mobile device. In such an interaction style, a mobile device can
function both as a cursor for changing a user’s focus and as a personal workspace for
remote manipulation.

To initialize the cursor position on the large display, we use sound localization to
determine the 2D coordinates of the cursor’s starting position on the large display screen.
At the same time, a resolution conversion has been applied to ensure that the size of the
area cut from the large display is physically equal to the size of the mobile device. When
the user interacts with the large display using the mobile device, the cursor’s new position
on a large display will be updated accordingly.

Detecting the motion of a mobile device is crucial in the cross-device interaction
because we use the mobile device as a cursor on the large screen device. To achieve this, we
collect motion data of the mobile device from the built-in accelerometer. Accelerometers
have been used in detecting human daily activities [7,8], such as falls, gait, and gesture
detection. In our approach we detect the movement of mobile devices, so we collect more
fine-grained motion data. A data-analysis pipeline is built for characterizing data into
statistical features (mean, standard deviation, min-max difference, and power energy) and
spectral features (dominant frequency and spectral energy). We have implemented both
10-folds cross-validation and a confusion matrix and applied multiple feature-selection
methods in order to identify the most relevant features that contribute to movement
detection. The results of this study reveal that three classifiers: gradient boosting, linear
discriminant analysis (LDA), and naïve Bayes, have demonstrated high performance.
Feature-selection tests indicate that features that combine speed and mean (or speed
and median) can contribute the most to the recognition rate. However, performance of
classification can be boosted by using features that include all vectors (acceleration, angular
velocity, and speed).

Our cursor position estimation system has the following characteristics:

• Self-contained. Our system only uses a built-in accelerometer for detecting the move-
ment of the mobile device without any extra hardware.

• Intuitive. Our system applies a natural movement gesture to directly manipulate
contents on a large display. Since users are already familiar with the movement gesture
on desktop interactions, our technique does not require extra training.

• Physically Unconstrained. Physically unconstrained typically means that the cross-
device application should not require the user be physically close to the large display
device. With a remote-control mechanism, multi-user participation becomes viable
since the users do not need to stand close to each other in front of the large display.

Sensors 2021, 21, 1665 3 of 25

In summary, we have implemented a novel cursor position estimation system for de-
tecting the motion of a mobile device in cross-device interaction. A novel sound localization
technique is used to initiate the cursor’s starting position on a large display device, which
enables the initial connection between a mobile device and a large display screen. Our
system is featured with a novel data collection method that avoids mislabeling for training
sets when working with very sensitive data from an accelerometer. We propose a hybrid
method for feature selection and evaluation. In other words, both algorithm-based and
manual hypothesis-based strategies are conducted. A comprehensive study of different
machine-learning algorithms and feature selection sets is conducted in the experiment. The
evaluation results may help future research on improving the accuracy of motion detection
in a cross-device interaction.

Our approach is fundamentally different from vision-based approaches of movement
detection. In most vision-based approaches, a camera has to be set up in advance by point-
ing to the workspace with an appropriate angle. In addition, if a mobile device is moving
on an identical flat surface, such as a completely brown desktop, two continuous frames
are too similar to detect movements. Instead, our approach uses the built-in accelerometer
without needing an external camera. Therefore, our system is self-contained and can be
applied to any flat surface without a pre-setup. When multiple devices are moving on a
flat surface, they can interfere with each other in a vision-based analysis. On the other
hand, our approach analyzes the accelerometer data from each individual device and, thus,
avoids interference. Therefore, our approach is more suitable for multi-user interaction.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
overviews the workflow of the cursor position estimation system and explains how it works.
Section 4 focuses on the cursor initialization process. Sections 4 and 5 describe the design of
the pixel-movement experiment, data collection, and data preprocessing. Sections 6 and 7
present the machine-learning models and analyze multiple feature-selection methods.
Section 8 concludes the paper and presents our future work.

2. Related Work

2.1. Interaction-Sensing Techniques

Studies of cross-device techniques and applications have been an emerging field.
Many solutions have been proposed. We classified the related research based on how the
interactions were made.

• Direct touch on a large display

Strohmeier [9] has introduced an interaction framework that uses the mobile de-
vice as the operational commander to initiate designated operations and to implement
them through direct finger touch. For example, users can pick a color on their personal
devices and can then draw a shape on the large target display using a finger motion.
Schmidt et al. [10] provided a novel solution that combines the physical touch initiated
from a mobile device with its orientation to indicate the target interaction region and
to manipulate various operations. The restriction of this framework is that it does not
allow the remote control of the target region and, thus, creates barriers to multiple users
interacting with the large display simultaneously. Another project called SleeDCursor [11]
is a target-region-selection application that uses a touch-based system to provide users with
increased flexibility in that they can initiate the binding of a device through close-coupling
(where one selects the closest device to interact with). However, users are still forced to
maintain physical proximity to the large public screen in order to exchange information.
Consequently, if multiple users initiate data transfers from the public screen simultaneously,
there is not enough physical space for the users. All these direct-touch applications share
the same requirement that the user must have physical access to the screen of the target
large display device. To address this problem, our renovated cursor position estimation
system can offer users a remote controlling experience that significantly improves the
flexibility of the usage.

Sensors 2021, 21, 1665 4 of 25

• Using pointing devices

Pointing devices, such as laser pointers, have been used to help the server identify
the position of the mobile device. PointerPhone [12] used laser pointers and cameras on
the server’s system to detect the laser-point motion and control the large display screen
remotely. Another hybrid technique with a gesture-assisted, head-based coarse pointing
style has been introduced in this work [13]. This technique has created predefined gesture
combinations in order to trigger the pointing task, and the technique used an equipped
headset to perform a precise position estimation of the point thereafter. For example, a
user could initiate a tap gesture on the touchpad surface followed by a drag operation so
as to activate the pointing task and enable any area of the large display to be reached with
absolute precision. Nonetheless, this approach requires additional devices and cost for the
user. Moreover, gesture-initiated pointing increases the complexity of manipulation. Users
may have a higher chance of triggering an undesired operation. Our work uses built-in
sensors, which reduces the cost and minimize the learning curve of additional devices.

• Using built-in sensors

Another category of research utilized built-in sensors, such as accelerometers and
gyroscopes, to sense the mobile device’s movement. This study [14] has proposed three
interaction styles to mimic the movement of the device: “tilting”, “scrolling”, and “sliding
move”. Gestures “tilting” and “scrolling” were created to evaluate the motion using a
built-in accelerometer that calculated the value of acceleration continuously. “Sliding move”
is used to project the position. “Sliding move” is more intuitive and is similarly to the
cursor action (such as moving up and down or left and right) and could be easier for users
to understand and learn. Furthermore, the implementation has been renovated by means
of collecting data from motion sensors (accelerometer and gyroscope) instead of a camera.
In terms of pairing devices, many techniques have been developed. SyncTap [15] is collabo-
rative pairing system for cross-device interactions that allows multiple users to pair devices
with a single tap on the touchscreen. Point&Connect [16] is a technique for combining
devices by leveraging the built-in microphone and acoustic signals. Yuan et al. [17] have
proposed using a cross-device tracking framework to identify “same” devices in terms of
users’ typing actions and then building secure cross-device communication.

• Using built-in cameras

Inspired by optical projection, virtual projection [18] uses the handheld’s built-in
camera (i.e., its live video feed) to stream its video data wirelessly to the server of the large
display. The server handles all video streams from clients and performs feature tracking
and spatial calculation. Torch projector [6] allows users to interact with remote screens
at a distance through a live video image on their mobile device. A machine serves as the
environment manager to calculate the spatial relationship of the handheld device based
on the change of image frames. Coordinated by the environment manger, the handheld
device can drag an object from one display and drop to a target display. CamCutter,
a cross-device interaction technique that allows a user to quickly select and share an
application running on another screen using the camera of a handheld device [19]. This
application uses computer vision algorithms and achieves a real-time synchronization
between devices. These approaches highly rely on the resolution and the view of the
camera. The instability of mobile device in motion (such as hand tremor) may affect the
quality of camera images as well. In a multi-user environment, camera views may be
blocked or affected by users nearby.

2.2. Sensor-Based Motion Detection

Several studies have sought to improve the utilization and analysis of data generated
from accelerometers by sensing the daily activities of people. A study by Chen et al. [20]
has introduced the use of accelerometers for detecting a person’s fall. Their study has also
detailed a basic workflow for parsing and filtering the data retrieved from the accelerometer.
Their project has introduced and investigated features such as the sum vector, rotation angle,

Sensors 2021, 21, 1665 5 of 25

and slope to detect falls with a degree of both specificity and sensitivity. Furthermore, their
study has noted a critical decision-making strategy: it is no longer sufficient to determine
results based on the generated data by simply proposing different thresholds in making
predictions. Instead, machine-learning models and algorithms should be applied to extract
patterns from the observed data and to help solve complex problems.

Another fall-detection study performed by Rakhman et al. [21] has tried to detect
fall-down activity through the magnitude of both the accelerometer and gyroscope and
through the rotation angle of the mobile device. They have proposed an in-house algorithm
to calculate all the features needed and to discover the thresholds on values for fall-down
determination. Moreover, they have categorized fall activity into four subcategories, such
as “fall forward” and “fall backward”, to measure the accuracy rate.

A gait-sensing study by Ferrero et al. [22] has comprehensively investigated how to
sense human gaits based on the data collected from an accelerometer. Their study has
introduced some crucial data-preprocessing steps, including linear interpolation, data
normalization, and noise filtration. Due to the Earth’s gravitational force, it is ideal to
incorporate all three dimensions’ acceleration data in an analysis. However, if a mobile
device can be placed perpendicular to the ground throughout the sensing session, then the
model should be adjusted to assume that only one dimension is affected by gravity.

The above related work on motion detection of daily activities shed lights on our
motion data collection using accelerometers. The major difference between daily activities
and cursor movement is the time interval for data collection. The time window used
in sensing daily activities is normally 1 or 2 s. We are, however, pursuing an extremely
sensitive system that uses a 0.015 s time window in order to detect a device’s movement as
a cursor. The movement of mobile device will determine its precise position on the large
display. This requirement has imposed challenging tasks, such as preprocessing the raw
data and tagging the classification samples. Our work may help future motion detection of
mobile device on a large display in a cross-device interaction.

2.3. Cross-Platform Applications

As mobile devices get more popular in people’s daily life, numerous apps have been
created serving different purposes. iOS and Android, the two major operating systems,
have their own software ecosystems. In recent years, studies have focused on develop-
ing cross-platform applications. Cross-platform applications are software that can run
on multiple operating systems or environments. Biørn-Hansen et al. [23] conducted a
comprehensive survey and taxonomy of the research in the field of cross-platform. Rieger
and Majcrzak [24] proposed an evaluation framework for cross-platform applications.
Cross-platform application is still a challenge research area due to the unique development
environment of each platform.

Our work is slightly different from cross-platform applications. Cross-platform appli-
cations aims at running an application on multiple devices with different platforms, while
our work currently focuses on using portable mobile devices to interact with large display
screens that are hard to reach. Our system utilizes mobile devices with Android OS (client
side) and Windows operating systems in the large display device (server side). Extending
our system to other platforms, e.g., iOS, will increase the system’s portability.

3. System Overview

Figure 1 shows the cursor position estimation system. The system was developed
on an Android platform using API level 16. The actual experiment was performed on
a Samsung Galaxy S4, which is an Android mobile device. A cross-device large display
server was set up on a traditional desktop device embedded with a Windows operating
system. Any Java-supported desktop or device using any operating system could also
serve as the large display device. An Andrea SoundMAX Superbeam array microphone
(Manufactured by Andrea Electronics Corporation, Bohemia, NY, US) was used in the
desktop to enable sound localization.

Sensors 2021, 21, 1665 6 of 25

(a) Mapping from the large display to a mobile device

(b) Interaction with large display

Figure 1. Cont.

Sensors 2021, 21, 1665 7 of 25

(c) Moving the mobile device

Figure 1. The cursor-position estimation system.

In Figure 1a, the content of on the large screen is mapped to the interface of the
smartphone. The smartphone uses the desk surface as the 2D flat surface. When it moves,
the contents from the large screen will be updated on the smartphone accordingly. The user
can easily interact with the large screen from her/his smartphone as shown in Figure 1b,c
shows the user moves the mobile device and the contents are updated. The cursor position
estimation system consists two major steps. First, it initiates the starting position of a cursor
on a large display through sound localization. Second, a movement translation system
transfers the mobile device’s movement on a flat surface to the cursor’s movement on a
large screen through machine learning models.

The system uses a client-server architecture. The smartphone is the client and the
large screen machine is the server. The general working flow is displayed in Figure 2.
Figure 2a depicts the cursor initialization process. A user first launches the application
from a mobile device and waits for the response from server. The server then will respond.
After the mobile device successfully connected to server, the user puts down his/her mobile
device on a flat surface and generates a touch-down sound. The touch-down sound is
detected by a microphone array that is attached to the large display screen. The server
of the large display will check if the touch-down sound is qualified. If it is qualified,
it will start the initialization process. If not, the server will wait for a new touch-down
sound. Through sound localization, the touch-down location of the mobile device on the
flat surface is calculated, which is converted to the initial position of the cursor on a large
display. The server sends a location object to the mobile device. Subsequently, the mobile
device displays an area of contents on the large screen by using the initial position as the
upper left vertex and the physical length and width of the mobile device as the dimension
of the content area. Since the large display screen and the mobile device have different

Sensors 2021, 21, 1665 8 of 25

screen resolutions, a resolution conversion is applied to ensure that the size of the area cut
from the large display is physically equal to the size of the mobile device’s screen.

(a) (b)

Figure 2. The flowcharts of the cursor initialization and estimation process. (a) Cursor initialization;

(b) cursor motion detection.

Figure 2b describes the workflow of cursor estimation. The cursor movement estima-
tion system transfers the mobile device’s 2D movement to the cursor’s 2D movement on
the large display. Therefore, we need to detect the motion of the mobile device. There are
two critical parameters for motion detection. The first parameter involves the movement
status detection, which detects whether the device is moving or not in real time; the second
parameter identifies the movement direction. We collect motion data and use machine
learning techniques for motion detection. To build a detection model, the user first per-
forms a 14 s training of moving the mobile device, including 2 s of “stand”, 3 s of “move

Sensors 2021, 21, 1665 9 of 25

right”, 2 s of “move left”, 2 s of “stand”, 3 s of “move up”, and 2 s of “move down.” We
choose these six motions because motion coordinates on a 2D surface can be captured
by building a rectangular coordinate system which contains x-axis and y-axis. Thus, any
motion on the 2D surface can be represented as movements on x-axis (i.e., “move left” and
“move right”) and y-axis (i.e., “move up” and ”move down”).

According to Bohan et al. [25], a typical cursor movement takes 1.002 s to finish and
travels 18.75 mm, which is 66 px on the monitor (a 19-inch monitor with a resolution
of 1400 × 1050 in their study). One, however, should not simply determine each cursor
movement based on the data collected every 1.002 s because the cursor will jump from
one location to another rather than moving continuously. Therefore, a typical cursor
movement should be broken into pixel-movement detection for classification. We have
designed a pixel-movement detection experiments as follows: (1) Collecting the sensors’
raw data during a time interval (0.015 s), which is the time used by the cursor to travel
one pixel; (2) Extracting features of the raw data to compose as one sample; (3) six classes
are predefined (referred to as “stand_on_x”, “move_right”, “move_left”, “stand_on_y”,
“move_up”, and “move_down”) in order to indicate different statuses. (4) The sample is
classified into one of the six predefined groups. In this way, both movement status and
direction detection can be addressed.

After the movement of mobile device is detected and transferred to a new cursor
position, the contents on the mobile device are updated based on the new position as
the mobile device moves. The user can directly interact with the large display from the
contents on her/his mobile.

4. Cursor Initialization

The cursor initialization is achieved by taking advantage of a mobile device, a flat
surface (i.e., a table), and a large display equipped with a microphone array. To initialize
the cursor, the user first briefly views the content on the large display screen and coarsely
selects an area of interest. The user also needs to define a rectangle working area on the flat
surface. The working area’s physical dimension is M times proportional to the large display
screen. The value of M is between 0 and 1 since the working area for the mobile device is
much smaller and more accessible than the large display screen. After the user decides a
desired area A on the large display (as in Figure 3a), he or she should estimate the relative
position A′ (in Figure 3b) on the working area based on the center of the microphone array.
The physical distance between the center of area A and the top center of the large display
is cld. The estimated distance cld’on the working area is equal to M times cld, and α is
equal to α

′.
α α

𝜃

Figure 3. Determine initialization area: (a) Large display; (b) a working area on a flat surface for the

mobile device.

Then the user produces a touch-down sound by putting the mobile device on the flat
hard surface. The sound can be captured by the microphone array. This touch-down sound
is then analyzed as the cue for computing the coordinates that represent the location of the
sound source. The angle of the sound source aligned to the center of the microphone array

Sensors 2021, 21, 1665 10 of 25

can be obtained through the calculation of the time-delay difference between each channel
of the microphone array.

As Figure 4 shows, the distance between A (the sound source) and B (a microphone
channel) is evaluated by the production of a time delay difference (TDD) and the speed
of the sound. The distance between A and B can be a negative value if the sound source
is located on the other side of the microphone array’s central point, and this causes the
TDD to be negative. A dual-delay algorithm was implemented with “binaural sound
source localization” [26]. The distance between two microphone channels B and C of the
microphone array is captured by the measurement of the distance between them. Thus, the
angle of the sound source θ can be calculated via Equation (1):

θ = arcsin
AB

BC
(1)

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝐴𝐵𝐵𝐶

𝑥 = 𝑠𝑖𝑛 𝜃 ∙ 𝑑𝑠𝑦 = 𝑐𝑜𝑠 𝜃 ∙ 𝑑𝑠𝑑𝑠

𝑋 = 𝐻𝑅2 + 𝑥𝑌 = 0 + 𝑦
θ −

𝑅𝑃𝑊 = 𝑚𝑥𝑚𝑑𝑝𝑖 ∙ 𝑙𝑑𝑝𝑖𝑅𝑃𝐻 = 𝑚𝑦𝑚𝑑𝑝𝑖 ∙ 𝑙𝑑𝑝𝑖𝑚𝑥 𝑚𝑦

Figure 4. Sound localization schema.

Once the angle has been calculated, the sound intensity can be evaluated through
the computation of the decibel level of the sound. Since environmental noise could easily
interfere with sound localization, a threshold was proposed to determine whether the
sampled sound is a real touch-down sound that is qualified to trigger the initialization.
If the intensity of the sampled sound is larger than the threshold, the mobile device is
registered as a client of the target large display device. Sound intensity also helps to
estimate the relative source sound location (x, y), which is implemented in Equation (2):

x = sinθ·dsy = cosθ·ds (2)

In the above formula, ds is an estimated measurement of the distance between the
source touch-down sound and the microphone array using sound intensity. The coordinates
are used as the relative pixel-based start-point on the target device screen, which takes
the center of its top boundary as the original base point. The actual start-point (X, Y) is
estimated based on Equation (3):

X =
HR

2
+ xY = 0 + y (3)

where HR represents the horizontal resolution of the large display device. However, since θ

can vary from −90◦ to 90◦ and the value ds is not restricted by the size of the large display
screen, it is possible that (X, Y) could be out of the range of the large display screen. If either
X or Y is out of the range, then the application should automatically adjust the value to its
closest boundary in order to avoid a positioning error. For example, if the large display has
a resolution of 1024 px × 768 px and if the source sound coordinates are (500, 866), then
the actual location start point is calculated as follows: (024/2 + 500) px, (0 + 866) px. In this
case, the system adjusts the value of Y from 866 px to 768 px since the vertical positioning
is higher than the maximum boundary (866 px > 768 px).

The estimated area is strictly equivalent to the physical size of the mobile device. A
key attribute called “dots per inch” (DPI) was used to obtain the relative pixel-based width

Sensors 2021, 21, 1665 11 of 25

(RPW) and relative pixel-based height (RPH) for the mobile device on the large display by
means of Equation (4):

RPW =
mx

mdpi
·ldpiRPH =

my

mdpi
·ldpi (4)

In the above formula, mx and my are the horizontal and vertical resolutions of the
mobile device, and mdpi and ldpi are the DPIs for the mobile device and large display,
respectively. Finally, the large display sends a screenshot image and its screen DPI to the
mobile device. When the image is received by the mobile device, it only displays the partial
area of that screenshot that uses (X, Y) as the base point and has the width of RPW and
height of RPH.

5. Detecting Cursor Movements

5.1. Data Collection

We have predefined six classes (referred to as “stand_on_x”, “move_right”, “move_left”,
“stand_on_y”, “move_up”, and “move_down”) to differentiate motion statuses. In order to
sample the data for all six predefined class, the pixel-movement classification experiment
was designed to have a 7-s data collection session applied on x and y axes respectively,
which includes three separate actions: 2 s of “stand”, 3 s of “move_right/up”, and 2 s of
“move left/down” on each axis. Tables 1 and 2 list the detailed actions in the data collection
session. The raw data from the accelerometer and gyroscope were sampled at a rate of
590 hertz since, on average, 4131 raw data instances were fetched from the smart phone in
7 s. In addition, the time spent for a 1 px movement was 0.015 s, since in 1.002 s the cursor
can travel 66 pixels.

Table 1. Action design.

Actions Timestamp

Stand 0–2 s
Move right 2–5 s
Move left 5–7 s

Stand 0–2 s
Move up 2–5 s

Move down 5–7 s

Table 2. Labeling design.

Labels Timestamp

0(stand_on_x) 0–1 s
1(move_right) 3–4 s
2(move_left) 6–7 s

3(stand_on_y) 0–1 s
4(move_up) 3–4 s

5(move_down) 6–7 s

Moreover, a visual text interface was provided to notify the user of the designated
action to perform at a given timestamp. Normally, the visual reaction for a human is
0.25 s [27]. This application notified the user to perform an action 0.25 s before the actual
recording time. This adjustment was designed to ensure that the user-recognized timestamp
was strictly in accordance with the machine’s recording time.

The time frame as shown in Tables 1 and 2 was designed due to an important issue
encountered during the data collection. This issue raised a question of how to label the
benchmark class correctly. Each test may contain thousands of raw instances, and each
device has its own mechanical delays because of the variance in the buildup of CPU (central
processing unit) speeds. For example, on the threshold of performing actions in Second 2

Sensors 2021, 21, 1665 12 of 25

or Second 5 (indicated by a red circle in Figure 5), the designated class could be mislabeled
even when the visual delay time is added prior to the actual action timestamp. For example,
presumably, the program labels the raw instances collected after Second 2 as “move right.”
However, when the user receives the visual notice and starts to move the device, the timer
may have already reached Second 2.2. Thus, the raw instances fetched between Second 2
and Second 2.2 are mislabeled.

𝑀𝑖𝑛(𝑡𝑙𝑠 + 𝑡𝑙𝑚𝑝 + 𝑡𝑙𝑚𝑛 + 𝑡𝑑𝑠 + 2𝑡𝑑𝑚𝑝 + 𝑡𝑑𝑚𝑛)

Figure 5. Graph demo of the experiment design.

The motivation for the action and labeling design is two-fold. First, sufficient samples
for labeling require at least 1 s, which is the typical cursor movement duration (use 1 to
replace 1.002 for easy calculation), to be assigned to the labeling session. Additionally, at
least 1 s between the labeling session and the action change threshold is also necessary
in order to accommodate potential mislabels. Second, it is important to shorten the data
collection session as much as possible because this data collection process is required
when the user is trying to control the cursor by means of the device’s movements. We
aim to maintain a shorter data preprocessing time. If an application has many complex
preprocessing steps that consume a substantial amount of time before actual usage, users
tend to lose interest in the application. This design allows the experiment simultaneously
to maximize the duration of effective sampling data and to minimize the complexity of
using the application. Thus, the total time is measured as follows:

Min(tls + tlmp + tlmn + tds + 2tdmp + tdmn)

In the above equation, tls, tlmp, and tlmn are the times used for labeling “stand”,
“move right/up”, and “move left/down”, while tds, tdmp, and tdmn are required sessions
to prevent mislabeling. Since both the labeling session and the mislabel preventing session
require 1 s as the minimum time interval, the total required time for data collection
is 7 s, based on the above formula. Furthermore, since the action “move right/up” is
located in the middle, it required two sessions to prevent mislabeling. The experiment was
performed ten times. Five of the tests were left-right-movements, and five of them were
up-down movements.

5.2. Data Preprocessing

A preprocessing method was applied to each raw dataset generated from the ten
tests. The preprocessing of the raw instances includes two steps. First, only instances
with a predefined class label were kept to construct the filtered raw dataset. According to
the experiment design, more than half of the raw instances could be potentially labeled
incorrectly (1–3 s and 4–6 s in Figure 5); thus, these raw instances were dropped in order
to avoid mislabeling. Second, the filtered raw dataset was divided into sub-datasets to
facilitate statistical calculations and feature extraction. Nine raw instances were assigned
to each sub-dataset sequentially on the time frame so as to test different machine-learning
algorithms with the goal of making the application extremely sensitive to the device’s
movement detection. Nine raw instances were used as the grouping metrics because a
pixel movement typically finished in 0.015 s, and there were, on average, 4131 instances

Sensors 2021, 21, 1665 13 of 25

collected in 7 s from each raw dataset. Therefore, to accurately classify each pixel movement,
nine raw instances were required. Subsequently, each group of nine raw instances was
transformed into a sample that represented a pixel movement, with features calculated
by feature-extraction methods. The label values (0, 1, 2, 3, 4, 5) typically represent the
device’s statuses (“stand_on_x”, “move_right”, “move_left”, “stand_on_y”, “move_up”,
and “move_down”). The label that occurred most frequently in the group were assigned
as the label for the corresponding sample. Finally, all the generated samples from a single
raw dataset constructed a preprocessed dataset, and ten preprocessed datasets, marked
from “data 0” to “data 9”, were produced with, on average, 196 samples in each.

5.3. Feature Extraction

A total of 63 features were extracted from the raw data via mathematical or statistical
computation. For the raw data, tri-axial accelerometer and gyroscope data, indicated as
(ax, ay, az) and (gx, gy, gz), were collected to compute these features. Furthermore, tri-axial
speed values (vx, vy, vz) were captured through the use of acceleration and timestamp at
each raw instance. Equation (5) depicts the detailed computation method:

Vi =

{

ai·ti where i = 0
Vi−1 + ai·ti where i > 0

(5)

In general, feature categories can be classified into two domains, represented as the
time domain and frequency domain (Table 3). All the 63 extracted features are listed
in Table 4.

Table 3. Extracted features on domains.

Domains Feature Categories

Time domain

Mean
Standard deviation

Minimum-maximum difference
Median
Energy

Frequency domain
Dominant frequency

Spectral energy

Table 4. All 63 features.

Vectors Axes Mean
Standard
Deviation

Minimum-
Maximum
Difference

Median Energy
Dominant
Frequency

Spectral Energy

Acceleration
X mean*ax std*ax min_max_gap*ax median*ax energy*ax main_freq*ax spectral_energy*ax
Y mean*ay std*ay min_max_gap*ay median*ay energy*ay main_freq*ay spectral_energy*ay
Z mean*az std*az min_max_gap*az median*az energy*az main_freq*az spectral_energy*az

Rotation
X mean*gx std*gx min_max_gap*gx median*gx energy*gx main_freq*gx spectral_energy*gx
Y mean*gy std*gy min_max_gap*gy median*gy energy*gy main_freq*gy spectral_energy*gy
Z mean*gz std*gz min_max_gap*gz median*gz energy*gz main_freq*gz spectral_energy*gz

Speed
X mean*vx std*vx min_max_gap*vx median*vx energy*vx main_freq*vx spectral_energy*vx
Y mean*vy std*vy min_max_gap*vy median*vy energy*vy main_freq*vy spectral_energy*vy
Z mean*vz std*vz min_max_gap*vz median*vz energy*vz main_freq*vz spectral_energy*vz

The frequency-domain features were captured through fast Fourier transform (FFT),
which transfers a signal from a time-domain to a frequency-domain [28]. Equation (6) provides:

Xk =
N − 1

∑
n = 0

xn·e
−

i2π

N kn (6)

Sensors 2021, 21, 1665 14 of 25

In this above formula, xn indicates sensors’ readings on time domain, and N indicates
the length of this signal. The real number part of the computed Xk indicates the amplitude
spectrum of each frequency domain. The dominant frequency is captured through finding
a frequency value that has the maximum amplitude.

The energy of each axis was computed by adding up the square numbers of the raw
instances in a signal. The spectral energy was calculated using the same method but with
the raw value transformed from a time-domain to a frequency-domain by FFT. Equation (7)
(Parseval’s theorem) and (8) [29] describe the detailed calculation:

Enery(y) =
N

∑
n = 1

x2
n (7)

Spectral(y) =
N

∑
n = 1

(FFT(xn))
2 (8)

where xn indicates sensors’ readings on time domain, and N indicates the length of
this signal.

6. Classification and Results

Several studies have been conducted to determine which classification algorithm is the
most accurate candidate for extracting patterns from built-in sensors’ data. Algorithms such
as the support vector machine (SVM) [30], k-nearest neighbors [31], and naïve Bayes [32]
have been used to extract data patterns in order to verify whether daily activities can be
detected. In terms of multi-class classification tasks, the study by [33] has suggested that
random forest and gradient boosting are the most favored candidates for personal-activity
classification. To better fit the data model and classification task in this study, all the
classifiers previously mentioned, along with additional candidates, were included in the
pool to ascertain whether there were any novel findings.

6.1. Basic Cross-Validation

Cross-validation is an evaluation tool that examines whether a model is an effective
predictor for data that is completely new and differs from the existing dataset. The simplest
way to avoid this “overfit” issue is what is known as a “holdout method.” This method
typically splits the dataset into two groups: one group is used for training, and the other
group is used for testing. The amount of training and testing is generally assigned at a
ratio of 7:3. However, there is an evident weakness that can produce a high variance in
the model. The result of each test classification may rely on the endpoint of the training or
testing set. Therefore, the strategy of splitting the dataset becomes a critical factor that can
affect the evaluation results.

6.2. Ten-Folds Cross-Validation

This investigation applied a 10-folds cross-validation to avoid the aforementioned
bias. Ten-folds cross-validation is a specific case of a general method known as “K-folds
cross-validation.” Using this K-folds cross-validation, the dataset could be split into K
subsets, and on each subset the holdout method was performed once. Each iteration
only used one of the K subsets as the test group and the other K-1 subsets as the training
group. This method notably improved the holdout since it mitigated the impact of the
data-division strategy. As the K value increased, the variance in the evaluation results
declined. Moreover, K = 10 was used because the number of test times in this study equals
10. Thus, to keep the consistency, the authors chose 10 as the value for parameter K.

A 10-folds cross-validation was applied on a dataset that contained 1969 samples.
This dataset was combined by appending ten preprocessed datasets together. Ten classi-
fiers were evaluated by the accuracy performance (Figure 6 and Table 5); these classifiers
included AdaBoost (adaptive boosting), decision tree, gradient boosting, LDA (linear dis-

Sensors 2021, 21, 1665 15 of 25

criminant analysis), linear SVM (support vector machine), naïve Bayes, nearest neighbors,
neural network, random forest, and RBF (radial basis function) SVM.

Figure 6. Cross-validation results for all features (box plot).

Table 5. Cross-validation results for all features.

Classifiers Accuracy Mean Accuracy Std

Gradient boosting 83.65% 11.18%
LDA 83.43% 7.43%

naïve Bayes 79.42% 6.68%
Decision tree 76.91% 11.66%
Linear SVM 76.24% 5.60%

Random forest 72.70% 6.22%
Neural net 72.47% 7.06%

Nearest neighbors 66.51% 11.05%
AdaBoost 48.24% 4.03%
RBF SVM 44.27% 8.66%

In Figure 6, from left to right, the performance of all classifiers is sorted by descending
order of mean and by ascending order of standard deviation. From the observations,
gradient boosting, LDA, and naïve Bayes are the top three classifiers, which have reached
the average accuracy of 83.65%, 83.43%, and 79.42%; their standard deviation is measured
at 11.18%, 7.43%, and 6.68%, respectively. Based on the average accuracy, gradient boosting
should be selected as the agent for this classification problem; however, gradient boosting
has a higher standard deviation (11.18% versus 7.43%) but a similar average accuracy
(83.65% versus 83.43%) compared with LDA. This comparison suggests that the perfor-
mance of gradient boosting may significantly vary when different training and testing
data are used for classification problems. Thus, LDA is recommended when all features
are included.

In machine learning, besides the accuracy rate, the manner in which the results of the
error predictions are distributed is also critical for downstream analysis. The distribution
of errors can be determined through an examination of the confusion matrix of the classifi-
cation results proposed by each classifier. In this work, the confusion matrices of the top
three classifiers (gradient boosting, LDA, naïve Bayes) were demonstrated (Table 6).

Sensors 2021, 21, 1665 16 of 25

Table 6. Confusion matrices for top three classifiers.

Gradient Boosting

stand_on_x move_right move_left stand_on_y move_up move_down Classified as

208 1 0 116 0 0 stand_on_x

0 277 14 0 38 0 move_right

0 1 311 0 5 19 move_left

70 1 0 261 0 0 stand_on_y

0 26 3 0 289 0 move_up

0 0 22 0 0 307 move_down

LDA

stand_on_x move_right move_left stand_on_y move_up move_down Classified as

218 0 0 107 0 0 stand_on_x

0 307 0 0 22 0 move_right

0 6 307 0 18 5 move_left

127 1 0 204 0 0 stand_on_y

0 29 9 1 279 0 move_up

0 0 0 0 1 328 move_down

naïve Bayes

stand_on_x move_right move_left stand_on_y move_up move_down Classified as

206 2 2 115 0 0 stand_on_x

0 242 23 0 64 0 move_right

0 16 252 0 52 16 move_left

73 3 0 255 1 0 stand_on_y

0 3 19 0 296 0 move_up

0 2 14 0 0 313 move_down

The confusion matrix generally shows the distribution of correct and error predictions.
Each row label indicates the predicted class, and the column label indicates the actual class.
For example, based on the confusion matrix of naïve Bayes, the first observation of 206 falls
under the column of “stand_on_x” and the row of “stand_on_x” as well. This result
means that 206 samples are predicted as “stand_on_x” and also belong to the “stand_on_x”
class, and this means, ultimately, that these 206 samples have been predicted correctly.
However, the second horizontal observation 2 indicates that two samples are predicted as
“stand_on_x” but actually belong to the “move_right” class; this means that these samples
have been predicted incorrectly.

Some notable findings can be ascertained from the confusion matrix. First, it seems
that all these three classifiers have managed an exemplary performance in distinguishing
“move” and “stand” regardless of direction since there are few observations in the cells of
“stand_on_x/y” that are classified as “move_right/left/up/down.” Second, commonly,
samples are classified into incorrect labels where the difference only lies in an axis (x or y)
compared with the original label. For example, there are many error predictions that fail to
distinguish whether the sample is in the “stand_on_x” group or the “stand_on_y” group.

7. Feature Selection

In machine learning, feature selection plays an important role that can substantially
impact not only the learning accuracy of the prediction model but also the efficiency and
user experience of the application. Feature selection represents the process of fetching a
subset that contains the most relevant features from an original feature set based on statisti-

Sensors 2021, 21, 1665 17 of 25

cal algorithms and has been proven to be accurate through both theoretical and practical
success in multiple application scenarios [34,35]. To determine what features should be
selected, multiple methods were applied in our work, and these methods can be grouped
into two categories: algorithm-based methods and manual feature selection methods.

7.1. Algorithm-Based Methods

Three algorithm-based methods were tested in this paper: linear correlation analysis,
select k best, and recursive feature elimination (RFE). All were evaluated by applying
10-folds cross-validation on the feature sets proposed.

7.1.1. Linear Correlation Analysis

Linear correlation is a statistical method to investigate the strength of association
between two features in order to obtain the most relevant features and to remove irrelevant
features through an examination of the strength between each feature and the labeled
class. Moreover, a Pearson correlation coefficient was computed for each pair of features
by means of Equation (9):

r =
∑i(xi − x)((yi − y)

√

∑i(xi − x)2
√

∑i(yi − y)2
(9)

In this formula, xi and yi represent the values of two features, and x and y are the
mean values of each feature. The result is always a decimal number between –1 and 1. If
this number is close to 1, then the two variables X and Y reveal a high positive correlation.
If this number is close to –1, then the two variables reveal a high negative correlation. A
threshold of 0.5 was proposed [36] so as to keep features that have absolute values of their
correlations with a label class larger or equal to 0.5. A feature set containing four features
was generated: “mean*vz”, “median*vz”, “energy*vz”, and “spectral_energy*vz”.

7.1.2. Select K Best

A select K best method uses a specific function to score each feature and to select
the highest K scoring features. We computed an analysis of variance (ANOVA) F-value
between the label and each feature, and it used K = 10 to perform this task because the
author aimed to investigate the performance of each classifier when the number of features
increased compared with a linear correlation analysis. Selected features were as follows:
“median*vz”, “mean*vz”, “spectral_energy*vz”, “energy*vz”, “spectral_energy*vy”, “en-
ergy*vy”, “spectral_energy*vx”, “energy*vx”, “median*vy”, and “mean*vy”.

7.1.3. Recursive Feature Elimination

Recursive feature elimination (RFE) is a method that proposes certain candidate
features by gradually focusing on a smaller set of features. Usually, it starts with a trained
estimator to assign an importance value to each feature, and then the feature with the
lowest importance value is eliminated from the candidate pool. This process is continued
recursively until the desired number of features has been satisfied.

This study employed a linear SVM as a trained estimator since it has a high accu-
racy and an efficient generalization ability for removing features recursively [37]. With
this algorithm fitted into the dataset, the RFE model proposed an optimized number
of 31 features.

7.1.4. Algorithm-Based Results

Cross-validation results for the top three classifiers in each method have been demon-
strated in Table 7. From the observation of proposed features, there are 33 unique features
selected by all three methods, and 84.85% (28 out of 33) are time-domain-related; this
potentially suggests that frequency-domain features are not as important as time-domain
features for this classification task. In addition, LDA, naïve Bayes, and gradient boosting are

Sensors 2021, 21, 1665 18 of 25

potential candidates to be recognized as the best classifier for detecting device movement
since they are ranked as the top three classifiers in at least two feature-selection methods.
Furthermore, 39.4% (13 out of 33) of the proposed features are speed-related, and both the
select K best and the linear correlation selected features that are all speed-related; this may
indicate that speed is a critical vector in terms of determining device movement.

Table 7. Cross-validation for algorithm-based feature selection.

Feature Selection
Method

Selected Features Classifiers Accuracy_Mean Accuracy_Std

Linear correlation
“mean*vz”, “median*vz”, “energy*vz”,

“spectral_energy*vz”

naïve Bayes 73.20% 12.07%
RBF SVM 72.57% 11.50%

Neural Nnet 72.13% 13.20%

Select k best
(Anova)

“median*vz”, “mean*vz”, “spectral_energy*vz”,
“energy*vz”, “spectral_energy*vy”,
“energy*vy”, “spectral_energy*vx”,

“energy*vx”, “median*vy”, “mean*vy”

LDA 78.75% 8.13%

Random forest 76.26% 9.59%

Gradient boosting 76.12% 10.81%

Recursive feature
elimination

“mean*ax”, “mean*ay”, “mean*az”, “mean*vx”,
“mean*vy”, “mean*vz”, “mean*gx”, “mean*gz”,

“min_max_gap*ax”, “min_max_gap*ay”,
“min_max_gap*az”, “min_max_gap*vy”,
“min_max_gap*gy”, “min_max_gap*gz”,
“median*ax”, “median*ay”, “median*az”,
“median*vx”, “median*vy”, “median*vz”,

“median*gz”, “main_freq*gy”, “main_freq*gz”,
“energy*ax”, “energy*az”, “energy*vx”,
“energy*vz”, “energy*gy”, “energy*gz”,

“spectral_energy*vy”, “spectral_energy*vz”

Gradient boosting 84.07% 10.74%

LDA 82.82% 8.14%

naïve Bayes 80.40% 4.26%

7.2. Manual Feature Selection

Manual feature selection is another method for pursuing a small set of features by
removing irrelevant features. However, instead of using algorithms to determine feature
importance, Manual feature selection proposes feature sets based on assumptions that
may explain what features are related to the success of movement detection. For example,
in physics, speed typically describes where and how fast the object is moving. Angular
velocity detects whether the object has any rotation event. Thus, an assumption can be
made as when the machine-learning model tries to detect the four-direction movement of a
mobile device, it is better using speed-related features rather than angular velocity-related
features to build the model. Since the key of determining four-direction movement is
to detect where and how fast the object is moving. Movements on a flat surface barely
produce rotation event.

Another hypothesis is that speed-related features should exclude standard deviation
and minimum-maximum difference in order to have a better performance. Since the
standard deviation and minimum-maximum difference can only measure the extent of
speed alteration rather than indicate where and how fast the object is moving. The ideal
feature category should be mean or median because they reflect the raw values of speed in
a pixel-movement time interval.

The core process of manual feature selection is composed of five steps: (1) Eval-
uating the classification performance of feature sets that each of them relates to either
one vector (acceleration, angular velocity, and speed) or one feature category (mean, std,
min_max_gap, median, energy, dominant frequency, and spectral energy). Since each
vector or feature category has its unique physical or statistical meanings, it is better to
understand how they uniquely impact the success of the classification. (2) Finding out the
vector VH that its related features can produce a higher recognition rate than other vectors.
(3) Finding out the feature category FCH that its related features can produce a higher

Sensors 2021, 21, 1665 19 of 25

recognition rate than other feature categories. (4) Selecting a combined feature set that
contains features relates to VH and FCH simultaneously. (5) Evaluating the performance
of this combined feature set to verify if the recognition rate can be higher than former
feature sets. The objective of this section is to examine whether using features that relate
simultaneously to the most relevant vector and most relevant feature category can reach a
higher performance

7.2.1. Vector-Based Feature Selection

The difference between vectors acts as an imperative factor for the success of the
classification task because different vectors represent their own unique physical signif-
icance. Therefore, it is critical to evaluate features related to a single vector or a single
feature category separately. An analysis for selecting features based on different vectors is
demonstrated in Table 8.

Table 8. Performance of vector-based feature selection.

Vector Selection Selected Features
Number of

Features
Classifiers Accuracy_Mean Accuracy_Std

Acceleration

“mean*ax”, “mean*ay”, ”mean*az”,
”std*ax”, “std*ay”, ”std*az”,

“std*az”, ”min_max_gap*ax”,
“min_max_gap*ay”,

”min_max_gap*az”, ”median*ax”,
“median*ay”, ”median*az”,
”energy*ax”, “energy*ay”,

”energy*az”, “main_freq*ax”,
“main_freq*ay”, ”main_freq*az”,

”spectral_energy*ax”,
“spectral_energy*ay”,
”spectral_energy*az”

21

Gradient boosting 63.87% 5.27%

Random forest 61.07% 5.26%

Decision tree 57.12% 4.28%

Angular velocity

“mean*gx”, “mean*gy”, ”mean*gz”,
”std*gx”, “std*gy”, ”std*gz”,

“std*gz”, ”min_max_gap*gx”,
“min_max_gap*gy”,

”min_max_gap*gz”, ”median*gx”,
“median*gy”, ”median*gz”,
”energy*gx”, “energy*gy”,

”energy*gz”, “main_freq*gx”,
“main_freq*gy”, ”main_freq*gz”,

”spectral_energy*gx”,
“spectral_energy*gy”,
”spectral_energy*gz”

21

Decision tree 51.96% 5.31%

Gradient boosting 51.96% 3.97%

Random forest 50.67% 7.45%

Speed

“mean*vx”, “mean*vy”, ”mean*vz”,
”std*vx”, “std*vy”, ”std*vz”,

“std*vz”, ”min_max_gap*vx”,
“min_max_gap*vy”,

”min_max_gap*vz”, ”median*vx”,
“median*vy”, ”median*vz”,
”energy*vx”, “energy*vy”,

”energy*vz”, “main_freq*vx”,
“main_freq*vy”, ”main_freq*vz”,

”spectral_energy*vx”,
“spectral_energy*vy”,
”spectral_energy*vz”

21

LDA 80.03% 9.84%

Random forest 79.98% 8.92%

Gradient boosting 79.06% 6.92%

Sensors 2021, 21, 1665 20 of 25

Table 8. Cont.

Vector Selection Selected Features
Number of

Features
Classifiers Accuracy_Mean Accuracy_Std

Acceleration and
angular velocity

“mean*gx”, “mean*gy”, ”mean*gz”,
”std*gx”, “std*gy”, ”std*gz”,

“std*gz”, ”min_max_gap*gx”,
“min_max_gap*gy”,

”min_max_gap*gz”, ”median*gx”,
“median*gy”, ”median*gz”,
”energy*gx”, “energy*gy”,

”energy*gz”, “main_freq*gx”,
“main_freq*gy”, ”main_freq*gz”,

”spectral_energy*gx”,
“spectral_energy*gy”,

”spectral_energy*gz”, ”mean*gx”,
“mean*gy”, ”mean*gz”, ”std*gx”,

“std*gy”, ”std*gz”, “std*gz”,
”min_max_gap*gx”,
“min_max_gap*gy”,

”min_max_gap*gz”, ”median*gx”,
“median*gy”, ”median*gz”,
”energy*gx”, “energy*gy”,

”energy*gz”, “main_freq*gx”,
“main_freq*gy”, ”main_freq*gz”,

”spectral_energy*gx”,
“spectral_energy*gy”,
”spectral_energy*gz”

42

Gradient boosting 65.08% 5.33%

Random forest 62.20% 3.51%

Decision Tree 59.59% 5.95%

Speed and
acceleration

“mean*ax”, “mean*ay”, ”mean*az”,
”std*ax”, “std*ay”, ”std*az”,

“std*az”, ”min_max_gap*ax”,
“min_max_gap*ay”,

”min_max_gap*az”, ”median*ax”,
“median*ay”, ”median*az”,
”energy*ax”, “energy*ay”,

”energy*az”, “main_freq*ax”,
“main_freq*ay”, ”main_freq*az”,

”spectral_energy*ax”,
“spectral_energy*ay”,

”spectral_energy*az”, ”mean*vx”,
“mean*vy”, ”mean*vz”, ”std*vx”,

“std*vy”, ”std*vz”, “std*vz”,
”min_max_gap*vx”,
“min_max_gap*vy”,

”min_max_gap*vz”, ”median*vx”,
“median*vy”, ”median*vz”,
”energy*vx”, “energy*vy”,

”energy*vz”, “main_freq*vx”,
“main_freq*vy”, ”main_freq*vz”,

”spectral_energy*vx”,
“spectral_energy*vy”,
”spectral_energy*vz”

42

Gradient boosting 83.25% 10.90%

naïve Bayes 83.01% 7.36%

LDA 81.71% 7.05%

Sensors 2021, 21, 1665 21 of 25

Table 8. Cont.

Vector Selection Selected Features
Number of

Features
Classifiers Accuracy_Mean Accuracy_Std

Speed and
angular velocity

“mean*vx”, “mean*vy”, ”mean*vz”,
”std*vx”, “std*vy”, ”std*vz”,

“std*vz”, ”min_max_gap*vx”,
“min_max_gap*vy”,

”min_max_gap*vz”, ”median*vx”,
“median*vy”, ”median*vz”,
”energy*vx”, “energy*vy”,

”energy*vz”, “main_freq*vx”,
“main_freq*vy”, ”main_freq*vz”,

”spectral_energy*vx”,
“spectral_energy*vy”,

”spectral_energy*vz”, ”mean*gx”,
“mean*gy”, ”mean*gz”, ”std*gx”,

“std*gy”, ”std*gz”, “std*gz”,
”min_max_gap*gx”,
“min_max_gap*gy”,

”min_max_gap*gz”, ”median*gx”,
“median*gy”, ”median*gz”,
”energy*gx”, “energy*gy”,

”energy*gz”, “main_freq*gx”,
“main_freq*gy”, ”main_freq*gz”,

”spectral_energy*gx”,
“spectral_energy*gy”,
”spectral_energy*gz”

42

LDA 82.31% 8.94%

Gradient boosting 81.75% 7.76%

Linear SVM 75.71% 6.55%

From the results of vector-based feature selection, it is obvious that as long as speed-
related features are included, then the average accuracy of classification is always signifi-
cantly higher (80.47% > 58.16%) than the feature set without speed-related features. At the
same time, acceleration- or angular velocity-related features can be considered as artifacts
for the classification task: first, because features based on these two vectors are performing
at an extremely low accuracy rate (on average, 58.16%); second, because there is no signifi-
cant accuracy improvement when either acceleration- or angular velocity-related features
are mixed with speed-related features (for example, LDA sits at 80.03% with speed-only
features, but at 81.71% and 82.31% when mixing speed with acceleration- and angular
velocity features, respectively).

7.2.2. Feature-Category-Based Feature Selection

The feature categories presented in the feature extraction section were inspired by
previous studies [38]. However, some of the feature categories are either mathematical- or
statistical-confounding factors for the classification problem. Thus, it is wise to analyze
them separately in order to observe what feature categories contribute positively to the
machine-learning model.

This study applied cross-validation on seven feature categories independently, and
the results, including the top three classifiers that have the highest accuracy rates, are
shown in Table 9. From the observations, it seems that through the application of median-
related features, the accuracy rate can boom to 85.36% when naïve Bayes is used as the
classifier. However, there is another observation that also uses naïve Bayes as the classifier
but applies mean-related features; this reaches a similar recognition rate of 85.25%. These
findings suggest that either median- or mean-related features contribute to the learning
process. In addition, the accuracy rate of main-frequency-related (“main_freq”) features
are significantly lower than the accuracy of other feature categories; this could indicate that
major frequency-related features are irrelevant to the success of the classification task.

Sensors 2021, 21, 1665 22 of 25

Table 9. Performance of feature-category based feature selection.

Feature-Category Selected Features
Number of

Features
Classifiers Accuracy_Mean Accuracy_Std

Mean
“mean*ax”, ”mean*ay”, ”mean*az”,
”mean*gx”, ”mean*gy”, ”mean*gz”,
”mean*vx”, ”mean*vy”, ”mean*vz”

9

naïve Bayes 85.25% 6.53%

Gradient boosting 84.00% 12.42%
LDA 77.98% 11.57%

Std
“std*ax”, ”std*ay”, ”std*az”,
”std*gx”, ”std*gy”, ”std*gz”,
”std*vx”, ”std*vy”, ”std*vz”

9

Gradient boosting 56.51% 4.01%

Decision tree 48.54% 6.84%
Random forest 46.51% 6.40%

Min_max_gap

“min_max_gap*ax”,
”min_max_gap*ay”,
”min_max_gap*az”,
”min_max_gap*gx”,
”min_max_gap*gy”,
”min_max_gap*gz”,
”min_max_gap*vx”,
”min_max_gap*vy”,
”min_max_gap*vz”

9

Gradient boosting 58.05% 4.26%

Decision tree 50.29% 5.56%

Random forest 50.27% 4.88%

Median

“median*ax”, ”median*ay”,
”median*az”, ”median*gx”,
”median*gy”, ”median*gz”,
”median*vx”, ”median*vy”,

”median*vz”

9

naïve Bayes 85.36% 7.27%

Gradient boosting 82.54% 10.69%

Random forest 78.55% 7.82%

Energy

“energy*ax”, ”energy*ay”,
”energy*az”, ”energy*gx”,
”energy*gy”, ”energy*gz”,
”energy*vx”, ”energy*vy”,

”energy*vz”

9

Gradient boosting 83.00% 11.06%

naïve Bayes 78.50% 6.23%

Decision tree 77.93% 11.29%

Main_freq

“main_freq*ax”, ”main_freq*ay”,
”main_freq*az”, ”main_freq*gx”,
”main_freq*gy”, ”main_freq*gz”,
”main_freq*vx”, ”main_freq*vy”,

”main_freq*vz”

9

LDA 25.95% 1.60%

Linear SVM 25.85% 0.72%

Decision tree 25.49% 1.06%

Spectral_energy

“spectral_energy*ax”,
”spectral_energy*ay”,
”spectral_energy*az”,
”spectral_energy*gx”,
”spectral_energy*gy”,
”spectral_energy*gz”,
”spectral_energy*vx”,
”spectral_energy*vy”,
”spectral_energy*vz”

9

Gradient boosting 83.10% 11.42%

Decision tree 78.42% 11.84%

naïve Bayes 78.29% 7.19%

7.2.3. Combined Analysis

From the brief analysis of the previous two feature-selection methods, another hypoth-
esis can be posited that if the feature set was downsized into a state where only speed and
mean- or median-related features were included, then the accuracy of the specific classifier
should be higher or remain at the same level. To verify this assumption, this study has
created two feature sets: one containing only the speed and mean-related feature, and the
other only the speed and median-related feature. Cross-validation was then applied on
these two feature sets. After generating the results, the author selected “gradient boosting”,
“LDA”, and “naïve Bayes” as the benchmark classifiers for comparing since these are the
most recurrent classifiers considered to be high performing, based on the previous results.

Sensors 2021, 21, 1665 23 of 25

The compared results (Table 10) provide strong evidence for declining the aforemen-
tioned hypothesis. With a focus on features that are only related to speed and mean, the
performance of the classification actually decreased for all three benchmark classifiers,
compared to the performance of the feature set with all vectors (speed, acceleration, and
angular velocity). The same trend occurred on another feature set (speed and median
related feature) since the recognition rates of benchmark classifiers boomed when features
related to all vectors and the median were involved in the learning model.

Table 10. Feature selection performance with benchmark classifiers.

Description Feature Set
Number of

Features
Gradient
Boosting

LDA
Naïve
Bayes

Speed and mean “mean*vx”, ”mean*vy”, ”mean*vz” 3 79.10% 72.34% 74.38%

All vectors and mean
mean*vx,”mean*vy”, ”mean*vz”,

”mean*ax”, ”mean*ay”, ”mean*az”,
”mean*gx”, ”mean*gy”, ”mean*gz”

9 84.00% 77.98% 85.25%

Speed and median “median*vx”, ”median*vy”, ”median*vz” 3 78.32% 72.34% 74.38%

All vectors and median
“median*vx”, ”median*vy”, ”median*vz”,
”median*ax”, ”median*ay”, ”median*az”,
”median*gx”, ”median*gy”, ”median*gz”

9 82.54% 77.88% 85.36%

Speed and all
feature categories

mean*vx, mean*vy”, ”mean*vz”, ”std*vx”,
“std*vy”, ”std*vz”, ”min_max_gap*vx”,

“min_max_gap*vy”, ”min_max_gap*vz”,
”median*vx”, “median*vy”, ”median*vz”,
”energy*vx”, “energy*vy”, ”energy*vz”,

“main_freq*vx”, “main_freq*vy”,
”main_freq*vz”, ”spectral_energy*vx”,

“spectral_energy*vy”,
”spectral_energy*vz”

21 79.06% 80.03% 71.43%

All 63 features All 63 features 63 83.65% 83.43% 79.42%

Moreover, these results also show that acceleration- and angular velocity-related
features cannot contribute to the performance of the classification task because it is evi-
dent that the addition of more vector-based features can lead to a boom in performance
(gradient boosting: from 79.10 to 84.00%; LDA: from 72.34 to 77.98%; naïve Bayes: from
74.38 to 85.25%).

Furthermore, this performance boom was not driven from the addition of the number
of features: Table 10 shows that even with 21 features or all 63 features selected, gradient
boosting and naïve Bayes performed worse than previous feature sets (all vectors and the
mean, all vectors and the median) that only have nine features.

8. Conclusions and Future Work

In this paper, we have proposed a low-cost, intuitive, and physically unconstrained
cursor position system. The user can conveniently browse and interact with a large display
device at a distance from her/his mobile device. We use a sound localization technique to
initiate the cursor’s starting position on a large display device, which enables the initial
connection between a mobile device and a large display screen. A novel data collection
framework has been implemented that helps the supervised model to avoid mislabeling
for training sets when working with very sensitive sensors, in which a data-analysis
pipeline is built for characterizing data into statistical features (mean, standard deviation,
min-max difference, and power energy) and spectral features (dominant frequency and
spectral energy). A comprehensive study of different machine-learning algorithms and
feature selection sets is conducted in the experiment. In total, 63 features and 10 classifiers
have been employed to construct the machine-learning models. Multiple feature-selection
methods have been applied to find an optimized machine-learning model. The study

Sensors 2021, 21, 1665 24 of 25

shows that naïve Bayes, gradient boosting, and LDA as the reliable classifiers to build
machine-learning models for detecting motion of mobile devices.

In future, we plan to extend our work to other mobile devices, such as tablets and
smartwatches. Current generations of mobile devices already have built-in accelerometers
and our approach does not need any additional hardware. In the experiments, we use a
smartphone with Android OS. It is feasible to apply our system to other devices using
the same operating system. Our future goal is to create a cross-platform application that
can run the application on iOS devices as well. Although we have tested the system and
achieved a seamless smooth interaction with the large display screen as the mobile device
moves, we plan to conduct a user study to evaluate the performance of our system and
gather more feedback to improve the current design.

Author Contributions: Conceptualization: J.Y. and J.K.; methodology: J.Y., J.K. and C.Z.; software:

J.Y.; validation: J.Y., J.K. and C.Z.; data curation: J.Y.; writing—original draft preparation: J.Y.;

writing—review and editing: J.K. and C.Z.; supervision: J.K. All authors have read and agreed to the

published version of the manuscript.

Funding: This research was in part funded by NSF under grant #1722913.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Available online: http://www.pewinternet.org/fact-sheet/mobile/ (accessed on 25 December 2020).

2. Sarabadani Tafreshi, A.E.; Soro, A.; Tröster, G. Automatic, Gestural, Voice, Positional, or Cross-Device Interaction? Comparing

Interaction Methods to Indicate Topics of Interest to Public Displays. Front. ICT 2018, 5, 1–13. [CrossRef]

3. Ikematsu, K.; Siio, I. Memory Stones: An Intuitive Information Transfer Technique between Multi-Touch Computers. In HotMobile

’15, Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, Santa Fe, NM, USA, 12–13 February

2015; ACM Press: New York, NY, USA, 2015; pp. 3–8.

4. Marquardt, N.; Ballendat, T.; Boring, S.; Greenberg, S.; Hinckley, K. Gradual Engagement: Facilitating Information Exchange

between Digital Devices as a Function of Proximity. In ITS ’12, Proceedings of the 2012 ACM International Conference on Interactive

Tabletops and Surfaces, Cambridge, MA, USA, 11–14 November 2012; ACM Press: New York, NY, USA, 2012; pp. 31–40.

5. Paay, J.; Raptis, D.; Kjeldskov, J.; Skov, M.B.; Ruder, E.V.; Lauridsen, B.M. Investigating Cross-Device Interaction between a

Handheld Device and a Large Display. In CHI ’17, Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.

Denver, Colorado, USA, 6–11 May 2017; ACM Press: New York, NY, USA, 2017; pp. 6608–6619.

6. Boring, S.; Dominikus, B.; Butz, A.; Gustafson, S.; Baudisch, P. Touch Projector: Mobile InterAction through Video. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; Association for Computing

Machinery: New York, NY, USA, 2012; pp. 2287–2296.

7. Khan, A.M.; Lee, Y.K.; Lee, S.Y.; Kim, T.S. Human Activity Recognition via an Accelerometer-Enabled-Smartphone Using Kernel

Discriminant Analysis. In Proceedings of the 5th International Conference on Future Information Technology, Busan, Korea,

20–24 May 2010; pp. 1–6.

8. Kwapisz, J.R.; Weiss, G.M.; Moore, A.M. Activity Recognition Using Cell Phone Accelerometers. ACM SIGKDD Explor. Newsl.

2011, 12, 74–82. [CrossRef]

9. Strohmeier, P. DisplayPointers: Seamless Cross-Device Interactions. In ACE ’15, Proceedings of the 12th International Conference on

Advances in Computer Entertainment Technology, Iskandar, Malaysia, 16–19 November 2015; ACM Press: New York, NY, USA, 2015;

pp. 1–8.

10. Schmidt, D.; Seifert, J.; Rukzio, E.; Gellersen, H. A Cross-Device Interaction Style for Mobiles and Surfaces. In DIS ’12, Proceedings

of the Designing Interactive Systems Conference on, Newcastle Upon Tyne, UK, 11–15 June 2012; ACM Press: New York, NY, USA, 2012;

pp. 318–327.

11. Von Zadow, U.; Büschel, W.; Langner, R.; Dachselt, R. SleeD: Using a Sleeve Display to Interact with Touch-Sensitive Display

Walls. In ITS ’14, Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces, Dresden, Germany, 16–19

November 2014; ACM Press: New York, NY, USA, 2014; pp. 129–138.

12. Seifert, J.; Bayer, A.; Rukzio, E. PointerPhone: Using Mobile Phones for Direct Pointing Interactions with Remote Displays.

In Human-Computer Interaction—INTERACT; Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M., Eds.; Springer:

Berlin/Heidelberg, Germany, 2013; Volume 8119.

Sensors 2021, 21, 1665 25 of 25

13. Nancel, M.; Chapuis, O.; Pietriga, E.; Yang, X.-D.; Irani, P.P.; Beaudouin-Lafon, M. High-Precision Pointing on Large Wall Displays

Using Small Handheld Devices. In CHI ’13: SIGCHI Conference on Human Factors and Computing Systems; ACM: Paris, France,

2003; pp. 831–840.

14. Boring, S.; Jurmu, M.; Butz, A. Scroll, Tilt or Move It: Using Mobile Phones to Continuously Control Pointers on Large Public

Displays. In OZCHI ’09, Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group

on Design: Open 24/7, Melbourne, Australia, 23–27 November 2009; ACM Press: New York, NY, USA, 2009; pp. 161–168.

15. Rekimoto, J. SyncTap: Synchronous User Operation for Spontaneous Network Connection. Pers. Ubiquitous Comput. 2004, 8,

126–134. [CrossRef]

16. Peng, C.; Shen, G.; Zhang, Y.; Lu, S. Point&Connect: Intention-based Device Paring for Mobile Phone Users. In Proceedings of the

7th International Conference on Mobile Systems, Applications, and Services (MobiSys 2009), Kraków, Poland, 22–25 June 2009; ACM

Press: New York, NY, USA, 2009; pp. 137–150.

17. Yuan, H.; Maple, C.; Chen, C.; Watson, T. Cross-Device Tracking through Identification of User Typing Behaviours. Electron. Lett.

2018, 54, 957–959. [CrossRef]

18. Baur, D.; Boring, S.; Feiner, S. Virtual Projection: Exploring Optical Projection as a Metaphor for Multi-device Interaction. In CHI

’12, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; Association for

Computing Machinery: New York, NY, USA, 2012; pp. 1693–1702.

19. Hagiwara, T.; Takashima, K.; Fjeld, M.; Kitamura, Y. CamCutter: Impromptu Vision-Based Cross-Device Application Sharing.

Interact. Comput. 2019, 31, 539–554. [CrossRef]

20. Chen, K.-H.; Yang, J.-J.; Jaw, F.-S. Accelerometer-Based Fall Detection Using Feature Extraction and Support Vector Machine

Algorithms. Instrum. Sci. Technol. 2016, 44, 333–342. [CrossRef]

21. Rakhman, A.Z.; Nugroho, L.E.; Widyawan, K. Fall Detection System Using Accelerometer and Gyroscope Based on Smartphone.

In Proceedings of the 2014 1st International Conference on Information Technology, Computer, and Electrical Engineering,

Semarang, Indonesia, 7–8 November 2014; pp. 99–104.

22. Ferrero, R.; Gandino, F.; Montrucchio, B.; Rebaudengo, M.; Velasco, A.; Benkhelifa, I. On Gait Recognition with Smartphone

Accelerometer. In Proceedings of the 2015 4th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,

14–18 June 2015; pp. 368–373.

23. Biørn-Hansen, A.; Grønli, T.M.; Ghinea, G. A Survey and Taxonomy of Core Concepts and Research Challenges in Cross-Platform

Mobile Development. ACM Comput. Surv. 2019, 51, 108:1–108:34.

24. Rieger, C.; Majchrzak, T.A. Towards the Definitive Evaluation Framework for Cross-platform App Development Approaches. J.

Syst. Softw. 2019, 153, 175–199. [CrossRef]

25. Bohan, M.; Thompson, S.; Samuelson, P.J. Kinematic Analysis of Mouse Cursor Positioning as a Function of Movement Scale

and Joint SET. In Proceedings of the 8th Annual International Conference on Industrial Engineering—Theory, Applications and

Practice, Las Vegas, NV, USA, 10–12 November 2003; pp. 442–447.

26. Calmes, L. Binaural sound source localization—Software. [online] Laurentcalmes.lu. 2019. Available online: http://www.lauren

tcalmes.lu/soundloc_software.html (accessed on 28 July 2019).

27. Experiment: How Fast Your Brain Reacts to Stimuli. Available online: https://backyardbrains.com/experiments/reactiontime

(accessed on 24 January 2019).

28. Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short,

Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [CrossRef]

29. Stein, J.Y. Digital Signal Processing: A Computer Science Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2000; p. 115.

30. Zhang, T.; Wang, J.; Xu, L.; Liu, P. Fall Detection by Wearable Sensor and One-Class SVM Algorithm. Intell. Comput. Signal Process.

Pattern Recognit. 2006, 345, 858–863.

31. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D. A Comparison of Feature Extraction Methods for the Classification of

Dynamic Activities from Accelerometer Data. IEEE Trans. Biomed. Eng. 2009, 56, 871–879. [CrossRef] [PubMed]

32. Bao, L.; Intille, S.S. Activity Recognition from User-Annotated Acceleration Data. In Pervasive Computing; Ferscha, A.,

Mattern, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3001.

33. Lee, K.; Kwan, M.-P. Physical Activity Classification in Free-Living Conditions Using Smartphone Accelerometer Data and

Exploration of Predicted Results. Comput. Environ. Urban Syst. 2018, 67, 124–131. [CrossRef]

34. Liu, Z.-T.; Wu, M.; Cao, W.-H.; Mao, J.-W.; Xu, J.-P.; Tan, G.-Z. Speech Emotion Recognition Based on Feature Selection and

Extreme Learning Machine Decision Tree. Neurocomputing 2018, 273, 271–280. [CrossRef]

35. Ali, M.; Aittokallio, T. Machine Learning and Feature Selection for Drug Response Prediction in Precision Oncology Applications.

Biophys. Rev. 2019, 11, 31–39. [CrossRef] [PubMed]

36. How to Interpret a Correlation Coefficient r. Dummies. Available online: https://www.dummies.com/education/math/statistic

s/how-to-interpret-a-correlation-coefficient-r/ (accessed on 28 March 2019).

37. Yan, K.; Zhang, D. Feature Selection and Analysis on Correlated Gas Sensor Data with Recursive Feature Elimination. Sens.

Actuators B Chem. 2015, 212, 353–363. [CrossRef]

38. Li, F.; Shui, Y.; Chen, W. Up and down Buses Activity Recognition Using Smartphone Accelerometer. In Proceedings of the 2016

IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016;

pp. 761–765.

	Introduction
	Related Work
	Interaction-Sensing Techniques
	Sensor-Based Motion Detection
	Cross-Platform Applications

	System Overview
	Cursor Initialization
	Detecting Cursor Movements
	Data Collection
	Data Preprocessing
	Feature Extraction

	Classification and Results
	Basic Cross-Validation
	Ten-Folds Cross-Validation

	Feature Selection
	Algorithm-Based Methods
	Linear Correlation Analysis
	Select K Best
	Recursive Feature Elimination
	Algorithm-Based Results

	Manual Feature Selection
	Vector-Based Feature Selection
	Feature-Category-Based Feature Selection
	Combined Analysis

	Conclusions and Future Work
	References

