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Abstract—We introduce the problem of learning-based
attacks in a simple abstraction of cyber-physical systems—
the case of a discrete-time, linear, time-invariant plant that
may be subject to an attack that overrides sensor readings
and controller actions. The attacker attempts to learn the
dynamics of the plant and subsequently overrides the con-
troller’s actuation signal to destroy the plant without being
detected. The attacker can feed fictitious sensor readings
to the controller using its estimate of the plant dynamics
and mimic the legitimate plant operation. The controller, in
contrast, is constantly on the lookout for an attack; once
the controller detects an attack, it immediately shuts the
plant off. In the case of scalar plants, we derive an up-
per bound on the attacker’s deception probability for any
measurable control policy when the attacker uses an arbi-
trary learning algorithm to estimate the system dynamics.
We then derive lower bounds for the attacker’s deception
probability for both scalar and vector plants by assuming
an authentication test that inspects the empirical variance
of the system disturbance. We also show how the controller
can improve the security of the system by superimposing
a carefully crafted privacy-enhancing signal on top of the
“nominal control policy.” Finally, for nonlinear scalar dy-
namics that belong to the reproducing kernel Hilbert space,
we investigate the performance of attacks based on nonlin-
ear Gaussian process learning algorithms.

Index Terms—Cyber-physical system security, learning
for dynamics and control, man-in-the-middle attack, phys-
ical layer authentication, secure control, system identifica-
tion.
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I. INTRODUCTION

R ECENT technological advances in wireless communi-
cations and computation, and their integration into net-

worked control and cyber-physical systems (CPS), open the door
to a myriad of new and exciting applications, including cloud
robotics and automation [2]. However, the distributed nature of
CPS is often a source of vulnerability. Security breaches in CPS
can have catastrophic consequences ranging from hampering the
economy by obtaining financial gain, to hijacking autonomous
vehicles and drones, to terrorism by manipulating life-critical in-
frastructures [3]–[5]. Real-world instances of security breaches
in CPS, that were discovered and made public, include the
revenge sewage attack in Maroochy Shire, Australia; the Ukraine
power grid cyber-attack; the German steel mill cyber-attack;
the Davis-Besse nuclear power plant attack in Ohio, USA; and
the Iranian uranium-enrichment facility attack via the Stuxnet
malware [6]. Studying and preventing such security breaches via
control-theoretic methods has received a great deal of attention
in recent years [7]–[24].

An important and widely studied class of attacks in CPS
is based on the “man-in-the-middle” (MITM) paradigm [25]:
an attacker overrides the sensor signals transmitted from the
physical plant to the controller with fake signals that mimic
stable and safe operation. At the same time, the attacker also
overrides the control signals with malicious inputs to push the
plant toward a catastrophic trajectory. It follows that CPS must
constantly monitor the plant outputs and look for anomalies in
the fake sensor signals to detect such attacks. The attacker, in
contrast, aims to generate fake sensor readings in a way that
would be indistinguishable from the legitimate ones.

The MITM attack has been extensively studied in two special
cases [25]–[29]. The first case is the replay attack, in which
the attacker observes and records the legitimate system behav-
ior for a given time window and then replays this recording
periodically at the controller’s input [26]–[28]. The second
case is the statistical-duplicate attack, which assumes that the
attacker has acquired complete knowledge of the dynamics and
parameters of the system and can construct arbitrarily long
fictitious sensor readings that are statistically identical to the
actual signals [25], [29], [30]. The replay attack assumes no
knowledge of the system parameters—and, as a consequence,
it is relatively easy to detect. An effective way to counter the
replay attack consists of superimposing a random watermark
signal, unknown to the attacker, on top of the control signal
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[30]–[34]. The statistical-duplicate attack assumes full knowl-
edge of the system dynamics—and, as a consequence, it requires
a more sophisticated detection procedure, as well as additional
assumptions on the attacker or controller behavior to ensure that
it can be detected. To combat the attacker’s full knowledge, the
controller may adopt moving target [35]–[38] or baiting [39],
[40] techniques. Alternatively, the controller may introduce pri-
vate randomness in the control input using watermarking [29]. In
this scenario, a vital assumption is made: although the attacker
observes the true sensor readings, it is barred from observing
the control actions, as otherwise, it would be omniscient and
undetectable.

Our contributions are as follows. First, we observe that in
many practical situations, the attacker does not have full knowl-
edge of the system and cannot simulate a statistically indistin-
guishable copy of the system. In contrast, the attacker can carry
out more sophisticated attacks than simply replaying previous
sensor readings, by attempting to “learn” the system dynamics
from the observations. For this reason, we study learning-based
attacks, in which the attacker attempts to learn a model of
the plant dynamics, and show that they can outperform replay
attacks on linear systems by providing a lower bound on the at-
tacker’s deception probability using a simple learning algorithm.
Second, we derive a converse bound on the attacker’s deception
probability in the special case of scalar systems. This holds for
any (measurable) control policy and for any learning algorithm
that may be used by the attacker to estimate the dynamics of the
plant. These contributions regard the possibility of performing
learning-based attacks. Another contribution regards the way
to defend the system against these attacks. For any learning
algorithm utilized by the attacker to estimate the dynamics of the
plant, we show that adding a proper privacy-enhancing signal to
the “nominal control policy” can lower the deception probability.
Finally, we offer a treatment for nonlinear scalar dynamics that
belong to a reproducing kernel Hilbert space, by studying the
performance of a nonlinear attack based on machine-learning
Gaussian process algorithms.

Throughout this article, we assume that the attacker has full
access to both sensor and control signals. The controller, in
contrast, has perfect knowledge of the system dynamics and tries
to discover the attack from the observations that are maliciously
injected by the attacker. This assumed information-pattern im-
balance between the controller and the attacker is justified, since
the controller is tuned much longer than the attacker and thus has
knowledge of the system dynamics to a far greater precision than
the attacker. In contrast, the attacker can completely hijack the
sensor and control signals that travel through a communication
network that has been compromised. Previous watermarking
techniques [26], [29], [30] were only effective at securing the
system if the attacker has no access to the control signals,
which is not the case here. In contrast, since in our case, the
attacker does not have full knowledge of the system dynamics,
our privacy-enhancing signal is used to hamper the learning
process of the attacker during the learning phase, rather than
providing a unique signature to the control signal as in the case
of watermarking.

Since in our setting the success or failure of the attacker is
dictated by its learning capabilities, our work is also related to
recent studies in learning-based control [41]–[50]. In contrast to
these works, where tools developed in machine learning are used
to design controllers in the presence of uncertainty, our work
assumes a setting in which the controller has perfect knowledge
of the system dynamics and tries to discover a possible attack
from the observations. At the same time, the attacker aims
to learn the system dynamics to construct a carefully crafted
fictitious sensor reading signal to fool the controller. Thus, the
security guarantees in this work are achieved by analyzing the
performance and limitations of learning algorithms.

Learning-based attacks are also related to the known-plaintext
attacks (KPA), introduced in [51], in linear systems with linear
controllers. Using pole–zero analysis from classical system
identification, Yuan and Mo [51] investigated necessary and
sufficient conditions for which the system is identifiable by an
attacker and, as a result, vulnerable against KPA. To combat
KPA, the work [51] utilized low-rank linear controllers that trade
control performance for security.

The outline of the rest of this article is as follows. The
notations used in this work are detailed in Section I-A. For ease
of exposition, we start by presenting the problem for the special
case of scalar linear plants in Section II and present our main
results for this case in Section III. We then extend the model
and treatment to vector linear and scalar nonlinear plants in
Section IV and Appendix A available online in [52], respectively.
We conclude this article in Section V with a discussion of future
directions. Due to space constraints, the appendixes (and some
of the proofs) are available online in [52].

A. Notation

Throughout this article, we use the following notation. We
denote by N the set of natural numbers and by R the set of
real numbers. All logarithms, denoted by log, are base 2. We
denote by ‖ · ‖ the Euclidean norm of a vector and by ‖ · ‖op

the operator norm induced by it when applied to a matrix.
We denote by † the transpose operation of a matrix. For two
real-valued functions g and h, g(x) = O(h(x)) as x → x0

means lim supx→x0
|g(x)/h(x)| < ∞, and g(x) = o(h(x)) as

x → x0 means limx→x0
|g(x)/h(x)| = 0. We denote by xj

i =
(xi, . . . , xj) the realization of the tuple of random variables
Xj

i = (Xi, . . . , Xj) for i, j ∈ N, i ≤ j. Random matrices are
represented by boldface capital letters (e.g., A), and their realiza-
tions are represented by typewriter boldface letters (e.g.,A).A �
B means that A−B is a positive-semidefinite matrix, namely
� is the Löwner order of Hermitian matrices. λmax(A) denotes
the largest eigenvalue of the matrix A. We represent the ran-
dom vector with boldface small letters, and xj

i = (xi, . . . ,xj)
for i, j ∈ N, i ≤ j. Px denotes the distribution of the random
vector x with respect to (w.r.t.) probability measure P , whereas
fx denotes its probability density function (PDF) w.r.t. to the
Lebesgue measure, if it has one. An event is said to happen al-
most surely (a.s.) if it occurs with probability 1. For real numbers
a and b, a � b means a is much less than b, in some numerical
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Fig. 1. System model during learning-based attack phases. (a) Learn-
ing: During this phase, the attacker eavesdrops and learns the system,
without altering the input signal to the controller (Yk = Xk). (b) Hijack-
ing: During this phase, the attacker hijacks the system and intervenes as
a MITM in two places: acting as a fake plant for the controller (Yk = Vk)
by impersonating the legitimate sensor, and as a malicious controller
(Ũk) for the plant aiming to destroy the plant.

sense, while for probability distributions P and Q, P � Q
means P is absolutely continuous w.r.t. Q. dP/dQ denotes the
Radon–Nikodym derivative of P w.r.t. Q. The Kullback–Leibler
(KL) divergence between probability distributions PX and PY

is defined as

D(PX‖PY ) �

⎧⎨
⎩EPX

[
log

dPX

dPY

]
, PX � PY

∞, otherwise

where EPX
denotes the expectation w.r.t. probability mea-

sure PX . The conditional KL divergence between probabil-
ity distributions PY |X and QY |X averaged over PX is de-
fined as D(PX|Y ‖QY |X |PX) � EPX̃

[D(PY |X=X̃‖QY |X=X̃)],

where (X, X̃) are independent and identically distributed (i.i.d.).
The mutual information between random variables X and Y is
defined as I(X;Y ) � D(PXY ‖PXPY ). The conditional mu-
tual information between random variables X and Y given ran-
dom variable Z is defined as I(X;Y |Z) � EPZ̃

[I(X;Y |Z =

Z̃)], where (Z, Z̃) are i.i.d.

II. PROBLEM SETUP

We consider the networked control system depicted in Fig. 1,
where the plant dynamics are described by a scalar, discrete-
time, linear time-invariant system

Xk+1 = aXk + Uk +Wk (1)

where Xk, a, Uk, and Wk are real numbers representing the
plant state, open-loop gain of the plant, control input, and plant
disturbance, respectively, at time k ∈ N. The controller, at time
k, observes Yk and generates a control signal Uk as a function of

Y k
1 . If the attacker does not tamper sensor reading, at any time

k ∈ N, we have Yk = Xk. We assume that the initial condition
X0 has a known (to all parties) distribution and is independent
of the disturbance sequence {Wk}. For analytical purposes, we
assume that the process {Wk} has i.i.d. Gaussian samples of zero
mean and variance σ2 that is known to all parties. We assume,
without loss of generality, thatW0 = 0 and E[X0] = 0, and take
U0 = 0. Moreover, to simplify the notation, let Zk � (Xk, Uk)
denote the state-and-control input at time k and its trajectory up
to time k by

Zk
1 � (Xk

1 , U
k
1 ).

The controller is equipped with a detector that tests for anomalies
in the observed historyY k

1 . When the controller detects an attack,
it shuts the system down and prevents the attacker from causing
further “damage” to the plant. The controller/detector is aware
of the plant dynamics (1) and knows the open-loop gain a of the
plant. In contrast, the attacker knows the plant dynamics (1) as
well as the plant state Xk and control input Uk (or equivalently,
Zk) at time k (see Fig. 1). However, it does not know the open-
loop gain a.

We assume that the open-loop gain is fixed in time, but
unknown to the attacker (as in the frequentist approach [53]).
Nevertheless, it will be convenient, for algorithm aid, to assume
a prior over the open-loop gain of the plant and treat it as a
random variable A, that is fixed across time, whose PDF fA is
known to the attacker and whose realization a is known to the
controller (cf. Section V-D). We assume all random variables to
exist on a common probability space with probability measure
P and Uk to be a measurable function of Y k

1 for all time k ∈ N.
We also denote the probability measure conditioned on A = a
by Pa. Namely, for any measurable event C, we define

Pa(C) = P (C|A = a).

A is assumed to be independent of X0 and {Wk|k ∈ N}.

A. Learning-Based Attacks

We now define learning-based attacks that consist of two dis-
joint, consecutive, passive, and active phases (cf. Section V-C).

Phase 1: Learning. During this phase, the attacker passively
observes the control input and the plant state to learn the open-
loop gain of the plant. As illustrated in Fig. 1(a), for allk ∈ [0, L],
the attacker observes the control input Uk and the plant state Xk

and tries to learn the open-loop gain a, where L is the duration
of the learning phase. We denote by Â the attacker’s estimate of
the open-loop gain a. •

Phase 2: Hijacking. In this phase, the attacker aims to destroy
the plant via Ũk while remaining undetected. As illustrated in
Fig. 1(b), from time L+ 1 and onward, the attacker hijacks the
system and feeds a malicious control signal Ũk to the plant and
a fictitious sensor reading Yk = Vk to the controller. •

We assume that the attacker can use any arbitrary learning
algorithm to estimate the open-loop gain a during the learning
phase, and when the estimation is completed, we assume that
during the hijacking phase, the fictitious sensor reading is con-
structed, in a model-based manner (cf. Section V-B) as follows:

Vk+1 = ÂVk + Uk + W̃k , k = L, . . . , T − 1 (2)
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where W̃k for k = L, . . . , T − 1 are i.i.d. Gaussian N (0, σ2);
Uk is the control signal generated by the controller, which is fed
with the fictitious virtual signal Vk by the attacker; VL = XL;
and Â is the estimate of the open-loop gain of the plant at the
conclusion of Phase 1.

B. Detection

The controller/detector, being aware of the dynamic (1) and
the open-loop gain a, attempts to detect possible attacks by
testing for statistical deviations from the typical behavior of
the system (1). More precisely, under the legitimate system
operation (corresponding to the null hypothesis), the controller
observation Yk behaves according to

Yk+1 − aYk − Uk(Y
k
1 ) ∼ i.i.d. N (0, σ2). (3)

In the case of an attack, during Phase 2 (k > L), (3) can be
rewritten as

Vk+1 − aVk − Uk = Vk+1 − aVk + ÂVk − ÂVk − Uk (4a)

= W̃k +
(
Â− a

)
Vk (4b)

where (4b) follows from (2). Hence, the estimation error (Â− a)
dictates the ease with which an attack can be detected.

Since the Gaussian PDF with zero mean is fully characterized
by its variance, we shall follow [29] and test for anomalies in
the latter, i.e., test whether the empirical variance of (3) is equal
to the second moment of the plant disturbance E[W 2]. To that
end, we shall use a test that sets a confidence interval of length
2δ > 0 around the expected variance, i.e., it checks whether

1

T

T∑
k=1

[
Yk+1 − aYk − Uk(Y

k
1 )
]2

∈ (Var [W ]− δ,Var [W ] + δ)

(5)

where T is called the test time. That is, as implied by (4), the
attacker deceives the controller and remains undetected if

1

T

(
L∑

k=1

W 2
k +

T∑
k=L+1

(W̃k + (Â− a)Vk)
2

)

∈ (Var [W ]− δ,Var [W ] + δ).

C. Performance Measures

Definition 1: The hijack indicator at test time T is defined as

ΘT �
{
0 ∀j ≤ T : Yj = Xj

1, otherwise.

ΘT is an oracle, and at the test time T the controller uses Y T
1 to

construct an estimate Θ̂T of ΘT . More precisely, Θ̂T = 0 if (5)
occurs; otherwise, Θ̂T = 1. •

Definition 2: The probability of deception is the probability of
the attacker deceiving the controller and remaining undetected
at the time instant T

P a,T
Dec � Pa

(
Θ̂T = 0|ΘT = 1

)
. (6)

The detection probability at test time T is defined as

P a,T
Det � 1− P a,T

Dec .

Likewise, the probability of false alarm is the probability of
detecting the attacker when it is not present, namely

P a,T
FA � Pa

(
Θ̂T = 1|ΘT = 0

)
. •

Applying Chebyshev’s inequality to (5) and noting that the
system disturbances are i.i.d. Gaussian of variance σ2, we have

PT
FA ≤ Var[W 2]

δ2T
=

3σ4

δ2T
.

Further, define the deception, detection, and false alarm proba-
bilities w.r.t. the probability measure P without conditioning on
A, and denote them by PT

Dec, PT
Det, and PT

FA, respectively. For
instance, PT

Det is defined, w.r.t. a PDF fA of A, as

PT
Det � P

(
Θ̂T = 1|ΘT = 1

)
=

∫ ∞

−∞
P a,T
Det fA(a)da. (7)

III. STATEMENT OF THE RESULTS

In this section, we describe our main results for the case
of scalar plants. We provide lower and upper bounds on the
deception probability (6) of the learning-based attack (2), where
the estimate Â in (2) may be constructed using an arbitrary
learning algorithm. Our results are valid for any measurable
control policy Uk. We find a lower bound on the deception
probability by characterizing what the attacker can at least
achieve using a least-squares (LS) algorithm and derive an
information-theoretic converse for any learning algorithm using
Fano’s inequality [54, Chs. 2.10 and 7.9]. While our analysis is
restricted to the asymptotic case, T → ∞, it is straightforward
to extend it to the nonasymptotic case.

For analytical purposes, we assume that the power of the
fictitious sensor reading is equal to β−1 < ∞, namely

lim
T→∞

1

T

T∑
k=L+1

V 2
k = 1/β a.s. w.r.t. Pa. (8)

Remark 1: Assuming that the control policy is memoryless,
namely, Uk is only dependent on Yk, the process Vk is Markov
for k ≥ L+ 1. By further assuming that L = o(T ) and using
the generalization of the law of large numbers for Markov
processes [55], we deduce

lim
T→∞

1

T

T∑
k=L+1

V 2
k ≥ Var [W ] a.s. w.r.t. Pa.

Hence, in this case, we have β ≤ 1/Var[W ]. Also, when the
control policy is linear and stabilizes (2), that is, Uk = −ΩYk

and |Â− Ω| < 1, it is easy to verify that (8) holds true for β =
(1− (Â− Ω)2)/Var[W ]. The assumption in (8) can also be
relaxed as described in Remarks 4 and 6, in the following. •

In the following lemma, we show that for any learning-based
attack (2), asT → ∞, the empirical variance used in the variance
test (5) can be expressed in terms of the estimation error. The
result follows from the strong law of large numbers applied to
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martingale difference sequences [56, Lemma 2, part iii]; it is
proved in [52, App. C-A].

Lemma 1: Consider any learning-based attack (2) and any
measurable control policy {Uk} such that the fictitious sensor
reading power satisfies (8). Then, the variance test (5) reduces
a.s., w.r.t. Pa, to

lim
T→∞

1

T

T∑
k=1

[Yk+1 − aYk − Uk(Y
k
1 )]2 = Var [W ] +

(Â−a)2

β
.

A. Lower Bound on the Deception Probability

To provide a lower bound on the deception probability P a,T
Dec ,

we consider a specific estimate Â at the conclusion of the first
phase by the attacker. Namely, we use LS estimation due to its
efficiency and amenability to recursive update over observed
incremental data [44]–[46]. The LS algorithm approximates the
overdetermined system of equations⎛

⎜⎜⎜⎜⎝
X2

X3

...

XL

⎞
⎟⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎜⎝

X1

X2

...

XL−1

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

U1

U2

...

UL−1

⎞
⎟⎟⎟⎟⎠

by minimizing the Euclidean distance Â = argminA
‖Xk+1 −AXk − Uk‖ to estimate (or “identify”) the plant, the
solution to which is

Â =

∑L−1
k=1(Xk+1 − Uk)Xk∑L−1

k=1 X
2
k

a.s. w.r.t. Pa. (9)

Remark 2: Equation (9) is well defined since Pa(Xk = 0) =
0, as we assumed that Wk are i.i.d. zero-mean Gaussian for all
k ∈ N. •

We now lower bound the deception probability of an attacker
that utilizes LS estimation (9) under the variance test and in
the presence of any measurable control policy, for which (8)
holds. The following theorem demonstrates the existence of a
learning-based attack that satisfies this lower bound. As other
learning algorithms may lead to better estimates, this also serves
as a lower bound on the attacker’s deception probability in the
general case.

Theorem 1: Consider LS (9) learning-based attack (2) and
any measurable control policy {Uk} such that the fictitious
sensor readings satisfy (8). Then, the asymptotic deception
probability under the variance test (5) is lower bounded as

lim
T→∞

P a,T
Dec = Pa

(
|Â− a| <

√
δβ
)

(10a)

≥ Pa

⎛
⎝
∣∣∣∑L−1

k=1 WkXk

∣∣∣∑L−1
k=1 X

2
k

<
√

δβ

⎞
⎠ (10b)

≥ 1− 2

(1 + δβ)L/2
. (10c)

Proof: Equation (10a) follows from Lemma 1 and the domi-
nated convergence theorem [55]. For details, see [52, Appendix

C-B]. Clearly, the estimation error of the LS algorithm (9) is
[44]

Â− a =

∑L−1
k=1 WkXk∑L−1

k=1 X
2
k

a.s. w.r.t. Pa. (11)

Consequently, by (10a), a learning-based attack (2) can at least
achieve the asymptotic deception probability (10b). Finally,
(10c) holds by the concentration of measure [44, Theor. 4]
by noting that Uk is a measurable function of Y k

1 = Xk
1 , for

k ∈ {1, . . . , L}.
Remark 3: We can study the special case of Theorem 1 for

a linear controller. Using the value of β calculated in Remark 1
for a linear controller Uk = −ΩYk when |Â− Ω| < 1, we can
rewrite (10c) as

lim
T→∞

P a,T
Dec ≥ 1− 2(

1 + δ 1−(Â−Ω)2

Var[W ]

)L/2
. (12)

In this case, for a fixed L, as Var[W ] increases, the lower bound
in (12) decreases. The reduction of the attacker’s success rate
can be explained by noticing that LS estimation (9) is based
on minimizing ‖Xk+1 −AXk − Uk‖, and the precision of this
estimate decreases as Var[W ] increases. •

Remark 4: By replacing the limit with limsup in the lower
bound in Theorem 1, the result holds even if the limit in (8)
does not exist. Also, if the limit in (8) is infinite, then either
the attacker or the controller is doing a poor job, as described
next. Assume that the attacker uses an estimate Â such that at
the conclusion of the learning phase Â belongs to the interval
(A− δ′, A+ δ′), for a small value of δ′ > 0. In this case, if the
power of the fictitious sensor reading tends to infinity, then the
controller is not robust. In contrast, assume that the controller
stabilizes the system with any open-loop gain that belongs to
the interval (A− δ′, A+ δ′) where δ′ > 0. In this case, if the
power of fictitious sensor tends to infinity then the attacker’s
estimate at the conclusion of the learning phase does not belong
to the interval (A− δ′, A+ δ′), i.e., the absolute value of the
attacker’s estimation error is larger than δ′. •

Example 1: In this example, we compare the empirical per-
formance of the variance test with our developed bound in
Theorem 1. At every time T , the controller tests the empirical
variance for anomalies over a detection window [1, T ], using
a confidence interval 2δ > 0 around the expected variance (5).
Here,a = 1, δ = 0.1,Uk = −0.88aYk for all 1 ≤ k ≤ T = 800
and {Wk} are i.i.d. Gaussian N (0, 1), and 500 Monte Carlo
simulations were performed.

The learning-based attacker (2) uses the LS algorithm (9) to
estimate a and as illustrated in Fig. 2, the attacker’s success
rate increases as the duration of the learning phase L increases.
This is in agreement with (10c) since the attacker can improve
its estimate of a and the estimation error |Â− a| reduces as
L increases. As discussed in Section II-C, the false alarm rate
decays to zero as the size of the detection window T tends to
infinity. Hence, for a sufficiently large detection window, the
attacker’s success rate could potentially tend to 1. Indeed, such
behavior is observed in Fig. 2 for a learning-based attacker (2)
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Fig. 2. Attacker’s success rate Pa,T
Dec versus the size of the detection

window T .

with L = 400. Fig. 2 also illustrates that our learning-based
attack outperforms the replay attack. A replay attack with a
recording length of L = 20 and a learning-based attack with a
learning phase of length L = 20 are compared, and the success
rate of the replay attack saturates at a lower value. Moreover, a
learning-based attack with a learning phase of length L = 8 has
a higher success rate than a replay attack with a larger recording
length of L = 20. •

B. Upper Bound on the Deception Probability

We now derive an upper bound on the deception probability
(6) of any learning-based attack (2) where Â in (2) is constructed
using any arbitrary learning algorithm, for any measurable
control policy, when A is distributed over a symmetric interval
[−R,R]. Since the uniform distribution has the highest entropy
among all distributions with finite support [54, Ch. 12], we
assume that A has a uniform prior over the interval [−R,R].
We further assume that the attacker knows this distribution
(including the value of R), whereas the controller knows the
true realization of A (as before).

Theorem 2: For any R > 0, let A be distributed uniformly
over [−R,R] and consider any measurable control policy {Uk},
and any learning-based attack (2) such that the fictitious sen-
sor readings satisfy (8) with

√
δβ ≤ R. Then, the asymptotic

deception probability when using the variance test (5), is upper
bounded as

lim
T→∞

PT
Dec = P (|A− Â| <

√
δβ) (13a)

≤ Λ � I(A;ZL
1 ) + 1

log(R/
√
δβ)

. (13b)

In addition, if for all k ∈ {1, . . . , L}, A → (Xk, Z
k−1
1 ) → Uk

is a Markov chain, then for any sequence of probability mea-
sures {QXk |Zk−1

1
}, such that for all k ∈ {1, . . . , L}PXk |Zk−1

1
�

QXk|Zk−1
1

, we have

Λ ≤
∑L

k=1 D
(

PXk |Zk−1
1 ,A‖QXk |Zk−1

1
|PZk−1

1 ,A

)
+ 1

log
(
R/
√
δβ
) . (14)

Proof: Equation (13a) follows from (7), (10a), and Tonelli’s
theorem [55]. For details, see [52, Appendix D]. Equation (13b)
follows by noting that since the attacker observes the plant state
and control input during the learning phase, which lasts L steps,
and since A → (XL

1 , U
L
1 ) → Â constitutes a Markov chain,

using the continuous domain version of Fano’s inequality [57,
Prop. 2], we have

inf
Â

P
(∣∣∣Â−A

∣∣∣ ≥√δβ
)
≥ 1− I(A;ZL

1 ) + 1

log(R/
√
δβ)

whenever
√
δβ ≤ R. Finally, (14) follows the arguments of [58]

and is proven, for completeness, in [52, Appendix D-B]. �
Remark 5: By looking at the numerator in (13b), it follows

that the bound on the deception probability becomes looser as
the amount of information revealed about the open-loop gain
A by the observation ZL

1 increases. In contrast, by looking at
the denominator, the bound becomes tighter as R increases.
This is consistent with the observation of Zames [58] that
system identification becomes harder as the uncertainty about
the open-loop gain of the plant increases. In our case, a larger
uncertainty interval R corresponds to a poorer estimation of
A by the attacker, which leads, in turn, to a decrease in the
achievable deception probability. The denominator can also be
interpreted as the intrinsic uncertainty of A when it is observed
at resolution

√
δβ as it corresponds to the entropy of the random

variable A when it is quantized at such resolution. •
In conclusion, Theorem 2 provides two upper bounds on the

deception probability. The first bound (13b) clearly shows that
increasing the privacy of the open-loop gain A—manifested in
the mutual information between A and the state-and-control tra-
jectoryZL

1 during the exploration phase—reduces the deception
probability. The second bound (14) allows freedom in choosing
the auxiliary probability measure QXk |Zk−1

1
, making it a rather

useful bound. For instance, by choosing QXk |Zk−1
1

∼ N (0, σ2),
for all k ∈ N, we can rewrite the upper bound (14) in terms of
EP [(AXk−1 + Uk−1)

2] as follows. The proof of the following
corollary can be found in [52].

Corollary 1: Under the assumptions of Theorem 2, if for
all k ∈ {1, . . . , L}, A → (Xk, Z

k−1
1 ) → Uk is a Markov chain,

then the asymptotic deception probability upper bounded as

lim
T→∞

PT
Dec ≤ G(ZL

1 ), (15a)

G(ZL
1 ) �

log e
2σ2

∑L
k=1 EP

[
(AXk−1 + Uk−1)

2
]
+ 1

log
(
R/
√
δβ
) . (15b)

Remark 6: Following the same discussion as in Remark 4, by
replacing the limit with liminf in the upper bound in Theorem 2,
the derived results remain true even if (8) does not happen. •

The next example compares the lower and upper bounds on
the deception probability of Theorem 1 and Corollary 1.

Example 2: Theorem 1 provides a lower bound on the decep-
tion probability givenA = a. Hence, by applying the law of total
probability w.r.t. the PDF fA as in (7), we can apply the result
of Theorem 1 to provide a lower bound also on the average
deception probability for a random open-loop gain A. In this
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Fig. 3. Comparison of the lower and upper bounds on the deception
probability of Theorem 1 and Corollary 1, respectively.

context, Fig. 3 compares the lower and upper bounds on the de-
ception probability provided by Theorem 1 and Corollary 1, aug-
mented with the trivial cases of zero and one probability, namely,
max{0, 1− (2/(1 + δβ)L/2)} and min{1, G(ZL

1 )} where A is
distributed uniformly over [−0.9, 0.9]. Equation (16a) is valid
when the control input is not a function of random variable A;
hence, we assumed Uk = −0.045Yk for all time k ∈ N. Here,
δ = 0.1, {Wk} are i.i.d. Gaussian with zero mean and variance
of 0.16 and for simplicity, we assume the limit in (8) exists [cf.
Remarks 4 and 6] and we let β = 1.1. Although, in general,
the attacker’s estimation of the random open-loop gain A and
consequently the power of fictitious sensor reading (8) vary
based on the learning algorithm and the realization of A, the
comparison of the lower and upper bounds in Fig. 3 is restricted
to a fixed β. 2000 Monte Carlo simulations were performed.

Fig. 3 also illustrates the gap between these lower and upper
bounds on the deception probability. By restricting the class of
control policies or learning algorithms, one might be able to
derive tighter results at the cost of losing generality. •

C. Privacy-Enhancing Signal

For a given duration of the learning phase L, to increase the
security of the system, at any time k, the controller can add
a privacy-enhancing signal Γk to an unauthenticated control
policy {Ūk|k ∈ N}:

Uk = Ūk + Γk , k ∈ N. (16)

We refer to such a control policy Uk as the authenticated control
policy Ūk. We denote the states of the system that would be
generated if only the unauthenticated control signal Ūk

1 were
applied by X̄k

1 and the resulting trajectory by Z̄k
1 � (X̄k

1 , Ū
k
1 ).

The following numerical example illustrates the effect of the
privacy-enhancing signal on the deception probability.

Example 3: Here, the attacker uses the LS algorithm (9), the
detector uses the variance test (5), a = 1, T = 600, δ = 0.1, and
{Wk} are i.i.d. standard Gaussian. We compare the attacker’s
success rate, the empirical P a,T

Dec , as a function of the duration
L of the learning phase for three different control policies:
1) unauthenticated control signal Ūk

1 = −aYk for all k; 2)

Fig. 4. Attacker’s success rate Pa,T
Dec versus the duration of the learning

phase L.

authenticated control signal (17), where Γk are i.i.d. Gaussian
N (0, 9); and 3) authenticated control signal (16), where Γk are
i.i.d. Gaussian N (0, 16). As illustrated in Fig. 4 , for both the
authenticated and unauthenticated control signals, the attacker’s
success rate increases as the duration of the learning phase
increases. This is in agreement with (10c) since the attacker
can improve its estimate of a as L increases. Furthermore, for
a fixed L, the attacker performance deteriorates as the power of
privacy-enhancing signal Γk increases. Namely, Γk hampers the
learning process of the attacker and the estimation error |Â− a|
increases as the power of the privacy-enhancing signal increases.
500 Monte Carlo simulations were performed. •

Remark 7: A “good” privacy-enhancing signal entails little
increase in the control cost [59] compared to its unauthenti-
cated version while providing enhanced detection probability (6)
and/or false alarm probability. Finding the optimal privacy-
enhancing signal is left for future research. We remark that since
the submission of this article [1], [52], some latter literature has
appeared that builds on it. In particular, in a follow-up work [60],
Ziemann and Sandberg focused on designing optimal privacy-
enhancing signal, by studying the optimal control problem of
linear systems regularized with Fisher information, where the
latter serves as a proxy to the estimation quality of A via the
Cramer–Rao lower bound. •

One may envisage that superimposing any noisy signal Γk on
top of the control policy {Ūk|k ∈ N}would necessarily enhance
the detectability of any learning-based attack (2) since the obser-
vations of the attacker are in this case noisier. However, it turns
out that injecting a strong noise for some learning algorithm may,
in fact, speed up the learning process as it improves the power of
the signal magnified by the open-loop gains w.r.t. the observed
noise [44]. Any signal Γk that satisfies the condition proposed
in the following corollary, whose proof available in [52], will
provide enhanced guarantees on the detection probability when
the attacker uses any arbitrary learning algorithm to estimate the
uniformly distributed A over the symmetric interval [−R,R].

Corollary 2: For any control policy {Ūk|k ∈ N} with tra-
jectory Z̄k

1 = (X̄k
1 , Ū

k
1 ) and its corresponding authenticated

control policy Uk
1 (17) with trajectory Zk

1 = (Xk
1 , U

k
1 ), under
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the assumptions of Corollary 1, if for all k ∈ {1, . . . , L− 1}
EP

[
Ψ2

k + 2Ψk(AX̄k + Ūk)
]
< 0 (17)

where Ψk �
∑k

j=1 A
k−jΓj , for any L ≥ 2, the following ma-

jorization of G (15b) holds:

G(ZL
1 ) < G(Z̄L

1 ). (18)

Remark 8: Corollary 2 can be generalized by replacing the
limit with liminf in (8) (cf. Remarks 4 and 6). •

Example 4: In this example, we describe a class of
privacy-enhancing signals that yield better guarantees on
the deception probability. For all k ∈ {2, . . . , L}, clearly,
Ψk−1 = −(AX̄k−1 + Ūk−1)/η satisfies the condition in (17)
for any η ≥ 3. Thus, by choosing the privacy-enhancing
signals Γ1 = −(AX̄1 + Ū1)/η, and Γk = −(AX̄k + Ūk)/η −∑k−1

j=1 A
k−1−jΓj for all k ∈ {3, . . . , L}, (18) holds. A nu-

merical example for this authentication policy demonstrates a
decrease in the deception probability at the expense of a higher
control cost, and it can be found in [52, Appendix B-A]. •

Remark 9: The privacy-enhancing signal introduced in this
work is related to the dynamic watermarking signal [26], [29],
[30], which are unique signatures that are available only to the
controller. In contrast, in our setup [depicted in Fig. 1(b)], the
attacker has access to the signal generated by the controller.
Thus, by reading the control input at time k and constructing
the fictitious sensor reading Vk+1, as in (2), the attacker can
construct a fictitious sensor reading containing any watermark
signal inscribed by the controller. It follows that techniques
based on dynamic watermarking that rely on the privacy of
such signal break down in the case where attacks have access
to the control signal generated by the controller. Instead, we
take advantage of the authentication signal in a different way:
since the attacker does not have full knowledge about the system
dynamics, this signal is used to hamper the learning process of
the attacker during the learning phase. •

IV. EXTENSION TO VECTOR SYSTEMS

We now generalize our results to vector systems. Consider
the networked control system depicted in Fig. 1, with the plant
dynamics replaced by a vector plant:

xk+1 = Axk + uk +wk (19)

where xk ∈ Rn×1, uk ∈ Rn×1, A ∈ Rn×n, and wk ∈ Rn×1

represent the plant state, control input, open-loop gain of the
plant, and plant disturbance, respectively, at time k ∈ N. The
controller, at time k, observes yk and generates a control signal
uk as a function of yk

1 , and yk = xk at times k ∈ N at which the
attacker does not tamper the sensor reading. We assume that the
initial condition x0 has a known (to all parties) distribution and
is independent of the disturbance sequence {wk}. For analytical
purposes, we further assume that {wk} is a process with i.i.d.
multivariate Gaussian samples of zero mean and a covariance
matrix Σ that is known to all parties. Without loss of generality,
we assume that w0 = 0, E[x0] = 0, and take u0 = 0.

We assume that the attacker uses the vector analog of learning-
based attacks described in Section II-A, where the attacker can

use any learning algorithm to estimate the open-loop gain matrix
A during the learning phase. The estimation Â constructed by
the attacker at the conclusion of the learning phase is utilized
to construct the fictitious sensor readings {vk} according to the
vector analog of (2), where {w̃k|k = L, . . . , T − 1} are i.i.d.
multivariate Gaussian with zero mean and covariance matrix Σ.

Similar to the scalar case, for analytical purposes, we assume
that the power of the fictitious sensor reading is equal to 1/β <
∞ [cf. Remarks 1 and 4], namely

lim
T→∞

1

T

T∑
k=L+1

‖vk‖2 =
1

β
a.s. w.r.t. PA. (20)

Since the zero-mean multivariate Gaussian distribution is
completely characterized by its covariance matrix, we shall
follow [29] and test for anomalies in the latter. To that end,
define the error matrix

Δ � Σ− 1

T

T∑
k=1

[yk+1 − Ayk − uk] [yk+1 − Ayk − uk]
† .

As in (5), we use a test that sets a confidence interval, w.r.t.
the norm, around the expected covariance matrix, i.e., it checks
whether

‖Δ‖op ≤ γ (21)

at the test time T . For the sake of analysis, we use the operator
norm in (21), which satisfies the submultiplicativity property.

The following lemma provides a necessary and sufficient con-
dition for any learning-based attack [the vector analog of (2)] to
deceive the controller and remain undetected, for a multivariate
plant (19) under a covariance test (21), in the limit of T → ∞;
its proof is available in [52].

Lemma 2: Consider the multivariate plant (19) and any
learning-based attack analogous to (2), with fictitious sensor
reading power that satisfies (20), and any measurable control
policy {uk}. Then, the attacker can deceive the controller and
remain undetected, under the covariance test (21), a.s. in the
limit T → ∞, if and only if

lim
T→∞

1

T

∥∥∥∥∥
T∑

k=L+1

(Â− A)vkv
†
k(Â− A)†

∥∥∥∥∥
op

≤ γ. (22)

Lemma 2 has the following important implication:

lim
T→∞

1

T

∥∥∥∥∥
T∑

k=L+1

(Â− A)vkv
†
k(Â− A)†

∥∥∥∥∥
op

(23a)

≤ lim
T→∞

1

T

T∑
k=L+1

∥∥∥(Â− A)vk((Â− A)vk)
†
∥∥∥

op
(23b)

≤ lim
T→∞

1

T

T∑
k=L+1

∥∥∥(Â− A)vk

∥∥∥2
op

(23c)

≤
∥∥∥Â− A

∥∥∥2
op
/β (23d)

where (23b) follows from the triangle inequality, and (23c) and
(23d) follow from the submultiplicativity of the operator, the

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 29,2021 at 19:46:24 UTC from IEEE Xplore.  Restrictions apply. 



KHOJASTEH et al.: LEARNING-BASED ATTACKS IN CYBER-PHYSICAL SYSTEMS 445

identity ‖vk‖ = ‖vk‖op, and by putting the power constraint
(20) into force.

If ‖Â− A‖2op ≤ γβ, (22) holds in the limit of T → ∞, then
the attacker is able to deceive the controller and remain unde-
tected a.s., by Lemma 2. Equation (23) then implies that the
norm of the estimation error, ‖Â− A‖op, dictates the ease with
which an attack can go undetected. This is used next to develop
a lower bound on the deception probability.

A. Lower Bound on the Deception Probability

We start by observing that in the case of multivariate systems,
and in contrast to their scalar counterparts, some control actions
might not reveal the entire plant dynamics, and in this case, the
attacker might not be able to learn the plant completely. This
phenomenon is captured by the persistent excitation property of
control inputs, which describes control action signals that are
sufficiently rich to excite all the system modes that will allow to
learn them. While avoiding persistently exciting control inputs
can be used as a way to secure the system against learning-
based attacks, here, we assume a probabilistic variant of this
property [58], [61].

Definition 3 (Persistent excitation): Given a plant (19),
ζ > 0, and ρ ∈ [0, 1], the control policy uk is (ζ, ρ)-persistently
exciting if there exists a time L0 ∈ N such that, for all τ ≥ L0,

PA

(
1

τ
Gτ � ζIn×n

)
≥ ρ, (24)

where Gτ is the sum of the state Gramians up to time τ :

Gτ �
τ∑

k=1

xkx
†
k. (25)

As in Section III-A, to find a lower bound on the deception
probability P A,T

Dec , we consider a specific estimate of A, obtained
via the LS estimation algorithm, analogous to (9), at the conclu-
sion of the first phase by the attacker:

Â =

{
0n×n, det(GL−1) = 0∑L−1

k=1(xk+1 − uk)x
†
kG

−1
L−1, otherwise

(26)

where 0k×� denotes an all zero matrix of dimensions k × 
.
Next, we show an upper bound on the estimation error norm,

‖Â− A‖op, of the above LS algorithm (26) and use it to extend
the bound in (10) to the vector case. A complete proof is available
in [52].

Lemma 3: Consider the vector plant (19). If the attacker
constructs Â using LS estimation (26) and the controller uses a
policy {uk} for which the event in (24) occurs for τ = L− 1,
that is, GL−1/(L− 1) � ζIn×n, then we have

‖Â− A‖op ≤ 1

ζL

L−1∑
k=1

‖wkx
†
k‖op a.s. w.r.t. PA. (27)

The following theorem provides a lower bound on the decep-
tion probability of an attacker that utilizes LS estimation (26),
and its proof can be found in [52]. As discussed before The-
orem 1, since the attacker might be able to construct better

estimates using other learning algorithms, this also serves as
a lower bound on the attacker’s deception probability in the
general case.

Theorem 3: Consider the plant (19) with a (ζ, ρ)-persistently
exciting control policy {Uk} from time L0, and LS (26)
learning-based attack [the vector analog of (2)] such that the
fictitious sensor reading power satisfies (20) and with a learning
phase of duration L ≥ L0 + 1. Then, the asymptotic deception
probability, when using the covariance test (21), is bounded from
below as

lim
T→∞

P A,T
Dec ≥ PA

(
‖Â− A‖op <

√
γβ
)

(28a)

≥ ρPA

(
1

ζL

L−1∑
k=1

‖wkx
†
k‖op <

√
γβ

)
. (28b)

Remark 10: The bound (10c) for scalar systems, which is
independent of the control policy and state value, has been
developed using the concentration bounds of [44] for the scalar
LS algorithm (9). To the best of our knowledge, there are no
similar concentration bounds for the vector variant of the LS
algorithm (9) which work for any A, and a large class of control
policies. Looking for such bounds, which are independent of
the state value, seems an interesting research venue. The lower
bound (28b) is similar to (10b), while (10b) is stronger for
the particular case of scalar system, as the upper bound on the
estimation error derived in Lemma 3 is not required for the
scalar case, and the estimation error is given in (11). •

Example 5: In this example, we compare the empirical perfor-
mance of the covariance test against the learning-based attack,
which utilizes LS estimation (26), and the replay attack. At
every time k, the controller tests the empirical covariance for
anomalies over a detection window [1, T ], using a confidence
interval 2γ > 0 around the operator norm of error matrixΔ (21).
Since we are considering the Euclidean norm for vectors, the
induced operator norm amounts to ‖Δ‖op =

√
λmax(Δ†Δ).

Here, γ = 0.1, uk = −0.9Ayk for all 1 ≤ k ≤ T = 600, and

A =

(
1 2

3 4

)
, Σ =

(
1 0

0 2

)
. (29)

Fig. 5 presents the performance averaged over 180 runs of a
Monte Carlo simulation. It illustrates that the vector variant of
our learning-based attack also outperforms the replay attack. A
learning-based attack with a learning phase of lengthL = 40 has
a higher success rate than a replay attack with a larger recording
length of L = 50. Similarly to the discussion for scalar systems
in Section II-C, the false alarm rate decays to zero as the size of
the detection window T tends to infinity. Thus, the success rate
of learning-based attacks increases as the size of the detection
window increases. Finally, as illustrated in Fig. 5, the attacker’s
success rate increases as the duration of the learning phase L
increases, since the attacker improves its estimate of A as L
increases. •

An example that investigates the effect of privacy-enhancing
signals on the empirical deception probability of the learning-
based attacks on the vector systems is in [52, Appendix B-B].
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Fig. 5. Attacker’s success rate P A,T
Dec versus the size of the detection

window T .

V. DISCUSSION AND FUTURE WORK

A. Upper Bound on the Deception Probability

The upper bound in (23), which relates the deception criterion
(22) to the estimation error ‖Â− A‖op, is used to find the lower
bound (28). Finding a corresponding lower bound in term of
‖Â− A‖op for (23a) is the first step in extending our results
in Theorem 2 to vector systems. Finding an upper bound on
the deception probability for vector linear and scalar nonlinear
systems, where the attacker can use any learning algorithm, is
left open for future work.

B. Model-Based Versus Model-Free

In this work, we mainly concentrated on linear systems; we
assumed that the attacker constructs the fictitious sensor reading,
in a model-based manner, according to the linear model (2)
and its vector variants. In general, as discussed in Appendix
A available online in [52], the system can be nonlinear, and the
attacker might not be aware of the linearity or nonlinearity of
the dynamics. Comparing the deception probability for the vast
range of model-free and model-based learning methods [41],
[45], [62] is an interesting research venue.

C. Continuous Learning and Hijacking

In this work, we assumed two disjoint consecutive phases
(recall Section II-A): learning and hijacking, which are akin
to the exploration and exploitation phases of reinforcement
learning (RL) [63]. Indeed, in this two-phase process, the at-
tacker explores the system until it reaches a desired deception
probability and then moves to the exploitation phase, during
which it drives the system to instability as quickly as it can. The
two phases are completely separate due to the inherent tension
between them: exploiting the system without properly exploring
it during the learning (silent) phase increases the chances of
being detected.

Despite the naturalness of two-phase attacks, just like in
RL [63], one may consider more general strategies where ex-
ploration and exploitation are intertwined and gradual: as time

elapses, the attacker can gain better estimates of the observed
system and gradually increase its detection-limited attack. In
these terms, our two-phase attack can be regarded as a two-stage
approximation of the gradual attack and provides achievability
bounds for such attacks. Studying more general attacks is a
research venue that is left for future study.

D. Oblivious Controller

A more realistic scenario is the one in which neither the
attacker nor the controller is aware of the open-loop gain of the
plant. In this scenario, both parties strive to learn the open-loop
gain—posing two conflicting objectives to the controller, who,
on the one hand, wishes to speed up its own learning process,
while, on the other hand, wants to slow down the learning process
of the attacker.

In such a situation, standard adaptive control methods are
clearly insufficient, as no asymmetry between the attacker and
the controller can be achieved under the setting of Section II. To
create a security leverage over the attacker, the controller needs
to utilize a judicious privacy-enhancing signal: A properly de-
signed privacy-enhancing signal should enjoy a positive double
effect by facilitating the learning process of the controller while
hindering that of the attacker at the same time. Note that, in
such a scenario, while the controller knows both Ūk and Γk,
the attacker is cognizant of only their sum (17)—Uk. This is
reminiscent of strategic information transfer [64].

Finally, we note that, unless the controller is able to detect
an MITM attack (the attacker’s hijacking phase), its learning
process will be hampered by the fictitious signal that is generated
according to the virtual system of the attacker (2).

E. Moving Target Defense

In our setup, the attacker has full access to the control signal
(see Fig. 1), and at time k + 1, the attacker uses the control
input Uk to construct the fictitious sensor reading Vk+1 ac-
cording to (2). Thus, the watermarking signal [26], the private
random signature, might not be an effective way to counter the
learning based attacks [cf. Remark 9]. Here, we introduced the
privacy-enhancing signal (17) to impede the learning process
of the attacker and decrease the deception probability. Another
technique that has been developed in the literature to counter
attacks, where the attacker has full system knowledge, is having
the controller covertly introduce virtual state variables unknown
to the attacker but that are correlated with the ordinary state
variables, so that modification of the original states will impact
the extraneous states. These extraneous states can act as a
moving target [35]–[38] for the attacker. A similar technique
is the so-called baiting, which adds an offset to the system dy-
namic [39], [40]. In practice, this technique breaks the informa-
tion symmetry between the attacker—which has the full system
knowledge—and the controller. Using such defense techniques
to hamper the learning process of our proposed attacker is an
interesting research venue. In this context, the controller, by
potentially sacrificing the optimally of the control task, can act
in an adversarial learning setting. Assuming that the control can
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covertly introduce a virtual part to the dynamics, for any given
duration of the learning phase L (see Fig. 1), sufficiently fast
changes in the cipher part of the dynamic can drastically hamper
the learning process of the attacker. Also, as discussed in [52,
Appendix A], adding a rich nonlinearity to the dynamics can
be used as a way to secure the system against learning-based
attacks.

F. Optimal Testing

Throughout this work, we have assumed that the controller
tests the integrity of the system at a specific time step T , which
tends to infinity. Since the controller does not know the exact
time instant at which an attack might occur, a more realistic
scenario would be that of continuous testing, i.e., that in which
the integrity of the system is tested at every time step and where
the false alarm and deception probabilities are defined with a
union over time. We leave this treatment for future research.

In addition, following [29], we have considered the variance-
based test, which searches for anomalies in the empirical vari-
ance, i.e., whether it falls outside a confidence interval of length
2δ [cf. (5)]. Studying the optimal detector for learning-based
attacks is an interesting research venue.

G. Further Future Directions

Other future directions can explore the extension of the estab-
lished results to partially observable linear vector systems where
the input (actuation) gain is unknown, characterizing securable
and unsecurable subspaces [65] for learning-based attacks, re-
vising the attacker full access to both sensor and control signals,
designing optimal privacy-enhancing signals (recall Remark 7)
for linear and nonlinear systems, investigating the scenario in
which the attacker is oblivious of the noise covariance matrix
or more generally the noise statistics, and studying the relation
between our proposed privacy-enhancing signal with the noise
signal utilized to achieve differential privacy [66]. Finally, note
that we assume that the attacker does not know the control
strategy applied by the controller but is privy to the control
actions generated by the controller. In the case where the attacker
knows the control policy (or control objectives), it can do a
much better job in learning the system dynamics, which is an
interesting research venue.
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