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ABSTRACT

Traditional building energy simulation tools often assess
performance as a function of the unique climate, physical
characteristics, and operational parameters that define
specific buildings and communities, planned or existing.
This paper presents the results of a sensitivity analysis on the
input parameters (relating to both the building and climate)
that affect the annual energy consumption loads of an
existing residential neighborhood in the U.S. Midwest over
the anticipated service life of its buildings using the Urban
Modeling Interface (umi). Accordingly, first, the effect of
multiple building construction characteristic packages and
inclusion of outdoor vegetation, are investigated under
typical meteorological climate conditions. Afterwards, since
typical climate conditions may not adequately describe the
potential extreme conditions that will be encountered over
the entire service life of these buildings, alternative weather
datasets were also utilized in the sensitivity analysis. The
study’s findings suggest that cooling loads are expected to
increase dramatically over the next five decades, both due to
changes in the climate and the more wide-spread use of air-
conditioning units. Since the results showed that trees can
effectively reduce cooling loads by up to 7%, it is
recommended that urban vegetation should be considered as
an effective adaptation measure for facing the growing
cooling demands.
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1.6.1 SIMULATION AND MODELING

1 INTRODUCTION

In the US, residential buildings accounted for more than 21%
of total energy consumption, 36% of total electricity use, and
19% of total greenhouse gas (GHG) emissions in 2018 [1].
Moreover, energy consumption from residential buildings is
projected to increase by a national average of 0.1% per year
for the period of 2018-2050 under a business as usual
scenario [2]. Thus, the building energy sector, in general—
and the residential building stock in particular—represents a
significant opportunity for accelerating the energy transition
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and ensuring a low-carbon future [3]. Moreover, buildings as
part of the infrastructure will need to withstand changing
climatic conditions for long timespans (50-100 years) [4].
This requires current and future building stocks to perform
satisfactorily under changing climatic conditions [4].
Consequently, the prediction of buildings’ energy use via
simulation tools, both current and future, is highly important.
These simulation tools commonly utilize a combination of a
building model and a weather file to account for the impact
of climate on the aforementioned building [5]. The building
model itself consists of building design and construction
characteristics as well as energy-related user behavior and
operational inputs [5].

This study conducted a sensitivity analysis on the input
parameters that affect the annual energy consumption loads
of an existing residential neighborhood in the U.S. Midwest
over the anticipated service life of its buildings. These
parameters are related to both the building model and the
climate-related input. The goal of this sensitivity analysis
was to help the researchers and community stakeholders
understand the relative influence of each set of input
parameters on the annual energy consumption loads of the
selected case study. This analysis is not only based on the
current state but is also considering the possible changes in
consumption that can be anticipated over the buildings’
entire service lives.

It is important to note that the majority of past simulation
efforts to predict building’s energy use, only use typical
climate conditions based on climate data of the recent past as
their input. The problem with the use of such weather files as
input for the simulation is that typical climate conditions for
the 20" century do not adequately describe the potential
extreme conditions that will be encountered over the lifetime
of buildings constructed today or those existing [6]. Thus, in
recent years, a growing number of other studies have also
tried to address this gap in the academic literature by
attempting to understand the impact of future climate on
energy performance predictions for risk management [6]. For
instance, Crawley (2008) found that climate change would
substantially influence buildings’ energy performance in
different climate zones. The author concluded that unless
more comprehensive and accelerated changes for building
design and operation are initiated, “building owners will



experience substantial operating cost increases and possible
disruptions in an already strained energy supply system” [7].
Similarly, Kalvelage et al. (2014) predicted reductions in
heating demand in contrast to increases in cooling demand
and concluded that the resulting mixture of overall increase
and decrease in energy demand for a future climate depends
on the location considered and the energy source available
[6]. Therefore, the identification of the building and system
characteristics that have the most impact on energy demand,
can help building owners in different locations make more
informed investment decisions for future retrofits. Moreover,
the value derived from reducing energy and operating costs
is a decision that affects not only the building's performance,
but the occupants’ health, safety and welfare [6]. This
perceived value is even greater for low-income households
in urban areas, such as the population of the selected case
study, who are already facing a high energy burden. These
households need to allocate a disproportionate share of their
income to energy expenditures due to energy inefficiencies
in their homes [8], [9]. As Jagani et al. (2017) state “the
existing residential building stock in inner wurban
neighborhoods is often not well equipped for the climatic
challenges” and their energy inefficiencies are typically
related to “little insulation, older windows, and leaky
envelopes” [10]. Therefore, identification of building
characteristics that have the most impact on energy demand
can help low-income households become more resilient in
the face of upcoming climatic challenges.

2 METHODOLOGY

In the previous section, it was stated that this study
conducted a sensitivity analysis on the input parameters that
affect the annual energy consumption loads of an existing
low-income residential neighborhood in the U.S. Midwest
over the anticipated service life of its buildings. In the
upcoming sections of this manuscript, first, the general
characteristics of the selected case study and the
development procedure for the building model is discussed
in detail. Then, the parameter variables used in the sensitivity
analysis, including those related to the climate as well as the
ones associated with the building model, are defined. Finally,
the results of the sensitivity analysis are provided and
conclusions are made based on these results.

2.1 Case Study

This study focuses on the energy use simulation of an inner-
city neighborhood in the Midwest of the U.S. that is
identified to be predominantly residential and low-income
[11]. This neighborhood was selected primarily due to its
social and economic characteristics which were in line with
the previously mentioned goals of this study.

2.2 Building Model Related Parameters

The building model used for this study was developed in a
Rhinoceros-based urban modeling design tool called Urban
Modeling Interface (umi) [12]. Umi is able to efficiently
model multiple buildings, approximate microclimatic effects
and consider multiple sustainable performance metrics and
is therefore suitable for this type of study [13]. Figure 1

below shows an overview of the developed neighborhood
model in the umi environment.

Figure 1. Top view of the Capitol East neighborhood as modeled in
the umi environment [14].

This neighborhood model consisted of 340 buildings (323
residential and 17 nonresidential) and 1,142 trees of eight
canopy shape categories. The buildings were modeled with
the help of obtained GIS shapefiles for Capitol East
Neighborhood’s buildings which included information on
buildings’ footprints, elevations, and parcels. The Polk
County assessor data provided another layer of information
for the model which provided each building’s address, parcel
number, number of building stories, date of construction,
number of separate residences contained within, information
about the type of construction materials used, and type of
occupancy [10], [15]. Accordingly, a total number of 14
building templates, which each included a set of construction
material definitions and schedules, were defined in the umi
template library and assigned to the modeled buildings based
on the information provided by the Polk County assessors.
Since previous work by the authors has already investigated
the effect of more representative and sophisticated
occupancy schedules on the model (and can be found in
Malekpour Kouapei et al. (2019a) and Malekpour Koupaei
etal. (2019b) [14], [16]). In addition the prediction of future
occupancy profiles throughout the entire service life of
buildings is quite difficult, if not impossible. Thus, for the
specific purposes of this study, the schedules in all the
defined templates are based on the American Society of



Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) 90.1 standard for residential buildings [17]. It is
important to note that the only difference taken into account
is if a specific template represents buildings that are air-
conditioned (AC) during the cooling period of the year or are
naturally-ventilated (NV) instead. Therefore, different
building templates in this study basically represent different
building construction properties and hereafter are referred to
as “building construction templates” which include
information on the construction properties of exterior wall,
roof, ground floor, internal floor, external floor, basement
wall, glazing and window to wall ratio, partition, thermal
mass type and ratio, and the availability of air-conditioning
systems [18].

As for the outdoor vegetation modeled in the wumi
environment, tree data was collected for 1,142 neighborhood
trees during the summer of 2017 and this information was
catalogued using a Trimble Geo 7X Handheld GNSS
receiver [19]. The data collected in this step, which included
tree species, trunk diameter, tree height, canopy
shape/height, canopy width in two dimensions, and
latitude/longitude coordinates, was categorized into eight
canopy shapes as follows: (1) spheres, (2) ellipsoids, (3)
cylinders, (4) cones, (5) horizontal rectangular cuboids, (6)
vertical rectangular cuboids, (7) umbrella shapes, and (8)
paraboloids [19]. Figure 2 illustrates these different tree
shape types and more information on the development
procedure of these categories can be found in Hashemi et al.
(2018) [19].
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Figure 2. The eight representative canopy shapes that are used to
represent trees in the model [19].

The parameters related to the building model that are studied
are as following:

- The sensitivity of the model to different building
construction templates is studied in detail. Of the 14 building
construction templates defined in the umi template library, 6
can be considered AC while 8 are only NV. The analysis
presented in the results section of this manuscript takes these
differences into account and could help authorities identify
the low-income households that are currently facing the
greatest energy burden based on their general housing
characteristics.

- The sensitivity of the model to the availability of trees in
the neighborhood is also studied. This analysis can be
considered as a level of detailing analysis that shows how

much the inclusion of outdoor vegetation in the model can
impact the annual simulation results.

2.3 Climate Data Related Parameters

In the previous sections, it was stated that energy simulation
tools combine the building model with a weather file to study
the dynamic interaction between building systems and
external climate [4]. According to Bhandari et al. (2012),
“There are three main classes of weather data with traditional
use cases for each: “typical” weather data (representative of
some location over an arbitrary period of time) often used for
design and performance conditions over the life of a
building, “actual” weather data (at a specific location for a
specific period of time) used for simulation calibration to
energy bills, and “future” weather data used for adaptive
control of a building” [20]. For each class, there are a
multitude of representative weather datasets that can be used
depending on the purpose, location, and simulation engine
that is being used [20]. To represent and compare all three of
the proposed dataset types, in this study the following five
weather datasets are used in the reported sensitivity analysis:

(1) A typical weather data file in the Typical Meteorological
Year (TMY3) format for the Des Moines International
Airport that consists of 12 typical meteorological months
(January through December), with individual months
selected from different years of the period of record (1991-
2005) [21]. This dataset is obtained from the official
EnergyPlus website [22].

(2) An actual weather file for the year 2017 in the selected
location (41.53° N, 93.65° W) that is obtained from the
National Solar Radiation Database (NSRDB) and formatted
according to the TMY3 manual [23], [24]. From hereafter,
this dataset is referred to as “Actual Meteorological Year” or
“ACM”.

(3-5) Three future weather files are used for the simulation
of the future energy consumption of the residential building
stock. These Future Typical Meteorological (FTMY)
datasets were prepared by Patton (2013) who combined the
projected changes in climate with existing TMY3 data to
create FTMY datasets to represent high, medium and low
emission scenarios of the FTMY for the 2041-2070 period
[25]. In this manuscript, these three datasets are referred to
as “FTMY-High”, “FTMY-Medium”, and “FTMY-Low”
respectively.

The findings provided by this sensitivity analysis could help
authorities identify the low-income households that are
likely to suffer the greatest from changes in the regional
climate over the projection period and take appropriate steps
accordingly. The inclusion of the ACM dataset gives the
researchers a chance to evaluate the current state of energy
consumption in the neighborhood realistically. The results,
thus, are a response to the concerns that have previously been
expressed by professionals in the field about the reliability of
the TMY data [26], [27].



3 RESULTS AND ANALYSIS

In total, 140 simulation runs of the model with different
possible combinations of the variable parameters were run
for this study. Table 1 shows an overview of the parameters
studied and the total number of all the possible inputs for
each.

- Climate
Building Model Data
Variable Bulldlng Weather
Trees Construction
Parameter Datasets
Templates
Number of
Possible Values 2 14 >

Table 1. Defined parameters and their total number of all possible
inputs.

Earlier, it was mentioned that a total number of 14 building
construction templates were defined in the umi template
library based on the assessors’ data. In the baseline scenario,
trees are included as shading geometry in the model and
TMY3 data for Des Moines International Airport is used as
the weather database. The impact of changes in the building
construction templates in the neighborhood was assessed by
comparing the heating and cooling loads in terms of their
annual Energy Use Intensities (EUI)s. EUI, which is simply
the annual energy consumption divided by the area of the
building, is one of the widely used energy benchmarking and
comparision methods as it is simple, and easy to compute and
interpret [28], [29]. It should be noted that since the heating
and cooling energy sources in this region are not the same
(generally houses are cooled by electricity, while their
heating energy is most commonly provided by natural gas
instead [30]), an analysis of changes in the total annual
energy use is less meaningful and thus avoided. Figure 3
shows the results of the 14 simulation runs for this baseline
scenario where in each simulation, one of the 14 defined
templates is assigned to all the residential buildings in the
model. Out of these 14 building construction templates, 6
corresponded to air-conditioned buildings while the other 8
were representative of naturally-ventilated ones.

It can be seen that overall, changes in building construction
characteristics can cause the annual heating loads to fluctuate
by more than 10 kWh per m?. Considering that the mean
normalized annual heating load between all of these 14
simulations is 81.6 kWh per m? this 10.3 kWh per m?
difference can be translated into a 13% increase in heating
expenses for the households that live in less insulated and
more leaky houses (for instance those represented by the AC-
5 template) when compared to the more energy-efficient
houses in the same neighborhood (for instance those
represented by the NV-7 and NV-8 templates). Those
designing and implementing weatherization assistance
programs can benefit from this analysis and target the most
vulnerable housing groups for maximum benefits.
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Figure 3. Normalized annual heating and cooling loads in the
baseline scenario.

The changes in cooling loads, however, were more subtle
and the comparative analysis showed a 1.2 kWh per m? range
between the most and least energy-efficient templates
defined. This means that, considering the flat-rate based
utility billing scenario, the most efficient houses in the
neighborhood (for instance those represented by the AC-1
template) only use 6% less energy for cooling expenses when
compared to the less efficient ones (for instance those
represented by the AC-6 template). Regardless, future work
should investigate the correlation between the level of
insulation and infiltration rates with both annual heating and
cooling loads to determine the most optimum characteristics
for houses to be built or even retrofitted in this neighborhood
or those in similar settings.

In the next set of simulation efforts, the impact of the
inclusion of trees in the model is assessed by removing the
trees from the model developed in the baseline scenario. As
can be seen in Figure 4, this change resulted in an average of
nearly 7% increase (between 0.9 to 1.6 kWh per m?) in
annual cooling loads in all 6 of the models that represent air-
conditioned scenarios (templates AC-1 to AC-6 assigned to
all the residential buildings). These results are in line with
the findings of previous studies that had linked urban
greening with a reduction in building cooling loads due to
shading and evapotranspiration effects [19], [31]. The
reduction witnessed in the results points to the importance of
this level of detailing in building energy performance
practices in the urban scale (nearly as important as assigning
the right set of building construction characteristics) and
suggests that the inclusion of urban vegetation in the model
can profoundly increase the accuracy of the predictions.
Moreover, these results are in line with the previous findings
that suggest, to combat climate change and face the predicted
hotter and longer cooling seasons in the future, more urban
vegetation is recommended in the residential neighborhoods
in similar climates [32], [33]. Another important implication
of these results is that as more houses become equipped with
air-conditioning units, this measure can help minimize the
increases in electricity demand over the cooling months of
the year in the future [34].
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Figure 4. Decrease in annual cooling loads due to the inclusion of
trees in the model.

The last set of simulation efforts in this study, focus on the
sensitivity analysis of the baseline model with regards to
different weather datasets. These datasets correspond to
multiple phases within a typical service life of a residential
building (the period for which a building is actually in use
[35]). In these simulations, the appropriate building
construction templates, based on the assessors’ data, are
assigned to all the residential buildings modeled. As can be
seen in Figure 5 (a-b), heating loads for all residential
buildings (AC and NV alike) are predicted to reduce by 10.9-
16.1 kWh per m? in the years 2041-2070. The intensity of
this reduction, however, is directly linked to the intensity of
changes in the climate. Accordingly, the highest climate
change impact scenario causes the highest reductions in
heating loads. Moreover, as previous studies had also
suggested, it is evident that the impacts of climate change on
heating loads can already be seen in the data that represents
the actual energy consumption in the year 2017 [30]. As
Figure 5 (a-b) shows, heating loads in 2017 were about 7.3
kWh per m? less than the baseline scenario that represents
the typical meteorological year in this location.

On the other hand, the cooling loads are expected to increase
rather sharply. An increase of more than 7.7 kWh per m?
compared to the baseline scenario (19.5 kWh per m?) is
predicted for all three future weather scenarios. This means
that the current energy demand for cooling in this
neighborhood will increase by nearly 40% in the next five
decades to come. Specifically, this increase can be highly
problematic as more residential houses are being equipped
with air-conditioning units [34]. These findings suggest that
energy-efficiency and resiliency measures for reducing
current and future cooling demands are and will be of great
importance in this climatic region and the largest energy cost
for maintaining desired levels of health and comfort in the
future at these locations will be attributed to managing higher
ambient humidity levels [6], [36].
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Figure 5. Lifetime energy load predictions for residential buildings.

4 CONCLUSION

In this study, the sensitivity of energy simulation results of a
residential neighborhood to a varied set of simulation
parameters is investigated. The parameters studied include
building construction templates, outdoor vegetation, and
alternative weather databases. The findings suggest that the
use of different building construction packages in modelling
can cause changes in heating loads as high as 13%. In
contrast, while changes in climatic conditions are expected
to have a profound impact (an increase of nearly 40%) on the
cooling demand over the summer months, cooling load



calculations seem to be relatively less reliant on building
construction templates. This is consistent with the findings
of previous studies on the impact of climate change on the
future energy loads of residences in the Midwest U.S., that
had suggested the largest energy cost for maintaining desired
levels of health and comfort in the future at these locations
will be attributed to managing higher ambient humidity
levels [6], [36]. The inclusion of trees in the energy
simulation model was also found to significantly influence
the results of the model and resulted in a 7% decrease in
annual cooling loads for air-conditioned houses.

Current limitations of the presented work are that the
findings have yet to be validated with actual metered energy
consumption data. Future work will use aggregated energy
use data (by zip code) provided by the utility companies
involved in the region to address this shortcoming.
Moreover, since the results presented do not account for the
impact of longer and/or shorter heating or cooling periods
possible in the future, another set of limitations are related to
the identification and use of the updated cooling and heating
periods based on the FTMY data. Future work should also
account for the leaf shedding seasons and the effect of leaf
loss on the shading properties of the modeled trees that are
identified as deciduous throughout the year.
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