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ABSTRACT 
Traditional building energy simulation tools often assess 
performance as a function of the unique climate, physical 
characteristics, and operational parameters that define 
specific buildings and communities, planned or existing. 
This paper presents the results of a sensitivity analysis on the 
input parameters (relating to both the building and climate) 
that affect the annual energy consumption loads of an 
existing residential neighborhood in the U.S. Midwest over 
the anticipated service life of its buildings using the Urban 
Modeling Interface (umi). Accordingly, first, the effect of 
multiple building construction characteristic packages and 
inclusion of outdoor vegetation, are investigated under 
typical meteorological climate conditions. Afterwards, since 
typical climate conditions may not adequately describe the 
potential extreme conditions that will be encountered over 
the entire service life of these buildings, alternative weather 
datasets were also utilized in the sensitivity analysis. The 
study’s findings suggest that cooling loads are expected to 
increase dramatically over the next five decades, both due to 
changes in the climate and the more wide-spread use of air-
conditioning units. Since the results showed that trees can 
effectively reduce cooling loads by up to 7%, it is 
recommended that urban vegetation should be considered as 
an effective adaptation measure for facing the growing 
cooling demands. 
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I.6.1 SIMULATION AND MODELING 
1 INTRODUCTION 
In the US, residential buildings accounted for more than 21% 
of total energy consumption, 36% of total electricity use, and 
19% of total greenhouse gas (GHG) emissions in 2018 [1]. 
Moreover, energy consumption from residential buildings is 
projected to increase by a national average of 0.1% per year 
for the period of 2018–2050 under a business as usual 
scenario [2]. Thus, the building energy sector, in general—
and the residential building stock in particular—represents  a 
significant opportunity for accelerating the energy transition 

and ensuring a low-carbon future [3]. Moreover, buildings as 
part of the infrastructure will need to withstand changing 
climatic conditions for long timespans (50–100 years) [4]. 
This requires current and future building stocks to perform 
satisfactorily under changing climatic conditions [4]. 
Consequently, the prediction of buildings’ energy use via 
simulation tools, both current and future, is highly important. 
These simulation tools commonly utilize a combination of a 
building model and a weather file to account for the impact 
of climate on the aforementioned building [5]. The building 
model itself consists of building design and construction 
characteristics as well as energy-related user behavior and 
operational inputs [5]. 

This study conducted a sensitivity analysis on the input 
parameters that affect the annual energy consumption loads 
of an existing residential neighborhood in the U.S. Midwest 
over the anticipated service life of its buildings. These 
parameters are related to both the building model and the 
climate-related input. The goal of this sensitivity analysis 
was to help the researchers and community stakeholders 
understand the relative influence of each set of input 
parameters on the annual energy consumption loads of the 
selected case study. This analysis is not only based on the 
current state but is also considering the possible changes in 
consumption that can be anticipated over the buildings’ 
entire service lives.  

It is important to note that the majority of past simulation 
efforts to predict building’s energy use, only use typical 
climate conditions based on climate data of the recent past as 
their input. The problem with the use of such weather files as 
input for the simulation is that typical climate conditions for 
the 20th century do not adequately describe the potential 
extreme conditions that will be encountered over the lifetime 
of buildings constructed today or those existing [6]. Thus, in 
recent years, a growing number of other studies have also 
tried to address this gap in the academic literature by 
attempting to understand the impact of future climate on 
energy performance predictions for risk management [6]. For 
instance, Crawley (2008) found that climate change would 
substantially influence buildings’ energy performance in 
different climate zones. The author concluded that unless 
more comprehensive and accelerated changes for building 
design and operation are initiated, “building owners will 



experience substantial operating cost increases and possible 
disruptions in an already strained energy supply system” [7]. 
Similarly, Kalvelage et al. (2014) predicted reductions in 
heating demand in contrast to increases in cooling demand 
and concluded that the resulting mixture of overall increase 
and decrease in energy demand for a future climate depends 
on the location considered and the energy source available 
[6]. Therefore, the identification of the building and system 
characteristics that have the most impact on energy demand, 
can help building owners in different locations make more 
informed investment decisions for future retrofits. Moreover, 
the value derived from reducing energy and operating costs 
is a decision that affects not only the building's performance, 
but the occupants’ health, safety and welfare [6]. This 
perceived value is even greater for low-income households 
in urban areas, such as the population of the selected case 
study, who are already facing a high energy burden. These 
households need to allocate a disproportionate share of their 
income to energy expenditures due to energy inefficiencies 
in their homes [8], [9]. As Jagani et al. (2017) state “the 
existing residential building stock in inner urban 
neighborhoods is often not well equipped for the climatic 
challenges” and their energy inefficiencies are typically 
related to “little insulation, older windows, and leaky 
envelopes” [10]. Therefore, identification of building 
characteristics that have the most impact on energy demand 
can help low-income households become more resilient in 
the face of upcoming climatic challenges.  
2 METHODOLOGY 
In the previous section, it was stated that this study 
conducted a sensitivity analysis on the input parameters that 
affect the annual energy consumption loads of an existing 
low-income residential neighborhood in the U.S. Midwest 
over the anticipated service life of its buildings. In the 
upcoming sections of this manuscript, first, the general 
characteristics of the selected case study and the 
development procedure for the building model is discussed 
in detail. Then, the parameter variables used in the sensitivity 
analysis, including those related to the climate as well as the 
ones associated with the building model, are defined. Finally, 
the results of the sensitivity analysis are provided and 
conclusions are made based on these results. 

2.1 Case Study 
This study focuses on the energy use simulation of an inner-
city neighborhood in the Midwest of the U.S. that is 
identified to be predominantly residential and low-income 
[11]. This neighborhood was selected primarily due to its 
social and economic characteristics which were in line with 
the previously mentioned goals of this study.  

2.2 Building Model Related Parameters 
The building model used for this study was developed in a 
Rhinoceros-based urban modeling design tool called Urban 
Modeling Interface (umi) [12]. Umi is able to efficiently 
model multiple buildings, approximate microclimatic effects 
and consider multiple sustainable performance metrics and 
is therefore suitable for this type of study [13]. Figure 1 

below shows an overview of the developed neighborhood 
model in the umi environment. 

 
Figure 1. Top view of the Capitol East neighborhood as modeled in 

the umi environment [14]. 

This neighborhood model consisted of 340 buildings (323 
residential and 17 nonresidential) and 1,142 trees of eight 
canopy shape categories. The buildings were modeled with 
the help of obtained GIS shapefiles for Capitol East 
Neighborhood’s buildings which included information on 
buildings’ footprints, elevations, and parcels. The Polk 
County assessor data provided another layer of information 
for the model which provided each building’s address, parcel 
number, number of building stories, date of construction, 
number of separate residences contained within, information 
about the type of construction materials used, and type of 
occupancy [10], [15]. Accordingly, a total number of 14 
building templates, which each included a set of construction 
material definitions and schedules, were defined in the umi 
template library and assigned to the modeled buildings based 
on the information provided by the Polk County assessors. 
Since previous work by the authors has already investigated 
the effect of more representative and sophisticated 
occupancy schedules on the model (and can be found in 
Malekpour Kouapei et al. (2019a) and Malekpour Koupaei 
et al. (2019b) [14], [16]). In addition  the prediction of future 
occupancy profiles throughout the entire service life of 
buildings is quite difficult, if not impossible. Thus, for the 
specific purposes of this study, the schedules in all the 
defined templates are based on the American Society of 



Heating, Refrigerating and Air-Conditioning Engineers 
(ASHRAE) 90.1 standard for residential buildings [17]. It is 
important to note that the only difference taken into account 
is if a specific template represents buildings that are air-
conditioned (AC) during the cooling period of the year or are 
naturally-ventilated (NV) instead. Therefore, different 
building templates in this study basically represent different 
building construction properties and hereafter are referred to 
as “building construction templates” which include 
information on the construction properties of exterior wall, 
roof, ground floor, internal floor, external floor, basement 
wall, glazing and window to wall ratio, partition, thermal 
mass type and ratio, and the availability of air-conditioning 
systems [18]. 

As for the outdoor vegetation modeled in the umi 
environment, tree data was collected for 1,142 neighborhood 
trees during the summer of 2017 and this information was 
catalogued using a Trimble Geo 7X Handheld GNSS 
receiver [19]. The data collected in this step, which included 
tree species, trunk diameter, tree height, canopy 
shape/height, canopy width in two dimensions, and 
latitude/longitude coordinates, was categorized into eight 
canopy shapes as follows: (1) spheres, (2) ellipsoids, (3) 
cylinders, (4) cones, (5) horizontal rectangular cuboids, (6) 
vertical rectangular cuboids, (7) umbrella shapes, and (8) 
paraboloids [19]. Figure 2 illustrates these different tree 
shape types and more information on the development 
procedure of these categories can be found in Hashemi et al. 
(2018) [19]. 

 

Figure 2. The eight representative canopy shapes that are used to 
represent trees in the model [19]. 

The parameters related to the building model that are studied 
are as following: 

- The sensitivity of the model to different building 
construction templates is studied in detail. Of the 14 building 
construction templates defined in the umi template library, 6 
can be considered AC while 8 are only NV. The analysis 
presented in the results section of this manuscript takes these 
differences into account and could help authorities identify 
the low-income households that are currently facing the 
greatest energy burden based on their general housing 
characteristics.  

- The sensitivity of the model to the availability of trees in 
the neighborhood is also studied. This analysis can be 
considered as a level of detailing analysis that shows how 

much the inclusion of outdoor vegetation in the model can 
impact the annual simulation results. 

2.3 Climate Data Related Parameters 
In the previous sections, it was stated that energy simulation 
tools combine the building model with a weather file to study 
the dynamic interaction between building systems and 
external climate [4]. According to Bhandari et al. (2012), 
“There are three main classes of weather data with traditional 
use cases for each: “typical” weather data (representative of 
some location over an arbitrary period of time) often used for 
design and performance conditions over the life of a 
building, “actual” weather data (at a specific location for a 
specific period of time) used for simulation calibration to 
energy bills, and “future” weather data used for adaptive 
control of a building” [20]. For each class, there are a 
multitude of representative weather datasets that can be used 
depending on the purpose, location, and simulation engine 
that is being used [20]. To represent and compare all three of 
the proposed dataset types, in this study the following five 
weather datasets are used in the reported sensitivity analysis:  

(1) A typical weather data file in the Typical Meteorological 
Year (TMY3) format for the Des Moines International 
Airport that consists of 12 typical meteorological months 
(January through December), with individual months 
selected from different years of the period of record (1991-
2005) [21]. This dataset is obtained from the official 
EnergyPlus website [22]. 

(2) An actual weather file for the year 2017 in the selected 
location (41.53° N, 93.65° W) that is obtained from the 
National Solar Radiation Database (NSRDB) and formatted 
according to the TMY3 manual [23], [24]. From hereafter, 
this dataset is referred to as “Actual Meteorological Year” or 
“ACM”. 

(3-5) Three future weather files are used for the simulation 
of the future energy consumption of the residential building 
stock. These Future Typical Meteorological (FTMY) 
datasets were prepared by Patton (2013) who combined the 
projected changes in climate with existing TMY3 data to 
create FTMY datasets to represent high, medium and low 
emission scenarios of the FTMY for the 2041–2070 period  
[25]. In this manuscript, these three datasets are referred to 
as “FTMY-High”, “FTMY-Medium”, and “FTMY-Low” 
respectively. 

The findings provided by this sensitivity analysis could help 
authorities identify the low-income households that are 
likely to suffer the greatest from changes in the regional 
climate over the projection period and take appropriate steps 
accordingly. The inclusion of the ACM dataset gives the 
researchers a chance to evaluate the current state of energy 
consumption in the neighborhood realistically.  The results, 
thus, are a response to the concerns that have previously been 
expressed by professionals in the field about the reliability of 
the TMY data [26], [27].  



3 RESULTS AND ANALYSIS 
In total, 140 simulation runs of the model with different 
possible combinations of the variable parameters were run 
for this study. Table 1 shows an overview of the parameters 
studied and the total number of all the possible inputs for 
each. 

 Building Model Climate 
Data 

Variable 
Parameter Trees 

Building 
Construction 
Templates 

Weather 
Datasets 

Number of 
Possible Values 2 14 5 

Table 1. Defined parameters and their total number of all possible 
inputs. 

Earlier, it was mentioned that a total number of 14 building 
construction templates were defined in the umi template 
library based on the assessors’ data. In the baseline scenario, 
trees are included as shading geometry in the model and 
TMY3 data for Des Moines International Airport is used as 
the weather database. The impact of changes in the building 
construction templates in the neighborhood was assessed by 
comparing the heating and cooling loads in terms of their 
annual Energy Use Intensities (EUI)s. EUI, which is simply 
the annual energy consumption divided by the area of the 
building, is one of the widely used energy benchmarking and 
comparision methods as it is simple, and easy to compute and 
interpret [28], [29]. It should be noted that since the heating 
and cooling energy sources in this region are not the same 
(generally houses are cooled by electricity, while their 
heating energy is most commonly provided by natural gas 
instead [30]), an analysis of changes in the total annual 
energy use is less meaningful and thus avoided. Figure 3 
shows the results of the 14 simulation runs for this baseline 
scenario where in each simulation, one of the 14 defined 
templates is assigned to all the residential buildings in the 
model. Out of these 14 building construction templates, 6 
corresponded to air-conditioned buildings while the other 8 
were representative of naturally-ventilated ones. 

It can be seen that overall, changes in building construction 
characteristics can cause the annual heating loads to fluctuate 
by more than 10 kWh per m2. Considering that the mean 
normalized annual heating load between all of these 14 
simulations is 81.6 kWh per m2, this 10.3 kWh per m2 
difference can be translated into a 13% increase in heating 
expenses for the households that live in less insulated and 
more leaky houses (for instance those represented by the AC-
5 template) when compared to the more energy-efficient 
houses in the same neighborhood (for instance those 
represented by the NV-7 and NV-8 templates). Those 
designing and implementing weatherization assistance 
programs can benefit from this analysis and target the most 
vulnerable housing groups for maximum benefits.  

Figure 3. Normalized annual heating and cooling loads in the 
baseline scenario. 

The changes in cooling loads, however, were more subtle 
and the comparative analysis showed a 1.2 kWh per m2 range 
between the most and least energy-efficient templates 
defined. This means that, considering the flat-rate based 
utility billing scenario, the most efficient houses in the 
neighborhood (for instance those represented by the AC-1 
template) only use 6% less energy for cooling expenses when 
compared to the less efficient ones (for instance those 
represented by the AC-6 template). Regardless, future work 
should investigate the correlation between the level of 
insulation and infiltration rates with both annual heating and 
cooling loads to determine the most optimum characteristics 
for houses to be built or even retrofitted in this neighborhood 
or those in similar settings. 

In the next set of simulation efforts, the impact of the 
inclusion of trees in the model is assessed by removing the 
trees from the model developed in the baseline scenario. As 
can be seen in Figure 4, this change resulted in an average of 
nearly 7% increase (between 0.9 to 1.6 kWh per m2) in 
annual cooling loads in all 6 of the models that represent air-
conditioned scenarios (templates AC-1 to AC-6 assigned to 
all the residential buildings). These results are in line with 
the findings of previous studies that had linked urban 
greening with a reduction in building cooling loads due to 
shading and evapotranspiration  effects [19], [31]. The 
reduction witnessed in the results points to the importance of 
this level of detailing in building energy performance 
practices in the urban scale (nearly as important as assigning 
the right set of building construction characteristics) and 
suggests that the inclusion of urban vegetation in the model 
can profoundly increase the accuracy of the predictions. 
Moreover, these results are in line with the previous findings 
that suggest, to combat climate change and face the predicted 
hotter and longer cooling seasons in the future, more urban 
vegetation is recommended in the residential neighborhoods 
in similar climates [32], [33]. Another important implication 
of these results is that as more houses become equipped with 
air-conditioning units, this measure can help minimize the 
increases in electricity demand over the cooling months of 
the year in the future [34].  

0

20

40

60

80

100

120

AC-1
AC-3

AC-5
NV-1

NV-3
NV-5

NV-7

EU
I (

kW
h/

m
2 )

Template

Heating
Cooling



 

 
Figure 4. Decrease in annual cooling loads due to the inclusion of 

trees in the model. 

The last set of simulation efforts in this study, focus on the 
sensitivity analysis of the baseline model with regards to 
different weather datasets. These datasets correspond to 
multiple phases within a typical service life of a residential 
building (the period for which a building is actually in use 
[35]). In these simulations, the appropriate building 
construction templates, based on the assessors’ data, are 
assigned to all the residential buildings modeled. As can be 
seen in Figure 5 (a-b), heating loads for all residential 
buildings (AC and NV alike) are predicted to reduce by 10.9-
16.1 kWh per m2 in the years 2041-2070. The intensity of 
this reduction, however, is directly linked to the intensity of 
changes in the climate. Accordingly, the highest climate 
change impact scenario causes the highest reductions in 
heating loads. Moreover, as previous studies had also 
suggested, it is evident that the impacts of climate change on 
heating loads can already be seen in the data that represents 
the actual energy consumption in the year 2017 [30]. As 
Figure 5 (a-b) shows, heating loads in 2017 were about 7.3 
kWh per m2 less than the baseline scenario that represents 
the typical meteorological year in this location.  

On the other hand, the cooling loads are expected to increase 
rather sharply. An increase of more than 7.7 kWh per m2 
compared to the baseline scenario (19.5 kWh per m2) is 
predicted for all three future weather scenarios. This means 
that the current energy demand for cooling in this 
neighborhood will increase by nearly 40% in the next five 
decades to come. Specifically, this increase can be highly 
problematic as more residential houses are being equipped 
with air-conditioning units [34]. These findings suggest that 
energy-efficiency and resiliency measures for reducing 
current and future cooling demands are and will be of great 
importance in this climatic region and the largest energy cost 
for maintaining desired levels of health and comfort in the 
future at these locations will be attributed to managing higher 
ambient humidity levels [6], [36]. 

  

 
Figure 5. Lifetime energy load predictions for residential buildings. 

 

4 CONCLUSION 
In this study, the sensitivity of energy simulation results of a 
residential neighborhood to a varied set of simulation 
parameters is investigated. The parameters studied include 
building construction templates, outdoor vegetation, and 
alternative weather databases. The findings suggest that the 
use of different building construction packages in modelling 
can cause changes in heating loads as high as 13%. In 
contrast, while changes in climatic conditions are expected 
to have a profound impact (an increase of nearly 40%) on the 
cooling demand over the summer months, cooling load 
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calculations seem to be relatively less reliant on building 
construction templates. This is consistent with the findings 
of previous studies on the impact of climate change on the 
future energy loads of residences in the Midwest U.S., that 
had suggested the largest energy cost for maintaining desired 
levels of health and comfort in the future at these locations 
will be attributed to managing higher ambient humidity 
levels [6], [36]. The inclusion of trees in the energy 
simulation model was also found to significantly influence 
the results of the model and resulted in a 7% decrease in 
annual cooling loads for air-conditioned houses.  

Current limitations of the presented work are that the 
findings have yet to be validated with actual metered energy 
consumption data. Future work will use aggregated energy 
use data (by zip code) provided by the utility companies 
involved in the region to address this shortcoming. 
Moreover, since the results presented do not account for the 
impact of longer and/or shorter heating or cooling periods 
possible in the future, another set of limitations are related to 
the identification and use of the updated cooling and heating 
periods based on the FTMY data. Future work should also 
account for the leaf shedding seasons and the effect of leaf 
loss on the shading properties of the modeled trees that are 
identified as deciduous throughout the year. 
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