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Abstract

Due to data compression or low resolution, nearby vertices and edges of a graph drawn
in the plane may be bundled to acommon node or arc. We model such a “compromised”
drawing by a piecewise linear map ¢ : G — R%. We wish to perturb ¢ by an arbitrarily
small ¢ > 0 into a proper drawing (in which the vertices are distinct points, any two
edges intersect in finitely many points, and no three edges have a common interior
point) that minimizes the number of crossings. An e-perturbation, for every ¢ > 0,
is given by a piecewise linear map ¥, : G — R? with [|¢ — ¥¢| < &, where
[I.]| is the uniform norm (i.e., sup norm). We present a polynomial-time solution for
this optimization problem when G is a cycle and the map ¢ has no spurs (i.e., no
two adjacent edges are mapped to overlapping arcs). We also show that the problem
becomes NP-complete (i) when G is an arbitrary graph and ¢ has no spurs, and (ii)
when ¢ may have spurs and G is a cycle or a union of disjoint paths.
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1 Introduction

A graph G = (V, E) is a 1-dimensional simplicial complex. A continuous piecewise
linear map ¢ : G — R? maps the vertices in V into points in the plane, and the
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Fig.1 Anexample foramapg : G — R2, where G = Py, i.e., a path of length 12, with cr(¢) = 5 (left);
and a perturbation ¢ witnessing that cr(¢) < 5 (right)

edges in E to piecewise linear arcs between the corresponding vertices. However,
several vertices may be mapped to the same point, and two edges may be mapped to
overlapping arcs. This scenario arises in applications in cartography, clustering, and
visualization, due to data compression, graph semantics, or low resolution. Previous
research focused on determining whether such a map ¢ can be “perturbed” into an
embedding. Specifically, a continuous piecewise linear map ¢ : G — R? is a weak
embedding if, for every ¢ > 0, there is an embedding . : G — R? with |l¢ —
Vel < e, where ||.| is the uniform norm (i.e., sup norm). Recently, Fulek and Kyn¢l
(2018) gave a polynomial-time algorithm for recognizing weak embeddings, and the
running time was subsequently improved to O (n log n) for simplicial maps by Akitaya
et al. (2018). Note, however, that only planar graphs admit embeddings and weak
embeddings. The results in Akitaya et al. (2018), Fulek and Kyn¢l (2018) extend to
weak embeddings ¢ : G — M of a graph G into any 2-dimensional manifold M
endowed with a metric, but the machinery developed so far was not able to handle
crossings. In this paper, we extend the concept of e-perturbations to all graphs, and
seek a perturbation with the minimum number of crossings.

A continuous map ¢ : G — M of a graph G to a 2-manifold M (e.g., M = R?) is
a drawing if (i) the vertices in V are mapped to distinct points in M, (ii) each edge is
mapped to a continuous arc between two vertices without passing through any other
vertex, and (iii) any two edges intersect in finitely many points. A crossing between
a pair of edges, ej, e2 € E, is defined as an intersection point between the relative
interiors of the arcs ¢(e1) and ¢(e2). For a piecewise linear map ¢ : G — R2, let
cr(¢) be the minimum nonnegative integer k such that for every ¢ > 0, there exists
a drawing ¥, : G — R? with ||¢ — ¥|| < & and k crossings, see Fig. 1 for an
illustration.

It is clear that ¢ is a weak embedding if and only if cr(¢) = 0. Note also that if
e1,e2 € E and the arcs ¢(e1) and ¢(ey) cross transversely at some point p € R2,
then v (e1) and ¥ (ep) also cross in the e-neighborhood of p for any sufficiently
small ¢ > 0. An e-perturbation may, however, remove tangencies and partial overlaps
between edges.

The problem of determining cr(¢) for a given map ¢ : G — R? is NP-complete: In
the special case that ¢ (G) is a single point, cr(¢) equals the crossing number of G, and
it is NP-complete to find the crossing number of a given graph (Garey and Johnson
1982) [even if G is a planar graph plus one edge, see Cabello and Mohar (2013)].
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Chang et al. (2015) identified two features of a piecewise linear map ¢ : G — R?
that are difficult to handle: A spur is a vertex whose incident edges are mapped to the
same arc or overlapping arcs, and a fork is a vertex mapped to the relative interior of the
image of some nonincident edge (a vertex may be both a fork and a spur). Our results
(Theorems 1 and 2 below) show that spurs are critical for the algorithmic complexity of
determining cr(p). Forks, however, can easily be eliminated by a suitable subdivision
of the edges, which increases the number of vertices by a polynomial factor and only
impacts the running time of our algorithms. Similarly, by a suitable subdivision of the
edges, we may also assume that ¢ : G — R? maps every edge of G to a straight-line
segment in the plane; we call such a map a straight-line map. In the remainder of the
paper, we assume that ¢ : G — R? is a straight-line map.

We prove the following results.

Theorem 1 Given a cycle C,, = (V, E) with n vertices and a straight-line map ¢ :
C, — R2, then cr(p) can be computed

1. in O(nlogn) time if ¢ has neither spurs nor forks,
2. in O(n*logn) time if ¢ has no spurs.

As noted above, the problem of determining cr(g) is NP-complete when G is an
arbitrary graph (even if ¢ is a constant map). We show that the problem remains
NP-complete if G is a cycle and we drop the condition that ¢ has no spurs.

Theorem 2 Given a positive integer k and a straight-line map ¢ : G — R?, it is
NP-complete to decide whether cr(¢) < k and

1. G isa cycle, or
2. G is a union of disjoint paths.

Related previous work A series of recent results show that weak embeddings of a
graph G with n vertices can be recognized in O (n logn) time. Specifically, Akitaya
et al. (2017) gave an O(n log n)-time algorithm for the special case that G is a cycle,
improving on earlier work by Chang et al. (2015) and Cortese et al. (2009). When
G is an arbitrary graph Akitaya et al. (2018) gave an O (n” log n)-time algorithm in
general, and and O (n log n)-time algorithm when the map ¢ : G — R? has no forks.
Finding efficient algorithms for the recognition of weak embeddings ¢ : G — M,
where G is an arbitrary graph and M is a 2-dimensional manifold, was posed as an open
problem in Akitaya et al. (2017), Chang et al. (2015), Cortese et al. (2009). The first
polynomial-time solution for the general version follows from a recent variant by Fulek
and Kyn¢l (2018) of the Hanani—Tutte theorem (Hanani 1934; Tutte 1970), which was
conjectured by Skopenkov (2003) in 2003 and in a slightly weaker form already by
Repovs and Skopenkov (1998) in 1998. Weak embeddings of graphs also generalize
various graph visualization models such as strip planarity (Angelini et al. 2017) and
level planarity (Jiinger et al. 1998); and can be seen as a special case (Angelini and
Da Lozzo 2019) of the notoriously difficult cluster-planarity (for short, c-planarity)
(Feng et al. 1995a,b), whose tractability has been a longstanding open problem.

Organization We start in Sect. 2 with preliminary observations that show that deter-
mining cr(g) is equivalent to a purely combinatorial problem, which can be formulated
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Fig.2 Graph G (top left) and its straight-line map ¢ : G — R2 (top right). The graph H = A(G) (bottom
left) and its straight-line drawing y (H) = ¢(G) (bottom right)

(o)

H=\G)

without metric constraints. We describe and analyse a recognition algorithm, proving
Theorem 1, in Sect. 3. We prove that the problem is NP-hard by a reduction from
3SAT in Sect. 4, and describe an algorithm that tests whether cr(p) < c in n%© time
for any fixed ¢ > 0; and conclude in Sec. 6.

2 Preliminaries

We rely on techniques introduced in Akitaya et al. (2017), Chang et al. (2015), Cortese
(2005), Fulek and Kyn¢l (2018), and complement them with additional tools to keep
track of edge crossings. Let ¢ : G — R? be a piecewise linear function. We may
assume, by subdividing the edges of G if necessary, that ¢ is a straight-line map (i.e.,
every edge is mapped to a line segment), and it has no forks (no vertex is mapped to
the interior of an edge).

We define the image graph H by a graph homomorphism » : G — H that
identifies vertices in V(G) that are mapped to the same point by ¢, that is, we have
Au) = A(v) for u,v € V(G) if and only if ¢(u) = ¢(v). Since ¢ does not have
forks, the map A : G — H is simplicial (that is, it maps vertices to vertices and edges
to edges). To distinguish the graphs G and H in our terminology [following Cortese
et al. (2009)], G has vertices V(G) and edges E(G), and H has clusters V (H) and
pipes E(H).

We can express ¢ : G — R? as a composition ¢ = y o A, where A : G — H is
a simplicial map from G to H (a continuous map between 1-dimensional simplicial
complexes) and y : H — R? is a drawing of H. Refer to Fig. 2. Since ¢ is a straight-
line map, y : H — R? is a straight-line drawing of H, where each edge in E(H) is
mapped to a line segment.

A perturbation ¥, of ¢ lies in the e-neighborhood of ¢(G). We define suitable
neighborhoods for the graph H and its drawing ¥ (H) C R? as follows. For the
graph H, a straight-line drawing y : H — R?, and an ¢ € (0, 1), we define the
e-neighborhood A (¢) C R? as the union of regions N,, and N, forevery u € V(H)
and uv € E(G), respectively, as follows. See Fig. 3 for an illustration. For every
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Fig.3 The graph H (top left) and its straight-line drawing y (H) (top right) The thickening H of H (i.e.,
a 2-dimensional manifold with boundary), and a map A : G — H with one crossing (bottom left). The
neighborhood V" of the drawing y (H) in the plane, and a map I" o A(G) with five crossings (bottom right)

Fig.4 The diagram of maps i
expressing the map ¢ and its X v 5
perturbation v G > » R

P
X .
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u € V(H), let N, be the closed disk of radius ¢ centered at y (u). For every pipe
uv € E(H), let Ny, be the set of points at distance at most €2 from y (uv) that lie in
the interior of neither N, nor N,.

Let g9 € (0, 1) be a sufficiently small constant such that for ¢ = &g, and for any
triple of distinct clusters {u, v, w} C V(H), the centers of the disks N, and N, are at
distance at least 4¢ apart (in particular, N, and N, are disjoint), N, is disjoint from
Nyy if vw € E(H), and the regions N, and N,,, are disjoint from each other if
uv,uw € E(H) (however, regions N,, and N,y may intersect if the line segments
y (uv) and y (u'v’) cross). Such an gy > 0 exists since @ is a straight-line map without
forks. Clearly, these properties hold for every ¢ € (0, &o].

For the graph H and its drawing y : H — RZ2, we also define the thickening 7,
H C 'H, as a 2-dimensional manifold with boundary as follows. See Fig. 3 for an
illustration. For every u € V(H), create a topological disk D,, and for every pipe
uv € E(H), create arectangle Ry,,. For every D, and R, fix an arbitrary orientation
of dD, and 9 R,,, respectively. Choose deg(u) pairwise disjoint closed arcs on the
boundary d D, of D, and label them by A, ,, for all uv € E(H), in the cyclic order
around 9 D,, determined by the rotation of u in the drawing y (G). The manifold H
is obtained by identifying two opposite sides of every rectangle R,, with A, , and
Ay, via an orientation preserving homeomorphism. Note that there is a natural map
I : ' H — N such that I'|y = y, furthermore I"|p, is a homeomorphism between
D, and N, for every u € V(H), and I'|g,, is a homeomorphism between R, and
N,y forevery uv € E(H).

Crossing minimization rephrased Refer to Fig. 4. We reformulate a problem instance
¢ : G — R? as two functions A : G — H and y : H — R2, where G and H are
abstract graphs, A is a simplicial map and y is a straight-line drawing of H. We define
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a perturbation of the map ¢ = y o A asadrawing ¥ = I" o A, where A : G — H
is a drawing of G on ‘H with the following properties:

(P1) forevery vertex a € V(G), A(a) € Djq),

(P2) for every edge ab € E(G), A(ab) C Dj@) U Ru@)ip) Y D) such that it
crosses the boundary of the disks Dj 4y and D ;) precisely once, and

(P3) all crossing between arcs A(e), e € E(G), lie in the disks D, u € V(H);

and I" : H — R? is a continuous map such that I"|p, is a homeomorphism between
D, and N, foreveryu € V(H),and I'|g,, is ahomeomorphism between R, and N,
for every uv € E(H). Note, however, that I may map the rectangles R,, and R,/
to overlapping regions Ny, and N, for two independent edges uv, u’v' € E(H)).

Given an straight-line map ¢ = y o A, we seek a perturbation v = I" o A that
minimizes the number of crossings. In the next few paragraphs, we show that finding a
perturbation in this form is a purely combinatorial problem; and we show (cf. Lemma 1)
that this problem is equivalent to finding cr(¢).

Combinatorial representation Properties (P1)—(P3) allow for a combinatorial rep-
resentation of the drawing A : G — 'H: For every pipe uv € E(H), let m,,, be a total
order of the edges in 2 Huv] < E(G) in Rya)rp); andlet my = {myy : uv € E(H)}
the collection of these total orders. In fact, we can assume that A(G) consists of
straight-line segments in every rectangle Ry, and every disk D,. The number of
crossings in each disk D, is determined by the cyclic order of the segment endpoints
along d D,,. Thus, the number of crossings in all disks D,, u € V(H), is determined
by 4.

Two types of crossings By restricting the perturbations of a straight-line map ¢ :
G — R?tothe form y = I' o A defined above, we can distinguish between two types
of crossings: edge-crossings in the neighborhoods N,,, u € V (H), and edge-crossings
between edges mapped to two pipes that cross each other.

The number of crossings between the edges of G inside a disk Ny, u € V(H), is
the same as the number of crossings in D,,, since I is injective on D,,. We denote the
total number of such crossings by

cr = mi
1,2 =min | 3 CRaG) |
ueV(H)

where CR 4 (1) is the number of crossings of the drawing A(G) in the disk D,,.

Let the weight of a pipe ¢ € E(H) be the number of edges of G mapped to e,
that is, w(e) := |A~![e]|. If the arcs ¥ (e1) and y(ey) cross in the plane, for some
e1,er € E(H), then every edge in 2~ e1] crosses all edges in 27 1[e2]. The total
number of crossings between the edges of G attributed to the crossings between pipes
is

)= Y wlenw(e),

fe1,e2}eC

where C is the set of pipe pairs {e1, e2} such that y (e1) and y (e2) cross. It is now easy
to show that cr(y o 1) equals to the sum of the two types of crossings.
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Lemma1 Let ¢ : G — R? be a straight-line map without forks, where ¢ =y o A for
functions y and A defined above. Then

cr() = cri(y, A) +cra(y, A). ey

Proof We first show cr(¢) < cri(y, ) 4+ cra(y, A). Suppose that A : G — H attains
cri(y, A); and recall that crp (y, A) is determined by ¢. We need to show that for every
& > 0, G admits adrawing ¥, : G — R? with at most cr; (v, A) +cra(y, A) crossings
such that |l¢ — ¥.|| < €. Let & > 0 be given. Let g9 > 0 be as defined above. Put
£1 = minf{e, go}, and let V(g1 ) be the &1 -neighborhood of y (H). Let I" : H — N'(¢1)
be as described above. Then I o A(G) is a drawing of G in N'(g;) C N () with
cri(y, A) 4+ cra(y, A) crossings; specifically, cry(y, A) crossings within the disks &,
over all u € V(H), and crp(y, A) crossings in the intersections of Ny, and N,y over
all pairs of pipes uv, u’'v’ € E(H).

In the other direction, we need to prove that cri(y, ) + cra(y, A) < cr(p). Let
e = 88, and let ¥, : G — R? be a drawing of G with cr(¢) crossings such that
lgp — ¥ell < ¢ and such that the cardinality of the crossings between v (G) and
UMGV(H) dN,, denoted by & (¢), is minimized. Clearly, | Z (1 (G))| is finite, since
we can assume that & () consists of proper crossings between the edges ¥ (e),
e € E(G), and the curves dN,, u € V(H). Then for every vertex v € V(G), we
have [[¢(v) — ¥:(v)|| < &, hence Y¥¢(v) € Npw) = N,. Furthermore, for every
edge ab € E(G), we have ¥z(ab) C Ny U Na@ip) Y Nawp). We prove that
Y can be chosen so that ¥, = I' o A, where A : G — 'H satisfies (P1)—(P3).
Then by the choice of ¢, and the definition of cri(y, A) and cra(y, A), this implies
cri(y, A) +cer(y, &) < cr(p).

Specifically, we can define A : G — H for all vertices and edges in A~ [u]
as (I'|p,)~" o ¥, and for all edges in A~ '[uv] as (I'|p,up,,un,) " © V.. Since
Ye(v) € N, (y) for every v € V(G), A satisfies (P1).

In order to establish (P2), we need to show that every edge ab € E(G) crosses
0Ny (q) and 9Ny ) at most once. Suppose for the sake of contraction that there is
an edge ab € E(G) such that in ¢ (ab) crosses dN; ) or N, ) at least twice.
By the definition of e, if A(a) # A(D), then the centers of N ) and N, ) are at
distance at least 4e¢. It follows that there exists exactly one connected component of
Nj.(a)a) N Ye(ab) joining a point on d N, (,) with a point on 9Ny ). Hence, there
exists a connected component o, 0f Ny )y N ¥e(ab) joining a pair of points pi
and p; in Ny () or a pair of such points in d N;, ). Without loss of generality, suppose
that both p; and p,, which belong to = (), are in Ny (q).

In what follows we show that we can modify the drawing ¥ (G) so that | & (V)|
decreases, which contradicts the choice of ¥.. Choose the edge ab € E(G) and the
arc o so that they minimize || p1 p2||. We modify ¥, (G) by redrawing the arc o), as
follows. We cut the edge ab in y, at p; and p» and reconnect the severed ends by an
arc 8,5 closely following d Ny () in the interior of Ny (). As a result, the cardinality of
|Z (Y¢)| decreases by 2, and the number of crossings between edges does not increase.
Indeed, since By, closely follows 9 Ny (,) and by the minimality of || p1 p2||, every edge
Ye(e), e € E(G), crosses B,p at most once. Since o, U Byp forms a closed Jordan
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curve, if an edge ¥, (e), e € E(G), crosses Bp, it must also cross «,p. It follows that
Bap has at most as many edge crossings as «qp. This completes the proof of (P2).
Finally, in order to establish (P3), we modify the drawing 1, as follows. We cut the
edge Y (ab), ab € E(G), at their intersection with d N, ) and squeeze the severed
parts in a small neighborhood of 1. (G) N Nj)ap) so that the severed ends belong
to Ny (q), but the rest is drawn in the interior of N, 4y without introducing new edge
crossings. The squeezing is performed so that the clockwise order of the severed ends
of edges along dNj ) and 0N, ) are reverse of each other. Finally, we reconnect
the severed ends by pairwise noncrossing straight-line segments in Nj 43 (p). This is
possible by the way how we performed the squeezing. O

When the Image Graph is a Cycle In Sect. 3, we successively modify an instance
¢ = y o A, while cr(¢p) remains invariant, until the image graph H becomes a cycle.
We show that in this case it is easy to determine cr>(y, A), which is a consequence of
the following folklore lemma.

Lemma 2 [Hass and Scott (1985), Lemma 1.12]IfG = C,, H = C,and A : G — H
is a simplicial map without spurs, where the cycle G winds around the cycle H precisely
n/k times, then cry(y,A) = ¢ — L.

3 Cycles without spurs

Let G = C,, be a cycle with n vertices, and H an arbitrary abstract graph, > : G - H
a simplicial map, and y : H — R? a straight-line drawing such that ¢ = y o A
has no spurs (or, equivalently, A does not map any two consecutive edges of C,
to the same edge in H). In this section, we prove that cr(y o A) is invariant under
the so-called ClusterExpansion and PipeExpansion operations. (Similar operations
for weak embeddings have been introduced in Akitaya et al. (2017), Chang et al.
(2015), Cortese (2005), Fulek and Kyncl (2018).) We show that a sequence of O (n)
operations produces an instance in which H is a cycle, where we can easily determine
both cr{(y, A) and crp(y, 1), hence cr(y o A).

The first operation, ClusterExpansion(u), modifies ¢ = y o A in a small neigh-
borhood N, of a cluster u € V(H). Intuitively, every maximal connected subcurve
of ¢(G) in the disk N, is replaced by a straight-line segment between the two end-
points of the subcurve; essentially applying shortcuts within the disk N,,. The formal
definition (below) describes the changes incurred in both y and A. See Fig. 5 for an
illustration.

ClusterExpansion(u). Input: a straight-line map ¢ = (y oA) : G — R*> and a
cluster u € V(H). (1) Let N, be a sufficiently small disk centered at y (z) in
R? that intersects only the images of pipes incident to u. (2) Subdivide every
pipe uv € E(H) incident to u with a new cluster yy, let y (yy) := dD, Ny (uv).
(3) Subdivide every edge ab € E(G) such that A(b) = u with a new vertex x,
such that A(x,) = ya(q). (4) For every vertex b € A~ Mul, and its two neighbors
Xxqs and x., insert an edge x,x. in G, insert a pipe A(xy)A(x.) in H if it is
not already present, and draw this pipe in the plane as a straight-line segment
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Fig.5 ClusterExpansion(u). Changes in the graph H (top row), and changes in G (bottom row)

between y (A(x,)) and y (A(x.)). (5) Delete cluster u from H, and delete all
vertices in A~ [u] from G. (6) Return the resulting instance ¢’ = y’ o A’, where
»:G — H andy': H — R2.

Lemma 3 For every instance ¢ : G — R? without spurs, where G is a cycle and
u € V(H), ClusterExpansion(u) produces an instance ¢’ : G' — R? without spurs,
where G’ is a cycle, and cr(y' o M) = cr(y o A).

Proof Since G is a cycle, then every vertex b € A~![u] has precisely two neighbors,
say a and c. Step 3 subdivides the edges ab and bc with new vertices x, and x.; Step 4
inserts an edge x,x., and Step 5 deletes b. Consequently, the path (a, b, c) is replaced
by a path (a, x4, x¢, ¢). Since G is a cycle, and the operation replaces edge-disjoint
paths by new paths between the same pair of endpoints, ClusterExpansion(u) returns
acycle.

Since y o A has no spur, then for every vertex b € A~ ![u], the neighbors a and
¢ are in distinct clusters, that is, A(a) 7# A(c). Consequently, yr) 7 Yi(c) and so
AN (xa) # M (xc). Therefore the operation does not create spurs.

Let A : G — 'H be a drawing that attains cr{(y, A). We may assume that every
connected component of A(G) N D, is a line segment for every cluster u € V(H);
and similarly every connected component of A(G) N Ry, is a line segment for every
pipe uv € E(H)

Let u € V(H) be a cluster. Assume that (a, b, ¢) and (a, b, ¢) are paths in G such
that (b)) = )L(l;) = u. Then A(G) has two possible types of crossings in D,, between
paths (a, b, ¢) and (4, b, ¢). In the first type, A(a) and A(c) interleave with A(a) and
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A(¢) in the rotation at u. In the second type, we have {A(a), A(c)} N {A (@), L(C)} # @
(hence {A'(xa), A" (xc)} N (A (xz), A/ (x2)} # ).

For every cluster u € V(H), let CRf‘ (u) denote the number of crossings of the
first type; and let CR; (1) denote the number of crossings of the second type. In the
following we construct A’ : G’ — H’ witnessing cr(y’ o A') < cr(y o 1) such that

cri(y’, A) = Z CRA(v) | + CR(u) = cri(y, A) — CRX(M)
veV(H),v#u

and
cra(y’, M) = ena(y, &) 4+ CR; (u).

Note that the second condition does not depend on A’ and follows by the construction
of y'.

Let & denote the natural homeomorphism between H \ int(D,,) and the connected
components of H' \ (J{int(D,,) : v € V(H),uv € E(H)} containing the disks D,,
for all surviving clusters w € V (H)\{u}. We put A'(st) = h(A(st)) forall st € E(G)
where u ¢ {A(s), A(¢)}. We define A’ on every path (a, x,, X, ¢) in G’ that replaced
a path (a, b, ¢) in G, where A(b) = u, as follows.

Let pgop = [H \ int(D,)] N A(ab) and pp. = [H \ int(D,)] N A(bc). We define
A'(a, x,) as the concatenation of the arc from h(A(a)) to h(pap) contained in A(ab)
and a very short crossing-free line segment contained in Dy (y,). In the same manner
we construct A’ (x., ¢).

Let (a, x;, xz, ¢) denote another such path, that is, (a, x;, xz, ¢) replaced (a, b, ¢)
in G such that A(E) =u.

We construct A’ (x4, x.) as an arc between A’(x,) and A’(x.) contained in Dy, U
Dy}\(c) @) RyA(a))’A(c) = Dy (x ) UDy (x)) YR ()0 (x0) such that A’ (x,, x.) and A’ (xz, xz)
cross if and only if p,p and py, interleave with p,; and p;. along 9 Dy,. In the case
when A’(x,, x.) and A’(x;, xz) cross, we also ensure that they cross exactly once.
This establishes that A(a, b, ¢) and A(a, l; ¢) cross (i.e., they contribute 1 crossing
to CR; () if and only if A’(x4, xc) and A’(x;, x;) cross, as desired.

Specifically, we draw A’ (x4, x.) as a polygonal line that consists of a line segment in
each of Dy/(y,), Dy (x,)> and Ry (x,)»' (x.)s and denote by pfi. € Aj/(x,).0/(x,) and pg. €
Aj(x) .V (x,) the intersection of A (x,, xc) with 0D;/(x,) and 0Dy (y,), respectively.
In order to complete the construction of A’, it is enough to specify the order of these
intersection points on each arc Ay, y, , for all ordered pairs (yy, Yu).

Let us fix an arbitrary total order < on the clusters in V(H’) \ V(H). Let y,, yy €
V (H')\'V (H) be apair of clusters, and assume without loss of generality that y, < y,,.
Let us arrange the intersection points along the arcs Ay, ,, and Ay such that the
paths A’(x,, x.), where A'(a) = y, and A'(¢) = y,,, are pairwise noncrossing in both
Dy, and Ry, ,. These intersection points on Ay, , ,in turn, determine all crossings
between these arcs in D, . In particular a pair of such paths, A’ (x,, x.) and A’ (x;, x¢),

I Recall the definition of Ay,p from Sect. 2.
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Fig.6 PipeExpansion(uv) for a safe pipe uv. Changes in the graph H (top row), and changes in G (bottom
row)

cross in Dy, if and only if p,, and py interleave with P and Pi along dD,,. Since
both A'(x4, x:) N Dy, and Al(xz, x2) N D,,, are line segments, they cross at most
once.

For any other pair of arcs, (a, b, c) and (a4, b, ¢), such that A(b) = A(b) but
{A(a), ()} # {r(a), A(C)}, it is straightforward to check that A(a,b,c) and
A&, b, ¢) cross, if and only if A’(x,x.) and A’(x;xz) cross.

To establish the other direction, we can start with a drawing A’ : G’ — H' wit-
nessing cr(y’ o A’) and apply the inverse of /4 to construct A in H \ D,,. Finally, it is
enough to observe that the order of intersection points p,p along d D, specifies A for
which

> CRa() <eni(y', 1) — CR} ()

veV(H)
and
cra(y’, M) = era(b) 4+ CR; (w),
and that concludes the proof. O

We remark that cr(y o) is invariant under the ClusterExpansion(u) operation even
in the presence of spurs, however the proof is somewhat simpler in the absence spurs,
and Lemma 3 also establishes that ClusterExpansion(u) does not create new spurs.

Pipe Expansion A cluster u € V(H) is a base of an incident pipe uv if every vertex
in A~ ![u] is incident to an edge in 2 uv]. A pipe uv € E(H) is safe if both u and
v are bases of uv. The following operation is defined on safe pipes. (We note that
our algorithm would be correct even if PipeExpansion(uv) were defined on all pipes,
unlike the result in Akitaya et al. (2018), since A does not contain spurs. We restrict
this operation to safe pipe to simplify the runtime analysis.)
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The second operation, PipeExpansion(uv), is very similar to ClusterExpansion (u).
Instead of creating shortcuts within a disk N,, it uses an ellipse L, that encloses
the drawing of the pipe uv. The operation replaces every maximal connected sub-
curve of ¢(G) in the ellipse L,, with a straight-line segment inside the ellipse. The
formal definition below specifies the changes in both y and A. See Fig. 6 for an
illustration.

PipeExpansion(uv). Input: a straight-line map ¢ = (y o A) : G — R2?, and
a safe pipe uv € E(H). (1) Let L, be a sufficiently narrow ellipse with foci
at y (1) and y (v) that intersects only the images of pipes incident to u# and v.
(2) Subdivide every pipe ¢ € E(H) incident to u or v with a new cluster y,,
let y(ye) := 9L,y N y(e). (3) Subdivide every edge ab € E(G) such that
Aa) ¢ {u, v} and A(b) € {u, v} with a new vertex x, such that A(xy) = Ya(ap)-
(4) For every edge bc € A~ [uv], and the two neighbors x, and x4 of b and
¢, respectively, insert an edge x,x4 in G, insert a pipe A(x,)A(xg) in H if it is
not already present, and draw this pipe in the plane as a straight-line segment
between y (A(x,)) and y (A(xg)). (5) Delete clusters u and v from H, and delete
all vertices in A~ ![uv] from G. (6) Return the resulting instance ¢’ = y’ o A,
where ' : G’ — H' andy’ : H — R2.

Lemma4 If G is a cycle, A : G — H has no spur, and uv € E(H) is a safe pipe,
then PipeExpansion(uv) produces an instance where G’ is a cycle, \' : G’ — H' has
no spur, and cr(y o L) = cr(y’ o \).

The proof is analogous to the proof of Lemma 3. We only point out the differences.

Proof Since uv is a safe pipe, then every vertex in A~ [u] U A~ 1[v] is incident to one
edgein 271 [uv]. Since G isa cycle and ¢ has no spurs, every vertex in A Hulur—1 )
is incident to two edges, precisely one which is in A ! [#]UA~![v]. That s, every vertex
in A~ !'[u]Ur~![v]is in some path (a, b, ¢, d) in which A(b) = u and A(c) = v; and for
every path (a, b, ¢, d) in G such that .(b) = u and A(c) = v, we have A(ab) # uv and
M(cd) # uv. Step 3 subdivides the edges ab and cd with new vertices x, and x4; Step 4
inserts an edge x,x4, and Step 5 deletes b and c. Consequently, the path (a, b, ¢, d)
is replaced by a path (a, x4, x4, d). Since G is a cycle, and the operation replaces
edge-disjoint paths are replaced by new paths between the same pair of endpoints,
PipeExpansion(uv) returns a cycle.

Since y o A has no spur, then for every vertex b € A~ [u] U A~ ![v], the neighbors
a and ¢ are in distinct clusters, that is, A(a) # A(c). Consequently, y; @) # Yi(c) and
so A/ (x4) # A (x¢). Therefore the operation does not create spurs.

The proof that cr(y’ o 1) = cr(y o A) is analogous to the proof of Lemma 3.
The only difference is that CR’; (1) and CR () (and the two types of crossings) are
defined in terms of the cyclic order along d Ly, rather then the cyclic order along d N,
(i.e,, the rotation of u). We omit the details. O
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Main Algorithm Given an instance A : G — H and y : H — R?, we apply the two
operations defined above as follows.

Algorithm 1 Input: (G, H, X, y)

Uyp «<— V(H)

for every u € Ug do

| ClusterExpansion(u)

while there is a safe pipe uv € E(H) such that degy (u) > 3 or degy (v) > 3 do
| PipeExpansion (uv)

uv <— an arbitrary edge in E(H).
return cr;(y, ) 4+ A~ Huv]| — 1.

Lemma5 Algorithm I terminates.

Proof By Lemmas 3 and 4, A : G — H has no spurs in any step of the algorithm. It is
enough to show that the while loop of Algorithm 1 terminates. We define the potential
function @ (G, H) = |E(G)| — |E(H)|, and show that @ (G, H) > 0 and it decreases
in every invocation of PipeExpansion(uv). Since G is a cycle and A has no spur, every
edge in A~ [uv] is adjacent to one edge in some other pipe incident to u and one edge
in some other pipe incident to v. Each of these edges contributes to one edge in E(G’)
inside the ellipse D,,. Since uv is safe, G’ has no other new edges. Consequently,
|E(G")| = |E(G)|. Since degy (1) > 3 ordegy (v) > 3, PipeExpansion(uv) replaces
the clusters u and v with at least 3 clusters, each of which is incident to at least one pipe
in the ellipse D,,,. Consequently, |E(H')| > |E(H)|,and so ®(G, H) > &(G’, H'),
as claimed. O

Lemma 6 At the end of the while loop of Algorithm 1, H is a cycle.

Proof 1t is enough to show that if H is not a cycle in the while loop of Algorithm 1,
then there is a safe pipe uv € E(H) such that degy (1) > 3 or degy (v) > 3. Note
that in the entire course of the while loop, every cluster in V (H) has been created
by a previous ClusterExpansion(u) or PipeExpansion(uv) operation. Observe that
every cluster created by ClusterExpansion(u) (resp., PipeExpansion(uv)) is a base
for the unique incident pipe in the exterior of the disk D, (resp., ellipse D,,). Let
s : V(H) — E(H) be a function that maps every cluster to that incident pipe.
Recall that the input does not have spurs, and no spurs are created in the algorithm by
Lemmas 3 and 4. In the absence of spurs, the minimum degree in H is at least 2, and
ifu € V(H) and degy (1) = 2, then u is a base for both incident pipes.

Assume that in some step of the while loop, H is not a cycle. Let v; € V(H)
be an arbitrary cluster such that degy (vi) > 3. Construct a maximal simple path
(v1, v2, ..., vp) incrementally such that s (v;) = v;v;4 fori = 1,2, ... ¢. If for some
J = 2,5(;) = s(vj_1) = vjv;_1, then the pipe v;_jv; is safe, and we are done.
Similarly, if degy (v;) = 2, then vjv;_1 is safe, and we are also done.

Otherwise, the path ends with a repeated cluster: s(v¢) = vgv;, for some 1 <
i < £— 1, and so we obtain a cycle (v;, V41, ..., vg) of at least 3 vertices. Let v},
i < j <, be a cluster created by the algorithm in the most recent invocation of a
ClusterExpansion(u) or PipeExpansion(uv) operation among v;, ..., v¢. Then s(v;)
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is a pipe in the exterior of a disk D, or an ellipse D,,. Hence, the pipe v;_jv; or
vev; if j > 1 or j = i, respectively, is in the interior of D, or D,,. Without loss of
generality suppose the former. It follows that v; and v;_; were created by the same
invocation of ClusterExpansion(u) or PipeExpansion(uv). However, this implies that
s(vj—1) # vj_1vj, contradicting the assumption that (v;, vi11, ..., v¢) is a cycle.
We conclude that the path vy, ..., vy contains a safe pipe. O

Lemma 7 Algorithm I returns cr(y o )).

Proof By Lemma 1, cr(y oA) = cr(y, A)+cra(y, A). Here cra(y, 1) can be computed
by a line sweep of the drawing y (H). By Lemmas 2 and 6, at the end of the algorithm,
cri(y, A) = |2~ Huv]| — 1 for an arbitrary edge uv € E(H). By Lemmas 3 and 4,
cr(y o A) is invariant under the operations, so the algorithm reports cr(y o 1) for the
input instance. O

Running Time The efficient implementation of our algorithm relies on the following
data structures. For every cluster u € V(H) we maintain the set of vertices of V(G)
in 7' [u]. For every pipe uv € E(H), we maintain A~ '[uv] C E(G), the weight
w(uv) = |A~uv]|, and the sum of weights of all pipes that cross uv, that we denote
by W(uv). Then we have

1
crg(y,k)zz Z w(uv)W(uv).

uveE(H)

We also maintain the current value of crp (y, A). We further maintain indicator variables
that support checking the conditions of the while loop in Algorithm 1: (i) whether the
cluster is a base for the pipe, (ii) whether a cluster has degree 2, and (iii) whether a
pipe is safe.

Lemma 8 With the above data structures, Algorithm 1 runs in O((M + R)log M)
time, where M = |E(H)| + |E(G)| and R = cr(y o ) < M.

Proof At preprocessing, we can compute A~ '[u], A~ [uv], and w(uv) by a simple
traversal of G in O (]E(G)]) time. Since every crossing in the drawing y (H) corre-
sponds to at least one crossing in any perturbation, y (H) has at most R crossings.
Hence the complexity of the arrangement of all edges in y (H) is O(M + R). A stan-
dard line sweep algorithm can find all crossings of y (H) in O (M + R) log(M +R)) =
O((M + R)logM) time. The same algorithm can also compute W (uv) for all
uv € E(H), and cra(y, A).

Algorithm 1 starts with a for-loop over all u € Uy. We can update A Mul, A Huvl,
and w(uv) in O(degy (u) + |X‘1(u)|) time per ClusterExpansion(u). This sums to
O(|E(H)| + |E(G)]|) time for all u € Uy. All new crossings in y (H) occur between
the pipes created in the interior of the disks D,, for all u € Uy. These crossings can
be found in O((M + R) log M) total time.

Note also that ClusterExpansion(u), for all u € Uy doubles the number of edges
in G. However, | E(G)| is invariant under PipeExpansion operations. In fact, PipeEx-
pansion(uv) partitions the set A~ 1[uv] C E(G) into two or more subsets, which are
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mapped to pipes in the ellipse D,,, and the 17! (e) for every other pipe e € E(H)
remains unchanged. We maintain A u], A7l A~ [uv], and w(uv) in the while
loop of Algorithm 1 using a heavy-path decomposition. Suppose PipeExpansion(uv)
replaces uv with pipes ujvi, ..., uxvr, which correspond to pairs of clusters in
the neighborhood of u and v, respectively. The naive implementation would take
O (w(uv)) time, but we can reduce it to O (w(uv) — max; w(u;v;)): Put S = A~ {uv]
and compute the sets 27 uv] incrementally in parallel by deleting edges from S;
when all but maximal set has been computed, then all remaining elements of S can
be added to this maximal set in O(1) time. The time O (w(uv) — max; w(u;v;))
can then be charged to the edges that move from A Huv] to a set A~ [u;v;]
with w(u;v;) < w(uv)/2. Over all operations of the while loop of Algorithm 1,
edges that are initially mapped to a pipe of weight w receive a charge of at most
00722 [w/2'|) = O(wlogw). Summation over all edges of E(H) yields

ol > wuv)logwv) | < O(E(G)|log|E(G)]) = O(M log M).

uveE(H)
When PipeExpansion(uv) replaces a pipe uv with new pipes ujvy, ..., Uk, then
every pipe that crossed uv will cross ujvy, ..., ugvg. So W(uv;),i = 1,...,k, can

be computed by adding the number of new crossings to W (uv). All new crossings
created by PipeExpansion(uv) are between new pipes in the ellipse D,,. Since pipe
crossings are never removed, the total number of such pipe crossings is at most R,
and they can be computed in O ((M + R) log M) time over all operations of the while
loop of Algorithm 1.

At the end of the algorithm, both cri(y,A) = w(uv) — 1 for an arbitrary pipe
uv € E(H), and cra(y, A) = % ZuveE(H) w(uv) W (uv) can be calculated in O (M)
time. O

4 NP-completeness in the presence of spurs

In this section, we prove Theorem 2. In a problem instance, we are given a simplicial
map A : G — H, a straight-line drawing y : H — R?, and a nonnegative integer K,
and ask whether cr(y o X)) < K.

Lemma9 The above problem is in NP.

Proof A feasible drawing "o A : G — R2 with cr(I" o A) < K can be witnessed
by a combinatorial representation of A. Specifically, we can determine cra(y, A) by
computing the weight of each pipe uv € E(H) in O(|E(G)| + |E(H)|) time, and
finding all edge-crossings in the drawing y (H) in O(|E(H)|log|E(H)|) time. Given
a combinatorial representation of a drawing A : G — H, we can determine the
number of crossings at all nodes u € V(H) in O(ZueV(H) Ik_l[u]|) = O(|E(G)))
time. m|

We prove NP-hardness by a reduction from 3SAT. Let @ be a Boolean formula in
3CNF with aset X = {x1, ..., x,,} of variables and asetC = {cy, ..., ¢;;} of clauses.
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pe T(x) = true 0 /

pe 7(z) = false Q L’—\

Fig. 7 Left: two crossing-free perturbations of a crimp P* that encodes the truth value of x. Right: Two
additional crimps on Plx and P3X (thick subpaths); the path Q has either 3 or 5 crossings with P*, depending
on the truth value of x

We construct graphs G and H, a simplicial map A : G — H, a straight-line drawing
y : H — R?, and an integer K € N such that cr(y o A) < K if and only if @ is
satisfiable.

We present the construction of G, H, A, and y for Theorem 2(2), where G is a
disjoint union of paths, in Sect. 4.1. In Sect. 4.2, we describe a slight modification of
the construction for Theorem 2(1), where G is a cycle.

4.1 First construction: disjoint union of paths

We start with an overview of the construction that highlights the key ideas and then
continue with the details. Let P be a path. A map ¢ : P — R? is a crimp if P is
a concatenation of 3 paths Pj, P», and P3 of equal lengths in the given order such
that ¢ (P1) = @(P2) = ¢(P3), and ¢(P;) is injective for i = 1,2, 3. An crossing-
free perturbation of ¢ can be loosely regarded to have the shape of the letter Z or its
mirror image. We encode the truth value of a Boolean variable by the two possible
embeddings, or equivalently by the above-below relationship between P; and Ps; see
Fig. 7(left).

Let ¢ : G — R? and let Py be a path in G with internal vertices of degree 2 such
that ¢ (Py) is injective. We define the operation on ¢ and G, called the crumpling of
Py, that results in ¢’ : G’ — R? such that G’ is obtained from G by tripling the length
of Py thereby turning Py into a path P, and ¢’ is obtained from ¢ as follows. We set
¢’ (v) = @(v) for all V € V(G) outside the interior of P, and ¢’|p is a crimp such
that ¢'(P) = @(Py).

It is not hard to see that given a straight-line map ¢ : G — R? and a path Py in
G with internal vertices of degree 2 such that ¢(Py) is injective, then the crumpling
of Py does not require crossings as long as ¢ is a weak embedding, that is, cr(¢) = 0
implies cr(¢’) = 0. Our construction is based on the fact that if cr(¢) > 0, then the
crumpling of Py may increase the number of crossings.

Roughly speaking, in the reduction we model each Boolean variable x of a 3SAT
formula by a path in G obtained as follows. First, we introduce a crimp in a path
thereby obtaining a path P* as above consisting of three subpaths P}, P;', and P3 of
equal length (Fig. 7, left). Second, for every occurrence of the variable x in a clause
¢ we introduce a crimp in a short (crimp-free) subpath of both P;* and Py'; offset by
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Fig.8 Two embeddings of G for a Boolean variable x € X. Top: Pf‘ is above P3X. Bottom: Pl" is below
PX
3

H,.
H,,

Fig.9 A bottom left part of a straight-line drawing y of H of the NP-hardness reduction corresponding to
variables x1, ..., x7 and clauses ¢y, ¢p and c¢3. The truth value of the clause ¢ depends on the variables
X1, X2, x3, the truth value of ¢ on x1, x5, x7, and the truth value of ¢3 on x3, x3, xg

one unit. Then each clause ¢ is modeled by a short path Q on four vertices that crosses
the crimps on P and P5 corresponding to the occurrences of variables x in ¢ (Fig. 7,
right). We show that the path Q creates either 3 or 5 crossings with the path P* in every
perturbation of ¢, and 3 crossings are possible if only if the perturbation corresponds
to a truth assignment in which at least one literal in ¢ has positive truth value.

The formal argument follows. We first define H and its straight-line drawing y :
H — R?; and then define G and the simplicial map A : G — H.

Construction of H and y © H — R2. For every variable x € X, create a path of
5m + 3 vertices, denoted H, = (u3, uy, ..., ug‘m+5); see Fig. 8.

Fori = 1,...,m, clause ¢; € C is associated to at most three (negated or non-
negated) variables. If ¢; is associates with variables x, y, z € X, then we identify the
clusters uz;_, u§i+£, ”§;+z and denote the resulting cluster by us; ¢ for¢ =0, 1, 2, 3.
Add two new clusters v; an w;, and two new pipes v; ug“,. 41 and wiug‘ 4o This completes
the description of H.

We now describe a straight-line drawing y : H — R?; see Fig. 9. For i =
1, ..., m, map the clusters us;, ..., us;+3 (associated with clauses) to integer points
(5i,0), ..., (5i 4+ 3, 0) on the x-axis, respectively. For two additional clusters, v; and
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Fig.10 A clause gadgetforc; = (xVyVz), where t(x) = 7(z) = falseand t(y) = true. The neighborhood
of the four middle “vertically prolonged” clusters and pipes between them forms N;

w;, are mapped to points y(v;) = (5i + 1, 1) and y(w;) = (5i + 2, —1), above
and below the x-axis. The remaining clusters of each path Hy, x; € X, are mapped
to integer points in the horizonal line y = j + 1 for j = 1,..., n. Specifically,
y(u?j ) =(G,j+1),for3 <i < 5m+ 5, except for clusters uf/ that have been
associated with clauses.

Observation 1 Foreveryx € X, y(H,) is an x-monotone polygonal path in the plane.
Consequently, if c; € C contains variables x, y, and z, then the pipes of H,, Hy, and
H_ that enter us; and exit us;+3 appear in reverse ccw order in the rotation of us; and
us;y3, respectively.

Construction of G and A : G — H. For each clause ¢; € C, create a path G; of 4
vertices, and map it to the path (v;, us;+1, us;+2, w;) in H. For each variable x € X,
create a path G as follows. First, create a crimp composed of a path of 15m + 5
vertices as a concatenation of three paths: P, Py, and Py, which are mapped by
o (uz, ooy us,  4)s US, g4 uy), and (ugy, ..., us,  s), respectively. We shall
further crumple subpaths of P and P5 . Regardless of these local crumplings, in every
embedding of G, the path P} lies between P;’ and P3 . The truth value of variable x
is encoded by the above-below relationship between Pj* and P5 (Fig. 8).

Each pair (x,c;) € X x C, where a literal x or x appears in ¢;, corresponds to
the subpath (us;, ..., us;13) of Hy.If ¢; contains the nonnegated x, then crumple the
subpath of le mapped by A to (us5;41, Usi+2, usi+3) and the subpath of Px3 mapped
to (us;, usiy1, usi+2). Otherwise (if ¢; contains the negated X), then crumple the
subpath of Px3 mapped by A to (us;+1, Usi+2, Usi+3) and the subpath of le mapped to
(usi, usit1, usi+2). This completes the definition of G. See Fig. 10 for an illustration.
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The maps A : G — Handy : H — R? determine cra(y, A). Finally, let K =
crp(y, A) 4 13m. This completes the construction for an instance corresponding to the
instance @ of 3SAT.

Note that G and H have O (mn) vertices and edges, and the drawing y maps the
clusters in V (H) to integer points in an O (m) x O(n) grid. In particular, the size of
the instance in polynomial in m and n.

Equivalence First, we show that if the Boolean formula @ is satisfiable, then cr(y, 1) <
K. Assume that @ is satisfiable, and let t : X — {true, false} be a satisfying truth
assignment. Fix ¢ € (0, &g). For every x € X, denote by N, the union of disks N, and
regions Ny, for all clusters v € V(H,) and pipes uv € E(H,); and similarly for every
i =1,..., mletN; be the union of such regions for the path H; = (us;11, ..., si+3)
associated with clause ¢; in H. For every x € X, incrementally, embed the path G
in \V; as follows: each edge is an x-monotone Jordan arc; if T(x) = true, then Py lies
above Pj; otherwise Py lies above Pj'. If a clause ¢; contains variables x, y, z € X,
we also ensure that the embeddings of G, Gy, and G, are pairwise disjoint within
N;. This is possible by Observation 1. Finally, fori = 1, ..., m, embed the path G;
as follows. Assume that ¢; contains the variables x, y, z € X', where x corresponds to
a true literal in ¢;. Then I'(G;) starts from y (v;) along the vertical line x = 5i + 1
until it crosses the arc I"(Py), then follows I"(P5) to the vertical line x = 5i 42, and
continues to y (w;) along that line. Note that I"(Py') crosses only 3 edges in I'(G),
and 5 edges in I"(Gy) and I"(G;). So there are 13 crossings in N; fori = 1,...,m;
and the total number of crossings is cra(y, A) + 13m, as required.

Second, we show that if cr(y,X) < K, then @ is satisfiable by constructing a
satisfying truth assignment. Consider functions A : G — H and I" : H — R? such
that oA :G — R%isa drawing in which cr(I”" o A) < K. Note that cra(y, A)
crossings are unavoidable due to edge-crossings in the drawing y (H). Hence, by the
definition of K, there are at most 13m crossings in the neighborhoods of clusters. We
show that (1) there must be precisely 13 crossings in the neighborhood N; of each
clause c;, (2) I' o A(Gy) is an embedding for every variable x € X, and (3) the
embeddings of G, for all x € X, jointly encode a satisfying truth assignment for @.
Properties (1) and (2) are established by the following lemma.

Lemma10 Leti € {1,...,m} and let x,y,z € X be the three variables in c;. In
I" o A, there are at least 13 crossings in the neighborhood N;, and equality is possible
only if none of the drawings I" o A(G,), x € X, has self-crossings in N;, and at least
one of Gy, Gy, and G is crossed exactly 3 times by G;.

Proof Leti € {1, ..., m}, and assume that clause ¢; contains the variables x, y, z € X.
Recall that ¢; is associated with the path H; = (us;, . .., u5;+3) in H. We may assume
without loss of generality that the ccw order of the neighbors of us; in y(H) is
(us;_y u%}_l» US;_y» Usit1)-

Each of the graphs G, Gy, and G, have 3 vertex disjoint connected subgraphs in
A~ 1[H;]. Due to the rotation of cluster us;+1 and us; 7, the path G; has to cross each of
them, which yields at least 3 crossings in \V; witheachof G, G y»and G . Furthermore,
G, Gy, and G each has 6 components (each of which is formed by a single vertex) in
A1 [usi41] (resp., A1 [us5i42]), and 5 of these components are adjacent to vertices in
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both adjacent clusters of H;; we call these through components. For each of Gy, Gy,
and G, there exist altogether exactly 7 edges incident to these subgraphs (vertices)
in A™'[us;41usi42]. Note that G; has only one edge in A~ ![us; 4 us;i42], which we
denote by e;.

Without loss of generality we assume that all the edge crossings of G; with G,
Gy, and G; in the drawing I" o A occur along e;, and outside of Ny us;,, by
(P3). Consequently, the drawing I" o A defines a total “top to bottom” order of the
7-3+1 =22edgesin 21 [u5i+1usi+2]; given by the order of the intersection points
of edges of G along Ny, us;,» N Nus; - Let Iy, Iy, and I; be the minimum intervals in
this order spanned by the edges of A~ [us; 1 jus;12]in G,, Gy, and G, respectively.
If the edge e; is above (resp., below) all the 7 edges of G in Al [usi+1us5i42], then
it creates at least 5 crossings with the edges incident to the 5 through components in
Nus;, (resp., Nus,,,). Analogous statements hold for G, and G, as well. That is, if
e; isnotin Iy (resp., I and 1), then G; crosses Gy (resp., Gy and G) at least 5 times
in V.

We distinguish several cases based on the relative positions of the intervals Iy, I,
and I,. If I, Iy, and I, are pairwise disjoint, then e; lies in at most one of these
intervals, and G; crosses G, Gy, and G, altogether at least 3+5+5 = 13 times. If ¢;
lies in exactly two of these intervals, say I, and I, then there are at least 2 crossings
between G, and G in N, and G; crosses G, Gy,and G; atleast 3 +3 +5 =11
times. Hence, altogether there exist at least 11+2=13 crossings in this case. Finally, if
e; lies in all three intervals, then there must be at least 6 crossings between Gy, G,
and G; in \V;, that is, 2 between each pair. Furthermore, G; crosses Gy, Gy, and G,
altogether at least 3 4+ 3 4+ 3 = 9 times. Hence, altogether there exist at least 6+9=15
crossings in this case. In all cases, the number of crossings among G;, G, Gy, and
G in ; is at least 13, as required. Equality is possibly only if none of G, G, and
G has self-crossings, and at least one of G, Gy, and G is crossed by G; exactly 3
times. O

By Lemma 10, cry(y, A) < 13m implies that I" o A defines an embedding of G, for
allx € X,ineachregion N;,i = 1, ..., m.Consequently, I" o A defines an embedding
of G, inR2 forall x € X.In every embedding I" o A(Gy), for x € X, either P}* lies
above Py, or vice versa. We can now define a truth assignment 7 : X — {true, false}
such that for every x € &', 7(x) = true if and only if Pj" lies above P5 in I" o A(G,).

Lemma 11 Assume that I'o A(Gy) is an embedding for every x € X, which determines
the truth assignment T : X — {true, false} described above. For everyi =1, ..., m,
if variable x appears in clause c;, and G; crosses Gy at most 3 times in N;, then x
appears as a true literal in c;.

Proof Consider the highest and lowest path P, and Py, respectively, among P, Py,
and Py in ;NI o A(Gy), none of which can be Py since I"o A(G ) is an embedding.
By the construction of A, either there exists exactly one through component of P, in
A1 [15;+1] and exactly one through component of P, in 21 [15i42], or vice versa.
By the construction of A, G; crosses each of P{', Py, and P; at least once in
N;. By the hypothesis of the lemma, it crosses each exactly once. Then Pj, has only
one through component in A‘l[u5i+1], and Py has only one through component in
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2 [u 5i+2]. By the construction of A, if x appears as a nonnegated variable in c;, then
Py = Py lies above Py and therefore 7 (x) = true. Similarly, if x appears as a negated
variable in ¢;, then P3x = P lies above Py and therefore 7 (x) = false. Consequently,
x appears as a true literal in ¢; and that concludes the proof. O

Since cri(y, A) < 13m, foreveryi = 1, ..., m, there are exactly 13 crossings in
N; by Lemma 10. Moreover, by Lemma 10 the drawing I" o A(G,) is an embedding
forevery x € X, and in every c; for one its variables x the drawing of G, is crossed by
G, exactly 3 times. By Lemma 11, the assignment T makes at least one literal in each
clause c; of @ true. We conclude that @ is satisfiable, as required. This completes the
proof of NP-hardness.

4.2 Second construction: cycle

In our first construction in Sect. 4.1, G was a disjoint union of paths, and for every
path endpoint a € V(G), a is the only vertex mapped to the cluster A(a) € V(H).
This property allows us to expand the construction as follows. We augment G into a
cycle G by adding 2-edge paths connecting the path endpoints, and we augment H
with 2-pipe paths between the corresponding clusters, # = A(a) and v = A(D), by
drawing a straight-line path y (uv) between y (1) and y (v) that does not pass through
the image of any other cluster (but may cross images of other pipes). The augmentation
does not change cry (y, A), and we can easily compute the increase in crp(y, A) due to
new crossings. Consequently, finding cr(y o A) remains NP-hard.

5 An efficient algorithm for a constant number of crossings

Similarly to the standard crossing number, we can decide in polynomial time whether
cr(e) is below a constant k € N. For the standard crossing number, the analogous prob-
lem is reduced to O (n®®) calls of a planarity test. Here, instead of planarity testing,
we use an algorithm for recognizing weak embeddings, which has been extended to
testing embeddability into a given manifold by Akitaya et al. (2018). Roughly speak-
ing, we first guess how the edges of G cross under a map A : G — H witnessing
cr(¢) < k. Then we turn the crossings in A into vertices, which yields a graph G'.
Finally, we construct an equivalent instance of the weak embeddibility problem, which
can be solved in polynomial time by Akitaya et al. (2018).

Theorem 3 For every k € N, there is an algorithm that decides in O(n°®) time
whether cr(g) < k for a given map ¢ : G — R?, where G has n vertices.

Proof We are given a straight-line map ¢ : G — R? and a positive integer k € N,
and we need to decide whether cr(p) < k. Recall that ¢ is given as a composition of
A:G — Handy : H— R? where H is a graph. Recall also that cr(y o 1) =
cri(y, M) + cra(y, A) by Lemma 1, where cra(y, A) is the number of edge pairs in
G mapped to crossing pipes in H, and it can be computed in polynomial time. If
crp(y, A) > k, then we can report that cr(p) > k. In the remainder of the proof,
we assume cra(y, A) < k, and let k; = k — crp(y, A). We need to decide whether
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cri(y, M) < ki, that is, whether there exists a drawing A : G — H with properties
(P1)—(P3) and at most k| crossings.

If such a drawing A exists, and we insert new vertices at the crossings, we obtain a
graph G’ with at most n + k| vertices that admits an embedding into H with properties
(P1)-(P3). We can guess the number of crossings x, 0 < x < kj. For each crossing,
we guess the pair of edges that cross and the disk D,, in which they cross. If an edge
crosses several other edges within adisk D,,, we also guess the order of these crossings.
Based on these guesses, we can construct a graph G’ in which crossings are turned
into vertices. Specifically G’ is obtained from G by first subdividing edges by vertices
representing crossings, and then identifying the pairs of vertices that correspond to
the same crossing. Then we extend the map A : G — Htoamap ' : G’ — H as
follows. If a vertex ¢ € V(G') \ V(G) represents a crossing in a disk D,,, then we put
2 (¢) := u. There are O (n) possibilities for each crossing, and so there are O (k! n3k)
possible guesses for k1 < k crossings.

Conversely, if A’ : G’ — H admits a crossing-free embedding A’ : G' — H
satisfying properties (P1)—(P3), then it yields a drawing A : G — H with properties
(P1)-(P3), and at most x < k; crossings, which witnesses that cra(y, A) < kj. (In
the drawing A(G), each vertex in V(G’) \ V(G) is a common interior point of two
edges, which either properly cross or have a point of tangency at that point.) Testing
whether such an embedding A’ : G’ — H exists is precisely an instance of the weak
embeddability problem, and can be solved in O (n? log n) time by Akitaya et al. (2018).
The overall running time of the algorithm is O (k! n***2 logn). O

It remains an open problem whether computing cr(¢) is FPT when parameterized
by the solution value. In other words, we are asking whether the running time O (n?®)
in Theorem 3 can be improved to f (k)n O similar to the (standard) crossing number
by a result of Grohe (2004) [see also Kawarabayashi and Reed (2007)]. Note, however,
that deciding whether the crossing number of a graph is less than or equal to a given
threshold k does not admit a polynomial by kernel (Hlineny and Dernar 2016).

6 Conclusions

Motivated by recent efficient algorithms that can decide whether a piecewise linear
map ¢ : G — R? can be perturbed into an embedding, we investigate the problem of
computing the minimum number of crossings in a perturbation. We have described an
efficient algorithm when G is a cycle and ¢ has no spurs (Theorem 1); and the problem
becomes NP-hard if G is an arbitrary graph, or if G is a cycle but ¢ may have spurs
(Theorem 2). However, perhaps one can minimize the number of crossings efficiently
under milder assumptions. We formulate one promising scenario as follows: Is there
a polynomial-time algorithm that finds cr(y o A) when A~ ![u] is a planar graph (resp.,
an edgeless graph) for every cluster u € V(H) and A has no spurs?

Another interesting research direction, raised in Sect. 5, is whether there is an FPT
algorithm for computing cr(p) when parameterized by the solution value, that is,
whether it can be computed in time f (k)n?1 for a given straight-line map ¢ : G —
R2, where G has n vertices.
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Finally, we are also interested in approximating cr(¢) in polynomial time when
G has maximum degree 2. Every such graph is planar, hence its crossing number
is 0. In contrast, it is APX-hard to approximate the crossing number of an arbitrary
graph, or even a 3-regular graph (Cabello 2013). For graphs of bounded maximum
degree, the first sublinear approximation algorithm by a factor of 0 (n®?) was achieved
by Chuzhoy (2011). For bounded degree graphs, there also exists a polynomial time
algorithm (Even et al. 2002) that approximates the quantity n + cr(G) within a factor
of O (log® n) as explained in Chuzhoy (2011).
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