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in general position; that is, every k-colored point set S has a perfect rainbow polygon
Keywords: with at most rb-index(k) vertices. In this paper, we determine the values of rb-index(k)
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Furthermore, for a k-colored set of n points in the plane in general position, a perfect
rainbow polygon with at most 10L§j + 11 vertices can be computed in O(nlogn) time.
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1. Introduction

Given a colored point set in the plane, in this paper we study the problem of finding a simple polygon containing
exactly one point of each color. Formally, the problem we consider is the following. Let k > 2 be an integer and let
{1, ..., k} be k distinct colors. For every 1 < i < k, let S; denote a finite set of points of color i in the plane. We always
assume that S; is nonempty and finite for alli € {1, ..., k}, and that S = UL S; is in general position (that is, no three
points of S are collinear).

A preliminary version was presented at the 18th Spanish Meeting on Computational Geometry (2019).
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Fig. 1. (a) Thickening a tree to obtain a perfect rainbow polygon. Different colors are represented by different geometric objects. (b) A noncrossing

covering tree for the eight black points that can be partitioned into five segments, s; = ujug, S; = Uyls3, S3 = Uylly, S4 = Usls, and Ss = Uglz; and
two forks, ug with multiplicity 1 and u, with multiplicity 2.

For a simple polygon P with m vertices (or a simple m-gon) and a point x in the plane, we say that P contains x if
x lies in the interior or on the boundary of P. Given a k-colored point set S = U!‘zl Si and a simple polygon P in the plane,
we call P a rainbow polygon for S if P contains at most one point of each color; and P will be called a perfect rainbow
polygon if it contains exactly one point of each color. The perfect rainbow polygon problem for a colored point set S is that
of finding a perfect rainbow polygon with the minimum number of vertices.

One can easily check that a perfect rainbow polygon always exists for a colored point set. A way of constructing such
a polygon is described below, using the following well-known property for a plane tree: From a tree T embedded in the
plane with straight-line edges, a simple polygon can be built by traversing the boundary of the unbounded face of T,
placing a copy of a vertex infinitesimally close to that vertex each time it is visited, and connecting the copies according
to the traversal order. One can imagine this simple polygon as the “thickening” of the tree. Thus, for a colored point set
S, to build a perfect rainbow polygon we can choose one point of each color, form a star connecting one of these points
to the rest, and thicken the star; see Fig. 1(a). Note that the simple polygon obtained in this way can be as close to the
star as we wish, so that it contains no other points in S, apart from the points in S that we have chosen.

However, finding a perfect rainbow polygon of minimum size for a given colored point set (where the size of a polygon
is the number of its vertices) is in general much more difficult. We believe that this problem is NP-hard. Therefore, we
focus on giving combinatorial bounds for the size of minimum perfect rainbow polygons. Let rb-index(S) denote the
rainbow index of a colored point set S; that is, the smallest size of a perfect rainbow polygon for S. We then define the
rainbow index of k, denoted by rb-index(k), to be the largest rainbow index among all the k-colored point sets S; that is,

rb-index(k) = max {rb-index(S) : S is a k-colored point set}. (1)

In other words, rb-index(k) is the smallest integer such that, for every k-colored point set S, there exists a perfect rainbow
polygon of size at most rb-index(k).

The two main results in this paper are the following. First, we determine the values of the rainbow index up to k = 7,
which is the first case where rb-index(k) # k, namely

k 314|/5(6/(7
rb-index(k) | 3|4 |5|6 |8

Second, we prove the following lower and upper bounds for the rainbow index
40((k — 1)/2] — 8
19

Furthermore, for a k-colored set of n points in the plane, a perfect rainbow polygon of size meeting these upper bounds
can be computed in O(nlogn) time.

The rainbow index for small values of k is analyzed in Section 3. In Sections 4 and 5, we provide our upper and lower
bounds for the rainbow index, respectively. These bounds are based on the analysis of the complexity of noncrossing
covering trees for sets of points, under a new measure defined in this paper. This measure and the relationship between
perfect rainbow polygons and noncrossing covering trees are given in Section 2.

/
< rb-index(k) < 10{” 11

Related previous work

Starting from the celebrated Ham-Sandwich theorem, a considerable amount of research about discrete geometry on
colored point sets (or mass distributions) has been done. For instance, given cg red points and dg blue points in the plane,
where ¢, d, and g are positive integers, the Equitable Subdivision Theorem establishes that there exists a subdivision of
the plane into g convex regions such that each region contains precisely ¢ red points and d blue points [11,34]. It is
also known that every d-colored set of points in general position in R? can be partitioned into n subsets with disjoint
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convex hulls such that the set of points and all color classes are partitioned as evenly as possible [13]. For a wide range
of geometric partitioning results, the reader is referred to [6-8,11,13,21,24,25,31,34] and the references therein.

In addition to geometric partitions, for colored points in the plane some research focuses on geometric structures
covering the points in some specific way. For instance, covering the colored points with noncrossing monochromatic
matchings [ 18], noncrossing heterochromatic matchings [26], noncrossing alternating cycles and paths [29], noncrossing
alternating spanning trees [12,26] or noncrossing Kj 3 stars [1]. In other papers, the main goal is selecting k points with k
distinct colors (a rainbow subset) from a k-colored point set such that some geometric properties of the rainbow subset
are maximized or minimized. Rainbow subsets with maximum diameter are investigated in [19,23], with minimum
diameter in [20,33], and rainbow subsets optimizing matchings under several criteria are studied in [9]. In addition,
several traditional geometric problems for uncolored point sets become NP-hard for colored point sets. For instance,
the following problems are NP-complete [23]: Computing a rainbow subset minimizing (maximizing) the length of
its minimum spanning tree, computing a rainbow subset minimizing its convex hull, or computing a rainbow subset
maximizing the distance between its closest pair.

Given a 3-colored point set R U B U G consisting of red, blue, and green points in the plane, a well-known result is
that there exists an empty heterochromatic triangle, where the three vertices have distinct colors [15]. In particular, a
heterochromatic triangle of minimum area cannot contain any other point from RUBUG in its interior, hence its interior
is empty, and its boundary contains exactly one point of each color. This implies that rb-index(3) = 3. Related work [7]
deals with colored lines instead of colored points, showing that in an arrangement of 3-colored lines, there always exists
a line segment intersecting exactly one line of each color. Aloupis et al. [4] study the problem of coloring a given point set
with k colors so that every axis-aligned strip containing sufficiently many points contains a point from each color class.

2. Covering trees versus perfect rainbow polygons

Given a set of (monochromatic) points, in this section we derive a lower bound for the size of simple polygons that
contain the given points and have arbitrarily small area. We also provide a lower bound for the size of a perfect rainbow
polygon for some colored point sets.

A noncrossing covering tree for a set S of points in the plane is a noncrossing geometric tree (that is, a plane straight-line
tree) such that every point of S lies at a vertex or on an edge of the tree; see Fig. 1(b). Let T be a noncrossing covering
tree whose vertices can be collinear. Similarly to [16], we define a segment of T as a path of collinear edges in T. Two
segments of T may cross at a vertex of degree 4 or higher; we are interested in pairwise noncrossing segments. Any vertex
of degree two and incident to two collinear edges can be suppressed; consequently, we may assume that T has no such
vertices.

Let M be a partition of the edges of T into the minimum number of pairwise noncrossing segments. Let s = s(T)
denote the number of segments in M. A fork of T (with respect to M) is a vertex v that lies in the interior of a segment
ab € M and is an endpoint of another segment in M. The multiplicity of a fork v is 2 if it is the endpoint of two segments
that lie on opposite sides of the supporting line of ab; otherwise its multiplicity is 1. See Fig. 1(b) for an example.

Let t = t(T) denote the sum of multiplicities of all forks in T with respect to M. We express the number of vertices in
a polygon that encloses a noncrossing covering tree T in terms of the parameters s and t. If all edges of T are collinear,
then s = 1 and T can be enclosed in a triangle. The following lemma addresses the case that s > 2.

Lemma 1. Let T be a noncrossing covering tree and M a partition of the edges into the minimum number of pairwise
noncrossing segments. If s > 2 and t > 0, then for every ¢ > 0, there exists a simple polygon P with 2s + t vertices such that
area(P) < ¢ and T lies in P.

Proof. Let § > 0 be a sufficiently small constant specified below. For every vertex v of T, let D, be a disk of radius §
centered at v. We may assume that § > 0 is so small that the disks D,, v € V(T), are pairwise disjoint, and each D,
intersects only the edges of T incident to v. Then the edges of T incident to v partition D,, into deg(v) sectors. If deg(v) > 3,
at most one of the sectors subtends a flat angle (that is, an angle equal to 7). If deg(v) < 2, none of the sectors subtends a
flat angle by assumption. Conversely, if one of the sectors subtends a flat angle, then the two incident edges are collinear;
they are part of the same segment (by the minimality of M), and hence v is a fork of multiplicity 1.

In every sector that does not subtend a flat angle, choose a point in D, on the angle bisector. By connecting these points
in counterclockwise order along T, we obtain a simple polygon P that contains T. Note that P lies in the §-neighborhood
of T, so area(P) is less than the area of the §-neighborhood of T. The §-neighborhood of a line segment of length ¢ has
area 2¢8 + w82, The 5-neighborhood of T is the union of the §-neighborhoods of its segments. Consequently, if L is the
sum of the lengths of all segments in M, then the area of the §-neighborhood of T is bounded from above by 2L§ + s 82,
which is less than ¢ if § > 0 is sufficiently small.

It remains to show that P has 2s+t vertices; that is, the total number of sectors whose angle is not flat is precisely 2s+t.
We define a perfect matching between the vertices of P and the set of segment endpoints and forks (with multiplicity)
in each disk D, independently for every vertex v of T. If v is not a fork, then D, contains deg(v) vertices of P and deg(v)
segment endpoints. If v is a fork of multiplicity 1, then D, contains deg(v) — 1 vertices of P and deg(v) — 2 segment
endpoints. Finally, if v is a fork of multiplicity 2, then D, contains deg(v) vertices of P and deg(v) — 2 segment endpoints.
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Fig. 2. (a) A polygon P with 28 vertices and zero area in R2. The dashed circle indicates the circle at infinity. (b) A modified polygon P, where all
vertices are in the plane.

In all cases, there is a one-to-one correspondence between the vertices in P lying in D, and the segment endpoints and
forks (with multiplicity) in D,. Consequently, the number of vertices in P equals the sum of the multiplicities of all forks
plus the number of segment endpoints, which is 2s + t, as required. O

Next, we establish a relation between covering trees and points sets, assuming a stronger notion of general position.
A point set is in strong general position if there is no nontrivial algebraic relation between the coordinates of the points.

Lemma 2. Let S be a finite set of points in the plane in strong general position and let B be an axis-aligned bounding box of S.
Then there exists an ¢ > 0 such that for every simple polygon P with m vertices such that S C P and area(P N B) < ¢, there is
a noncrossing covering tree T of S and a partition of the edges into pairwise noncrossing segments such that 2s +t < m.

Proof. Let m > 3 be an integer such that for every n € N, there exists a simple polygon P, with precisely m vertices
such that S C int(P,) and area(P, NB) < % Let R2 be the compactification of the Euclidean plane R? by adding a circle at
infinity, corresponding to the unit (direction) vectors in S!. By compactness, the sequence (P,),;>1 contains a convergent
subsequence of polygons in R2. The limit is a (possibly degenerate) polygon P with precisely m vertices (some of which
may coincide) such that S C P and area(P N B) = 0; see Fig. 2(a). Some vertices of P may be on the circle at infinity, and
so every edge is a single point, a line segment, a ray, or an arc of the circle at infinity. Since S is in strong general position,
we may assume that if two rays are parallel, then one contains the other. Hence any edge of P along the circle at infinity
is an arc with central angle less than 7.

Two edges of P overlap if they intersect in a line segment, a ray, or a circular arc at infinity; and they cross if they
intersect in a single point that lies in the relative interior of both edges. Since P, is a simple polygon for all n > 1, the
edges of P are noncrossing, although they may overlap. Since area(P N B) = 0, the union of the edges of P is a connected
set that contains S. In particular, the union of the m edges of P contains a noncrossing covering tree for S in R2. B

Let D be a disk whose interior contains S and all vertices of P that are not at infinity. We consider the polygon P as a
closed curve in R2. Let P be the collection of maximal curves of P in the exterior of D. For any two curves in P, the cyclic
order of their endpoints along dD cannot interleave (i.e., they cannot form an abab pattern), since P, is a simple polygon
for all n > 1. Each curve y € P contains a unique maximal curve along the circle at infinity; denote this curve by ¥. The
curve ¥ may consist of a single vertex of P, or a single edge of P (of central angle less than ), or two or more consecutive
edges of P. Every curve 7 is homotopic, with endpoints fixed, to an arc of the circle at infinity (of central angle up to 2r)
between the same two vertices of P; let Q be the set of these arcs. If two arcs in Q overlap, then one contains the other,
otherwise the endpoints of the corresponding curves of P would interleave in dD.

We modify P to obtain a polygon P in the plane with m vertices and pairwise noncrossing edges such that the union
of its edges forms a covering tree for S; see Fig. 2(b). The transitive closure of the overlap relation between circular arcs
in Q is an equivalence relation. For each equivalence class of central angle less than s, we replace the arcs with a line
segment in R? that intersects the same set of rays. For an equivalence class of central angle at least 7, we create two line
segments that meet on one of the rays in the arc.

The transitive closure of the overlap relation between the edges of P is an equivalence relation. The union of each
equivalence class is a line segment; we call them segments for brevity. These segments are pairwise noncrossing (since the

4



D. Flores-Pefialoza, M. Kano, L. Martinez-Sandoval et al. Discrete Mathematics 344 (2021) 112406

edges of P are pairwise noncrossing), and yield a covering of S with a set M of pairwise nonoverlapping and noncrossing
segments.

Analogously to the proof of Lemma 1, at each vertex v of T, there is a one-to-one correspondence between the vertices
in P located at v and the segment endpoints and forks (with multiplicity) located at v. This implies 2s+t = m with respect
toM. O

An immediate consequence of Lemma 2 is a lower bound on the size of simple polygons with arbitrarily small area
that enclose a point set S.

Corollary 3. Let S be a finite set of points in the plane in strong general position with an axis-aligned bounding box B, and
let T’ be a noncrossing covering tree for S minimizing 2s’ + t' = m'. Then there exists an & > 0 such that if S is contained in
a simple polygon P with m vertices and area(P N B) < ¢, then m’ < m.

Proof. By Lemma 2, there exists an & > 0 such that if a simple polygon P with m vertices and area(P N B) < ¢ contains S,
then P also contains a noncrossing covering tree for S. Therefore, by the minimality of T', necessarily m’' <m. 0O

A similar lower bound can be established for perfect rainbow polygons, In particular, for every set S of k points in the
plane in strong general position one can build a (k + 1)-colored point set S, such that finding a noncrossing covering tree
for S minimizing 2s + t is equivalent to finding a minimum perfect rainbow polygon for S.

Theorem 4. Let S be a set of k points in the plane in strong general position, and let T’ be a noncrossing covering tree for
S minimizing 2s' +t’ = m'. Then there exists a (k + 1)-colored point set S in strong general position such that every perfect
rainbow polygon for S has at least m’ vertices.

Proof. Note that m’ < 2k—2 since a star centered at one of the points of S is a covering tree for S with k— 1 segments and
no forks. Let B be an axis-aligned bounding box of S. We may assume, by applying a suitable affine transformation, that B
is a unit square. By Lemma 2, there exists an ¢ > 0 such that if S is contained in a simple polygon P with m vertices and
area(PMB) < ¢, then S admits a noncrossing covering tree and a partition of its edges into segments such that 2s+¢t < m.

We construct a (k + 1)-colored point set S = S U Si,1, where Si,¢ is a point set such that every triangle A with
area(A N B) > &/(2k) contains at least two points in Sy 1. Each point of S has a unique color and all points in S, have
the same color. Let Sy = (15; -Z2)NB, that is, a section of a integer grid in B. For a triangle A with area(ANB) > £/(2k),
the intersection A N B is a convex polygon, hence the boundary of A N B intersects the interior of at most 4 - (16k/¢) grid
cells, and the area of the grid polygon conv(A N Sg.1) is at least £/(2k) — 4¢/(16k) = &/(4k). By Pick’s theorem, at least
two points of the grid Sy lie in the interior of conv(A N Sy1), hence in the interior of A. A random perturbation of S
maintains these properties, and the resulting (k + 1)-colored point set S is in strong general position. (This construction
yields |Si.1| = ©(k*(area(B))/&?). A substantially smaller point set Si,; can be constructed with the same properties using
classical discrepancy theory [30].) .

Now suppose, for the sake of contradiction, that there exists a perfect rainbow polygon P for S with x vertices where
x < m’. Triangulate P arbitrarily into x — 2 triangles. Since each triangle A contains at most one point from Sy 1, we have
area(A N B) < ¢/(2k). Summation over triangles yields area(P N B) < (x — 2)e/2k < . By the choice of &, S admits a
noncrossing covering tree and a partition of its edges into segments such that 2s + t < x. This contradicts the minimality
of T, which completes the proof. O

We conjecture that both problems, finding a noncrossing covering tree minimizing 2s + t for a given point set and
finding a minimum perfect rainbow polygon for a given colored point set, are NP-hard. Many geometric variants of the
classical set cover problem are known to be NP-hard. For example covering a finite set of points by the minimum number
of lines is APX-hard [14,28,32], see also [17,27]. The minimum-link covering problem (finding a covering path for a set
of points with the smallest number of segments) is NP-complete [5]. However, in these problems, the covering objects
(lines or edges) may cross. There are few results on covering points with noncrossing segments. It is known, for example,
that it is NP-hard to find a maximum noncrossing matching in certain geometric graph [3]. The problem of, given an
even number of points, finding a noncrossing matching that minimizes the length of the longest edge is also known to
be NP-hard [2].

3. Rainbow indexes of k = 3, 4, 5, 6, 7

This section is devoted to determining the rainbow indexes rb-index(k) up to k = 7. The following theorem is the
main result of this section, and it summarizes the results proven below.

Theorem 5. The rainbow indexes of k = 3, 4, 5, 6, 7 are the following: rb-index(3) = 3, rb-index(4) = 4, rb-index(5) = 5,
rb-index(6) = 6, and rb-index(7) = 8. Furthermore, for every k-colored set of n points, where 3 < k < 7, a perfect rainbow
polygon of size at most rb-index(k) can be found in O(nlogn) time.
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Fig. 3. Illustrating the proof of Lemma 6. The points of S; and S3 are drawn as red squares and blue circles, respectively.

Our proof for Theorem 5 relies on the following lemma (Lemma 6), which may be of independent interest. Lemma 6
guarantees the existence of a strip containing at least one point of each color, with the additional property that there are
at least two color classes that have only one point in the strip.

Before proving the lemma, we introduce some notation. The line segment connecting two points x and y in the plane
will be denoted by xy (or yx). Further, a ray emanating from x and passing through y is denoted by x_y) Given two parallel
lines ¢, and ¢,, defining a strip ST, we denote by ST the closure of the strip; that is, the set of points in the interior of
the strip or on the lines £; and ¢,.

Lemma 6. For every k-colored point set S = UL Si, where k > 3, there exist three different colors, iy, iy, and i3, and two
parallel lines £, and ¢, defining a strip ST, that satisfy the following properties:

(i) ST contains at least one point of S; fori=1, ..., k. o
(ii) £ passes through a point x € S;, and a point y € S;,, such that x and y are the only points with colors iy and i, in ST,
respectively.

(iii) £, passes through a point z € §;;.

(iv) If £, passes through no other point in S, then z is the only point of color i3 in ST.

(v) If £ passes through another point w € S, then either w € S;; and z, w are the only points of color i3 in ST, or
weS— (S, US;, US;;) and z is the only point of color i3 in ST.

Such a strip ST can be computed in O(nlogn) time, where n = |S]|.

Proof. Fori = 1,...,k, let L; be the horizontal line passing through the lowest point in S;. Without loss of generality,
assume that L = L is the highest line among L;, i € {1,...,k}. Fori € {2,...,k} let S; denote the set of points in S;
that lie strictly below L; and let U; be the horizontal line that passes through the highest point in S;". Without loss of
generality, assume that U = Us is the lowest line among all U;, i € {2, ..., k} and that LN Sy is to the right of U N S3; see
Fig. 3(a). Observe that by choosing iy = 1, i3 = 3, £; = L and £, = U, all conditions (i) and (iii)-(v) are satisfied.

Let A = conv(S1) and B = conv(S; ). We describe a sweepline algorithm in which we maintain a strip ST between two
parallel lines ¢4 and ¢,. Initially, £; = L and ¢, = U are horizontal lines. We also maintain the invariants that

(I1) £, is tangent to A,

(I2) £, is a tangent to B,

(I13) |ISTNS;| > 1 for all {1, ..., k}, and

(14) ST N S5 = ¢.

During the algorithm £, rotates clockwise about the point in £; NSy, and £; rotates clockwise about the point £, NS5,
which are called the pivot points of £; and ¢,, respectively. Using a fully dynamic convex hull data structure [22], we
maintain the convex hull of the points of S \ (A U B) in ST, above ¢4, and below ¢,, respectively. By computing tangent
lines from the two pivot points to the three convex hulls, we can maintain an event queue of when the next point in
S\ (AU B) enters or exits the strip ST (it is deleted from one convex hull and inserted into another) and when the pivot
£1 NSy or £, NS5 must be updated. We also maintain the number of points in ST N S; for i = {2} U {4, ..., k}, in order to
keep track of whether invariant (I13) is satisfied.

Specifically, the rotation stops if the number of points in ST of a color in {2} U {4, ..., k} drops to zero, or if the line £,
passes through a point of color 3. Termination is guaranteed, since when £; = ¢, is the common tangent of A and B, then
ST = ¢, violating invariant (I3). Each of the lines £; and ¢, sweeps through every point in S \ (A U B) at most once. Since
the dynamic convex hull data structures can be updated in O(log n) amortized time and they support tangent queries in
O(log n) time [22], the sweepline algorithm runs in O(nlogn) total time.
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Fig. 4. Illustrating the proof of Proposition 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Note that (I1) and (I2) are always satisfied by construction. When the sweep line algorithm terminates, we face two
possible scenarios. If (I3) is violated, then there is a color i, € {2} U {4, ..., k} such that S;, has exactly one point in
ST N'S;, lying on £1 or £,. In this case our proof is complete with condition (ii) satisfied. Otherwise (I4) is violated; that
is, £1 passes through a point of color 3. In this case, we can translate ¢, towards £; until it passes through the last point
u in ST of one of the colors i, € {2} U {4, ..., k}; see Fig. 3(c). Exchanging the roles of colors i, and i3 = 3, the lemma
follows. O

Notice that if k = 3, then the strip defined by ¢; and ¢, in Lemma 6 is empty, so the triangle Axyz is empty. As a
consequence, Lemma 6 provides an alternative proof for rb-index(3) = 3.

In the remainder of this section, we refer to colors 1, 2, 3, 4, 5, 6, and 7 (if they exist) as red, blue, green, yellow, pink,
orange, and black, respectively (e.g., a 4-colored point set will be red, blue, green, and yellow). Furthermore, when applying
Lemma 6, we may assume without loss of generality that the colors i, i, and i3 are red, blue, and green, respectively,
the lines £, and ¢, are horizontal, the point x is to the left of point y on ¢4, and if £, passes through another point w of S
that is not green, then w is yellow. In addition, 1fp is the intersection point between a ray ZU and a line ¢, then p’ will
denote a point infinitesimally close to p on the ray ZU towards z; see Fig. 4(c).

We can now show that rb-index(4) = 4.

Proposition 7. rb-index(4) = 4.

Proof. We first show that rb-index(4) > 4. Consider the 4-colored point set in Fig. 4(a), where S; = {x}, S, = {y}, S35 = {z},
and S, consists of two points in the interior of the triangle Axyz. Every triangle that contains a point of color 1, 2, and 3
must contain Axyz, hence two points of S,. It follows that there exists no perfect rainbow triangle.

We now show that rb-index(4) < 4. Let S = S; US, US3 US, be a point set in the plane whose points are colored red,
blue, green, and yellow. By Lemma 6, there is a strip defined by two horizontal lines, ¢; and ¢,, where £, passes through
a red point x and a blue point y, and ¢, passes through a green point z, such that either there are only yellow points
in the interior of the strip, or the strip is empty and ¢, passes through a yellow point w. In the first case, we rotate the
horizontal ray emanating from z clockw1se until it encounters a yellow point u in the interior of the strip; see Fig. 4(b).
Let p be the intersection point of ZU and ¢;. By symmetry, we may assume that p is to the left of x or on the segment xy.
If p is to the left of x, then py U pz is a covering tree T for {x, y, z, u}, which can be thickened to a perfect rainbow
quadrilateral by Lemma 1; see Fig. 4(b). If p is on xy, then yxzp’ is a perfect rainbow quadrilateral; see Fig. 4(c). Finally, if
the strip is empty and ¢, contains a yellow point w, then xyzw is a perfect rainbow quadrilateral. O

Before moving to the next proposition, let us prove the following useful lemma that in fact works for monochromatic
points.

Lemma 8. Let P = {u, v, w} be a set of three points in the interior of a triangle Axyz such that P U {x, y,

position. Then one can label the pomts in P by a, b, and c so that a lies on the line segment xr, forr = Xa N y

line segment ys, for s = yb N z¢, and c lies on the line segment zt, for t = ZE N xd.

N

} is in general
b lies on the

),

S

Proof. We first show that we can label the three points in P by a, b, and ¢ so that Axya, Ayzb, and Azxc are interior-
disjoint. By symmetry, we may assume t} that the line passing through u and w intersects edges xy and xz of Axyz, and
u is closer to xy than w. Let p = yu N zw. Since P U {x,y, z} is in general position, v lies neither on yu nor on zw; see
Fig. 5. Three cases arise: If v is in Ayzp, then the triangles Axyu, Ayzv, and Azxw are interior-disjoint; see Fig. 5(a). If v
is in Axyp, then Axyv, Ayzu, and Azxw are interior-disjoint; see Fig. 5(b). Finally, if v is in Azxp, then we can take the
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T

Fig. 6. (a)-(c) Building a new expedient triangle Ar’s't’ from the expedient triangle Arst, when replacing ¢ by d. (d) A perfect rainbow hexagon for
six of the colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

triangles Axyu, Ayzw, and Azxv; see Fig. 5(c). By labeling u, v, w as a, b, ¢ in the first case, as b, a, ¢ in the second case,
and as a, ¢, b in the third case, this part of the proof follows.

We now show that a lies on the line segment xr, for r = Xd N ﬁ)) b lies on the line segment ys, for s = )Tb) N z¢, and
c lies on the line segment zt, for t = z¢ N xa. If a were not on the line segment xr, then a would lie below 57b> and so
Axya and Ayzb would intersect, a contradiction; see Fig. 5(d). The other cases, b lying on ys and c lying on zt, hold by
symmetry. O

We say that the triangle Arst described in Lemma 8 is expedient with respect to {a, b, c}. Note that an expedient triangle
can be computed in O(1) time. Further, note that the labeling given in Lemma 8 is not unique, and thus expedient triangles
are not uniquely determined. Using Lemma 8, one can find perfect rainbow hexagons for six colors in some special colored
point sets, as the following lemma shows.

Lemma 9. Let S be a k-colored set of n points, with k > 6, such that conv(S) = Axyz. Assume that S; = {x}, S, = {y}, and
S3 = {z}. Then there is a perfect rainbow hexagon for six of the colors, which can be found in O(n) time.

Proof. Let a, b, and c be points in the interior of Axyz with three different colors iy, i», and i3, respectively, and consider
an expedient triangle Arst with respect to {a, b, c}, which exists by Lemma 8. If there are points of S in the interior of
Arst, then we choose one of them, say d, we replace ¢ by d in {a, b, c}, and we take a new expedient triangle Ar’s't’ with
respect to the set {a, b, d}. Without loss of generality, we may assume that if the color of d is some of iy, i, and i3, then
c is the point having the same color as d.

We shovL how to construct an expedient triangle Ar's’t’ such that Ar's't’ C Arst. Assume that a lies on xr, for
r= Xd N yb, b lies on ys, for s = yb N Z¢, and c lies on zt, for t = z_c)_o xa; cf. Figs. 6(a)-6(c). Consider the ray
zb and distinguish cases based on whether d is to the left or to the right of zb. If d is to the right of % (Fig. 6(a)), then
é)rs’t’ is an expedient triangle, where a lies on xr, b lies on ys’, and d lies on zt’. Suppose now that d is to the left of
zb. Two subcases arise, depending on whether d is to the left or to the right of the ray }75. If d is to the right of )75
(Fig. 6(b)), then Ar’s’t’ is an expedient triangle, where a lies on xr’, d lies on ys’, and b lies on zt’. Finally, if d is to the left
of ya (Fig. 6(c)), then Ar’s't’ is an expedient triangle, where d lies on xr’, a lies on ys', and b lies on zt’. In all three cases,
Ar's't’ C Arst, as required.

Since Ar's't’ C Arst, and since d is in the interior of Arst but not in the interior of Ar's't’, it follows that Ar's't’
contains fewer points of S than Arst. Hence we can repeat this procedure until we find an expedient triangle that is
empty of points of S. From this expedient triangle, we can obtain a perfect rainbow hexagon for the six colors involved,
by slightly moving the vertices of the expedient triangle towards the vertices of Axyz as depicted in Fig. 6(d). Furthermore,
an empty expedient triangle can be computed in O(n) time: We can start with an arbitrary expedient triangle Arst. For
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(a)

Fig. 7. 5-, 6-, and 7-colored points sets whose rainbow indices are 5, 6, and 8, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

each point s € S, we can test whether s € Arst and update it to a smaller triangle Ar's't’ C Arst if necessary in O(1)
time. Consequently, a perfect rainbow polygon for six of the colors can also be found in O(n) time. O

We are now ready to prove the following result.
Proposition 10. rb-index(5) = 5, rb-index(6) = 6, and rb-index(7) = 8.

Proof. We first show that rb-index(5) > 5, rb-index(6) > 6, and rb-index(7) > 8, by constructing a 5-colored point
set S(5), a 6-colored point set S(6) and a 7-colored point set S(7), such that rb-index(S(5)) = 5, rb-index(5(6)) = 6, and
rb-index(S5(7)) = 8.

The set S(5) consists of four one-element color classes S; = {x}, S, = {y}, S3 = {z}, and S4 = {w}, where w is in the
interior of Axyz. The set Ss of black points contains Axyz in its convex hull, as described in the proof of Theorem 4; that
is, every triangle of area ¢ or more contains at least two black points; see Fig. 7(a). The set S(6) is obtained from S(5) by
adding a one-element color class Sg = {u}, where u is in the interior of Axyz; see Fig. 7(b). The set S(7) is based on two
triangles, Axyz and Auvw, where Auvw lies in the interior of Axyz and its vertices are very close to the midpoints of
the edges of Axyz; see Fig. 7(c). The set S(7) then consists of six one-element color classes, S; = {x}, S, = {y}, S3 = {z},
S4 = {u}, Ss = {v}, and Sg = {w}, and the dense class S; of black points as described in the proof of Theorem 4. In the
three sets, S(5), S(6) and S(7), we assume that x, y, z, u, v, and w (if defined) are in strong general position.

It is easy to see that a noncrossing covering tree for {x, y, z, w} in S(5), minimizing 2s+t, requires either two segments
and a fork, or at least three segments (and no fork). Hence, by Theorem 4, the size of a minimum perfect polygon for S(5)
is at least 5. Fig. 7(a) illustrates a perfect rainbow pentagon based on a covering tree that uses a segment to cover x and
z and another segment to cover y and w. Every noncrossing covering tree for {x, y, z, w, u} in S(6) requires at least three
segments, so the size of any perfect rainbow polygon for S(6) is at least 6 by Theorem 4. Fig. 7(b) shows a perfect rainbow
hexagon based on three segments that cover x and u, y and w, and z, respectively.

Finally, consider a noncrossing covering tree for {x,y,z, w,u, v} in S(7). It has at least three segments, by the
pigeonhole principle, since no three points are collinear. If it has four or more segments, then the size of the corresponding
perfect rainbow polygon for S(7) is at least 8. Otherwise it consists of exactly three segments, and then an analysis of the
possible choices shows that at least two forks are always required. Therefore, the size of a minimum perfect rainbow
polygon for S(7) is at least 8. Fig. 7(c) illustrates the perfect rainbow octagon for S(7) based on the segments that cover
{x, u}, {y, v}, and {z, w}, respectively.

We next show that rb-index(5) < 5, rb-index(6) < 6, and rb-index(7) < 8. Let S be a k-colored point set in the plane,
with k € {5, 6, 7}. By Lemma 6, there is a strip defined by two horizontal lines ¢; and ¢, with £; passing through a red
point x and a blue point y, and ¢, passing through a green point z, such that either the strip contains some points of all
other colors, or ¢, passes through a yellow point w, the interior of the strip does not contain any other yellow point, but
contains at least one point from the remaining k — 4 color classes. We analyze these cases in detail as follows.

The strip ST contains points of all k — 3 other colors.

Consider the horizontal ray emanating from z to the left and rotate it in clockwise direction, sweeping all the colored
points in the strip until we find two consecutive points of S, say u and v, with different colors, say yellow and pink; see
Fig. 8(a). Let p and q be the intersection points of Zu and zv with £1, respectively. Assume that p is to the left of x. If q
is also to the left of x or on the line segment xy, then ypzq' is a perfect rainbow quadrilateral for five of the colors; see
Fig. 8(a). If q is to the right of y, then Apqz is a perfect rainbow triangle for five of the colors; see Fig. 8(b). If k = 5, we
are done. If k = 6, then we connect an orange point to z and thicken this edge (dotted line segments in Figs. 8(a) and
8(b)). In this way, we obtain a perfect rainbow hexagon in the first case and a perfect rainbow pentagon in the second
case. If k = 7, we repeat this process connecting a black point to z, to obtain either a perfect rainbow octagon or a perfect
rainbow heptagon.

Suppose now that p is to the right of x. Arguing in an analogous way when rotating the horizontal ray emanating from
z to the right counterclockwise, if u’ and v’ are two consecutive points with different colors, then we may assume that
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Fig. 8. Illustrating the proof of Proposition 10.

the intersection point p; between ¢; and z_)u’ is to the left of y. When this happens, p to the right of x and p; to the left of
y, it is straightforward to see that Axyz must contain at least one point of each color, and that q is on xy. If k = 5, then
yxp'zq' is a perfect rainbow pentagon; see Fig. 8(c). If k = 6, a perfect rainbow hexagon exists by Lemma 9; see Fig. 6(d).
If k = 7, we can build a perfect rainbow hexagon for six of the colors by Lemma 9, and form a perfect rainbow octagon
for S by connecting a black point to z and thicken this edge.

The only yellow point w in ST is on ¢,. When k = 5, the strip contains only pink points. Thus, we rotate the horizontal
ray emanating from y to the left counterclockwise until it encounters a pink point u in the strip; see Fig. 8(d). Let p be
the intersection point of 37u> and ¢,. By symmetry, there are two cases to consider: either p is to the left of z, or on the
segment zw. In the first case, yxpwp’ is a perfect rainbow pentagon; see Fig. 8(d). In the second case yxzwp’ is a perfect
rainbow pentagon; see Fig. 8(e).

When k = 6 or k = 7, the strip contains points of at least two of the colors and we can argue as before, but now
rotating clockwise about w instead of about z, to look for the first two consecutive points u and v with different colors,
say pink and orange. If the intersection point p between wii and £4 is to the left of x, then we can build a perfect rainbow
quadrilateral or a perfect rainbow triangle for five of the colors, as shown in Figs. 8(a) and 8(b). After that, we connect z
(and a black point if k = 7) to w to form a perfect rainbow hexagon (or a perfect octagon if k = 7) for S; see Fig. 8(f).

Finally, if p is to the right of x, then there are points of at least two of the colors to the left of xw. Therefore, when
rotating the horizontal ray emanating from x to the right clockwise until finding two consecutive points u and v of different
colors, the intersection point between Xu and ¢, will be necessarily to the right of w, and we can carry out symmetric
constructions. O

The following corollary is straightforward from the proofs of Propositions 7 and 10.

Corollary 11. For k = 3,4,5, 6,7, a perfect rainbow polygon with at most rb-index(k) vertices can be found in O(nlogn)
time for any k-colored set S of n points.

Proof. By Lemma 6, the strip ST used in the proofs of Propositions 7 and 10 can be found in O(n log n) time. In addition,
the cyclic order of the points in S around any of x, y, z or w can be computed in O(n log n) time. A perfect rainbow hexagon
as described in Lemma 9 can be obtained in O(n) time. Therefore, the corollary follows. O
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Fig. 9. Finding two trees when the lower arc of conv(S) has three vertices 9(a)-9(b), and when it has four or more vertices 9(c).

4. Upper bound for rainbow indexes

We show in this section that for every k-colored point set, there exists a perfect rainbow polygon of size at most
10L’7ij + 11. We begin with an auxiliary lemma showing that any seven (monochromatic) points in a vertical strip can be
covered by a noncrossing forest of two trees of order four and two, respectively, such that both trees are fully contained
in the strip.

Lemma 12. Let S = {py, ..., p7} be a point set in general position in the plane, ordered by x-coordinate. Let B be the strip
defined by the two vertical lines passing through p, and p;, respectively. Then, in O(1) time, we can construct two noncrossing
trees Ty and T, of order four and two, respectively, with the following properties:

(i) The union of T, and T, covers S and is contained in B.

(ii) For i € {1, 2}, the tree T; has a leaf v; such that the ray emanating from v; in the direction opposite to the edge incident
to v; goes to the left and does not cross T;. Moreover, if the extension at v; hits T;, j # i, then the extension at v; does
not hit T;; that is, the two trees and the two extensions do not create cycles.

Proof. Let ¢ be the line passing through p; and p;. Without loss of generality, we may assume that S contains at least
[5/2] = 3 points below £. Note that p; and p; are extremal points in S, hence they are vertices of the convex hull conv(S)
of S. Points p; and p; decompose the boundary of conv(S) into two convex arcs, an upper arc and a lower arc. Since
S contains at least 3 points below ¢, the lower arc must have at least 3 vertices (including p; and p;). We distinguish
between two cases depending on the number of vertices of the lower arc of conv(S).

The lower arc of conv(S) has 3 vertices. Assume that the lower arc of conv(S) is the path (py, p;, p7), where 1 <i < 7;
see Figs. 9(a)-9(b). Since S contains at least 3 points below ¢, at least 2 points of S are in the interior of Ap;p;p;. Rotate
the ray p1p; counterclockwise until it encounters a point p, in the interior of Ap p;p7; rotate the ray ﬁ clockwise until
it encounters a point p, in the interior of Ap;p;p;. We distinguish between two cases depending on whether p, and p;
are distinct.

In the first case, assume that p, # pp; see Fig. 9(a). The rays m and m intersect in the interior of Apqp;p7, at
some point g. By construction, the remaining two points in S\ {p1, pi, p7, Pa, P»} are above the path (p1, q, p7), in a wedge
bounded by (ﬁ and (ﬁ This wedge is convex, hence it contains the line segment between the two points. Let T; be
the star centered at g with edges p1q, p;q, and p;q; and let T, be the line segment spanned by the two points of S above
(p1, 9, p7)- N

In the second case, assume that p, = pp; see Fig. 9(b). Let r be the first point along the ray p;p, such that the line
segment p;r or p;r contains a point of S in the interior of Ap;p,p;. Denote this point by p. € S. By construction, the
remaining two points in S \ {p1, pi, 7, Pa> Pc} are above the path (pq, r, p7), in a convex wedge bounded by rp7 and rp5.
Let T; be the star centered at r with edges pqr, p;r, and p;r, and let T, be the line segment spanned by the two points of
S above (p1, 1, p7).

In both cases, T; UT, covers all seven points in S, is in B, and is noncrossing, as required. Moreover, the second property
of the lemma is clearly satisfied by choosing v; = p; and v, the leftmost point of T,.

The lower arc of conv(S) has 4 or more vertices. Let p,, p;, pj, px be the first four vertices of the lower arc of conv(S)
in counterclockwise order (possibly py = p7). Let g be the intersection point of the lines passing through p; and p;, and
through p; and py, respectively. Rotate the ray M clockwise until it encounters a point in S\ {p1, pi, pj, Pk}, and denote it
by pq, Let T; be the union of the path (p1, q, px, ps), and connect the two remaining points of S to define T; see Fig. 9(c).
Note that T; U T, covers all seven points in S, is in B, and is noncrossing, as required. Moreover, the second property of
the lemma is clearly satisfied by choosing v; = p; and v, the leftmost point of T,. O
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(a) (b) ()

Fig. 10. Part (a): Dividing the n points into groups of size 7. Part (b): Applying Lemma 12 to each group. Part (c): Joining all trees to a vertical
segment.

Using Lemma 12, the following theorem provides a method to find noncrossing covering trees with few segments and
forks.

Theorem 13. Let S be a finite set of n = 7j + r points in the plane in general position, with j > 0 and 0 < r < 6. Then, in
O(nlogn) time, we can construct a noncrossing covering tree T consisting of4L%J + 1+ (%1 segments and 2[%] + (%1 forks
with multiplicity 1.

Proof. By rotating the point set if necessary, we may assume that the points in S have distinct x-coordinates. We assume
first that n = 7j, for some integer j > 0. Fig. 10 illustrates the method to obtain a noncrossing covering tree with 4L$J +1
segments and 2L$J forks with multiplicity 1. We partition the n points from left to right into j groups Gy, Gy, ..., G; of
seven points each; see Fig. 10(a). We apply Lemma 12 to every group G; to cover the points in G; by two trees, consisting
of 4 segments in total; see Fig. 10(b). In this way, we obtain a forest F formed by 2j trees with 4j segments. In addition,
by the same lemma, every tree T; of F contains a special leaf v; that can be extended to the left without crossing T;.

We add a long vertical segment P’ to the left of the point set such that the extension of any tree T; of F at v; crosses
P’; see Fig. 10(c). For every tree T;, we extend the edge incident to its special leaf v; to the left until the extension hits
another tree, another extension, or P’; see Fig. 10(c). This is carried out exploring, for example, the special leaves from
right to left. Thus, we join the 2j trees of F and the segment P’ to form an single component. This component is necessarily
a noncrossing covering tree T with 4j + 1 segments and 2j forks with multiplicity 1, since all extensions go to the left
without creating cycles. Therefore, there exists a noncrossing covering tree T consisting of 4L§J + 1 segments and 2L$J
forks with multiplicity 1.

Consider the case that n = 7j + r, where 1 < r < 6. Using the first 7j points from left to right, we proceed as before,
and we build a noncrossing covering tree T with 4j + 1 segments and 2j forks with multiplicity 1. If j = 0, the previous
step is not required. The last r points can be covered by connecting the point at position 7j + 1 to the following one, the
point at position 7j + 3 to the following one, and so on. If the last point cannot be connected to the following one, we
assign a small horizontal segment to it. In this way, we are covering the last r points with (%1 segments. These segments
can be joined to T by extending their leftmost points. Therefore, we can obtain a noncrossing covering tree T’ consisting
of 4/ 7] + 1+ [5] segments and 2| 7] + 5] forks with multiplicity 1.

It remains to show that the construction above can be implemented in O(n logn) time. We can sort the points in S in
increasing order by x-coordinates in O(nlogn) time, and hence partition S into O(n) groups of size seven. For each group,
we can find two trees in O(1) time by Lemma 12. Finally, we can compute the left extensions of the special leaves v; of
all trees T; by a standard sweepline algorithm [10, Sec. 2.1] as follows: We sweep a vertical line L right to left from the
rightmost point to one unit left of the leftmost point in S. In the course of the algorithm, we maintain the intersection
of L with the forest F, and the left extensions of all leaves v; to the right of L. An event queue maintains the time steps
when L passes through a vertex of F, when a left extension hits an edge of F (in which case the left extension ends), and
when two left extensions meet (in which case one extension ends and other one continues). There are O(n) events, and
the event queue can be updated in O(logn) time for each event. Consequently, the sweepline algorithm runs in O(n log n)
time. In the last step, the sweepline L is to the left of S; we can let the vertical line segment P’ be the convex hull of the
intersections of L with all surviving left extensions. O
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Fig. 11. A sketch of the construction given in [16] for k = 4. The figure is not to scale.

Notice that by construction, the minimum number of pairwise noncrossing segments into which T’ can be decomposed
is precisely 4L$J +1+ [%]. As a consequence of this theorem, we can give an upper bound for the size of a perfect rainbow

polygon.

Theorem 14. Let S be a k-colored set of n points in general position. Then a perfect rainbow polygon P of size at most
lOL%J + 11 can be computed in O(nlogn) time.

Proof. We choose a point of each color to define a point set S” of cardinality k = 7j + r, withj > 0and 0 < r < 6.
By Theorem 13, there is a noncrossing covering tree T’ for the point set S’, consisting of 4L§J + 1+ [5] segments and
2 L’7—‘J + 51 forks with multiplicity 1, and it can be computed in O(k log k) time. By Lemma 1, given a noncrossing covering
tree T and a partition M of the edges into the minimum number s of pairwise noncrossing segments, for every ¢ > 0, there
exists a simple polygon P with 2s+t vertices such that area(P) < ¢ and T lies in P, where t is the sum of the multiplicities of
all forks in T. Thus, for every & > 0, we can construct a simple polygon P’ with 2(4[ £ |+ 1+51)+2( 4] +[27 < 10[ 4] +11
vertices such that area(P’) < ¢ and S’ lies in P’. By choosing ¢ sufficiently small so that P contains no other point in S
except for the points in S, we can construct a perfect rainbow polygon for S of size at most 10L’7—‘J + 11.

A suitable ¢ > 0 can be half of the minimum distance between the covering tree T’ and the points in S\ S’. To find this
distance, we can compute the Voronoi diagram for a set of sites, which consists of the O(k) < O(n) edges of T’ and the
O(n) points in S\ S’ in O(nlogn) time [10, Sec. 7.3]. The Voronoi diagram is formed by O(n) line segments and parabolic
arcs; and we can find the closest point in T’ (hence in S \ S’) for each of these arcs in O(1) time. O

5. Lower bound for rainbow indexes

For every k > 3, Dumitrescu et al. [16] constructed a set S of n = 2k points in the plane in strong general position
(without colors) for which every noncrossing covering path has at least (5n — 4)/9 edges. They also showed that every
noncrossing covering tree for S has at least (9n — 4)/17 edges. Furthermore, every set of n > 5 points in general position
in the plane admits a noncrossing covering tree with at most [n/27] noncrossing segments, and this bound is the best
possible. We recall that a segment is defined as a path of collinear edges.

In this section, we use the point sets constructed in [16] to derive a lower bound for the complexity of a covering
tree as defined in Section 2. This bound, in turn, yields a lower bound on the complexity of perfect rainbow polygons for
colored point sets built from such sets.

Construction. We use the point set constructed by Dumitrescu et al. [16]. We review some of its properties here. For
every k € N, they construct a set of n = 2k points, S = {a;, b; : i = 1, ..., k}. The pairs {a;, b;} (i = 1, ..., k) are called
twins. The points a; (i = 1, ..., k) lie on the parabola « = {(x,y) : y = x?}, sorted by increasing x-coordinate. The points
b; (i = 1,...,k) lie on a convex curve 8 above «, such that dist(a;, b;) < ¢ for a sufficiently small &, and the lines a;b;
are almost vertical with monotonically decreasing positive slopes (hence the supporting lines of any two twins intersect
below «). Fori =1, ..., k, they also define pairwise disjoint disks D;(¢) of radius ¢ centered at g; such that b; € D;(¢), and
the supporting lines of segments a;a; and b;b; meet in Dj(¢) for every j, i < j < k. Furthermore, (1) no three points in S are
collinear; (2) no two lines determined by the points in S are parallel; and (3) no three lines determined by disjoint pairs of
points in S are concurrent. The x-coordinates of a; (i = 1, ..., k) are chosen such that (4) for any four points c, 3, ¢3, C4
from S, labeled by increasing x-coordinate, the supporting lines of c;c4 and c,c3 cross to the left of these points. See
Fig. 11 for a sketch of the construction. Finally, the point set S is perturbed into strong general position maintaining these
properties (except that the points a; (i = 1, ..., k) are no longer on a parabola).
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Analysis. Let S be a set of n = 2k points defined in [16] as described above, for some k > 1. Let M be a set of pairwise
noncrossing line segments in the plane whose union is connected and contains S. In particular, if T is a noncrossing
covering tree for S, then any partition of the edges of T into pairwise noncrossing segments could be taken to be M.

A segment in M is called perfect if it contains two points in S; otherwise it is imperfect. By perturbing the endpoints of
the segments in M, if necessary, we may assume that every point in S lies in the relative interior of a segment in M. By
the construction of S, no three perfect segments are concurrent, so we can define the set I" of maximal paths of perfect
segments; we call these perfect paths or perfect chains.

Dumitrescu et al. [16, Lemmata 4-10] proved several properties of a covering path for S. Clearly, a covering path
has precisely two leaves, while a covering tree may have arbitrarily many leaves. Their results are based on local
configurations, however, and hold for any set of noncrossing segments M where the endpoints of perfect chains play
the same role as the endpoints of a covering path. We restate their key results for a set M of noncrossing covering
segments.

Lemma 15 ([16, Lemma 7]). Let pq be a perfect segment in M that contains one point from each of the twins {a;, b;} and
{a;, bj}, where i < j. Assume that p is the left endpoint of pq. Let s be the segment in M containing the other point of the twin
{a;, b;}. Then one of the following four cases occurs.

Case 1: p is the endpoint of a perfect chain;

Case 2: s is imperfect;

Case 3: s is perfect, one of its endpoints v lies in D;(¢), and v is the endpoint of a perfect chain;
Case 4: s is perfect and p is the common left endpoint of segments pq and s.

Lemma 16 ([16, Lemma 9]). Let pq be a perfect segment in M that contains a twin {a;, b;}, and let q be the upper (that is,
right) endpoint of pq. Then q is the endpoint of a perfect chain.

Let Iy be the set of maximal x-monotone chains of perfect segments in M.
Lemma 17. The right endpoints of the chains in I'y are distinct.

Proof. Suppose, for the sake of contradiction, that y4, y, € I'y have a common right endpoint q. Let pg and rq, respectively,
be the rightmost segments of y; and y».

If pq contains a twin, then pq has positive slope (by construction), and so q is the upper endpoint of pq. In this case
segment rq is imperfect by Lemma 16, contradicting the assumption that rq is in y,. We may assume that neither pqg not
rq contains a twin. In this case, their supporting lines intersect to the left of the points in S on pq and pr by property (4),
contradicting our assumption that q is the right endpoint of both segments. O

Corollary 18. Every chain in I" consists of at most two chains in I.

Denote by s, s1, and s,, respectively, the number of segments in M that contain 0, 1, and 2 points from S. An adaptation
of a charging scheme from [16, Lemma 4] yields the following result, where t is the number of forks (with multiplicity)
in M.

Lemma 19. s, < 8sy + 9s7 + 4(t + 1).

Proof. Let pq be a perfect segment of M, and part of a chain y € I'. We charge pq to either an endpoint of y or some
imperfect segment.

We define the charging as follows. If pg contains a twin, then charge pq to the top vertex of pq, which is the endpoint
of a perfect chain by Lemma 16. Assume now that pq does not contain a twin, its left endpoint is p, and it contains a point
from each of the twins {a;, b;} and {a;, b;}, with i < j. We consider the four cases presented in Lemma 15.

In Case 1, charge pq to p, which is the endpoint of a perfect chain. In Case 2, charge pq to the imperfect segment s
containing a point of the twin {a;, b;}. In Case 3, charge pq to the endpoint v of a perfect chain located in D;(¢). Now,
consider Case 4 of Lemma 15. In this case, pq is the leftmost segment of a maximal x-monotone chain y,. We charge pq
to the right endpoint of y,, which is the endpoint of a perfect chain by Lemma 17. This completes the definition of the
charges.

Note that every imperfect segment and every right endpoint of a chain in I" is charged at most once for perfect
segments in Cases 1-3, and every left endpoint of a chain is charged at most twice. By Corollary 18, each endpoint of
a perfect chain is charged at most once for perfect segments in Case 4. Overall, every imperfect segment containing one
point of S is charged at most once, and every endpoint of a perfect chain is charged at most twice. Consequently,

Sy <51 +4IT. (2)

We bound |I"| from above in terms of sg, 51, and t. Choose an arbitrary root vertex in T, and direct all edges in T
towards the root. Every perfect chain has a unique vertex v closest to the root. As all chains in I" are maximal and as no
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three perfect segments are concurrent, v must be a fork, the endpoint of an imperfect segment, or the root. There are at
most t forks, the sg + s, imperfect segments jointly have at most 2(so + s1) distinct endpoints, and we have one root. This
yields |I"| < 2(sp + $1) + t + 1. Combined with (2), this yields,

Sy <851+ 4[2(so +51)+t + 1] = 8sp + 9s1 + 4(t + 1),
as claimed. O

Lemma 20. Let S be a set of n = 2k > 4 points from [16]. Then every covering tree T of S satisfies 2s +t > (20n — 8)/19.

Proof. The combination of Lemma 19 and n = s; + 25, yields

2s+t = 2(sg+5S1+5S2)+¢t

> (S0 +$1+t)+ (51 +2s2)

2[8sp +9s1 +4(t+ 1)1+ 3so +s1+ 11t — 8
= +n

19

259 +s1—8
> ——+n
- 19
= n_8~|—n

19

_ 20n — 8
19

as claimed. O

We are now ready to prove the main result of this section.

Theorem 21. For every integer k > 5, there exists a finite set of k-colored points in the plane such that every perfect rainbow
polygon has at least W vertices.

Proof. Assume first that k is odd, and let S be the set of k—1 = 2j > 4 points from [16]. If T is a noncrossing covering tree
for S minimizing 2s 4t = m, then by Theorem 4, there exists a k-colored point set S built from S such that every perfect
rainbow polygon for S has at least m vertices. By Lemma 20, every noncrossing covering tree of S satisfies 2s+t > M,
hence every perfect rainbow polygon for S has at least 226=1=8 — 20U-1/218 yerfices,

Assume now that k is even. From the (k — 1)-colored pomt set S built prev1ously, we can obtain a k colored Pomt set S/
by adding a new point with a different color. Since > every perfect rainbow polygon for S has at least 2 Ol(k ])/ 2=

vertices, then every perfect rainbow polygon for S’ also has at least w vertices. O

6. Conclusions

In this gaper, we studied the perfect rainbow polygon problem and we proved that the rainbow index of k satisfies
OU=D2I=8 < rh-index(k) < 10[ X]+11, for k > 5. We also showed that k = 7 is the first value such that rb-index(k) # k.
Our bounds are based on the equivalence between perfect rainbow polygons and noncrossing covering trees.

Several open questions arise in relation to this problem. For instance, we conjecture that given a colored point set S,
finding a minimum perfect rainbow polygon for S is NP-hard. Another interesting question is to close the gap between
the lower and upper bounds on the rainbow index.
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