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Nuclear Norm Based Spectrum Estimation for
Molecular Dynamic Simulations

Shuang Li, Stephen Becker, and Michael B. Wakin

Abstract—Molecular dynamic (MD) simulations are used
to probe molecular systems in regimes not accessible to
physical experiments. A common goal of these simulations
is to compute the power spectral density (PSD) of some
component of the system such as particle velocity. In certain
MD simulations, only a few time locations are observed,
which makes it difficult to estimate the autocorrelation
and PSD. This work develops a novel nuclear norm
minimization-based method for this type of sub-sampled
data, based on a parametric representation of the PSD as
the sum of Lorentzians. We show results on both synthetic
data and a test system of methanol.

I. INTRODUCTION

Molecular dynamic (MD) simulations are widespread
computer simulation-based tools used to study the prop-
erties of a chemical system by analyzing the physical
movements of its atoms or molecules [1]-[4]. MD sim-
ulations are used in a variety of applications including
drug design [5], calculating vibrational or rotational
modes [6], optical absorption spectra [7], titanium diox-
ide polymorphs [8], and circular dichroism spectra [9].

In this work, we consider the problem of estimating
the power spectral density (PSD) of a stationary stochas-
tic process {y;}. Based on the Wiener—Khinchin theo-
rem, we may equivalently estimate the autocorrelation
function (ACF) of {y;}, defined as

Ry(7) = E(Yi¥itr),

where 7 is the time lag and the expectation is taken over
1 (and over all particles if y; is a vector). The PSD is
then obtained by taking the (discrete) Fourier transform
of the ACF.

In some types of molecular dynamic (MD) simula-
tions, such as time-dependent density functional the-
ory [10], y; is a quantity like polarizability that is slow
to simulate, and therefore it is only calculated at a few
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possibly irregularly spaced time points. Other types of
MD may have access to the full sequence {y;} but
then purposely save only a subset of the sequence in
order to achieve compression. Motivated by these types
of MD, we seek a method to accurately estimate the
spectrum of the stochastic process from a small amount
of subsampled data from {y; }.

The PSD of the particle velocity has a special struc-
ture that can be represented as a sparse superposi-
tion of Lorentzian functions, which, near their centers,
each have a similar shape to a Gaussian function. A
Lorentzian function (in the frequency domain) is defined
as

_ A
o ((f — )2+ (%)2)7

where A, ¢, and w denote the amplitude, center, and
width of the function. In the time (lag) domain, a
Lorentzian is a sinusoid with exponential decay. In
particular, we have

L(f)

L(T) — éejQﬂ'cr—wﬂ'h’\
w
Therefore, for particle velocity data, the autocorrelation
function R, (7) will consist of a sparse superposition of
decaying sinusoids.

II. THE PROPOSED METHOD

To estimate the PSD based on subsampled velocity
data {y;}, we first construct an estimate R,(7) of the
ACF using the sample mean of quantities y;y; 4, over
all indices ¢ where both y; and y;,, are available. Such
an estimate may be noisy and may even contain gaps at
certain 7 values where there are no data pairs (y;, Yitr)
available. Our second step then involves formulating a
matrix optimization problem to estimate the clean and
complete ACF. In particular, we formulate a Hankel
matrix H, from the estimated ACF R, (7). Due to the
small number of Lorentzian functions in the PSD, we
can view H,, as a noisy and possibly incomplete matrix
that has low rank.
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Denote W; and Wy as two Hankel matrices for-
mulated from two weighting vectors w; and ws. In
particular, w; is a vector with entries being all 1’s except
those corresponding to missing entries of the estimated
ACF Ry(7), ie, wi(r) = 0 if the estimated ACF
R,(7) has a missing entry at index 7; and wy is a
vector with entries being the inverse of the number of
diagonal entries in the Hankel matrix H,. We propose
the following weighted nuclear norm minimization to
update the estimated ACF:

Join, [He |-

. (1)
s.t. [W1OW20 (H, —Hy)|r <e,

where © denotes element-wise multiplication, H denotes
a set that contains all of the Hankel matrices with proper
size, € is a parameter corresponding to the noise variance,
‘W serves as a mask, as in matrix completion, and Wy
standardizes the entries to have equal variance.

One can use any off-the-shelf SDP solver, such as
CVX [11], to solve the above optimization (IL.1). As
CVX can return both a primal solution H, and a
dual solution Q, we propose two ways to estimate the
spectrum in this work. The first way is to use the primal
solution H,, which is a Hankel matrix corresponding to
the updated ACF, and transform the updated ACF to the
frequency domain to get the spectrum.

The second way is to use the dual solution Q, which
is inspired from the dual analysis used in atomic norm
minimization [12]-[15]. In particular, we can first com-
pute a dual polynomial with the dual solution. Recalling
that the estimated ACF consists of samples of a sum of
a few decaying exponentials, the dual polynomial is then
computed as

Q(’I“, f) = QHa‘(rv f)a

where a(r, f) is a vector with entries being uniform
time samples of a decaying exponential r*e7>/*, Here,
f € 0,1) and r € [0,1] denote the normalized fre-
quency and damping ratio, respectively. Then, we can
estimate the frequency components and damping ratios
contained in the estimated autocorrelation function by
localizing the places where the {5 norm of the dual
polynomial achieves 1, as in our previous work [16].
With the estimated (r, f) pairs, we can then reconstruct
the ACF and compute its PSD by transforming the ACF
to the frequency domain. Note that the atomic norm
minimization based methods cannot address signals with
damping since there is no semi-definite program for
the corresponding atomic norm [16]. Therefore, we use
nuclear norm minimization here as in [16].

III. EXPERIMENTS

In this section, we test the proposed methods with
both synthetic data and Methanol velocity data.

A. Synthetic data

First, we generate a target ACF as a sum of three
damped sinusoids (red line in Figure 1 (a)). The PSD of
this target ACF is shown in Figure 1 (b) (see red line).
Given the target PSD (denoted as Py (f)), we create a
system with frequency response H(f) satisfying

[H(H)I? =Py (f).

Then, we can get the frequency response H (f) by taking
the square root of Py (f), and we can get the impulse
response h(t) by taking inverse Fourier transform of
H(f). Once we have the impulse response, we then input
a sequence of white noise x(¢) with length 10° into this
system and measure the output signal y(t). Then, y(t)
should have an ACF close to the target ACF. We present
the ACF and PSD of the constructed y(¢) in Figure 1
(blue dashed lines). It can be seen that the constructed
ACF and PSD are very close to the target ones. Note
that the PSDs shown in Figure 1 (b) are computed via
the Fast Fourier Transform (FFT).

Next, we estimate the PSD of the constructed time
domain data y(t) via two classical methods: Welch and
Yule-Walker, in both the full data case and the missing
data case. As is shown in Figures 2-4, the two classical
methods work well in estimating the PSD when there are
enough data samples. However, when there are too few
data samples available (e.g., Figure 4), the two methods
can miss the third frequency component.

For the missing data case, we first keep 20% of the
time domain data. In this case, there are no gaps (missing
entries) in the estimated ACF. We build a 50 x 51 Hankel
matrix H, with these samples and use CVX to solve the
optimization problem (II.1) with € = 4.9497 x 103, which
is obtained by computing the variance of the estimated
ACF. The dual polynomial and estimated parameters
are shown in Figure 5. Note that the dual polynomial
is symmetric as the ACF signal is real. The estimated
ACF and PSD are shown in Figure 6. It can be seen
that both the primal method and the dual method work
well in estimating the PSD. Then, we repeat the above
experiment by keeping only 9% of the time domain
data with ¢ = 2.4180 x 10%*. The results are shown
in Figures 7 and 8. It can be seen that the primal
method still works well in estimating the PSD. Since
there are some spurious (r, f) pairs localized by the dual
polynomial, the dual method can only roughly estimate
the PSD in this case.
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Figure 1: The ACF and PSD of a constructed signal y(t)
v.s. the target ACF and PSD.
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Figure 2: Estimated PSD with full time domain data.

B. Methanol velocity data

Next, we test our proposed methods on the velocity
data of methanol collected from molecular dynamic
simulations with LAMMPS [17]. This data contains 256
atoms, each with 1.9 x 10* uniform samples of the
velocity. The maximal lag used to compute the ACF
is set as 99. We set ¢ = 1.2969 x 10797, which is
obtained by computing the variance of the estimated
ACF. We present the estimated ACF and PSD of using
only 4% and 1% of the velocity data in Figures 9 and 10,
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Figure 3: Estimated PSD using 20% of the time domain
data.
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Figure 4: Estimated PSD using 9% of the time domain
data.

respectively. The red solid lines denote the estimated
ACF and PSD obtained by using all of the 1.9 x 10*
uniform velocity samples of each atom and we view this
as the ground truth. It can be seen that both the dual
and primal methods work well in spectral estimation.
Moreover, they can roughly recover the PSD even when
using only 1% of the velocity data.

IV. CONCLUSION

In this work, we consider the problem of estimating
the PSD of a stationary stochastic process and develop a
novel nuclear norm minimization-based method to accu-
rately estimate the spectrum from subsampled data of the
stochastic process, based on a parametric representation
of the PSD as the sum of Lorentzians. Experiments
conducted on both synthetic data and Methanol velocity
data indicate that the proposed methods perform very
well in estimating the PSD.
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Figure 5: Dual polynomial obtained by solving (II.1)
with 20% of the time domain data.
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Figure 6: ACF and PSD estimated by solving (II.1) with
20% of the time domain data.
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