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Exploiting Timing Information in Event-Triggered
Stabilization of Linear Systems

With Disturbances
Mohammad Javad Khojasteh , Member, IEEE, Mojtaba Hedayatpour, Member, IEEE,

Jorge Cortés , Fellow, IEEE, and Massimo Franceschetti , Fellow, IEEE

Abstract—Similar to the way pauses are used in spo-
ken language to convey information, it is also possible to
transmit information in communication networks not only
by message content, but also with its timing. This article
presents an event-triggering strategy that utilizes timing
information by transmitting in a state-dependent fashion.
We consider the stabilization of a continuous-time, time-
invariant, linear plant over a digital communication channel
with bounded delay and subject to bounded plant distur-
bances, and establish two main results. On the one hand,
we design an encoding–decoding scheme that guarantees
a sufficient information transmission rate for stabilization.
On the other hand, we determine a lower bound on the
information transmission rate necessary for stabilization by
any control policy.

Index Terms—Control under communication constraints,
event-triggered control, feedback stabilization with delay,
networked control systems.

I. INTRODUCTION

IN MANY networked control systems (NCSs), the feedback
loop is closed over a communication channel [1]. In this

context, data-rate theorems [2], [3] state that the minimum
communication rate required to achieve stabilization is equal
to the entropy rate of the plant, expressed by the sum of the
unstable modes in nats (one nat corresponds to 1/ ln 2 bits).
Key contributions by [4]–[6] consider a “bit-pipe” communi-
cation channel, capable of noiseless transmission of a finite
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number of bits per unit time evolution of the plant. Extensions
to noisy communication channels are considered in [7]–[10].
Additional formulations include stabilization of switched linear
systems [11]; uncertain systems [12]; nonlinear systems [13],
[14]; multiplicative noise [15]; and optimal control [16], [17].

While the majority of communication networks transmit in-
formation by adjusting the content of the message, it is also
possible to communicate information by adjusting the trans-
mission time of a symbol [18]. In fact, it is known that event-
triggering control techniques [19] encode information in timing
in a state-dependent fashion [20]. The authors in [21]–[25] study
event-triggered strategies over communication networks with-
out exploiting the implicit timing information in the triggering
events. Heemels et al. [24] consider periodic event-triggered
control for linear systems where the event-triggering condition
is verified periodically. Tanwani et al. [25] consider output
feedback stabilization of linear systems with no disturbance
where the measured outputs and control inputs are subject to
event-triggered sampling and dynamic quantization.

In contrast to the aforementioned works, to decrease the
number of physical packets transmitted over the network (data
payload), the authors in [20], [26]–[31] study event-triggered
strategies that exploit the inherent timing information in the
events, and show that stability can be achieved with a rate lower
than the one prescribed by data-rate theorems. Guo and Kostina
[26] utilize the implicit timing information in triggering events
to estimate a Wiener process over a finite rate communication
channel subject to finite delay. Pearson et al. [27] use event trig-
gering to encode information in timing for stabilization of linear
systems without disturbances in a silence-based communication
manner [32]. Also, [33] extends the results of [27] to optimal
control. The authors in [28] and [29] show that, with sufficiently
small delays, and assuming that the controller has knowledge
of the triggering strategy, one can stabilize the plant with any
positive data payload transmission rate. These results are ex-
tended in [31] to a large class of triggering strategies. Ling [30]
provides a sufficient data payload rate for second-order systems
with real eigenvalues. While in these works, the delay is assumed
to be sufficiently small to achieve stabilization, [20] considers
arbitrary transmission delays in the communication network and
quantifies the information contained in the timing of the events
for the stabilization of scalar plants without disturbances. In
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Fig. 1. Networked control system model.

[20], it is shown that for small delay values, stability can be
achieved with any positive information transmission rate (the
rate at which the sensor transmits data payload). However, as
the delay increases to values larger than a critical threshold,
the timing information contained in the triggering action itself
may not be enough to stabilize the plant and the information
transmission rate must be increased. The results in [20] are valid
for vector plants when the open-loop gain matrix has only real
eigenvalues.

The literature has not considered to what extent the implicit
timing information in the triggering events is useful in the
presence of plant disturbances for the entire spectrum of possible
bounded communication delays. Beyond the uncertainty due
to the unknown delay in communication, disturbances add an
additional degree of uncertainty to the state estimation process.
The required rate for stabilization and the viable notion for
stabilization over communication channels critically depend on
the presence of disturbances [5], [7], [8]. With this in mind and
in contrast to [20] that requires exponential convergence guaran-
tees, here, we study input-to-state practical stability (ISpS) [34],
[35] of a linear, time-invariant plant subject to bounded distur-
bances over a communication channel with arbitrarily large but
bounded delay.

Our contributions are threefold. First, for scalar real plants
with disturbances, we derive a sufficient condition on the in-
formation transmission rate for the whole spectrum of possi-
ble communication delay values. Specifically, we design an
encoding–decoding scheme that, together with the proposed
event-triggering strategy, rules out Zeno behavior and ensures
that there exists a control policy that renders the plant ISpS.
We show that for small values of the delay, our event-triggering
strategy achieves ISpS using only implicit timing information
and transmitting data payload at a rate arbitrarily close to zero.
On the other hand, since larger values of the delay imply that the
information transmitted has become excessively outdated and
corrupted by the disturbance, increasingly higher communica-
tion rates are required as the delay becomes larger. Our second
contribution pertains to the generalization of the sufficient con-
dition to complex plants with complex open-loop gain subject
to disturbances. This result sets the basis for the generalization
of event-triggered control strategies that meet the bounds on the
information transmission rate for the ISpS of vector systems
under disturbances and with any real open-loop gain matrix
(with complex eigenvalues). The first two contributions provide
stronger results than our preliminary conference papers [36],
[37] and contain a complete technical treatment. Our final contri-
bution is a necessary condition on the information transmission
rate for scalar real plants, assuming that at each triggering time,

the sensor transmits the smallest possible packet size to achieve
the triggering goal for all realizations of the delay and plant
disturbance. The simulation results are presented in Appendix A.

II. PROBLEM FORMULATION

We consider1 an NCS described by a plant-sensor-channel-
controller tuple; cf., Fig. 1. The plant is described by a scalar,
continuous-time, linear time-invariant model

ẋ = Ax(t) +Bu(t) + w(t) (1)

where x(t) ∈ R and u(t) ∈ R for t ∈ [0,∞) are the plant state
and control input, respectively, and w(t) ∈ R represents the
plant disturbance. The latter is a Lebesgue-measurable function
of time, and upper bounded as

|w(t)| ≤M (2)

where M ∈ R≥0. In (1), A ∈ R is positive (i.e., the plant is un-
stable), B ∈ R \ {0}, and the initial condition x(0) is bounded.
We assume the sensor measurements are exact and there is no
delay in the control action, which is executed with infinite pre-
cision. However, measurements are transmitted from the sensor
to controller over a communication channel subject to a finite
data rate and bounded unknown delay.2 We denote by {tks}k∈N

the sequence of times when the sensor transmits a packet of
length g(tks) bits containing a quantized version of the encoded
state. We let ∆′

k = tk+1
s − tks be the kth triggering interval. The

packets are delivered to the controller without error and entirely
but with unknown upper bounded delay. Let {tkc}k∈N be the
sequence of times where the controller receives the packets

1Throughout this paper, we use the following notation. R, R≥0, C, and
N represent the set of real, non-negative real, complex, and natural numbers,
respectively. We let |.| and ∥.∥ denote absolute value and complex absolute value,
respectively. Let log and ln represent base 2 and natural logarithms, respectively.
For a function f : R → Rn and t ∈ R, we let f(t+) = lims→t+ f(s) denote
the right-hand limit of f at t. In addition, ⌊x⌋ (resp., ⌈x⌉) denotes the nearest
integer less (resp., greater) than or equal to x. We denote the modulo function
by mod(x, y), representing the remainder after division of x by y. The function
sign(x) denotes the sign of x. Any Q ∈ C can be written as Q = Re(Q) +
iIm(Q) = ∥Q∥eiφQ , and for any y ∈ R, we have ∥eQy∥ = eRe(Q)y . Tr(A)
denotes the trace of matrixA, andm denotes the Lebesgue measure. For a scalar
continuous-time signal w(t), we define |w|t = sups∈[0,t] |w(s)|. To formulate
the stability properties, for nonnegative constant d, we define

K(d) := {f : R≥0→ R≥0 | f continuous

strictly increasing, and f(0) = d}

K∞(d) := {f ∈ K(d)|f unbounded}

K2∞ := {f : R≥0× R≥0→ R≥0 | ∀t > 0

f(., t) ∈ K∞(0), and ∀r > 0 f(r, .) ∈ K∞(0)}

L := {f : R≥0→ R≥0 | f continuous

strictly decreasing, and lim
s→∞

f(s) = 0}

KL := {f : R≥0× R≥0→ R≥0 | f continuous

∀t≥0, f(., t) ∈ K(0), and ∀r > 0 f(r, .) ∈ L}
2In general, there might also be a communication channel with finite capacity

in the downlink, between the controller and the plant. However, in many
applications such as mobile robots [38], the uplink, which is studied here, is the
main bottleneck, as a strong on-board transmitter reduces the operating duration,
restricts robot mobility, and increases cost.
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transmitted at times {tks}k∈N . We assume the communication
delays ∆k = tkc − tks for all k ∈ N, satisfy

∆k ≤ γ (3)

where γ ∈ R≥0. When referring to a generic triggering or re-
ception time, for convenience, we skip the superscript k in tks
and tkc , and the subscript k in ∆k and ∆′

k. In our model, clocks
are synchronized at the sensor and the controller. In case of
using a timestamp, due to the communication constraints, only
a quantized version of it can be encoded in the packet g(ts).

At the controller, the estimated state is represented by x̂ and
evolves during the interreception times as

˙̂x(t) = Ax̂(t) +Bu(t), t ∈ (tkc , tk+1
c ) (4)

starting from x̂(tk+c ), which represents the state estimate of the
controller with the information received up to time tkc with initial
condition x̂(0) (the exact way to construct x̂(tk+c ) is explained
later in Section III).

Assumption 1: The sensor can compute x̂(tk+c ) for allk ∈ N.
Remark 1: We show in Proposition 2 that Assumption 1

is valid for our controller design, provided the sensor knows
the times the actuator performs the control action. This is a
common practice in TCP-based networks, where packet arrivals
are acknowledged via a communication feedback link, to ensure
the robust transmission of the packets, see, e.g., [39]–[41]. In an
NCS, this corresponds to assuming an instantaneous acknowl-
edgment from the actuator to the sensor via the control input,
known as communication through the control input [7], [8], [42].
To obtain such causal knowledge, one can monitor the output
of the actuator provided that the control input changes at each
reception time. In case the sensor has only access to the plant
state, since the system disturbance is bounded (2), assuming that
the control input is continuous during interreception times and
jumps in the reception times such that B|u(tc) − u(t−c )| > M ,
the controller can signal the reception time of the packet to the
sensor via ẋ(t). Finally, we note that any necessary condition on
the information transmission rate obtained with Assumption 1 in
place remains necessary without it as well (cf., Section IV-B).•

Under Assumption 1, the sensor can use (4) to compute
x̂(t) for all t≥0, provided it knows x̂(0). Thus, under this
assumption, the estimation error at the sensor is

z(t) = x(t) − x̂(t) (5)

and we rely on this error to determine when a triggering event
occurs in our controller design. We next define a modified
version of the input-to-state practical stability (ISpS) [34], [35],
which is suitable for the present setup.

Definition 1: The plant (1) is ISpS if there exist ξ ∈ KL,
ψ ∈ K∞(0), d ∈ R≥0, ι ∈ K∞(d), and ϑ ∈ K2

∞ such that

|x(t)|≤ξ (|x(0)|, t)+ψ (|w|t)+ι(γ)+ϑ(|w|t, γ) ∀t≥0.

Note that, for a fixed γ, this definition reduces to the standard
notion of the ISpS. Given that the initial condition, delay, and
system disturbances are bounded, the ISpS implies that the
state must be bounded at all times. Our objective is to ensure
the dynamics (1) is the ISpS given the constraints posed by
the system model of Fig. 1. Let bs(t) be the number of bits

transmitted in the data payload by the sensor up to time t. The
information transmission rate is

Rs = lim sup
t→∞

(bs(t)/t) = lim sup
N→∞

!
N"

k=1

g(tks)
# N"

k=1

∆′
k

$

(6)

where the latter equality follows by noting that, at each triggering
time tks , the sensor transmits g(tks) bits.

In addition to the data payload, the reception time of the pack-
ets carries information. Consequently, let bc(t) be the amount
of information measured in bits included in data payload and
timing information received at the controller until time t. The
information access rate is Rc = lim supt→∞(bc(t)/t).

Remark 2: We do not consider the bounded delays (3) to
be chosen from any specific distribution. Thus, the informa-
tion that can be gained about the triggering time ts from the
reception time tc may be quantified by the Rényi zeroth-order
information functional I0 [43], [44]. Assuming the controller has
received N packet by time t, we deduce bc(t) =

%N
k=1(g(t

k
s) +

I0(tks ; t
k
c )). •

According to the data-rate theorem [20], [45], if Rc <
A/ ln 2, the value of the state in (1) becomes unbounded as
t→∞, and hence, (1) is not ISpS. The data-rate theorem
characterizes what is needed by the controller, and does not
depend on the specific feedback structure (including aspects
such as information pattern at the sensor/controller, communica-
tion delays, and whether transmission times are state-dependent,
as in event-triggered control, or periodic, as in time-triggered
control). In our discussion latter, the bound Rc = A/ ln 2 serves
as a baseline for our results on the information transmission rate
Rs to understand the amount of timing information contained
in event-triggered control designs in the presence of unknown
communication delays.

We do not consider delays, plant disturbances, and initial
condition to be chosen from any specific distribution. Therefore,
our results are valid for any arbitrary delay, plant disturbances,
and initial condition with finite support. In particular, our goal
is to find upper and lower bounds on Rs, where the lower bound
is necessary at least for a realization of the initial condition,
delay, and disturbances, and the upper bound is sufficient for all
realizations of the initial condition, delay, and disturbances. In
addition, our lower bound is necessary for any control policy
u(t) to render the plant (1) ISpS under the class of event-
triggering strategies described next.

III. EVENT-TRIGGERED DESIGN

Here, we introduce the general class of event-triggered poli-
cies considered in this article. Consider the following class of
triggers: for J ∈ R positive, the sensor sends a message to the
controller at tk+1

s if

|z(tk+1
s )| = J (7)

provided tkc ≤ tk+1
s for k ∈ N and t1s ≥0. A new transmission

happens only after the previous packet has been received by
the controller. Since the triggering time ts is a real number,
its knowledge can reveal an unbounded amount of information
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to the controller. However, due to the unknown delay in the
communication network, the controller does not have perfect
knowledge of it. In fact, both the finite data rate and the delay
mean that the controller may not be able to compute the exact
value of x(tc). To address this, let z̄(tc) be an estimated version
of z(tc) reconstructed by the controller knowing |z(ts)| = J ,
the bound (3) on the delay, and the packet received through the
channel. Using z̄(tc), the controller updates the state estimate
via the jump strategy

x̂(t+c ) = z̄(tc) + x̂(tc). (8)

Note that |z(t+c )| = |x(tc) − x̂(t+c )| = |z(tc) − z̄(tc)|. We as-
sume the packet size g(ts) calculated at the sensor is such that

|z(t+c )| = |z(tc) − z̄(tc)| ≤ J (9)

is satisfied for all tc ∈ [ts, ts + γ]. This property is key to our
forthcoming developments. In particular, we will show that
our controller design for the sufficient characterization on the
transmission rate is based on identifying a particular encoding–
decoding strategy and a packet size to ensure (9). Likewise, our
necessary characterization is based on identifying the minimal
packet sizes necessary to ensure (9).

The importance of (9) starts to become apparent in the fol-
lowing result: if this inequality holds at each reception time, the
state estimation error (5) is bounded for all time.

Lemma 1: Consider the model with plant dynamics (1),
estimator dynamics (4), triggering strategy (7), and jump strat-
egy (8). Assume |z(0)| = |x(0) − x̂(0)| < J and (9) holds at all
reception times {tkc}k∈N . Then, for all t≥0,

|z(t)| ≤ JeAγ +
|w|t
A

&
eAγ − 1

'
. (10)

Proof: At the reception time, z(tk+c ) satisfies (9), hence,
using the triggering rule (7), we deduce |z(t)| ≤ J for
all t ∈ (tkc , tk+1

s ]. Since J is smaller than the upper
bound in (10), and z(t(k+1)+

c ) satisfies (9), it remains to
prove (10) for t ∈ (tk+1

s , tk+1
c ). From (1), (4), and (5), we

have ż(t) = Az(t) + w(t) during interreception time intervals
(tkc , t

k+1
c ). Also, from (7), it follows (tk+1

s , tk+1
c ) ⊆ (tkc , tk+1

c ).
Thus, for all t ∈ (tk+1

s , tk+1
c ), we have

z(t) = eA(t− tk+1s )z(tk+1
s ) +

( t

tk+1s

eA(t− τ)w(τ)dτ. (11)

When a triggering occurs |z(tk+1
s )| = J , hence, the absolute

value of the first addend in (11) is upper bounded byJeA(t− tk+1s ).
Also, for the second addend in (11), we have

|
( t

tk+1s

eA(t− τ)w(τ)dτ |

≤ |w|t
( t

tk+1s

|eA(t− τ)|dτ = |w|t
A

)
eA(t− tk+1s ) − 1

*
. (12)

By (3), t − tk+1
s ≤ tk+1

c − tk+1
s ≤γ, and the result follows. !

We continue by showing that, if (9) holds at each reception
time {tkc}k∈N , then a linear controller renders the plant (1) ISpS.
We note that similar results exist in the literature (e.g., [24], [46],

and [47]) and we extend them here to our event-triggering setup
with quantization and unknown delays.

Proposition 1: Under the assumptions of Lemma 1, the
controller u(t) = − Kx̂(t) renders (1) ISpS, provided A −
BK < 0.

Proof: By letting u(t) = − K(x(t) − z(t)), we rewrite (1) as
ẋ(t) = (A − BK)x(t) +BKz(t) + w(t). Consequently

|x(t)| ≤ e(A− BK)t|x(0)|

+ e(A− BK)t

( t

0
e− (A− BK)τ (BK|z(τ)|+ |w(τ)|)dτ

(13)

since A − BK < 0, the first summand in (13) is a KL function
of |x(0)| and time. Thus, it remains to prove the second summand
in (13) is upper bounded by summation of a K∞(0) function of
|w|t, a K∞(d) function of γ, and a K2

∞ function of |w|t and γ.
The second summand in (13) is upper bounded by

− (1 − e(A− BK)t)(BK|z|t + |w|t)/(A − BK).

Since 1 − e(A− BK)t < 1, using Lemma 1, we deduce the second
summand in (13) is upper bounded by

ψ(|w|t) + ι(γ) + ϑ(|w|t, γ),

where

ψ(|w|t) = (|w|t/ − (A − BK))

which is a K∞(0) function of

|w|t, ι(γ) = ((BKJeAγ)/ − (A − BK)),

which is a K∞(d) function of γ with d = ι(0), and

ϑ(|w|t, γ) = ((BK|w|t)/ − A(A − BK))(eAγ − 1),

which is a K2
∞ function of γ and |w|t. !

Using (2), we deduce from Lemma 1 that |z(t)| ≤ JeAγ +
M
A (e

Aγ − 1) for all t≥0. Next, we rule out Zeno behavior (an
infinite amount of events in a finite time interval) for our event-
triggered control design. To do this, let 0 < ρ0 < 1 be a design
parameter, and assume the packet size g(ts) is selected at the
sensor to ensure a stronger version of (9)

|z(t+c )| = |z(tc) − z̄(tc)| ≤ ρ0J. (14)

Clearly, (14) implies (9). Next, we show that given (14), the time
between consecutive triggers is uniformly lower bounded.

Lemma 2: Consider the model with plant dynamics (1),
estimator dynamics (4), triggering strategy (7), and jump strat-
egy (8). Assume |z(0)| = |x(0) − x̂(0)| < J and (14) holds at
all reception times {tkc}k∈N . Then for all

k ∈ Ntk+1
s − tks ≥ln

+
JA+M

ρ0JA+M

,#
A.

Proof: By considering two successive triggering times
tks and tk+1

s and the reception time tkc , from (7), it fol-
lows tks ≤ tkc ≤ tk+1

s . From (1), (4), and (5), we have
ż(t) = Az(t) + w(t) during interreception time intervals
(tkc , t

k+1
c ), consequently using the definition of the trig-

gering time tk+1
s (7), it follows |z(tk+c )eA(tk+1s − tkc )|+
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|
- tk+1s

tkc
eA(tk+1s − τ)w(τ)dτ | ≥J . Using (12) and (14), we

haveρ0JeA(tk+1s − tkc ) + (M/A)(eA(tk+1s − tkc ) − 1)≥J , which is

equivalent to tk+1
s − tkc ≥ 1

A ln(
J+M

A

ρ0J+
M
A

). The result follows

from using tks ≤ tkc in this inequality. !
Given the uniform lower bound on the interevent time in

Lemma 2, we deduce that the event-triggered control design
does not exhibit Zeno behavior. The frequency of transmission
events is captured by the triggering rate

Rtr = lim sup
N→∞

!
N
# N"

k=1

∆′
k

$
. (15)

Using Lemma 2, we deduce that the triggering rate (15) is uni-
formly upper bounded under the event-triggered control design,
i.e., for all initial conditions, possible delay, and plant noise
values

Rtr ≤ A
#
ln

+
JA+MA

ρ0JA+M

,
. (16)

IV. SUFFICIENT AND NECESSARY CONDITIONS ON THE
INFORMATION TRANSMISSION RATE

Here, we derive sufficient and necessary conditions on the
information transmission rate (6) to ensure (1) is ISpS. Our
approach is based on the characterization of the transmission
rate required to ensure that (9) holds at all reception times.
Section IV-A introduces a quantization policy that, together
with the event-triggered scheme, provides a complete control
design to guarantee (1) is ISpS and rules out Zeno behavior.
Section IV-B presents lower bounds on the packet size and
triggering rate required to guarantee (1) is ISpS, leading to our
bound on the necessary information transmission rate.

A. Sufficient Information Transmission Rate

1) Design of Quantization Policy: The result in Proposi-
tion 1 justifies our strategy to obtain a sufficient condition on
the transmission rate to guarantee (1) is ISpS, which consists of
finding conditions to achieve (9) for all reception times. Here,
we specify a quantization policy and determine the resulting
estimation error as a function of the number of bits transmitted.
This allows us to determine the packet size that ensures (14)
[and consequently, (9)] holds, thereby, leading to a complete
control design, which ensures (1) is ISpS and rules out the
Zeno behavior. In turn, this also yields a sufficient condition
on the information transmission rate. In our particular design,
the controller estimates z(tc) as

z̄(tc) = sign(z(ts))JeA(tc− q(ts)) (17)

where q(ts) is an estimation of the triggering time ts constructed
at the controller as described next. According to (7), at every
triggering event, the sensor encodes ts and transmits a packet
p(ts). The packet p(ts) consists of g(ts) bits of information and
is generated according to the following quantization policy. The
first bit p(ts)[1] denotes the sign of z(ts). As shown in Fig. 2,
the reception time tc provides information to the controller that
ts could fall anywhere between tc − γ and tc. Let b > 1. To

Fig. 2. Encoding–decoding algorithms in the proposed event-triggered
control scheme. p(ts) of length 5 can be generated and sent to the
controller (p(ts)[1] encodes the sign of z(ts)). After reception and de-
coding, the controller chooses the center of the smallest subinterval as
its estimation of ts, denoted by q(ts).

determine the time interval of the triggering event, we break
the positive time line into intervals of the length bγ, cf., [48,
Appendix C]. Consequently, ts falls into [jbγ, (j + 1)bγ] or
[(j + 1)bγ, (j + 2)bγ], with j a natural number. We use the
second bit of the packet to determine the correct interval of
ts. This bit is zero if the nearest integer less than or equal to
the beginning number of the interval is an even number and is
1 otherwise. Mathematically, p(ts)[2] = mod(⌊ tsbγ ⌋, 2). For the
remaining bits of the packet, the encoder breaks the interval
containing ts into 2g(ts)− 2 equal subintervals. Once the packet
is complete, it is transmitted to the controller, where it is decoded
and the center point of the smallest subinterval is selected as the
best estimate of ts. Thus

|ts − q(ts)| ≤ bγ/2g(ts)− 1. (18)

Pseudocode descriptions of the aforementioned encoding and
decoding algorithms are provided in [48, Appendix D].

Remark 3: When the delay is sufficiently small, the timing
information is substantial and the uncertainty about the value of
the state at the controller is small. In this case, there is no need to
resort to data payloads in the packet, as the plant can be stabilized
using only timing information about the triggering events. In
fact, the sensor simply transmits a fixed symbol from a unitary
alphabet, reducing the communication channel to a telephone
signaling channel [18] capable of stabilizing the system. •

We have employed this quantization policy in our previous
work [20] and analyzed its behavior in the case with no distur-
bances. Next, we extend our analysis to scenarios with both un-
known delays and plant disturbances. As discussed in Remark 1,
we start by showing that under the proposed encoding–decoding
scheme, provided the sensor knows x̂(0) and has causal knowl-
edge of the delay (i.e., the controller acknowledges the packet
reception times), then Assumption 1 holds. The proof of the next
result is in [48, Appendix B].

Proposition 2: Under the assumptions of Lemma 2, using the
estimation (17) and the quantization policy described in Fig. 2,
if the sensor has causal knowledge of delays (i.e., the controller
acknowledges the packet reception times), then it can calculate
{x̂(tk+c )}k∈N .
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2) Sufficient Packet Size: Our next result bounds the differ-
ence |ts − q(ts)| between the triggering time and its quantized
version so that (14) holds at all reception times.

Lemma 3: Consider the model with plant dynamics (1),
estimator dynamics (4), triggering strategy (7), and jump strat-
egy (8). Assume |z(0)| = |x(0) − x̂(0)| < J . Using the esti-
mation (17) and the quantization policy described in Fig. 2, if

|ts − q(ts)| ≤ 1
A ln(1 +

ρ0 − M
JA (eAγ − 1)
eAγ ), then (14) holds for all

reception times {tkc}k∈N if J > M
Aρ0
(eAγ − 1).

Proof: Using (11), (17), and the triangular inequality,
we deduce |z(tc) − z̄(tc)| ≤ JeA(tc− ts)|(1 − eA(ts− q(ts)))|+
|
- tc
ts

eA(tc− τ)w(τ)dτ |. By applying the bounds (2), (3), and (12)
on first and second addend, respectively, it follows
|z(tc) − z̄(tc)| ≤ |JeAγ(1 − eA(ts− q(ts)))|+ (M/A)(eAγ − 1).
Therefore, ensuring (14) reduces to

|1 − eA(ts− q(ts))| ≤ η (19)

where η = e− Aγ(ρ0 − M
AJ (e

Aγ − 1)). Since J > M
Aρ0
(eAγ −

1), we have 0 ≤ η < 1. Consequently, using (19), we de-
duce ln(1 − η)/A ≤ ts − q(ts) ≤ ln(η + 1)/A. It follows that
to satisfy (14) for all delay values, requiring |ts − q(ts)| ≤
min{| ln(1 − η)|/A, ln(1 + η)/A} suffices. !

The next result provides a lower bound on the packet size so
that (14) is ensured at all reception times.

Theorem 1: Consider the model with plant dynamics (1),
estimator dynamics (4), triggering strategy (7), and jump strat-
egy (8). Assume |z(0)| = |x(0) − x̂(0)| < J . Then, there exists
a quantization policy that achieves (14) for all reception times
{tkc}k∈N with any packet size

g(tks)≥max
.
0, 1 + log

Abγ

ln(1 + ρ0 − (M/(JA))(eAγ − 1)
eAγ )

/

(20)

where b > 1 and J > M
Aρ0
(eAγ − 1).

The proof is a direct consequence of (18) and Lemma 3. The
combination of the upper bound (16) obtained for the triggering
rate and Theorem 1 yields a sufficient bound on the information
transmission rate. To sum it up, we conclude that there exists an
information transmission rate

Rs ≤

A

ln( JA+M
ρ0JA+M )

max

.
0, 1 + log

Abγ

ln(1 + ρ0 − (M/(JA))(eAγ − 1)
eAγ )

/

(21)

that is sufficient to ensure (14), and as a consequence (9), for
all reception times {tkc}k∈N . Therefore, from Proposition 1, the
bound (21) is sufficient to ensure the plant (1) is ISpS.

Remark 4: The lower bound given on the packet size in (20)
might not be a natural number or might even be zero. We use it
to properly bound in (21) the information transmission rate Rs,
which is a non-negative real number. For sufficiently small γ,
if g(ts) = 0 is sufficient, the plant can be stabilized using only
timing information and there is no need to put any data payload
in the packet, cf., Remark 3. If we do not use fixed symbols as

in telephone signaling channels [18], in practice, the packet size
should be a natural number. Hence, we employ

g(ts) = max

0
1,

1
1 + log Abγ

ln(1+
ρ0 − (M/(JA))(eAγ − 1)

eAγ )

23

(22)

which is sufficient for stabilization (and is the one used in our
simulations of Appendix A). •

B. Necessary Information Transmission Rate

Here, we present a necessary condition on the information
transmission rate required by any control policy to render
plant (1) ISpS under the class of event-triggering strategies
described in Section III. In Section IV-A, to derive a sufficient
bound that guarantees (1) is ISpS, our focus has been on identify-
ing a quantization policy that could handle any realization of the
initial condition, delay, and disturbance. Here, we focus on any
quantization policy, for which, we identify at least a realization
of initial condition, delay, and disturbance that requires the
necessary bound on the information transmission rate.

Our strategy to provide a necessary condition for (1) to be
ISpS is based on the following observation. Note that, if the
property (9) was not satisfied at an arbitrary reception time tkc
(i.e., z(tkc ) > J), and in addition, either w(t) > 0 or w(t) < 0
for all t≥tkc , then tkc would be the last triggering time as (7)
would never be satisfied again. Then, after tkc , the controller
would need to estimate the inherently unstable plant in open
loop. This would mean that there exists a realization of the initial
condition, system disturbances, and delay for which the absolute
value of the state estimation error grows exponentially with time.
Thus, for any given control policy, there would exist a realization
for which the absolute value of the state tends to infinity with
time, and (1) is not ISpS.

As a consequence of this observation, our strategy to provide a
necessary condition consists of identifying a necessary condition
on the information transmission rate Rs to have (9) at all recep-
tion times {tkc}k∈N . In turn, we do this by finding lower bounds
on the packet size g(ts) and the triggering rate Rtr. We do this
in two steps: first, we find a lower bound on the number of bits
transmitted at each triggering event, which holds irrespective of
the triggering rate. Then, we find a lower bound on the triggering
rate, and the combination leads us to the necessary condition
on Rs.

1) Necessary Packet Size: We rely on (11) to define the
uncertainty set of the sensor about the estimation error at the
controller z(tc) given ts as follows:

Ω(z(tc)|ts) = {y : y = ± JeA(tr − ts) +

( tr

ts

eA(tr − τ)w(τ)dτ

tr ∈ [ts, ts + γ], |w(τ)| ≤M for τ ∈ [ts, tr]}.

Additionally, we define the uncertainty of the controller about
z(tc) given tc, as follows:

Ω(z(tc)|tc) = {y : y = ± JeA(tc− tr) +

( tc

tr

eA(tc− τ)w(τ)dτ

tr ∈ [tc − γ, tc], |w(τ)| ≤M, for τ ∈ [tr, tc]}.
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We next show the relationship between these uncertainty sets.
Lemma 4: Consider the model described in Section II,

with plant dynamics (1), estimator dynamics (4), triggering
strategy (7), and jump strategy (8). Moreover, assume M ≤
AJ . Then, Ω(z(tc)|ts) = Ω(z(tc)|tc) and m(Ω(z(tc)|tc)) =
2(M/A+ J)(eAγ − 1).

Proof: Due to symmetry, one can show that Ω(z(tc)|ts) is
the same as Ω(z(tc)|tc). We characterize the set Ω(z(tc)|ts) as
follows. We reason for the case when z(ts) = J (the argument
for z(ts) = − J is analogous). Clearly, z(tc) takes its largest
value when tc = ts + γ andw(τ) =M for τ ∈ [ts, tc], which is
equal to z(tc) = JeAγ + (M/A)(eAγ − 1). Finding the small-
est value of z(tc) is more challenging. When tc = ts,

z(tc) = J. (23)

By setting w(τ) = − M for τ ∈ [ts, tc] and tc = ts +∆,

z(tc) = JeA∆ − (M/A)(eA∆ − 1). (24)

Taking the derivative of (24) with respect to ∆ results in

dz(tc)/d∆ = AJeA∆ − MeA∆ = eA∆(AJ − M). (25)

If M ≤ AJ and the derivative in (25) is nonnegative, z(tc)
in (24) would be a nondecreasing function of ∆. Hence, the
smallest value of z(tc) in (24) occurs for ∆ = 0, which is equal
to the value of z(tc) in (23). Hence, Ω(z(tc)|ts) = [J, JeAγ +
(M/A)(eAγ − 1)], and the result follows. !

Lemma 4 allows us to find a lower bound on the packet
size g(ts), which is valid irrespective of the triggering rate.

Lemma 5: Under the assumptions of Lemma 4, if (9) holds
for all reception times {tkc}k∈N , then the packet size at every
triggering event must satisfy

g(tks)≥max
4
0, log

&
(M/(AJ) + 1)

&
eAγ − 1

''5
. (26)

Proof: To ensure (9) for all reception times, we calculate
a lower bound on the number of bits to be transmitted to
ensure that the sensor uncertainty set Ω(z(tc)|ts) is covered by
quantization cells of measure 2J . Therefore, we have g(ts)≥
max{0, log(m(Ω(z(tc)|ts))/m(B(J)))}, where B(J) is a ball
centered at 0 of radius J , and we have incorporated the fact
that the packet size g(ts)must be nonnegative. From Lemma 4,
log m(Ω(z(tc)|ts))

m(B(J)) ≥log (M/A+J)(eAγ − 1)
J . !

2) Lower Bound on the Triggering Rate: Our next step is
to determine a lower bound on the triggering rate.

Lemma 6: Under the assumptions of Lemma 4, for all the
quantization policies that ensure (9) at all reception times
{tkc}k∈N , if there exists a delay realization {∆k ≤ α}k∈N , a
disturbance realization, and an initial condition such that

|z(tk+c )| = |z(tkc ) − z̄(tkc )| ≥Υ (27)

for all k ∈ N, then

Rtr ≥A
&
ln
&
eAα(JA+M)

6
(ΥA+M)

''− 1
(28)

for said delay realization, disturbance realization, and initial
condition.

Proof: Using the definition of the triggering time (7), (27),
tkc = tks +∆k, and (11), we have ΥeA(tk+1s − tks − ∆k) +

(M/A)(eA(tk+1s − tks − ∆k) − 1) ≤ J , which is equivalent to

eA(tk+1s − tks ) ≤ eA∆k(JA+M)
6
(ΥA+M). (29)

By hypothesis, (27) occurs for all k ∈ N when ∆k ≤ α. Hence,
by (29), we upper bound the triggering intervals as

∆′
k= tk+1

s − tks≤A− 1 ln
&
eAα(JA+M)

6
(ΥA+M)

'
.
(30)

The result follows by substituting (30) into (15). !
If we do not limit the collection of permissible quantization

policies, a packet may carry an unbounded amount of informa-
tion, which can bring the state estimation error arbitrarily close
to zero at all reception times and for all delay and disturbance
values. This would give rise to a conservative lower bound on the
transmission rate. Specifically, using ∆k ≤ γ, cf., (3), putting
Υ = 0, and combining (26) and (28), we deduce there exists a
delay realization, disturbance realization, and initial condition
such that

Rs ≥A
max

4
0, log

&&
M
AJ + 1

' &
eAγ − 1

''5

ln
&
eAγ JA+M

M

' (31)

is necessary for all quantization policies. To find a tighter nec-
essary condition, we instead limit the collection of permissible
quantization policies. Since ensuring (9) at each reception time
is equivalent to dividing the uncertainty set at the controller
Ω(z(tc)|tc) by quantization cells of measure at most 2J , our
approach is to restrict the class of quantization policies to those
that use the minimum possible number of bits to ensure (9).

Assumption 2: We assume at each triggering time the sensor
transmits the smallest possible packet size to ensure (9) at
each reception time for all initial conditions and all possible
realizations of the delay and plant disturbance. Moreover, to
simplify our analysis in the encoding–decoding scheme, we
choose the center of each quantization cell as z̄(tc).

Based on this assumption, the sensor brings the uncertainty
about z(tc) at the controller down to a quantization cell of
measure at most 2J , using the smallest possible packet size. The
next result, whose proof is in [48, Appendix B], shows that, for
this class of quantization policies, there exists a delay realization
such that the sensor can only shrink the estimation error for the
controller to at most half of J dictated by (9).

Lemma 7: Let β = ln(1 + 2AJ/(AJ +M))
6
A ≤ γ.Under

the assumptions of Lemma 4, for all the quantization policies
ensuring (9) at all reception times {tkc}k∈N with Assumption 2
in place, there exists a delay realization {∆k ≤ β}k∈N , initial
condition, and plant disturbance, such that

|z(tk+c )| = |z(tkc ) − z̄(tkc )| ≥J/2.

Combining Lemmas 6 and 7, we deduce there exists a delay
realization, disturbance realization, and initial condition so that

Rtr ≥A

+
ln

++
1 +

2AJ

AJ +M

,
JA+M

0.5JA+M

,,− 1
(32)

is valid for all quantization policies that use the minimum
required packet size according to Assumption 2.

Combining the bounds on the packet size (cf., Lemma 5) and
on the triggering rate [cf., (32)], we obtain the following.
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Fig. 3. Illustration of the sufficient (21) and necessary (33) transmis-
sion rates as functions of the delay upper bound γ. Here, A = 5.5651,
ρ0= 0.1, b = 1.0001, M = 0.4, and J = M

Aρ0
(eAγ − 1) + 0.1. The rate

dictated by the data-rate theorem is Rc ≥A/ln 2 = 8.02874.

Theorem 2: Under the assumptions of Lemma 4, for all
the quantization policies that ensure (9) at all reception times
{tkc}k∈N with Assumption 2 in place, there exists a delay real-
ization {∆k ≤ β}k∈N , a disturbance realization, and an initial
condition such that

Rs ≥A
max

4
0, log

&
(M/(AJ) + 1)

&
eAγ − 1

''5

ln
))
1 + 2AJ

AJ+M

*
JA+M

0.5JA+M

* . (33)

The bound (33) is tighter than the bound in (31). Fig. 3
compares our bounds on the sufficient (21) and necessary (33)
information transmission rates for (1) to be ISpS. We attribute the
gap between them to the fact that, while the necessary condition
employs quantization policies with the minimum possible packet
size according to Assumption 2, the encoding–decoding scheme
in the sufficient design does not generally satisfy this assump-
tion. The fact that we bound the triggering rate and the packet size
independently in our analysis might further contribute to the gap.
The key point that is evident from Fig. 3, is that for sufficiently
small delay values, the timing information is substantial, and
the plant can be ISpS in the presence of bounded disturbances
when the sensor transmits data payload at a smaller rate than the
one prescribed by the data-rate theorem. As the delay increases,
the timing information becomes less useful. Since the state
estimation error is smaller than the triggering threshold at each
reception time in our design, for larger values of delay, Rs

exceeds the access rate prescribed by the data-rate theorem.

V. EXTENSION TO COMPLEX LINEAR SYSTEMS

In this section, we generalize our treatment to complex linear
plants with disturbances. The results presented here can be
readily applied to multivariate linear plants with disturbance and
diagonalizable open-loop-gain matrix (possibly, with complex
eigenvalues). This corresponds to handling the n-dimensional
real plant as n scalar (and possibly, complex) plants, and derive
a sufficient condition for them. We consider a plant, sensor, com-
munication channel, and controller described by the continuous
linear time-invariant system

ẋ = Ax(t) +Bu(t) + w(t) (34)

where x(t) and u(t) belong to C for t ∈ [0,∞). Here, w(t) ∈
C represents a plant disturbance, which is upper bounded as

∥w(t)∥ ≤M , with M ∈ R≥0. Also, A ∈ C with Re(A)≥0
(since we are only interested in unstable plants) and B ∈ C is
nonzero. The model for the communication channel is the same
as in Section II. To establish a baseline for comparison of the
bounds on the information transmission rate, we start by stating a
generalization of the classical data-rate theorem for the complex
plant (34). The proof is in [48, Appendix B].

Theorem 3: Consider the model with plant dynamics (34). If
∥x(t)∥ remains bounded as t→∞, then Rc ≥2Re(A)/ ln 2.

A. Event-Triggered Control for Complex Linear Systems

The state estimate x̂ evolves according to the dynamics (4)
along the interreception time intervals starting from x̂(tk+c )with
initial condition x̂(0). We use the state estimation error defined
as (5) with initial condition z(0) = x(0) − x̂(0). A triggering
event happens at tk+1

s if

∥z(tk+1
s )∥ = J (35)

provided tkc ≤ tk+1
s for k ∈ N and t1s ≥0, and the triggering

radius J ∈ R is positive. At each triggering time, the packet
p(ts) of size g(ts) is transmitted from the sensor to the controller.
The packet p(ts) consists of a quantized version of the phase of
z(ts), denotedφq(z(ts)), and a quantized version of the triggering
time ts. By (35), we have z(ts) = Jeiφz(ts) . We construct a
quantized version, denoted q(z(ts)), of z(ts) at the controller
as q(z(ts)) = Jeiφq(z(ts)) . Additionally, using the bound (3)
and the packet at the controller, the quantized version of ts is
reconstructed and denoted by q(ts). Hence, at the controller,
z(tc) is estimated as follows:

z̄(tc) = eA(tc− q(ts))q (z(ts)) . (36)

We use the jump strategy (8) to update the value of x̂(t+c ). Hence,
∥z(t+c )∥ = ∥z(tc) − z̄(tc)∥ holds. At the sensor, the packet size
g(ts) is chosen to be large enough such that

∥z(t+c )∥ = ∥z(tc) − z̄(tc)∥ ≤ ρ0J (37)

(where 0 < ρ0 < 1 is a design parameter) is satisfied for all
tc ∈ [ts, ts + γ]. Fig. 4(a) shows a typical realization of z(t)
under the proposed event-triggered strategy before and after one
event. The notion of ISpS is the same as in Definition 1 by
replacing absolute value with complex absolute value.

Remark 5: Similarly to Proposition 1, one can show that
if (37) occurs at all reception times and (A,B) is a stabilizable
pair, then under the control ruleu(t) = − Kx̂(t), the plant (34) is
ISpS, provided the real part of A − BK is negative. As a conse-
quence of this observation, our analysis focuses on ensuring (37)
at each reception time. The lower bound on the interevent time
of Lemma 2 and the upper bound on the triggering rate (16) also
holds replacing A by Re(A). •

B. Sufficient Information Transmission Rate

We design a quantization policy that, using the event-triggered
controller of Section V-A, ensures the plant (34) is ISpS. We rely
on this design to establish a sufficient bound on the information
transmission rate.
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Fig. 4. (a) Evolution of the state estimation error (blue curve) before
and after an event. The trajectory starts with an initial state inside a
circle of radius J , and continues spiraling (due to the imaginary part of
A) until it hits the threshold J . Then, it jumps back inside the circle after
the update according to (36) and jump strategy (8). During interrecep-
tion time intervals, ż(t) = Az(t) +w(t), and the observed overshoot
beyond the circle is due to the delay in the communication channel.
Here, A = 0.3 + 2i, B = 0.2, u(t) = − 8x̂(t), M = 0.2, γ = 0.05 sec,
ρ0= 0.9, and J = 0.0173. (b) Estimation of the phase angle after event
and transmission of λ bits.

1) Design of Quantization Policy: We devote the first λ

bits of the packet p(ts) for quantizing the phase of z(ts). The
proposed encoding algorithm uniformly quantizes the circle into
2λ pieces of 2π/2λ radians. After reception, the decoder finds
the correct phase quantization cell and selects its center point
as φq(z(ts)). By letting ω = φz(ts) − φq(z(ts)), as depicted in
Fig. 4(b), geometrically, we deduce |ω| ≤ π/2λ. Furthermore,
we use the encoding scheme proposed in Fig. 2 to append a
quantized version of the triggering time ts of length g(ts) − λ

to the packet p(ts). Hence, p(ts)[λ+ 1] = mod(⌊ tsbγ ⌋, 2). For
the remaining bits of the packet, the encoder breaks the interval
containing ts into 2g(ts)− λ− 1 equal subintervals. Once the packet
is complete, it is transmitted to the controller, where it is decoded
and the center point of the smallest subinterval is selected as the
best estimate of ts. Therefore

|ts − q(ts)| ≤ bγ/2g(ts)− λ.

Given tk+1
s , one can identify q(tk+1

s ) deterministically. Also,
using the first λ bits of the packet, the sensor can find the value
of φq(z(ts)). Similarly to Proposition 2, if the sensor has a causal
knowledge of the delay in the channel, it can calculate x̂(t) for
all time t.

2) Sufficient Packet Size: Here, we show that with a suf-
ficiently large packet size, we can achieve (37) at all reception
times {tkc}k∈N using the quantization policy designed in Sec-
tion V-B1. The proof of the next result is in [48, Appendix B].

Theorem 4: Consider the model with plant dynamics (34),
estimator dynamics (4), triggering strategy (35), and jump strat-
egy (8). Assume ∥z(0)∥ = ∥x(0) − x̂(0)∥ < J , then the quanti-
zation policy designed previously achieves (37) for all reception
times {tkc}k∈N with any packet size lower bounded by

g(ts)≥ḡ "

max

⎧
⎪⎪⎨

⎪⎪⎩
0, λ+ log

Re(A)bγ

ln

+
1+e− Re(A)γ(ρ0 − M

Re(A)J (eRe(A)γ − 1))
2 sin(π/2λ+1)+1+

√
2ζ

,

⎫
⎪⎪⎬

⎪⎪⎭

(38)

Fig. 5. Sufficient information transmission rate (39) as a function
of channel delay upper bound γ. Here, A = 1+ i, B = 0.5, M =
0.1, ρ0= 0.9, and b = 1.0001. Also λ = log(π/2 arcsin(78)e

Re(A)γ) and
J = 8M

Re(A) (e
Re(A)γ − 1) + 0.002. The rate dictated by the data-rate the-

orem (cf., Theorem 3) is 2Re(A)/ ln 2 = 2.885.

provided cos(Im(A)(ts − q(ts))) = 1 − ζ , b > 1

ρ0 ≥

M

Re(A)J

)
eRe(A)γ − 1

*
+ eRe(A)γ

)
2 sin(π/2λ+1) +

>
2ζ
*

J ≥ M

Re(A)χ

)
eRe(A)γ − 1

*
,
>
2ζeRe(A)γ ≤ χ′

λ > log

+
π
#
arcsin

+
1 − χ − χ′

2eRe(A)γ

,,
− 1

where 0 < χ+ χ′ < 1.
Combining the bound on the triggering rate from Remark 5

with Theorem 4, it follows that there exists an information
transmission rate with

Rs ≤ Re(A)ḡ
#
ln

+
JRe(A) +M

ρ0JRe(A) +M

,
(39)

that achieves (37) for all reception times {tkc}k∈N , and is suf-
ficient to ensure (34) is ISpS. Fig. 5 plots the rate in (39) as
a function of the delay upper bound γ. For small values of the
delay, the sufficient information transmission rate is smaller than
the rate required by the data-rate result in Theorem 3.

Remark 6: Following the discussion of Remarks 3 and 4,
when ḡ = 0 in (38), there is no need for any data payload,
and (34) can be stabilized using only timing information. •

Remark 7: Depending on whether the system is real or com-
plex, the corresponding triggering criterion is based on the real
or complex absolute value, respectively, cf., (7) and (35). The
controller needs to approximate the phase at which the state
estimation error z(ts) hits the triggering radius. The real case
is a special case, since the phase of z(ts) is then either 0 or
π. In this case in the sufficient design, only the first bits of the
packet p(ts) denote the sign of z(ts). In the complex case, we
use the first λ bits of the packet p(ts) for quantizing the phase of
z(ts). By puttingA = Re(A), λ = 1, and Im(A) = 0 (or ζ = 0),
our sufficient condition for complex systems (39), becomes (21)
except a factor 1 +

√
2, which makes (39) larger than (21). The

reason for the difference is the obtained upper bound in this case
for the estimation error of the phase of z(ts) (see [48, eq. (50) in
Appendix B]). In the real case, the controller deduces z(ts) = J

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 29,2021 at 19:40:07 UTC from IEEE Xplore.  Restrictions apply. 



24 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 1, MARCH 2021

or z(ts) = − J , and the estimation error of the phase of z(ts) is
zero. •

VI. CONCLUSION

We have presented an event-triggered control scheme for the
stabilization of noisy, scalar real and complex, continuous, linear
time-invariant systems over a communication channel subject
to random bounded delay. We have developed an algorithm for
encoding–decoding the quantized version of the estimated state,
leading to the characterization of a sufficient transmission rate
for stabilizing these systems. We also identified a necessary
condition on the transmission rate for real systems. Future work
will study the identification of necessary conditions on the
transmission rate in complex systems, develop event-triggered
designs for vector systems with real and complex eigenvalues,
and the investigation of optimal values for the design parameters
that balance the tradeoffs between transmission rate and control
performance.

APPENDIX A SIMULATIONS

This section presents simulation results validating the pro-
posed event-triggered control scheme for real-valued plants (the
interested reader can find simulations for a complex-valued plant
in [37]). While our analysis is for continuous-time plants, we
perform the simulations in discrete time with a small sam-
pling time δ′ > 0. Thus, the minimum upper bound for the
communication network delay is equal to two sampling times
in the digital environment (this is because a delay of at most
one sampling time might occur from the time that triggering
occurs to the time that the sensor took a sample from the plant
state and another delay of at most one sampling time might
occur from the time that the packet is received to the time the
control input is applied to the plant). We consider a linearized
version of the two-dimensional problem of balancing an inverted
pendulum mounted on a cart, where the motion of the pendulum
is constrained in a plane and its position can be measured by
an angle θ. The inverted pendulum has mass m1, length l, and
moment of inertia I . Also, the pendulum is mounted on top of
a cart of mass m2, constrained to move in the y-direction. The
nonlinear equations governing the motion of the cart and pen-
dulum are (m1 +m2)ÿ + νẏ +m1lθ̈ cos θ − m1lθ̇2 sin θ = F
and (I +m1l2)θ̈ +m1g0lsinθ = − m1lÿcosθ, where ν is the
damping coefficient between the pendulum and the cart and
g0 is the gravitational acceleration. We define θ = π as the
equilibrium position of the pendulum and φ as small deviations
from θ. We derive the linearized equations of motion using small
angle approximation, noting that this linearization is only valid
for sufficiently small values of the delay upper bound γ. Define
the state variable s = [y, ẏ, φ, φ̇]T , where y and ẏ are the position
and velocity of the cart, respectively. Assuming m1 = 0.2 kg,
m2 = 0.5 kg, ν = 0.1 N/m/s, l = 0.3 m, I = 0.006 kg/m2, one
can write the evolution of s as

ṡ = As(t) +Bu(t) + w(t) (40)

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 − 0.1818 2.6730 0

0 0 0 1

0 − 0.4545 31.1800 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0

1.8180

0

4.5450

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

In addition, we add the plant noise w(t) ∈ R4 to the linearized
plant model, and we assume that all of its elements are upper
bounded by M . A simple feedback control law can be derived
for (40) as u = − Ks, where K = [− 1.00 − 2.04 20.36 3.93],
is chosen such that A − BK is Hurwitz.

The eigenvalues of the open-loop gain of the plant A are e =
[0 − 5.6041 − 0.1428 5.5651]. Thus, the open-loop gain of the
plant A is diagonalizable (all eigenvalues of A are distinct).
Using the eigenvector matrix P , we diagonalize the plant to
obtain

˙̃s = Ãs̃(t) + B̃ũ(t) + w̃(t) (41)

where

Ã =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 − 5.6041 0 0

0 0 − 0.1428 0

0 0 0 5.5651

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, B̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

10.0000

− 2.3865

10.0979

2.2513

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

where s̃(t) = P − 1s(t) and w̃(t) = P − 1w(t). Also, ũ(t) =
− K̃s̃(t), where K̃ = KP .

For the first three coordinates of the diagonalized plant in (41),
the state estimation ŝ at the controller simply constructs as ˙̂si =
Ãiŝ(t) + B̃iũ(t), starting from ŝi(0) for i ∈ {1, 2, 3}, where Ãi

and B̃i denote the ith row of Ã and B̃. Since the first three
eigenvalues of A are nonpositive, they are inherently stable.
Thus, by the data theorem [35], there is no need to use the
communication network for them, and since Ã − B̃K̃ is Hur-
witz, ũ(t) = − K̃s̃(t) renders them ISS with respect to system
disturbances. Now, we apply Theorem 1 to the fourth mode of
the plant, which is unstable, to make the whole plant ISpS. In
fact, we use the packet size given in (22) for the simulations.
Using the problem formulation in Section II, the estimated state
for the unstable mode ŝ4 evolves during the interreception times
as

˙̂s4(t) = 5.5651ŝ4(t) + 2.2513ũ(t), t ∈ (tkc , tk+1
c ) (42)

starting from ŝ4(tk+c ) and ŝ4(0). Also, a triggering occurs when
|z̃4(t)| = |s̃4(t) − ŝ4(t)| = J , where |z̃4(t)| is the estate esti-
mation error for the unstable mode, and assuming the previous
packet is already delivered to the controller. In the simulation
environment, since the sampling time is small, a triggering hap-
pens as soon as |z̃4(t)| is equal or greater than J and the previous
packet has been received by the controller. Let λ4 = 5.5651 be
the eigenvalue corresponding to the unstable mode. By Theo-
rem 1, we choose J = (M/(λ4ρ0))(eλ4γ − 1) + 0.005, and the
size of the packet for all ts to be (22), where b = 1.0001 and
ρ0 = 0.9.

Fig. 6(a) shows the triggering threshold for s̃4 in (41) and
the absolute value of the state estimation error for the unstable
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Fig. 6. Simulation results for the linearized inverted pendulum on a cart example. (a) Evolution of the absolute value of the state estimation error
for the unstable mode of the plant in (41). (b) Evolution of the unstable state in (41) and its estimate in (42). (c) Evolution of all the states in (40). (d)
Information transmission rate in the simulation as compared to the data-rate theorem. Note that the rate does not start at γ = 0 because the minimum
channel delay upper bound is equal to two sampling times (0.005 s in this example). The simulation parameters are s̃(0) = P − 1[0, 0, 0, 0.1001]T ,
ŝ(0) = P − 1[0, 0, 0, 0.10]T , simulation time T = 5 s, and sampling time δ′ = 0.005 s. For (a)–(c), γ = 0.1 s, g(ts) = 4 bits, and M = 0.05, and in (d),
g(ts) is calculated using (22) with M = 0.2.

Fig. 7. Experimental results for controlling an inverted pendulum with the proposed event-triggered control strategy. (a) Triggering threshold J
and the estimation error in the pendulum’s angular position z1= φ − φ̂, where φ is the sensor measurement and φ̂ is the estimate of the angular
position. (b) Actual angular position and velocity of the pendulum, with the former staying close to zero degrees (the desired upright position). In (a)
and (b), the delay upper bound is set to five sampling times of the system (which is equal to 0.015 s) and the packet size is found to be 7 bits. (c)
Information transmission rate in the experiments compared with the entropy rate of the system. The rate calculated from the experiments does not
start at zero because the minimum channel delay upper bound is equal to two sampling times (0.006 s). The entropy rate of the system is 10.56
bits/s, while the minimum transmission rate for delay bound equal to two sampling times is 8.66 bits/s.

coordinate, that is, |z̃4(t)| = |s̃4(t) − ŝ4(t)|. As soon as the
absolute value of this error is equal or greater than the triggering
threshold, the sensor transmits a packet, and the jumping strategy
adjusts ŝ4 at the reception time to ensure the plant is ISpS.
Note that the amount this error exceeds the triggering threshold
depends on the random communication network delay upper
bounded by γ. Fig. 6(b) presents the evolution of the unstable
state in (41) and its estimation in (42). Fig. 6(c) shows the
evolution of all the actual states of the linearized plant (40).
Finally, Fig. 6(d) presents the simulation of information trans-
mission rate versus the delay upper bound γ in the communica-
tion network for stabilizing the linearized model of the inverted
pendulum. For small γ, the plant is ISpS with an information
transmission rate smaller than the one prescribed by the data-rate
theorem.

Remark 8: For further validation, we have also experimen-
tally implemented the proposed event-triggered control strategy
on an inverted pendulum controlled by two propellers as shown
in Fig. 8. The robot used for the experiments is built using
off-the-shelf components. Specifically, the frame is built with
plywood sheets, we employ an InvenSense MPU6050 MEMS
sensor (which consists of a three-axis accelerometer and a
three-axis gyroscope), using a complementary filter to estimate
the pendulum’s angle and angular velocity, and we have a
Raspberry Pi Model 3 acting as the computation unit as well
as the controller. Finally, two small dc motors equipped with
two identical propellers are used as actuators. Fig. 7(a) shows
the evolution of the pendulum angle estimation error z1 in time

Fig. 8. Architecture and components of the prototype.

and Fig. 7(b) shows the angular position and velocity of the
pendulum, where zero angle represents the upright position of
the pendulum. We also ran a second set of experiments and
calculated the information transmission rates using (22) as a
function of the delay upper bound, cf., Fig. 7(c). The reason
for the larger number of jumps in the experiments compared to
the simulation is due to the additional uncertainty introduced
by the nonlinear behavior of the system. Nevertheless, the same
qualitative phase transition behavior is observed in Figs. 6(d)
and 7(c). The interested reader is referred to [49] for further
details of these experiments and validation.3 •

3The code can also be found at https://github.com/mkhojas/Event-Triggered-
Firmware.
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Remark 9: Several plots and discussions that illustrate the
dependence of our sufficient (21) and necessary (33) rates on
the plant disturbances M and the design parameter J , along
with plots and discussions that illustrate the effect of design
parameters b andρ0 on the sufficient rate (21) are available in [48,
Appendix C]. •
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