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Mitochondria are specialized compartments that produce
requisite ATP to fuel cellular functions and serve as centers of
metabolite processing, cellular signaling, and apoptosis. To ac-
complish these roles, mitochondria rely on the genetic informa-
tion in their small genome (mitochondrial DNA) and the
nucleus. A growing appreciation for mitochondria’s role in a
myriad of human diseases, including inherited genetic disor-
ders, degenerative diseases, inflammation, and cancer, has
fueled the study of biochemical mechanisms that control mito-
chondrial function. The mitochondrial transcriptional machin-
ery is different from nuclear machinery. The in vitro re-
constituted transcriptional complexes of Saccharomyces cerevi-
siae (yeast) and humans, aided with high-resolution structures
and biochemical characterizations, have provided a deeper under-
standing of the mechanism and regulation of mitochondrial DNA
transcription. In this review, we will discuss recent advances in
the structure and mechanism of mitochondrial transcription ini-
tiation. We will follow up with recent discoveries and formative
findings regarding the regulatory events that control mitochon-
drial DNA transcription, focusing on those involved in cross-talk
between the mitochondria and nucleus.

Brief overview of mitochondrial functions

Mitochondria are at the heart of energy production in eu-
karyotic cells, producing and regulating ATP production
through the oxidative phosphorylation (OXPHOS) pathway.
Mitochondria are hypothesized to originate from an endosym-
biotic event occurring ~1.5 billion years ago in which an arch-
aea-type host engulfed an a-proteobacterium-like ancestor.
This hypothesis stems from analyses of mitochondrial genes
and their genomic organization and distribution (1-3). The
endosymbiotic event equipped the host with “compartmental-
ized bioenergetic and biosynthetic factories” (1). At the same
time, the endosymbiont acquired access to various metabolites
from the host. Gene transfer events throughout evolution have
led to a division of mitochondrial genetic information between
the nucleus and the mitochondria (4).

Intriguingly, mitochondria have retained their small genome
throughout evolution. Human mitochondrial DNA (mtDNA)

*For correspondence: Kristin E. Dittenhafer-Reed, dittenhaferreed@hope.
edu; Smita S. Patel, patelss@rutgers.edu.

This is an Open Access article under the CC BY license.
18406 . Biol. Chem. (2020) 295(52) 18406-18425

was the first genome to be completely sequenced in 1981 (5). It
is a 16.5-kb circular dsDNA lacking introns and residing within
the mitochondrial matrix. The Saccharomyces cerevisiae (yeast)
mtDNA is an 85-kb linear DNA that was sequenced in 1998 (6)
and shown to contain introns (6—8), unlike h-mtDNA that lacks
introns. The h-mtDNA codes for 22 tRNAs, two rRNAs, and 13
mRNAs that encode essential OXPHOS protein subunits (5).
The yeast mtDNA codes for 24 tRNAs, two rRNAs, and only
eight mRNAs to make seven OXPHOS subunits and one ribo-
somal subunit (6). The remaining OXPHOS protein subunits
(77 in humans) and ~1,500 other mitochondrial proteins,
including the proteins that maintain and express the mtDNA,
are encoded by genes in the nucleus. Therefore, mitochondria
rely on the nucleus to function correctly, and communication
and coordination between the transcription events in mito-
chondria and nucleus are crucial for oxidative ATP production
and mitochondrial homeostasis.

Even though mitochondria have a prokaryotic origin, the
mitochondrial replication and transcription machinery is
similar to that of bacteriophages (9). The core RNA poly-
merase (RNAP) subunit that catalyzes mtDNA transcrip-
tion in the mitochondria belongs to the single-subunit
class of RNAPs and structurally homologous bacteriophage
T7 RNAP, with the exception that the mtRNAPs depend on
transcription factors. The more complex organization of
mtRNAPs likely evolved to provide additional points of
regulation to respond appropriately to the cell’s energy
needs. Our understanding of the transcription mechanism
by mtRNAPs lags behind our knowledge of bacterial and
nuclear DNA transcription. Most of our understanding of
the mechanism of mtDNA transcription is derived from
studies of the yeast S. cerevisiae and human mtRNAP com-
plexes, and in several aspects, yeast has remained a model
system for biochemistry and genetics (10). Both transcrip-
tional complexes are successfully reconstituted in vitro,
which has aided their analysis through biochemical and
recent high-resolution structural studies. This review will
provide recent insights into the mechanism of transcrip-
tion initiation by mtRNAPs with a parallel discussion of
yeast and human systems. The similarities will bring out
the underlying conserved mechanisms, and the differences
will reveal the additional layers of regulatory measures pres-
ent in the human system. The detailed view of transcription
initiation will be complemented by a comprehensive picture
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that will highlight multiple feedback events between the mi-
tochondria and nucleus that are necessary for regulating
mtDNA transcription. Mammalian mtDNA transcription
and regulation has been reviewed in many excellent articles
(11-14). Herein, we will highlight recent studies that further
enhance our understanding of the regulation of mammalian
mtDNA transcription. The regulatory mechanism of S. cere-
visiae mtDNA transcription may differ from mammalian
systems and have been discussed elsewhere (15-17).

The mitochondrial transcription initiation machinery

The mitochondria’s transcription machinery is a multi-
component system consisting of the catalytic mtRNAP
subunit and several accessory transcription factors. This
machinery catalyzes all the major transcription stages,
including promoter recognition, promoter-specific tran-
scription initiation, elongation, and termination. Each of
these events and the steps within them is subject to regula-
tion. The human mtRNAP (h-mtRNAP) is encoded by
POLRMT, which needs two transcription factors, TFB2M
and TFAM, for promoter-specific transcription initiation.
The yeast mtRNAP (y-mtRNAP) is encoded by RPO41, and
it requires only one initiation factor, MTF1, for promoter-
specific transcription. All of the transcriptional machinery
proteins are nuclear-encoded and have a 20—30-amino acid
mitochondrial localization sequence for entry into the mi-
tochondria. In both yeast and human mitochondrial sys-
tems, a successful transcription event produces a polycis-
tronic RNA transcript, processed to produce mature
RNAs. In literature, human mtRNAP is referred to by its
gene name, POLRMT or h-mtRNAP, whereas the yeast
mtRNAP is referred to as RPO41 mostly.

Mitochondrial DNA promoters

The 16.5-kb circular mammalian mtDNA molecule (Fig.
1) consists of a light-strand and a heavy-strand DNA, dis-
tinguished by GC content (18). Both strands encode vari-
ous mitochondrial mRNA, rRNA, and tRNA genes. The
only noncoding region in the human mtDNA is a 1.1-kb
region, a portion (~650 bp) of which contains a unique
three-stranded DNA loop structure (D-loop) (19). The con-
trol elements for transcription and replication of mtDNA,
including the light-strand promoter (LSP) and the heavy-
strand promoters (HSP1 and HSP2), are present within a
short ~250-bp segment of a noncoding region adjacent to
the D-loop. The LSP and HSP promoters transcribe h-
mtDNA in opposite directions. The 154-bp region between
the LSP and HSP1 promoters can bind several TEAM mole-
cules and regulate the two promoters (20). The LSP drives
one mRNA to code an OXPHOS protein and eight tRNAs
and is responsible for making the primer that initiates lead-
ing strand mtDNA replication. The closely spaced HSP1
and HSP2 promoters in the heavy strand drive the expres-
sion of 12 mRNAs coding for OXPHOS proteins, two
rRNAs, and 14 tRNAs of the mitochondrial ribosome. Early
studies identified the transcription start sites on the light
and heavy strands of h-mtDNA (21, 22). The transcription
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Figure 1. Human mitochondrial DNA composition. Human mtDNA is
depicted with a heavy strand in black and light strand in gray. rRNAs (yellow),
mRNAs (blue), and tRNAs (green) are labeled. Transcription is bidirectional
and initiated in the D-loop control region (shown expanded) from three pro-
moters, HSP1, HSP2, and LSP. TFAM (pale green) binds mtDNA upstream of
promoters, recruiting TFB2M (orange) and h-mtRNAP (gray) to initiate
transcription.

start site of LSP is at position 407/408, that of HSP1 is at
position 561, and the HSP2 transcription start site is likely
at position 643/644 (23, 24) (Fig. 2A). Analysis of nascent
transcripts by PRO-Seq and GRO-Seq methods confirmed
the transcription initiation sites on h-mtDNA and showed
quantitative differences between light- and heavy-strand
transcription efficiency among different human cell lines
(25).

A comparison of LSP, HSP1, and HSP2 promoter sequences
reveals a mild consensus in the base pairs around the transcrip-
tion initiation site (Fig. 24). The —7 A, —3 C, +1 to +3 AAA,
and +5 A are conserved positions in all three promoters. This
region interacts with TFB2M, which is required for transcrip-
tion by all three promoters. The significant differences in the
transcription initiation mechanism at the three promoters
likely arise from the promoter sequences’ differences and their
requirement for TEAM. In vitro studies indicate that LSP and
HSP1 require TFAM for optimal transcription (26, 27), whereas
TFAM inhibits transcription from HSP2 (23, 24). TFAM at
high concentrations also inhibits LSP and HSP1 promoters
(20, 28). Interestingly, DNA supercoiling activates TFAM-
independent transcription from HSP1 and HSP2, but not
from LSP (29).

In contrast to the human system, the yeast S. cerevisiae
mtDNA is a noncircular AT-rich DNA. There are 11 mito-
chondrial DNA promoters spread across the genome that
account for the expression of all genes and three origins of
replication (30). Additionally, recombination-dependent
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Figure 2. Comparison of single-subunit RNAP promoters and protein structures. A, the DNA promoter sequence (nontemplate strand) of phage T7,
yeast, and human mtDNA. The conserved nucleotides within the promoter region are in boldface type. T7 promoters are conserved from —17 to +2, y-mtDNA
promoters are conserved from —8 to +1, and h-mtDNA promoters have conserved —7, —3, +1 to +3, and +5 base pairs. B, the domain structures of T7
RNAP, y-mtRNAP, and h-mtRNAP. The color-coded regions show conserved elements in the CTD and the NTD. An N-terminal extension (NTE) is present in
mtRNAPs but lacking in T7 RNAP. C, high-resolution structures of the initiation complexes of T7 RNAP with 3-bp RNA:DNA (PDB entry 1QLN), yeast mtRNAP
with 2-bp RNA:DNA and the next NTP (PDB entry 6YMW), and human mtRNAP without NTP (PDB entry 6ERP) are shown. The conserved elements in the three
RNAPs are color-coded and labeled. The template DNA is shown in blue, nontemplate DNA in cyan, and RNA in magenta. The Y-helix and O-helix in the fingers

domain in y-mtRNAP are labeled as Y and O, respectively.

replication initiation is prevalent in yeast (8, 31). The y-
mtDNA promoters contain a consensus nonanucleotide
sequence (Fig. 24), which interestingly is conserved in pro-
moters of the distantly related yeast Kluyveromyces lactis
(32, 33).

Mitochondrial RNA polymerases

The h-mtRNAP and y-mtRNAP show a significant structural
and amino acid sequence similarity to each other and T7 RNAP
(9) (Fig. 2B). The ~800 amino acids of the C-terminal domain
(CTD) of y-mtRNAP and T7 RNAP have a 28% sequence iden-
tity, and there is 41% sequence identity between y-mtRNAP
and h-mtRNAP. The CTD’s basic structure resembles the clas-
sic “right hand” shape composed of the thumb, palm, and fin-
gers domains (Fig. 2C) (34—39). The palm domain and fingers
domain contain the polymerase active site responsible for cata-
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lyzing nucleotide incorporation, and the thumb domain is
essential for DNA binding (40). The y-mtRNAP and h-
mtRNAP are active in RNA synthesis on single-stranded tem-
plates and bubble DNAs (41, 42), but they need transcription
factors to catalyze RNA synthesis on duplex promoter DNAs.
The N-terminal domain (NTD) in the single-subunit RNAPs
contains the promoter-recognizing structural elements like the
AT-rich recognition loop and the intercalating hairpin (ICH);
the third such element, the specificity loop, is in the CTD. The
promoter-binding elements have diverged between T7 RNAP
and mtRNAPs, which correlates with loss in promoter
sequence conservation and increasing reliance on transcription
factors. T7 promoters contain a 23-bp conserved sequence, y-
mtDNA promoters have a 9-bp conserved sequence, and there
are very few conserved base pairs in h-mtDNA promoters (Fig.
2A). The promoter-binding elements in T7 RNAP make exten-
sive base-specific interactions with the T7 promoter, and T7
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Figure 3. Transcription initiation pathway of mtRNAP. Transcription initiation factor MTF1/TFB2M (in orange) equilibrates between two states: an autoin-
hibited state, where the flexible C-tail occludes the DNA-binding site, and a free state, where the C-tail is free to interact with the mtRNAP. The exact pathway
of closed complex formation is not known. Here, MTF1/TFB2M is shown to associate with a DNA-bound mtRNAP (in gray) to form a closed complex, in which
DNA is slightly bent but not melted (template in blue, nontemplate in green). In the h-mtRNAP complex, TFAM (not shown here) would be bound to the
upstream DNA assisting in promoter-specific binding. Studies of y-mtRNAP indicate an intermediate, PmIC, between the closed complex and initiation com-
plex. In the PmIC state, base pairs from position —4 to —1 melt, MTF1/TFB2M stabilizes the bubble by interacting with the nontemplate strand, and mtRNAP
interacts with the template strand. Subsequently, +1 and +2 base pairs melt to generate an IC, state. The MTF1/TFB2M C-tail helps position the template
strand in the active site to promote binding +1 and +2 initiating NTPs in the IC; state. The binding of the initiating NTPs drives the conversion of PmIC to IC,.
Phosphodiester bond formation results in a 2-bp RNA:DNA hybrid, which elongates in a stepwise manner through melting of the downstream DNA and
scrunching of the nontemplate strand into an NT-loop, as shown in the IC5. The growing RNA:DNA hybrid and the NT-loop push the C-tail away from the active
site cavity and help the transition into elongation after 8-nt RNA synthesis. During the transition into elongation, the promoter DNA unscrunches and
unbends, and the —4 to —1 base pairs of the bubble reanneal. MTF1/TFB2M may entirely or partially dissociate during the transition into elongation. Branched
pathways occur with some frequency during transcription initiation, resulting in abortive synthesis or backtracking of the mtRNAP. During abortive synthesis,
the RNA transcripts in IC; to IC; dissociate into the solution; the mtRNAP remains bound to the promoter DNA in the PmIC/IC, state and rebinds NTPs, starting
another round of transcription reaction. During backtracking, the RNA does not dissociate, but downstream DNA reanneals, fraying the 3’-end of the RNA:

DNA hybrid.

RNAP does not require transcription factors. The promoter-
binding elements in mtRNAPs show fewer base-specific inter-
actions and more reliance on initiation factors for promoter-
specific transcription. The dependence of mtRNAPs on tran-
scription factors adds layers of gene regulation that is necessary
to synchronize mitochondrial energy production to cellular
demand.

The mtRNAPs contain an N-terminal extension (NTE),
which is not present in T7 RNAP. The NTE in h-mtRNAP har-
bors two pentatricopeptide repeat (PPR) domains that interact
with the promoter DNA and a tether-helix that interacts with
TFAM in the initiation complex (37). Biochemical studies show
that NTE or tether-helix deletion in h-mtRNAP decreases pro-
moter-specific transcription activity (43, 44). The y-mtRNAP
contains a NTE, but its structure is not known. I vivo studies
indicate that the deletion of N-terminal ~185 aa does not affect
transcription initiation but decreases expression of y-mtDNA
genes and destabilizes the y-mtDNA (45). Biochemical studies
show that the deletion of 100 and 270 aa from the N terminus
of y-mtRNAP does not affect transcription initiation, but dele-
tion of 380 aa, the entire NTE region, affects promoter melting
and transcription initiation (46). Thus, NTE has multiple roles
that remain underexplored.

Initiation factors—yeast MTF1 and human TFB2M

TFB2M and MTF1 are both essential transcription factors of
h-mtRNAP and y-mtRNAP, respectively. TFB2M was discov-
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ered based on its amino acid sequence homology to MTF1 (47,
48) and after MTF1 was established as the initiation factor in
yeast (49, 50). In coordination with the respective mtRNAP
subunits, these initiation factors recognize and melt the —4 to
+2 region of the promoter DNA to bring about promoter-spe-
cific transcription initiation. MTF1 and TFB2M are evolutio-
narily related to rRNA methyltransferases (37, 51). However,
they have lost most of their ancestral methyltransferase activity
while retaining their nucleic acid-binding function (52, 53).
TFB2M and MTF1 are dumbbell-shaped with a large NTD that
contains a nucleic acid-binding groove that interacts with the
nontemplate strand of the initiation bubble, and a smaller CTD
with a flexible C-terminal tail (aa 320-340 in MTF1 and 380—
396 in TFB2M) (6, 37) (Figs. 2C and 4). The structure of free
TFB2M resolved the C-tail folded within the nucleic acid—
binding groove of the CTD (37). Biochemical studies show that
the C-tail autoinhibits the DNA-binding activity of MTF1 and
TEB2M, preventing the free factors from associating tightly
with the DNA. The C-tail’s deletion enabled these factors to
bind DNA with a higher affinity (52) (Fig. 3). The C-tail under-
goes a conformational change and begins to play an active role
in transcription initiation when these factors bind to their re-
spective mtRNAP subunit partners (52), as discussed below.

Initiation factor—human TFAM

TFAM is abundantly present in human mitochondria, in
amounts sufficient to coat the mtDNA, and it plays essential

J. Biol. Chem. (2020) 295(52) 1840618425 18409
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roles in mtDNA packaging and nucleoid formation (54-56).
The yeast ABF2 is a TFAM homolog with similar roles in the
yeast mitochondria. Both proteins contain two high-mobility
group (HMG) box domains that bind ~30 bp of DNA while
bending the DNA into a U-turn conformation that facilitates
DNA packaging (57-60). Additionally, cross-strand binding of
TFAM is observed and likely necessary for nucleoid formation
(61). Unlike ABF2, which is needed only for the packaging and
maintenance of y-mtDNA, TFAM has an additional role in
transcription initiation (62). TFAM contains a characteristic C-
terminal tail, which is missing in ABF2, which enables TFAM
to moonlight as a transcription factor (62, 63). The C-tail of
TFAM is needed for optimal DNA bending (64), dimer forma-
tion (65), DNA loop formation (20), and interactions with h-
mtRNAP (37). The C-tail in TFAM activates LSP transcription
and is essential for HSP1 transcription (20). A structural study
showed that TFAM binds in two distinct orientations on HSP1
and LSP DNA fragments, placing the C-tail of TFAM in oppo-
site directions to h-mtRNAP at the transcription initiation site
(66). A protein-protein cross-linking study suggested that the
opposite orientation of TFAM on HSP1 was due to missing
interactions in the short DNA fragment used in the structural
studies (67). Whereas structures of initiation complexes show
that TFAM is oriented in the same way on LSP and HSP1 (37),
it is possible that TFAM on its own binds in two different orien-
tations on HSP1 while having a specific orientation on LSP.
With multiple roles in mtDNA transcription, maintenance,
and biogenesis, TFAM is undoubtedly a key protein in human
mitochondria that needs to be better understood. Additionally,
TFAM needs to be regulated and maintained at appropriate
levels for healthy mitochondrial functions (68).

Mechanisms of transcription initiation

Assembly of the transcriptional complex and promoter
binding

Transcription of the mtDNA initiates after mtRNAP, and the
transcription factors assemble at the promoter site to form a
closed complex (Fig. 3). There is no existing structure of a
closed complex of mtRNAP; however, recent single-molecule
studies of y-mtRNAP suggest that the the DNA in the closed
complex is slightly bent, and the closed complex is in equilib-
rium with the open complex (69). We have a limited under-
standing of the assembly mechanism of h-mtRNAP and
transcription factors at each of the three h-mtDNA promoter
sites. h-mtRNAP and TFB2M cannot recognize the promoter
sequences on their own. However, footprinting studies show
that TFAM can specifically bind to LSP (20, 62, 70), and cross-
linking studies show that TFAM and h-mtRNAP can form a
complex on the DNA (43). Based on these studies, the current
literature model suggests that TEAM recruits h-mtRNAP to
the promoter site, where the two proteins form a pre-initiation
complex. TFB2M then binds to the pre-initiation complex to
generate the open initiation complex. This model is based
mostly on LSP studies, and the assembly mechanism on HSP1
could be different because a high-affinity TFAM site is not
apparent in footprinting studies of HSP1 (20, 62, 70). Moreover,
it remains to be determined how TFAM specifically recruits h-
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mtRNAP to the promoter site in vivo, given that TFAM is
bound everywhere on h-mtDNA and TFAM:h-mtRNAP com-
plex formation is not promoter-specific (43). Another mecha-
nism of assembly that is not mutually exclusive with the current
model is that h-mtRNAP and TFB2M complex binds to the
promoter and recruits TFAM. Studies show that h-mtRNAP
and TFB2M can bind DNA on their own with a high affinity
(K values of 2 and 50 nm, respectively) (27, 52, 64), and the two
proteins can form a specific complex on promoter DNA (44)
and catalyze promoter-specific transcription, albeit at low lev-
els (26, 27). A recent study suggested that TFAM-mediated
DNA looping is involved in the assembly and activation of the
transcriptional complex on HSP1 (20). Further studies are
needed to better understand how the initiation complex is
generated at each of the three promoters, at each of three h-
mtDNA promoters, a critical first step that controls gene
expression and mtDNA replication.

The initiation complex structure with h-mtRNAP, TFAM,
and TFB2M shows that the three proteins cover the promoter
DNA from position —40 to +8 (37). TFAM contacts the —40
to —16 region, the PPR domain of h-mtRNAP interacts with
the —15 to —12 region, and the specificity loop of h-mtRNAP
contacts base pairs around the —7 region (Fig. 2C). TFB2M
interacts with the promoter region from position —8 to +2,
which includes the initiation bubble region. The fingers and
palm domain of the CTD in h-mtRNAP contact the down-
stream DNA. TFB2M directly interacts with h-mtRNAP in the
initiation complex; the CTD of TFB2M interacts with the
TFB2M-hairpin in h-mtRNAP (37).

The two components of the yeast transcription initiation
complex do not recognize the promoter sequence independ-
ently as the human system. The y-mtRNAP binds both pro-
moter and nonpromoter sequences with similar affinities (~60
nM K,;) (71). MTF1, on the other hand, has a very weak affinity
for DNA because its C-tail almost completely autoinhibits its
DNA-binding activity (Fig. 3) (52). When y-mtRNAP and
MTF1 form a complex, they bind DNA with a ~300-fold higher
affinity relative to y-mtRNAP alone. The y-mtRNAP:MTF1
complex recognizes the promoter and bends the DNA sharply
around the initiation site (71). Promoter bending is necessary
for generating a productive initiation complex (Fig. 2C) and
is a conserved feature observed in all single-subunit RNAPs
(35-37).

Footprinting studies show that y-mtRNAP protects ~30 bp
of promoter DNA from approximately —15 to +15 (72). Unlike
h-mtRNAP, the y-mtRNAP lacks extensive contacts with the
upstream promoter region, conferred by TFAM and the NTE
regions in h-mtRNAP. The recent cryo-EM structures of y-
mtRNAP and MTF1 show base-specific interactions of MTF1
with the conserved nonanucleotide promoter sequence from
position —8 to +1 (Fig. 4, C and D) (36). The structure did not
resolve the NTE in y-mtRNAP; hence, it is not clear whether y-
mtRNAP has the equivalent PPR domains present in h-
mtRNAP. Like T7 RNAP, the y-mtRNAP contains a prominent
AT-rich recognition loop, which interacts with the —16 region.
In h-mtRNAP, the AT-rich loop is much smaller, and it makes
minimal contacts with the promoter. Interestingly, y-mtRNAP
contains a unique ~90-aa insertion in its CTD, absent in h-
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Figure 4. Detailed views of the active-site cavity in the initiation com-
plexes of yeast mtRNAP. A, view into the active-site cavity of the IC,+NTP
complex showing the scrunched nontemplate strand (cyan), the melted tem-
plate strand (blue) aligned with the 2-mer RNA (magenta), the next incoming
NTP (red), and the catalytic metal ion (green). The conserved elements, includ-
ing the thumb domain (green), ICH (gray), MTF1 C-tail (orange), and palm do-
main (salmon pink), are stabilizing the melted template and nontemplate
DNA strands in the active site. B, the MTF1 C-tail is highlighted to show its
proximity to the 5’-end of the RNA:DNA hybrid and the scrunched NT-loop.
The C-tail is expected to sterically clash (black arrows) with the RNA:DNA and
NT-loop. C, the partially melted initiation complex (PmIC) shows the flipped
—4 to —1 bases of the melted nontemplate strand interacting with the ICH
of y-mtRNAP and MTF1. D, a detailed view of the base-stacking and base-spe-
cific interactions of the —2 G of the nontemplate strand with the residues of
MTF1. E, an in-depth look of the active site of IC,+NTP with 2-mer RNA and
incoming NTP interactions with the fingers (O-helix) and palm domain resi-
dues. The Mg?* (green) in the structure is coordinated with the NTP and resi-
dues of the palm domain.

mtRNAP (Fig. 2B). The CTD insertion in y-mtRNAP interacts
with the downstream DNA around +11 bp. The CTD insertion
interactions stabilize the bent conformation of the DNA
around the initiation site, whereas MTF1 stabilizes the DNA at
the opposite end (36). Perhaps due to these additional pro-
moter contacts with downstream DNA, y-mtRNAP does not
need ABF2, the TFAM homolog. Loss of downstream DNA
interactions in h-mtRNAP and dependence on TFAM may
have coevolved for regulation.

MTF1 shows several contact points with the y-mtRNAP; the
CTD of MTF1 interacts with a prominent hairpin in y-
mtRNAP adjacent to the intercalating hairpin (MTF1-hairpin
equivalent to the TFB2M-loop in h-mtRNAP), and the NTD of
MTF1 contacts the thumb domain of y-mtRNAP (36, 73). The
thumb domain in h-mtRNAP is projected toward TFB2M, sug-
gesting interactions like in y-mtRNAP (Fig. 2C), but the crystal
structure shows a disordered thumb-tip in the h-mtRNAP (37).
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Comparison of h-mtRNAP and y-mtRNAP initiation com-
plexes shows a conserved active-site cleft, a similar trajectory of
the bent upstream and downstream DNA arms, and similarly
positioned TFB2M and MTF1 bound to the respective
mtRNAP subunits. Overall, the architecture of h-mtRNAP and
y-mtRNAP on the promoter DNA and many of the interactions
are highly conserved. Hence, the recent cryo-EM structures of
two transcription initiation states of y-mtRNAP are excellent
models for understanding the underlying multistep mechanism
of transcription initiation (Fig. 3).

Promoter melting

DNA bending and untwisting converts the closed complex to
an open complex in which base pairs from —4 to +2 with
respect to the transcription start site at +1 are melted (Fig. 3).
All of the single-subunit RNAPs studied thus far contain a simi-
larly sized initiation bubble at a common location on the pro-
moter DNA (27, 34, 35, 37, 74—77). T7 RNAP generates this ini-
tiation bubble on its own, whereas h-mtRNAP and y-mtRNAP
rely on TFB2M and MTF]I, respectively, to create the initiation
bubble. Fluorescence 2-aminopurine promoter melting studies
indicate that the optimal melting of LSP DNA from —4 to +2
requires both TFB2M and TFAM, and initiating NTPs enhance
the melting of the —1 to +3 base pairs (27). The intercalating
hairpin is a conserved element in all single-subunit RNAPs that
plays a crucial role in promoter melting by acting as a wedge
and preventing initiation bubble collapse (78). Once the pro-
moter is melted, the template strand around the transcription
start site is held by the mtRNAP subunit, and the nontemplate
strand is trapped by MTF1/TFB2M (36, 79, 80). Base-specific
interactions are involved in initiation DNA bubble formation in
T7 RNAP and y-mtRNAP, which is probably the case in h-
mtRNAP; in vitro transcription studies show that mutations in
the —4 to —1 base pairs in LSP decrease runoff RNA synthesis
(81). Additional structural studies are needed to understand
the role of base-specific interactions in the mechanism of pro-
moter melting by h-mtRNAP.

Structural and single-molecule FRET studies of y-mtRNAP
show that closed complex to open complex formation occurs in
two steps. There is an intermediate state between closed DNA
and the fully open DNA bubble (36, 69) (Fig. 3). Cryo-EM stud-
ies captured this new intermediate’s high-resolution structure,
showing that the state has a partially melted initiation bubble
from —4 to —1 (36). This newly identified partially melted ini-
tiation complex (PmIC) has a shallower DNA-bending angle of
~120° between the upstream and downstream arms of the pro-
moter DNA compared with a sharper ~60° bend between two
arms in the fully melted initiation complex. MTF1 plays a vital
role in forming the PmIC as it makes base-specific interactions
with the flipped —3 and —2 bases of the nontemplate strand,
and biochemical studies show that MTF1 also facilitates DNA
bending (36, 71, 74) (Fig. 4, C and D). The base-specific interac-
tions of MTF1 with the promoter are consistent with the exist-
ing promoter DNA mutational studies (82, 83). The transcrip-
tion start site in the PmIC is duplexed; hence, PmIC is not
catalytically active, and the +1 and +2 base pairs must be
melted to convert PmIC to a catalytically active IC, state (Fig.
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3). An IC, state structure has not been determined; however,
cryo-EM  studies have determined the structure of the
IC,+NTP intermediate with a 2-mer RNA and an incoming
NTP, which provides insights into the change from PmIC to IC
(36). Multiple large-scale conformational changes accompany
the transition from PmIC to the IC in y-mtRNAP, including
further DNA bending, expansion of the initiation bubble, tem-
plate strand alignment in the active site, and new interactions
of the CTD insertion region with the downstream DNA. The
template strand of the initiation bubble undergoes a substantial
conformational change in the transition from PmIC to IC as it
positions near the active site with the RNA and NTP. The
MTF1 C-tail plays a crucial role by stabilizing the template
strand in the active site (36, 84). The active-site cavity accom-
modates the expanded transcription bubble by scrunching the
nontemplate strand of the promoter DNA into a loop, as we
discuss below.

Several studies have suggested that the +1 and +2 base pairs’
identity dictates the efficiency of transcription initiation (85,
86), and this sensitivity is the basis for the ATP-sensing mecha-
nism in the yeast mitochondria. Cryo-EM studies of y-mtRNAP
show that PmIC to IC conversion is driven by initiating NTP
binding, suggesting a crucial role of PmIC to IC transition in
the ATP-sensing mechanism. Whether such a mechanism
exists in human mitochondria remains to be determined. Over-
all, the promoter melting mechanism is likely to be more com-
plex in h-mtRNAP with the involvement of both TFB2M and
TFAM. It will be interesting to determine whether a PmIC-like
complex exists in the h-mtRNAP pathway and whether the
general mechanism of promoter melting and template strand
alignment are conserved between the yeast and human sys-
tems. The studies of y-mtRNAP have provided a basic frame-
work for future studies of the h-mtRNAP system.

Transcription initiation

Transcription is initiated with the synthesis of 2-mer
pppNpN RNA from NTP molecules base-paired to the +1 and
+2 templating positions at the start site (Fig. 3). The flexible C-
tail in MTF1/TFB2M facilitates the binding of initiating NTPs
to bring about the optimal synthesis of 2-mer RNA (84). Struc-
tural studies show that a specific element in mtRNAPs called
the TFB2M/MTF1-hairpin guides the C-tail toward the active
site cavity, where the C-tail is stabilized by the intercalating
hairpin and the thumb domain of the mtRNAPs (37). Structural
studies resolved a partial structure of the TFB2M C-tail in the
h-mtRNAP IC state, whereas the y-mtRNAP IC,+NTP state
resolved the entire MTF1 C-tail structure in the active site cav-
ity (Fig. 4, A and B) (36). Interestingly, the MTF1 C-tail inter-
acts with both the template and nontemplate strands of the ini-
tiation bubble near the transcription start site, explaining its
role in transcription initiation. The MTF1 C-tail interactions
with the template are consistent with protein-DNA cross-link-
ing studies that indicated the proximity of MTF1 C-tail to the
—3/—4 template base and the nontemplate strand (87, 88).
Interestingly, the C-terminal amino acids in the C-tail approach
close to the 5'-end of the 2-bp RNA:DNA hybrid, which sug-
gests that the C-tail will sterically clash with the elongating
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RNA:DNA hybrid during transcription initiation (36), and this
is consistent with biochemical studies (84). Any clashes
between the C-tail of TFB2M and the RNA:DNA hybrid in h-
mtRNAP remain to be determined. The steric clashes produce
abortive products but play an essential role in the transition
into elongation, as discussed below.

RNA synthesis

The active-site structural features are conserved among T7
RNAP, y-mtRNAP, and h-mtRNAP (Fig. 2C). The fingers do-
main is a mobile region near the active site involved in RNA
synthesis (35). The y-mtRNAP structure in the IC,+NTP state
has captured the fingers domain in a catalytically active state
(36). The finger domain in the h-mtRNAP IC structure is
caught in a different rotational state referred to as the clenched
conformation that does not support template or NTP binding
(37). There are two conserved helices in the fingers domain, the
O-helix and Y-helix, which are essential for RNA synthesis. In
the rotated clenched conformation, the Y-helix is sterically hin-
dering the template/NTP from binding into the active site.
Whether the clenched state is an artifact of crystallization or a
branched state in the initiation pathway remains to be deter-
mined. The inactive clenched conformation must adopt a con-
formation as in y-mtRNAP for 2-mer synthesis (36). In the
active state, the O-helix shows extensive interactions with the
incoming NTP. A conserved tyrosine in the O-helix interacts
with the 2'-OH of the incoming NTP and provides specificity
for binding rNTPs over dNTPs. The active site utilizes a two-
metal-dependent reaction mechanism for nucleic acid poly-
merization (89, 90). The y-mtRNAP IC structure shows only
one catalytic Mg® " ions at the active site chelating the catalytic
residues in the palm domain and the phosphate groups of the
incoming NTP (Fig. 4E). The second metal ion, which was not
observed in this structure, would be bound close to the 3'-OH
of the 2-mer RNA. The Y-helix in the fingers domain wedges
against the downstream junction of the initiation bubble, and
this conformation is consistent with its role in aiding down-
stream DNA strand separation for RNA elongation, as
observed in the elongation complex structures of T7 RNAP and
h-mtRNAP (39, 91).

DNA scrunching and abortive synthesis

During transcription initiation, the RNA gets elongated from
2 nt to ~8-10 nt in length. Throughout this process, the RNAP
remains stably bound to the promoter DNA. Due to these sta-
ble promoter interactions, the RNAP cannot translocate down-
stream to elongate the RNA transcript as it does during the
elongation phase. Instead, the newly melted template and non-
template strands are brought into the active-site cavity to guide
RNA transcript synthesis. The template strand directs the syn-
thesis of RNA and remains base-paired to the nascent RNA,
forming an RNA:DNA hybrid, whereas the nontemplate strand
(NT) remains single-stranded but gets scrunched into an NT-
loop (Fig. 4B). Fluorescence studies have provided evidence for
DNA scrunching in both single-subunit and multisubunit
RNAPs (35, 92, 93). Recently DNA scrunching was demon-
strated in y-mtRNAP by single-molecule FRET and cryo-EM

SASBMB



JBC REVIEWS: Mechanism and regulation of mitochondrial DNA transcription

studies (36, 69, 84). However, the cryo-EM structure of y-
mtRNAP IC,+NTP captured the scrunched DNA conforma-
tion for the first time and showed that scrunching generates an
NT-loop (36). The NT-loop is stabilized in the active-site cavity
by the MTF1 C-tail, y-mtRNAP thumb, and intercalating hair-
pin. Stabilization of the NT-loop by the MTF1 C-tail is consist-
ent with single-molecule FRET studies that showed that C-tail
deletion decreases DNA scrunching (84). As RNA synthesis
continues during transcription initiation and generates IC, to
IC; intermediates, we expect the NT-loop to grow in size, as
shown in Fig. 3.

Cryo-EM studies of y-mtRNAP show that the IC,+NTP has
a scrunched DNA conformation, whereas the DNA in the
PmIC state is not scrunched. PmIC and IC states’ coexistence
in the cryo-EM experiment suggests a constant switching
between the two states through dissociation and rebinding of
2-mer RNA and NTP (69). Dissociation of short RNA tran-
scripts is observed in all DNA-dependent RNAPs during tran-
scription initiation in a process termed abortive synthesis (Fig.
3). Although abortive synthesis’s mechanism and significance
are not entirely understood, DNA scrunching-unscrunching
transitions have been implicated in RNA transcript dissociation
(35, 69, 92—-95). The coexistence of IC,+NTP and PmIC states
suggest that after RNA transcripts dissociate into solution, the
initiation complexes revert to the PmIC state, which then equi-
librates to the ICj state to restart another cycle of transcription
initiation by binding new molecules of NTPs, as shown in Fig.
3. Steric clashes of the RNA:DNA hybrid with specific elements
in the RNAP represent a possible mechanism for abortive syn-
thesis (96-98). In y-mtRNAP, the MTF1 C-tail buttresses
against the 5'-end of the 2-mer RNA:DNA hybrid and the NT-
loop (Figs. 3 and 4 (A and B)); hence, the C-tail is in a position
to clash with the growing RNA:DNA hybrid and NT-loop to
trigger abortive synthesis. Biochemical studies showed reduced
abortive synthesis upon MTF1 C-tail deletion, consistent with
this model (84). The element analogous to the C-tail in multisu-
bunit RNAPs is the 3.2 finger of bacterial o-factor and B-reader
of eukaryotic TFIIB initiation factor; 3.2 finger deletion
mutants have similar effects of reducing abortive synthesis (96,
99, 100).

Single-molecule studies of y-mtRNAP also detected another
branched pathway where DNA unscrunching occurred without
RNA dissociation (69). These RNA-bound unscrunched com-
plexes were proposed to be backtracked complexes that result
from fraying of an uncertain number of base pairs from the 3'-
end of the RNA:DNA hybrid, as shown in Fig. 3. Branched
pathways can control the efficiency of transcription initiation
and hence are potential targets for transcription regulation.
There is extensive evidence that backtracked complexes play
essential roles in transcription regulation in multisubunit
RNAPs (101). It remains to be determined whether backtrack-
ing occurs in h-mtRNAP and has similar roles in regulating
transcription.

Transition from initiation to elongation

When the RNA:DNA hybrid reaches a length of 8—10-bp,
several conformational changes occur that transform the initia-
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tion complex into an elongation complex (Fig. 3). Transition
into elongation is a critical barrier for productive RNA tran-
script synthesis, and promoter release is a key step that triggers
this event. In addition to promoter release, other conforma-
tional changes must occur to make a stable elongation complex,
including unbending and repositioning the upstream DNA, the
initiation bubble’s collapse, and the release of the initiation fac-
tors. These events are better-characterized in T7 RNAP (91, 94,
102, 103), and our understanding of this process in mtRNAP is
limited to a few studies of h-mtRNAP and y-mtRNAP. Com-
parison of the structures of initiation and elongation complexes
of T7 RNAP and h-mtRNAP shows that the downstream DNA
remains stably bound to the RNAP when the initiation complex
changes into an elongation complex. Most changes occur at the
upstream DNA, with loss of promoter contacts and promoter
unbending (34, 35, 37, 39, 104). Single-molecule FRET studies
of y-mtRNAP detected promoter unbending as an abrupt and
irreversible change after 8-nt synthesis (69), suggesting that the
transition into elongation commences in y-mtRNAP when the
RNA:DNA hybrid reaches a length of 8 bp. Next, the initiation
bubble collapses with the reannealing of the initially melted —4
to —1 bases; this process occurs gradually between 8- and ~10-
nt RNA synthesis (84). Bubble collapse is necessary to create a
single-stranded RNA transcript, which gets threaded into the
RNA-exit channel to generate a stable elongation complex.

Mitochondrial transcription elongation and termination
Dissociation of initiation factors and transcription elongation

Displacement of the initiation factors from mtRNAP must
occur during the transition into elongation; however, the tim-
ing of initiation factor dissociation has not been resolved. Pull-
down assays suggest that MTF1 dissociates from y-mtRNAP
when the RNA transcript reaches a length of ~13 nt (105).
Complete dissociation of the initiation factor is not obligatory;
the factor could remain bound at an alternative site and con-
tinue to regulate transcription elongation. The CTD of TFB2M
disengages from the TFB2M-hairpin during the transition from
initiation to elongation (38, 39). Studies of y-mtRNAP indicate
that the MTF1 C-tail’s steric clashes with the RNA:DNA and
NT-loop are involved in this process (84). Whether the C-tail
of TFB2M has similar roles as the C-tail of MTF1 in promoting
transition into elongation remains to be determined. TEFM has
been identified in human mitochondria as an elongation factor,
and structural studies show that TEFM binds to the nontem-
plate strand of the transcription bubble (79, 106). This confor-
mation suggests that TFB2M is released after TEFM takes its
place on the elongation complex’s transcription bubble. It is
also not known whether h-mtRNAP dissociates from TFAM
during the transition into elongation. For a better understand-
ing of the mechanism of transition from initiation to elonga-
tion, it will be necessary to use real-time and direct monitoring
of the association and dissociation of the initiation and elonga-
tion factors during transcription.

In vitro transcription studies show that y-mtRNAP and h-
mtRNAP are active in catalyzing transcription elongation on a
premade RNA:DNA hybrid (79, 106, 107). Kinetic studies show
that h-mtRNAP elongates the RNA and adds a correct
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nucleotide at a rate of ~10 nt/s, showing an error rate of 2 X
10™? incorrect nucleotide addition over a correct nucleotide
addition (108). Additionally, h-mtRNAP can synthesize ~500-
nt-long RNA transcripts; however, h-mtRNAP requires TEFM
to make longer ~4000-nt-sized transcripts (79, 106, 107).
Structural studies show that TEFM interacts with the transcrip-
tion bubble and possibly RNA to stabilize the elongation com-
plex (79). Biochemical studies show that TEFM stabilizes the
elongation complex by decreasing the off-rate of h-mtRNAP by
~60-fold (108). In vitro transcription studies show that h-
mtRNAP frequently pauses on normal templates and termi-
nates on G-rich sequences, including G-rich sequences down-
stream of LSP, and these events reduce in the presence of
TEFM (107, 109, 110). TEFM also stimulates mutagenic bypass
over 3'-end mismatches (108) and 8-oxo-dG lesions (107). The
transcripts terminated at the G-rich sequences downstream of
LSP in h-mtDNA, and downstream of replication promoters of
y-mtDNA, are proposed to prime mtDNA replication (111—
115). Still, the exact mechanism of replication initiation is not
understood. PRO-Seq studies of mtDNA in living cells have
located transcription-pausing sites just upstream of the posi-
tion where transcription to replication transition occurs on
both light and heavy strands, which may be necessary for ini-
tiating mtDNA replication (25). TEFM, with its ability to
decrease transcription termination and pausing, has been
implicated in regulating mtDNA replication (109). Recent stud-
ies show that reduced TEFM levels do not reduce mtDNA syn-
thesis (116). Thus, the role of TEFM in h-mtDNA replication
regulation requires further investigation.

The y-mtRNAP catalyzes RNA synthesis on premade RNA:
DNA substrates with a 5-fold faster rate of ~50 nt/s relative to
h-mtRNAP and shows a lower error rate of 6 X 10~ incorrect
nucleotide addition over a correct nucleotide addition (108).
The most frequent error observed in vitro by y-mtRNAP and h-
mtRNAP is A to G substitution in RNA. The y-mtRNAP can
synthesize an RNA primer on ssDNA at 3'-purine(pyrimi-
dine), 3 sequences, and these RNA primers are elongated to kil-
obase-sized RNA products (41). Thus, it is possible that y-
mtRNAP, like T7 RNAP, does not need an elongation factor to
catalyze processive RNA elongation. A few studies have sug-
gested that the DEAD-box protein Mss116p may serve as the
elongation factor of y-mtRNAP (117, 118). However, additional
studies are needed to investigate how Mss116p facilitates tran-
scription elongation by y-mtRNAP.

Transcription termination

In humans, transcription from LSP and HSP promoters gen-
erates a polycistronic RNA transcript, processed to make the
individual mRNA, tRNA, and rRNA molecules. Sequencing of
h-mtDNA nascent transcripts has suggested that light-strand
transcription terminates between positions 2612 and 3252, and
heavy-strand transcription terminates within the D-loop
between positions 16,076 and 195 (25). Another study sug-
gested that heavy-strand transcription ends near the core ter-
mination-associated sequence site (around position 16,090 in
h-mtDNA) (119). MTERF1 was identified as the transcription
termination factor in human mitochondria in 1989 (120).
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MTERF1 binds to h-mtDNA within the Leu-tRNA’s coding
region between positions 3232 and 3253 downstream of the
rRNA genes transcribed from HSP1 (121-124). Studies indi-
cate that MTERF1 blocks transcription originating from the
LSP more efficiently than from HSP1 (122, 125), suggesting
that the termination mechanism of MTERF1 has a polarity,
which prevents LSP transcription from generating antisense
rRNAs. MTERF1 also pauses the mitochondrial helicase
TWINKLE and the h-mtDNA replisome (126), but its signifi-
cance is not understood.

The crystal structure shows that MTERF1 binds asymmetri-
cally to the 22-bp termination sequence and distorts the DNA
by unstacking three specific bases, including A3243 of the light
strand and T3243 and C3242 of the heavy strand (124). The
unstacking of the base pairs by MTERF1 is essential for the
DNA complex’s stability and transcription termination. The
polar arrest by MTERF1 is analogous to the mousetrap mecha-
nism of replication arrest by bacterial Tus-Ter complex, which
also involves base unstacking (127, 128). Mutations in the
MTERF1 DNA-binding sequence lead to a spectrum of diseases
under the syndrome MELAS (mitochondrial myopathy, ence-
phalomyopathy, lactic acidosis, and stroke-like episodes) with
devastating neuromuscular consequences. Interestingly, Mterf1
knockout mice display no overt phenotypes or respiration
defects (123, 129). Mutation A3243G of one of these unstacked
bases is associated with the mitochondrial disorder MELAS
(130); however, it appears to be due to alteration of the Leu-
tRNA structure (131). The connections between the MELAS-
associated mutations and MTERF1 function have been clearly
shown only in vitro (120).

Most promoters of the y-mtDNA make multigene RNA tran-
scripts that are terminated and processed (132). However, pro-
teins homologous to MTERF1 are not found in the yeast mito-
chondria, and the mechanism of transcription termination on
y-mtDNA is likely distinct from that on h-mtDNA.

Regulation of mitochondrial transcription

Having established the structural and mechanistic basis of
transcription initiation, we now turn to recent insights into the
primary modes of transcriptional regulation in mammalian
systems (Fig. 5). We first discuss the direct modulation of the
transcription machinery, including how accessory proteins,
post-translational modifications, and DNA sequence and mod-
ifications regulate h-mtRNAP and initiation factors. We then
highlight factors external to the mitochondria and feedback
mechanisms between the nucleus and mitochondria that are
implicated in transcriptional control.

Direct control of the mitochondrial transcription initiation
machinery

RNA polymerase—One of the most direct modes of tran-
scriptional control in the mitochondria is through the modula-
tion of the RNAP’s access to mtDNA or its activity. H-mtRNAP
is regulated by proteins that directly interact with mtDNA,
termed nucleoid proteins. Nucleoid formation promotes
mtDNA stability and may allow for genome regulation. Nearly
60 nucleoid proteins have been identified (133, 134) that fall
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Figure 5. Regulation of mitochondrial transcription overview. A, most mitochondrial proteins, including the core mtDNA transcription machinery and
other nucleoid proteins, are encoded by nuclear genes, synthesized by cytosolic ribosomes, and imported into the mitochondria. Therefore, mitochondrial
transcription and its regulation are largely dependent upon nuclear-encoded factors. B, a subset of these proteins associate with mtDNA, forming nucleoid
particles. Nucleoid dynamics, including epigenetic modifications to mtDNA, nucleoid protein interactions, and post-translational modifications of mtDNA
transcription factors, affect mtDNA accessibility and transcription. C, other nuclear-encoded mitochondrial proteins are responsible for processing nascent
mtRNAs. Prior to translation, polycistronic RNAs must be cleaved, chemically modified, and adenylated to reach their mature form. D, nuclear transcription fac-
tors regulate the expression of nuclear-encoded mitochondrial proteins like TFAM and h-mtRNAP, indirectly regulating the expression of mtDNA-encoded
genes. E, additionally, various canonically nuclear transcription factors translocate to the mitochondria or shuttle between the two compartments under vari-
ous conditions, providing one means of coordinating mitochondrial and nuclear gene expression. F, mitochondrial factors also influence nuclear epigenetics,
contributing to retrograde signaling and cross-talk between the two compartments. Finally, both the nucleus and the mitochondria sense and respond to
metabolic conditions, such as nutrient availability and reactive oxygen species patterns. These broad cellular states affect gene expression in both compart-
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Mitochondria

ments and influence signaling between the two.

into three main classes: the replication and transcription
machinery, enzymes involved in metabolism, and quality con-
trol proteins. Nuclear DNA encodes all nucleoid proteins;
therefore, mitochondrial transcriptional regulation is likely de-
pendent upon the nucleus (Fig. 5, path A). Several nucleoid
proteins, including mitochondrial ribosomal protein L12
(MRPL12), leucine-rich pentatricopeptide repeat—containing
protein (LRPPRC), TEFM, and MTERF], act as secondary fac-
tors that can control the function of h-mtRNAP, with some of
these findings discussed above. Interestingly, homologous pro-
teins in yeast playing similar roles have not yet been defined.
MRPLI12 constitutes part of the large subunit of the mito-
chondrial ribosome; however, in its nonribosome-associated
form, it interacts directly with h-mtRNAP and is thought to
regulate h-mtRNAP’s transcriptional activity (135). RNAi-
mediated knockdown of MRPL12 destabilizes h-mtRNAP and
decreases mtDNA transcription levels (136), suggesting that
MRPLI12 is necessary for h-mtRNAP stability. However, the
necessity for MRPL12 in transcription is not seen in all studies
(26), warranting further exploration of the function of MRPL12
in transcription, especially in light of the differential expression
of MRPL12 observed in some cancers (137) and neurological
disorders (138). LRPPRC is an additional protein thought to be
a co-activator of mitochondrial transcription mediated through
LRPPRC-h-mtRNAP complex formation and not through
direct contact with mtDNA (139). Overexpression of LRPPRC
in cell lines and mice results in increased mitochondrial tran-
scripts (139, 140), whereas the loss of LRPPRC leads to
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decreased transcripts and mitochondrial dysfunction. Among
mtDNA transcriptional machinery and regulators, LRPPRC is
of great interest due to its direct implications in human diseases
(recently reviewed in Ref. 141), including Leigh syndrome, a
debilitating neurological disorder manifesting in the first year
of a child’s life. LRPPRC, as well as several other nucleoid pro-
teins, also act in the processing of mitochondrial RNA in
humans. Processing involves the cleavage of polycistronic tran-
scripts, maturation of RNAs, and base modifications (Fig. 5,
path C) and represents another form of mitochondrial tran-
scription regulation (recently reviewed in Ref. 14).

Initiation factors—In mammalian systems, the initiation fac-
tors are essential for transcription; as such, regulation of TFAM
and TFB2M represent another major mechanism of transcrip-
tional control in mitochondria. TFAM is the most abundant
protein component of mitochondrial nucleoids in mammals.
TFAM coats and packages mtDNA, with higher TFAM:
mtDNA ratios indicative of tighter packaging and reduced
accessibility of the transcription and replication machinery
(142) (Fig. 5, path B). However, TFAM binding to the promoter
region is also needed for transcription initiation; therefore,
altering levels of TFAM or the ability of TEFAM to bind to
mtDNA is a dominant mode of transcriptional control. Struc-
tural features of mtDNA, including G-quadruplex formation
and mtDNA methylation, may impact TFAM binding.

The mitochondrial genome contains many potential G-
quadruplex—forming sequences, especially on the guanine-
enriched heavy strand (143). The potential roles for G-

J. Biol. Chem. (2020) 295(52) 18406-18425 18415



JBC REVIEWS: Mechanism and regulation of mitochondrial DNA transcription

quadruplex structures in mitochondrial function were recently
reviewed (144). In vitro studies show that TFAM binds G-
quadruplex—forming DNAs with high affinity and structural
specificity (145), but in culture ChIP-Seq experiments showed
that TFAM avoids G-quadruplex sequences (146). Thus, fur-
ther studies are needed to understand how G-quadruplex
structures impact mammalian mtDNA transcription (147).
Finally, there is an association of G-quadruplex—forming
sequences with human mtDNA deletion breakpoints, high-
lighting these structures’ biological and clinical importance
(148).

Although still an area of some controversy, many reports
indicate that mtDNA is subject to methylation, as evidenced by
bisulfite sequencing, antibody-based approaches, and the pres-
ence of DNA methyltransferase activity within mitochondrial
extracts, and this may be an important component of regulating
mtDNA transcription (recently reviewed (149, 150)). Cytosine
and adenosine methylation have been observed in the mito-
chondria (151, 152), albeit at low levels (153). Cytosine methyl-
ation has been identified at CpG (154, 155), GpC (156), and
non-CpG loci (151, 157). One study observed the highest meth-
ylation frequency in the D-loop regulatory region (155), further
supporting a role for methylation in controlling transcription
and/or replication. GpC methylation induced by targeting a
GpC methyltransferase to the mitochondria in a number of cell
lines led to a decrease in mitochondrial transcripts, while leav-
ing mtDNA copy number unchanged and not impacting cell
function (156). Although the mechanisms remain unclear, such
mtDNA modifications may be directly linked to the activity of
mitochondrial transcription factors. The methylation of
mtDNA alters TFAM binding and transcription activities, and
may indirectly modulate TFB2M and h-mtRNAP through
TFAM recruitment (158). Additionally, hypermethylation at
the mtDNA D-loop impairs mtDNA transcription in cultured
human cells (159). There is evidence that mtDNA methylation
patterns are differentially regulated during development and
aging (157), under hypoxic stress (152), and in vascular disease
(159), supporting the functional relevance of these modifica-
tions. Finally, nuclear methyltransferases, such as DNMT1,
DNMT3, and METTL4, have been shown to localize to mito-
chondria and methylate mtDNA, demonstrating the potential
importance of mtDNA methylation in cross-talk between mito-
chondria and the nucleus (152, 157, 159).

In addition to DNA and protein structural regulation, post-
translational modifications, including lysine acetylation and
serine/threonine phosphorylation, serve as another layer of reg-
ulation of TFAM and TFB2M. Modification of TFAM affects
DNA binding, compaction, transcription, and TFAM concen-
tration levels (160—164). The phosphorylation of TFAM leads
to degradation by the mitochondrial Lon protease, subse-
quently controlling the ratio of mtDNA and TFAM to regulate
transcription (162, 165). Lon protease is one example of a
nucleoid protein involved in mitochondrial quality control,
along with a family of nucleoid proteins that includes ClpX pro-
tease and enzymes involved in the oxidative stress response
(peroxiredoxin 5, methionine-R-sulfoxide reductase B2). These
enzymes are centrally localized to protect the mitochondrial
genome and preserve the replication and transcription machin-
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ery in times of stress, and additional studies are necessary to
determine the importance of mtDNA proximity to their func-
tion. Like TFAM, TFB2M is also phosphorylated. Phosphoryla-
tion of TFB2M on two key threonine residues decreases the
binding affinity of TFB2M for both mitochondrial promoters
and its ability to carry out transcription in vitro (166). These
phosphorylation sites are proposed to interact with the thumb
domain of h-mtRNAP, thereby interfering with key interac-
tions between TFB2M and h-mtRNAP and attenuating tran-
scription initiation. Beyond the initiation factors, numerous
post-translational modifications have been identified on h-
mtRNAP (including phosphorylation, methylation, acetylation,
and ubiquitination) and other proteins known to interact with
mtDNA, but their roles in mediating changes in mitochondrial
biology are largely unknown (167-170). Additional support for
the role of post-translational modifications in controlling
mtDNA transcription is the mitochondrial localization of
enzymes that catalyze both the addition and removal of these
chemical marks, including a number of mitochondrial localized
phosphatases and mitochondrial members of the sirtuin deace-
tylase family (SIRT3-5). Whereas a mitochondrial protein ki-
nase has not yet been clearly identified, the histone acetyltrans-
ferase MOF and its regulatory partners KANSL1 and KANSL3
have been shown to localize to the mitochondria, bind to
mtDNA, and regulate transcription. Genetic loss of MOF led to
the accumulation of TFB2M and POLRMT on mtDNA when
cells were cultured in galactose medium, a culture condition
promoting the reliance on mitochondrial metabolism, poten-
tially indicating stalled transcription (171). Future work to
identify whether MOF is directly acetylating members of the
transcriptional machinery to alter their function is required.

Nuclear factors that control mitochondrial transcription

A major outstanding question is how the expression of nu-
clear and mitochondrial encoded genes is coordinated. Many
nuclear proteins directly or indirectly impact mtDNA tran-
scription; conversely, mitochondrial proteins, metabolites, and
other factors influence nuclear gene expression. Some proteins
play significant roles in both compartments and shuttle
between the two. The diversity and interconnectedness of these
cross-talk factors allow for nuanced molecular communication
between the nucleus and the mitochondria, our understanding
of which is still quite limited.

A critical aspect of regulating mtDNA transcription involves
the nuclear transcription factors that control the expression of
the mitochondrial transcription machinery (Fig. 5, path D). Nu-
clear respiratory factors 1 and 2 (NRF-1/2) and peroxisome
proliferator—activated receptor coactivator la (PGC-1la) are
widely established as “master regulators” of mitochondrial bio-
genesis and control the expression of many mitochondrial pro-
teins, including h-mtRNAP (172), TFAM (173, 174), and
TFB2M (175). NRF-1/2 and PGCle play a role in the metabolic
adaptation to changing nutrient status, partially through the
modulation of mitochondrial function. NRF-2 also regulates
the expression of MTERF1 (176), and decreased PGC-1a levels
have been correlated with the down-regulation of MRPL12
(177) and LRPPRC (178), implicating these master regulators in
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the control of accessory transcriptional regulators as well as the
core machinery. However, the extent to which these master
factors directly control the accessory regulators’ expression
remains an open question and an intriguing area of future
study.

In addition to nuclear transcription factors controlling
nuclear gene expression, another mechanism of regulation
involves localizing canonically nuclear transcription factors to
the mitochondria, where they directly bind mtDNA and alter
mtDNA transcription (Fig. 5, path E). Many such factors have
been identified in previous studies and are discussed in prior
reviews; these include thyroid hormone receptors, glucocorti-
coid receptors, cAMP-response element binding proteins, NF-
kB subunits, myocyte enhancer factor 2 (MEF2D) (179), and
signal transducer and activator of transcription (STAT) pro-
teins (reviewed Refs. 11 and 180). Whereas recent findings have
added several new nuclear transcription factors to the reper-
toire of those shown to localize to the mitochondria, in most
cases, further investigation is needed to elucidate the direct
roles of these transcription factors in controlling mitochondrial
gene expression and to determine whether transcriptional
responses are tissue- or context-dependent. Notably, a nuclear
transcription factor in the mitochondria does not necessarily
imply that it plays a role in regulating mtDNA transcription.
Direct functional evidence must be obtained to support any
claims of these factors’ biological relevance in regulating
mtDNA transcription (11, 181, 182). We must ensure that
changes are not due to alterations in mtDNA copy number,
translation efficiency, or mitochondrial integrity. As described
in earlier sections of this review, structural and mechanistic
studies have greatly aided our understanding of mtDNA tran-
scription’s basic process. Similar studies regarding nuclear
transcription factors and other regulatory proteins within the
mitochondria might illuminate how mtDNA transcription is
controlled and coordinated with nuclear gene expression.
Here, we report the most recent findings in this area, highlight-
ing both new insights into factors previously known to localize
to mitochondria (estrogen receptor, RelA, STAT3, FoxO3A)
and nuclear transcription factors whose roles in the mitochon-
dria have recently been discovered (androgen receptor,
TEAD4, MDM2, FoxO1).

Androgen and estrogen receptors—The androgen receptor
(AR) and estrogen receptors (ERa and ERB) are ligand-depend-
ent nuclear transcription factors that bind androgen and estro-
gen steroid hormones, respectively, and play diverse roles in
cell function and development (183, 184). AR was recently
found to localize to the mitochondrial matrix. AR appeared to
negatively regulate the expression of several mitochondrial-
and nuclear-encoded OXPHOS subunit genes in cultured pros-
tate cancer cells. However, these effects may have occurred
through altered TFAM expression and mtDNA content rather
than through a direct role of AR in mtDNA transcription (185).
Another recent study found that testosterone treatment of mu-
rine skeletal muscle cells increased TEFAM expression, likely by
up-regulating its nuclear expression regulators, NRF-1/2. Tes-
tosterone also increased the expression of mtDNA-encoded
OXPHOS subunits, although this was proposed to occur indi-
rectly through nuclear NRF/TFAM up-regulation. However,
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this study identified several putative AR-binding sites in mouse
mtDNA by in silico analysis, indicating the possibility of direct
regulation of mtDNA transcription by AR (186). Like AR, the
estrogen receptors (ERa and ERB) have been shown to localize
to mitochondria and bind putative estrogen-response elements
within mtDNA, and there is evidence that ERs may directly reg-
ulate the expression of both mitochondrial- and nuclear-
encoded OXPHOS subunit genes (reviewed in Refs. 187 and
188). ERa and ERB have been shown to indirectly up-regulate
mtDNA-encoded OXPHOS subunits through the NRE/TFAM
pathway (186, 188).

Transcription factor p65 (RelA) and STAT3—The NF-«B
transcription factor family includes several transcription fac-
tors and their inhibitors, which play roles in signaling pathways
involved in inflammation, cell differentiation, and cell survival
(189). STAT proteins are another class of transcription factors
involved in many signal cascades that regulate cell growth
and survival (190). Mitochondrial localization was recently
described for the proteins p50/NF-«B1 and RelA (p65), two
subunits of the NF-«B family, as well as their inhibitor IkBa
(11). However, another study found that only RelA and IkBa
localized to mitochondria, and only RelA entered the matrix
and associated with mtDNA (191). RelA recruitment to
mtDNA decreased h-mtRNAP binding to mtDNA and the
expression of two mtDNA-encoded OXPHOS subunit genes.
This recruitment was not due to the direct binding of RelA to
the mtDNA and was proposed to occur through an indirect
mechanism (192). In mouse keratinocytes, STAT3 bound
mtDNA and co-immunoprecipitated with TFAM. Further-
more, STAT3 knockout in these cells increased the transcrip-
tion of several mtDNA-encoded genes, pointing to a potential
inhibitory role of STAT3 in mtDNA transcription (193). How-
ever, STAT3 is known to play significant nontranscriptional
roles in the mitochondria (194). Therefore, changes in mRNA
levels of mtDNA-encoded OXPHOS genes in response to
altered STAT3 should not be automatically interpreted as evi-
dence that STAT3 directly impacts mtDNA transcription.

TEA domain transcription factor 4 (TEAD4)—The TEA do-
main family transcription factors (TEAD1-4) are downstream
transcription factors of the Hippo signaling pathway and are
essential in cell proliferation. A member of this family, TEAD4,
is involved in energy homeostasis in early embryonic develop-
ment (195, 196) and was recently shown to be implicated in
mtDNA transcription control. In early embryonic cells, loss of
TEAD4 led to decreased mitochondrial transcription and
impaired OXPHOS, which was rescued by overexpression of an
engineered TEAD4 containing a mitochondrial localization
sequence (197). Using immunofluorescence and ChIP
approaches, TEAD4 was shown to bind directly to mtDNA at
the D-loop and other regions. Upon binding to mtDNA,
TEADA4 interacts with h-mtRNAP on mtDNA and is proposed
to facilitate transcription.

Mouse double-minute 2 proto-oncogene (MDM2)—MDM?2
is well-known for its regulation of the nuclear transcription fac-
tor p53, an established tumor suppressor. However, MDM?2
also has p53-independent functions, including binding to nu-
clear chromatin and altering transcription (198). Recently,
MDM2 was shown to specifically bind the LSP, displacing
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TFAM and down-regulating transcription from the LSP in nor-
mal and cancer cells (199). Interestingly, the MDM2 effect
appears to be promoter-specific, as numerous approaches indi-
cate that MDM2 does not bind to the HSP or alter transcription
from this promoter. The recruitment of MDM2 to the LSP
reduces transcription of NADH dehydrogenase 6, thereby
impairing Complex I activity. A rise in oxidative stress is a key
factor driving MDM2 translocation to the mitochondrial ma-
trix. This study added a new activity to the repertoire of onco-
genic functions of MDM2 and provided an example of a mech-
anism underlying altered mitochondrial metabolism often
found in tumor progression.

Forkhead box protein O1 and O3A (FoxOl1, FoxO3A)—The
four-member FoxO transcription factor family is comprised of
nutrient-sensing proteins that control the transcription of nu-
clear genes involved in energy homeostasis, glucose metabo-
lism, apoptosis, and cell cycle arrest. Recently, one member of
this family, FoxO1, was shown to bind the mtDNA D-loop
under basal metabolic conditions. Nutrient restriction in white
and beige adipocytes led to FoxO1 shuttling from the mito-
chondria to the nucleus and binding to nuclear DNA, with a
concomitant decrease in FoxO1 binding to mtDNA and tran-
scription. This shuttling depended on specific nutrient restric-
tion—induced reactive oxygen species patterns (200). The
related transcription factor FoxO3A localizes to both the nu-
clear genome and mtDNA. Under low glucose, FoxO3A formed
a complex with SIRT3, TFAM, and h-mtRNAP; this complex
bound regulatory regions in mtDNA and increased mtDNA
transcription (201). The shuttling of FoxO proteins between
the nucleus and the mitochondria to regulate gene expression
in response to reactive oxygen species and metabolic state
points to intriguing avenues of communication between the
mitochondria and the nucleus, an example of metabolite sens-
ing mechanisms, as described below.

Metabolite sensing in mito-nuclear coordination

The reliance of the mitochondria upon the nucleus is quite
clear. Interestingly, many mitochondrial proteins have been
shown to affect nuclear gene expression. Importantly, such ret-
rograde signaling often depends on certain metabolic states or
redox balance within the cell, highlighting how global cellular
conditions function in interconnecting the nucleus and the mi-
tochondria (Fig. 5, path F). In some cellular systems, TFAM
was identified in nuclei and suggested to control nuclear gene
expression (202-204). The mitochondrial PTEN-induced ki-
nase PINK1 is implicated in retrograde signaling pathways to
the nucleus in response to genotoxic stress. This signaling
involves altered reactive oxygen species patterns and ATP pro-
duction and triggers nuclear responses for maintaining cellular
homeostasis (205). A unique form of retrograde mitochondrial
signaling requires MOTS-c, a regulatory peptide encoded as a
short ORF within the mitochondrial 12S rRNA gene. In cul-
tured human cells, nutrient deprivation or reactive oxygen spe-
cies exposure caused MOTS-c to translocate from the mito-
chondria to the nucleus, bind nuclear transcription factors, and
promote expression of nuclear genes for resistance to meta-
bolic stress (206).
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Beyond mitochondrial proteins known to play dual roles in
the mitochondria and nucleus, studies point to the importance
of the mitochondria in modifying chromatin and nuclear DNA.
Mitochondrial metabolism provides many of the requisite sub-
strates for these epigenetic modifications, including acetyl-
CoA, formate, ATP, and a-ketoglutarate. The perturbation of
mitochondrial function results in altered epigenetic and tran-
scriptional profiles within the nucleus (207-210). For example,
in glioblastoma cells, depletion of the outer mitochondrial
membrane protein VDAC]I, a key mediator of metabolic coor-
dination between mitochondria and the rest of the cell, resulted
in altered transcriptional patterns of nuclear genes involved in
metabolic reprogramming and histone acetylation and methyl-
ation (207). In cultured human myoblasts, mitochondrial stress
induced prosurvival changes to nuclear chromatin methylation
(209). In other human cell lines, mtDNA depletion altered nu-
clear methylation and transcription to promote metabolic
adaptations (211). In addition to these retrograde signaling
mechanisms, metabolite sensing by mitochondrial proteins is
an essential transcriptional regulation mechanism. Both yeast
and human mtRNAP can sense a cell’'s metabolic state, specifi-
cally [NAD*]/[ATP] and [NADH]/[ATP] ratios, and regulate
expression of NAD'/H capped mitochondrial RNAs in
response (212). Further, the proximity of metabolic enzymes in
pathways such as fatty acid metabolism and one-carbon metab-
olism to mtDNA raises the intriguing possibility of signaling
between cellular metabolic status and mtDNA replication and
transcription.

Conclusions

The mitochondria are hubs for many critical processes,
from ATP production to cell signaling and apoptosis. Their
many cellular roles, multifaceted communication with the
nucleus, and the vast array of pathologies associated with
their dysfunction underscore the importance of a better
understanding of mitochondrial functions and regulation.
Although mtRNARP is architecturally simpler than the nu-
clear RNAPs, mtDNA transcription must respond to the
cell’s energy demands, continually changing and requiring
coordination between nuclear and mitochondrial DNA
transcription. Our understanding of mitochondrial tran-
scription regulation in mammalian systems is growing, with
recent research illuminating aspects of regulation by tran-
scription factors, metabolite sensing, and nucleoid dynam-
ics. Although this research area is of great interest, we have
very little understanding of its biochemical and molecular
basis, which is essential for enabling new therapeutics for
the myriad of mitochondrial-related diseases.

Detailed studies of mitochondrial transcription and the
interplay between the mitochondria and nucleus enable a
deeper understanding of diseases and disorders caused by dis-
rupted mitochondrial functions. There are increasing numbers
of inherited mutations in mtDNA and nuclear genes for mito-
chondrial proteins associated with mitochondrial disorders
involving defective ATP production, leading to diverse and of-
ten devastating effects on the heart, nervous system, and skele-
tal muscle (213). Examples of such inherited conditions include
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Leigh syndrome, Leber hereditary optic neuropathy, and
Kearns—Sayre syndrome (214). Mitochondrial dysfunctions
contribute to diabetes, obesity, and metabolic syndromes (215,
216). Mitochondria play diverse roles in cancer, such as provid-
ing energy and biosynthetic products for rapid proliferation,
supporting metabolic adaptation to the tumor microenviron-
ment, and regulating oncogenic signaling and apoptosis (217,
218). Mitochondria support cellular immune functions. How-
ever, dysfunctions in mitochondria or trauma could release im-
munogenic mtDNA and mtRNA in the cytosol or circulation to
cause severe or chronic inflammation (219, 220). Mitochon-
drial genetics, metabolism, and inflammation significantly
impact age-associated pathologies (221) and neurodegenerative
diseases such as Alzheimer’s and Parkinson’s diseases (222,
223). We are hopeful that an increased biochemical under-
standing of mitochondrial functions will lead to better diagnos-
tics and treatments for these conditions.

Here, we highlighted recent advances in understanding the
structure, function, and regulation of mtDNA transcription.
Parallel studies of yeast and human mtDNA transcription ma-
chinery have significantly been informative in revealing the ba-
sic transcription initiation mechanisms, adding clarity regard-
ing the transcription factors’ roles that critically control
mtDNA transcription events. Despite this recent progress,
many questions remain. We have limited information on the
mechanism of various transcription steps, starting from assem-
bly on specific promoters and culminating in the formation of a
fully processed RNA transcript. We lack structures of the inter-
mediate complexes in the initiation pathway and have limited
knowledge of the dynamics of initiation, elongation, and termi-
nation reactions. A mechanistic framework is foundational for
understanding how the mtDNA transcriptional machinery is
regulated and controlled to sensitively respond to the cell’s
energy needs.
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