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Abstract—Molecular dynamic (MD) simulations are used
to probe molecular systems in regimes not accessible to
physical experiments. A common goal of these simulations
is to compute the power spectral density (PSD) of some
component of the system such as particle velocity. In certain
MD simulations, only a few time locations are observed,
which makes it difficult to estimate the autocorrelation
and PSD. This work develops a novel nuclear norm
minimization-based method for this type of sub-sampled
data, based on a parametric representation of the PSD as
the sum of Lorentzians. We show results on both synthetic
data and a test system of methanol.

I. INTRODUCTION

Molecular dynamic (MD) simulations are widespread

computer simulation-based tools used to study the prop-

erties of a chemical system by analyzing the physical

movements of its atoms or molecules [1]–[4]. MD sim-

ulations are used in a variety of applications including

drug design [5], calculating vibrational or rotational

modes [6], optical absorption spectra [7], titanium diox-

ide polymorphs [8], and circular dichroism spectra [9].

In this work, we consider the problem of estimating

the power spectral density (PSD) of a stationary stochas-

tic process {yi}. Based on the Wiener–Khinchin theo-

rem, we may equivalently estimate the autocorrelation

function (ACF) of {yi}, defined as

Ry(τ) = E(yiyi+τ ),

where τ is the time lag and the expectation is taken over

i (and over all particles if yi is a vector). The PSD is

then obtained by taking the (discrete) Fourier transform

of the ACF.

In some types of molecular dynamic (MD) simula-

tions, such as time-dependent density functional the-

ory [10], yi is a quantity like polarizability that is slow

to simulate, and therefore it is only calculated at a few
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possibly irregularly spaced time points. Other types of

MD may have access to the full sequence {yi} but

then purposely save only a subset of the sequence in

order to achieve compression. Motivated by these types

of MD, we seek a method to accurately estimate the

spectrum of the stochastic process from a small amount

of subsampled data from {yi}.

The PSD of the particle velocity has a special struc-

ture that can be represented as a sparse superposi-

tion of Lorentzian functions, which, near their centers,

each have a similar shape to a Gaussian function. A

Lorentzian function (in the frequency domain) is defined

as

L(f) =
A

2π
(
(f − c)2 +

(
w
2

)2) ,

where A, c, and w denote the amplitude, center, and

width of the function. In the time (lag) domain, a

Lorentzian is a sinusoid with exponential decay. In

particular, we have

L(τ) =
A

w
ej2πcτ−wπ|τ |.

Therefore, for particle velocity data, the autocorrelation

function Ry(τ) will consist of a sparse superposition of

decaying sinusoids.

II. THE PROPOSED METHOD

To estimate the PSD based on subsampled velocity

data {yi}, we first construct an estimate R̂y(τ) of the

ACF using the sample mean of quantities yiyi+τ over

all indices i where both yi and yi+τ are available. Such

an estimate may be noisy and may even contain gaps at

certain τ values where there are no data pairs (yi, yi+τ )
available. Our second step then involves formulating a

matrix optimization problem to estimate the clean and

complete ACF. In particular, we formulate a Hankel

matrix Hy from the estimated ACF R̂y(τ). Due to the

small number of Lorentzian functions in the PSD, we

can view Hy as a noisy and possibly incomplete matrix

that has low rank.
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Denote W1 and W2 as two Hankel matrices for-

mulated from two weighting vectors w1 and w2. In

particular, w1 is a vector with entries being all 1’s except

those corresponding to missing entries of the estimated

ACF R̂y(τ), i.e., w1(τ) = 0 if the estimated ACF

R̂y(τ) has a missing entry at index τ ; and w2 is a

vector with entries being the inverse of the number of

diagonal entries in the Hankel matrix Hy . We propose

the following weighted nuclear norm minimization to

update the estimated ACF:

min
Hx∈H

‖Hx‖∗

s. t. ‖W1 �W2 � (Hx −Hy)‖
2
F ≤ ε,

(II.1)

where � denotes element-wise multiplication, H denotes

a set that contains all of the Hankel matrices with proper

size, ε is a parameter corresponding to the noise variance,

W1 serves as a mask, as in matrix completion, and W2

standardizes the entries to have equal variance.

One can use any off-the-shelf SDP solver, such as

CVX [11], to solve the above optimization (II.1). As

CVX can return both a primal solution Ĥx and a

dual solution Q, we propose two ways to estimate the

spectrum in this work. The first way is to use the primal

solution Ĥx, which is a Hankel matrix corresponding to

the updated ACF, and transform the updated ACF to the

frequency domain to get the spectrum.

The second way is to use the dual solution Q, which

is inspired from the dual analysis used in atomic norm

minimization [12]–[15]. In particular, we can first com-

pute a dual polynomial with the dual solution. Recalling

that the estimated ACF consists of samples of a sum of

a few decaying exponentials, the dual polynomial is then

computed as

Q(r, f) = QH
a(r, f),

where a(r, f) is a vector with entries being uniform

time samples of a decaying exponential rtej2πft. Here,

f ∈ [0, 1) and r ∈ [0, 1] denote the normalized fre-

quency and damping ratio, respectively. Then, we can

estimate the frequency components and damping ratios

contained in the estimated autocorrelation function by

localizing the places where the `2 norm of the dual

polynomial achieves 1, as in our previous work [16].

With the estimated (r, f) pairs, we can then reconstruct

the ACF and compute its PSD by transforming the ACF

to the frequency domain. Note that the atomic norm

minimization based methods cannot address signals with

damping since there is no semi-definite program for

the corresponding atomic norm [16]. Therefore, we use

nuclear norm minimization here as in [16].

III. EXPERIMENTS

In this section, we test the proposed methods with

both synthetic data and Methanol velocity data.

A. Synthetic data

First, we generate a target ACF as a sum of three

damped sinusoids (red line in Figure 1 (a)). The PSD of

this target ACF is shown in Figure 1 (b) (see red line).

Given the target PSD (denoted as PY (f)), we create a

system with frequency response H(f) satisfying

|H(f)|2 = PY (f).

Then, we can get the frequency response H(f) by taking

the square root of PY (f), and we can get the impulse

response h(t) by taking inverse Fourier transform of

H(f). Once we have the impulse response, we then input

a sequence of white noise x(t) with length 105 into this

system and measure the output signal y(t). Then, y(t)
should have an ACF close to the target ACF. We present

the ACF and PSD of the constructed y(t) in Figure 1

(blue dashed lines). It can be seen that the constructed

ACF and PSD are very close to the target ones. Note

that the PSDs shown in Figure 1 (b) are computed via

the Fast Fourier Transform (FFT).

Next, we estimate the PSD of the constructed time

domain data y(t) via two classical methods: Welch and

Yule-Walker, in both the full data case and the missing

data case. As is shown in Figures 2-4, the two classical

methods work well in estimating the PSD when there are

enough data samples. However, when there are too few

data samples available (e.g., Figure 4), the two methods

can miss the third frequency component.

For the missing data case, we first keep 20% of the

time domain data. In this case, there are no gaps (missing

entries) in the estimated ACF. We build a 50×51 Hankel

matrix Hy with these samples and use CVX to solve the

optimization problem (II.1) with ε = 4.9497×103, which

is obtained by computing the variance of the estimated

ACF. The dual polynomial and estimated parameters

are shown in Figure 5. Note that the dual polynomial

is symmetric as the ACF signal is real. The estimated

ACF and PSD are shown in Figure 6. It can be seen

that both the primal method and the dual method work

well in estimating the PSD. Then, we repeat the above

experiment by keeping only 9% of the time domain

data with ε = 2.4180 × 104. The results are shown

in Figures 7 and 8. It can be seen that the primal

method still works well in estimating the PSD. Since

there are some spurious (r, f) pairs localized by the dual

polynomial, the dual method can only roughly estimate

the PSD in this case.
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Figure 1: The ACF and PSD of a constructed signal y(t)
v.s. the target ACF and PSD.
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Figure 2: Estimated PSD with full time domain data.

B. Methanol velocity data

Next, we test our proposed methods on the velocity

data of methanol collected from molecular dynamic

simulations with LAMMPS [17]. This data contains 256

atoms, each with 1.9 × 104 uniform samples of the

velocity. The maximal lag used to compute the ACF

is set as 99. We set ε = 1.2969 × 10−07, which is

obtained by computing the variance of the estimated

ACF. We present the estimated ACF and PSD of using

only 4% and 1% of the velocity data in Figures 9 and 10,
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Figure 3: Estimated PSD using 20% of the time domain

data.
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Figure 4: Estimated PSD using 9% of the time domain

data.

respectively. The red solid lines denote the estimated

ACF and PSD obtained by using all of the 1.9 × 104

uniform velocity samples of each atom and we view this

as the ground truth. It can be seen that both the dual

and primal methods work well in spectral estimation.

Moreover, they can roughly recover the PSD even when

using only 1% of the velocity data.

IV. CONCLUSION

In this work, we consider the problem of estimating

the PSD of a stationary stochastic process and develop a

novel nuclear norm minimization-based method to accu-

rately estimate the spectrum from subsampled data of the

stochastic process, based on a parametric representation

of the PSD as the sum of Lorentzians. Experiments

conducted on both synthetic data and Methanol velocity

data indicate that the proposed methods perform very

well in estimating the PSD.
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Figure 5: Dual polynomial obtained by solving (II.1)

with 20% of the time domain data.
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Figure 6: ACF and PSD estimated by solving (II.1) with

20% of the time domain data.
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