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Abstract

Significant human and observational resources have been dedicated to electromagnetic follow-up of gravitational-
wave events detected by Advanced LIGO and Virgo. As the sensitivity of LIGO and Virgo improves, the rate of
sources detected will increase. Margalit & Metzger (2019) have suggested that it may be necessary to prioritize
observations of future events. Optimal prioritization requires a rapid measurement of a gravitational-wave event’s
masses and spins, as these can determine the nature of any electromagnetic emission. We extend the relative
binning method of Cornish (2013) and Zackay et al. (2018) to a coherent detector-network statistic. We show that
the method can be seeded from the output of a matched-filter search and used in a Bayesian parameter
measurement framework to produce marginalized posterior probability densities for the source’s parameters within
20 minutes of detection on 32 CPU cores. We demonstrate that this algorithm produces unbiased estimates of the
parameters with the same accuracy as running parameter estimation using the standard gravitational-wave
likelihood. We encourage the adoption of this method in future LIGO-Virgo observing runs to allow fast
dissemination of the parameters of detected events so that the observing community can make best use of its
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resources.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675);
Astronomical methods (1043); Close binary stars (254); Compact binary stars (283); Neutron stars (1108);

Astronomy data analysis (1858)

1. Introduction

The observation of the binary neutron star merger
GW170817 in gravitational and electromagnetic waves (Abbott
et al. 2017b, 2017c) has demonstrated the importance of
multimessenger astronomy in answering fundamental questions
in physics, astronomy, and cosmology; see, e.g., Abbott et al.
(2017a, 2017d) and Lattimer (2019). With the observation of
GW190814, gravitational-wave astronomy has begun to
explore the properties of compact objects that are more
massive than previously observed neutron stars and less
massive than previously observed black holes (Abbott et al.
2020). Advanced LIGO and Virgo perform a search for
compact-object binary mergers with several low-latency
analyses based on matched filtering (Messick et al. 2017; Nitz
et al. 2018) and release alerts to the astronomical community to
enable follow-up of detected events. As the sensitivity of the
Advanced LIGO and Virgo detectors improves, the rate at
which interesting events are detected will increase. Margalit &
Metzger (2019) have suggested that it may become necessary
to prioritize events for follow-up in future LIGO-Virgo
observing runs. Optimal prioritization will require the knowl-
edge of the source-frame component masses and spins of the
binary, as these determine the type of electromagnetic
counterpart that may be generated by the merger (Foucart
et al. 2018; Capano et al. 2020).

In this Letter, we demonstrate that it is possible to perform
full Bayesian parameter estimation on binary neutron star and
neutron star—black hole signals within 20 minutes of the
source’s detection by a matched-filter search (with an average
time of 10.8 minutes) using 32 CPU cores (2.3 GHz Xeon®
Gold 6140). Our analysis produces marginalized posterior
probability densities for the source’s parameters (including
source-frame masses, spins, sky location, and distance) that can
be used to guide the prioritization of electromagnetic follow-up

in future LIGO-Virgo observing runs. We achieve this by
extending the relative binning method originally introduced by
Cornish (2013) (and independently developed by Zackay et al.
2018) to a fully coherent statistic, seeding the relative binning
algorithm from the output of a matched-filter search, and using
the dynesty nested-sampling package (Speagle 2020). We
have made our code available in the PyCBC Inference
framework (Biwer et al. 2019).

We validate our analysis on a population of simulated binary
neutron star and neutron star-black hole signals in a LIGO-
Virgo detector network. A matched-filter search is used to
identify signals that have a false-alarm rate better than one per
month. We then use our algorithm to produce marginalized
posterior probability densities for each qualifying signal. For
the parameters of interest, we perform a percentile—percentile
test and demonstrate that our method produces unbiased
parameter estimates. Comparing our sky localization to that
of the Bayestar algorithm (Singer & Price 2016), we find
that the 90% credible localization area improves by an average
of 14 deg®. We find that our analysis can recover the source-
frame chirp mass to an accuracy of ~5 x 1072 M, for binary
neutron star signals and ~10~" M, for neutron star-black hole
signals. We demonstrate that the measurement of mass ratio
and spin is consistent with that of parameter estimation using
the full likelihood, although these quantities are measured less
accurately than the chirp mass as they enter the gravitational
waveform at higher order and suffer from a partial degeneracy
(Cutler & Flanagan 1994; Hannam et al. 2013). As an example
use case, we demonstrate that our method recovers essentially
the same posterior probabilities for the parameters of
GW170817 as the full likelihood calculation. Our method
obtains marginalized posteriors for GW170817 in 20 minutes,
compared to over three hours using the standard likelihood
calculation.
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This Letter is organized as follows: In Section 2 we describe
our simulated search. Section 3 describes our parameter
estimation analysis and our implementation of relative binning
for a detector network. Section 4 present our results including
analysis run times and parameter estimation accuracy. Finally,
we contrast our results to current methods in Section 5.

2. Simulated Search

We simulate a three-detector network representing the LIGO
Hanford, LIGO Livingston (Abbott et al. 2016; Buikema et al.
2020), and Virgo (Acernese et al. 2015) detectors. We generate
two populations of simulated signals: 600 binary neutron star
and 570 neutron star—black hole binaries. Each population is
injected into a realization of 33 hr of simulated detector data,
which is created by coloring Gaussian noise to the design
power spectral density of each detector (Abbott et al. 2018).
The simulated binary neutron star signals have their chirp mass
drawn uniformly from the interval [0.5, 3] M, and mass ratio
q = my/my drawn uniformly from the interval [1, 3], with
constraints on the component masses so that
1 < myp/Ms < 3. The neutron star’s spins are restricted to
be aligned with the orbital angular momentum and have
dimensionless magnitude drawn uniformly from the interval
[—0.05, 0.05]. The simulated neutron star—black hole signals
have their chirp mass drawn uniformly from the interval [0.5,
7] M, and mass ratio drawn uniformly from the interval [1, 10],
with constraints on the component masses so that 1 < m;/M,
< 10 and 1 < my/M., < 3. Both component spins are restricted
to be aligned with the orbital angular momentum, with the
black hole spin dimensionless magnitude drawn uniformly
from the interval [—0.998, 0.998] and the neutron star spin
dimensionless magnitude drawn uniformly from the interval
[—0.05, 0.05]. This population of sources is chosen to cover the
region in which it is expected that there will be neutron star
disruption and an electromagnetic counterpart (Capano et al.
2020). Each set of simulated signals is uniformly distributed in
sky location and follow a uniform-in-volume distance distribu-
tion with d; € [10, 300] Mpc for binary neutron star signals
and d; € [10, 500] Mpc for neutron star-black hole signals.
This corresponds to a signal population with single-detector
signal-to-noise ratios of 1 to O(100). Binary neutron star
signals are simulated using the TaylorF2 waveform approx-
imant (Dhurandhar & Sathyaprakash 1994; Droz et al. 1999;
Blanchet et al. 1995; Faye et al. 2012). The neutron star—black
hole signals are simulated using the IMRPhenomD approx-
imant (Husa et al. 2016; Khan et al. 2016). For both
populations, we set the tidal deformability of the neutron stars
A to zero, as this does not have a significant effect on the
parameters we are investigating in this Letter (Damour et al.
2012).

To simulate the output of the LIGO-Virgo searches, we run
each set of simulated signals through the PyCBC search
pipeline (Usman et al. 2016) configured to operate in a similar
way to the PyCBC Live low-latency search used in the recent
Advanced LIGO-Virgo observing runs (Dal Canton et al.
2020). This search uses matched filtering (Allen et al. 2012)
with a template bank of gravitational waveforms designed to
give at least a 97% match, measured by noise-weighted
overlap, to any potential signal in the relevant parameter space
(Dal Canton & Harry 2017; Abbott et al. 2019a). The bank is
designed to catch potentially electromagnetically bright signals,
and contains 315,325 waveforms. Template waveforms have
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component masses spanning [1, 30] M, and dimensionless spin
magnitudes in the range [—1, 1], with the spin restricted to the
direction of the orbital angular momentum. Templates in the
bank are generated using the TaylorF2 approximant for signals
with total mass M = m; + m, < 4 M., (Faye et al. 2012), and
with a reduced-order model of the SEOBNRv4 approximant
otherwise (Bohé et al. 2017). Candidate triggers are required to
be matched by the same template in at least two detectors in the
network and with consistent phase, amplitude, and time of
arrival given the network orientation and relative sensitivities
between detectors (Nitz et al. 2017). The search pipeline
provides best-fit template parameters for every trigger and
measures the trigger’s statistical significance. The significance
of a trigger is determined by the time-slide method and the
pipeline computes a false-alarm rate for each trigger. We select
the triggers that have a false-alarm rate more significant than
1 per month as candidate events for parameter estimation
follow-up. This threshold was selected to be the same as that
used to release low-latency events as public alerts for
electromagnetic follow-up in the third LIGO-Virgo observing
run (Abbott et al. 2019b) and corresponds to a network signal-
to-noise ratio of approximately 8.3. Of the total injections
made, 306 binary neutron star and 253 neutron star—black hole
injections satisfied this threshold.

3. Parameter Estimation

We use PyCBC Inference (Biwer et al. 2019) with the
dynesty nested sampler (Speagle 2020) to perform Bayesian
parameter estimation on candidate events from the search
pipeline. In general, under the assumption of Gaussian noise
characterized by a power spectrum S(f), the likelihood of
obtaining detector data d given the presence of a gravitational
waveform A(f) is

L(d]B) exp[—%w ~ h(O)ld — h<0>>], (1)
where
hos @*(f)B(f)
b) = 4R — 2
alb) s @)

is the noise-weighted inner product (Chernoff & Finn 1993;
Finn & Chernoff 1993). In evaluating this likelihood, we can
obtain estimates of the gravitational-wave parameters  through
the posterior probability distribution

p(6ld) oc L(d|0)p(0), A3)

where p(0) is the assumed prior probability distribution of the
parameters. To calculate the likelihood, we use the relative
binning method of Cornish (2013) and Zackay et al. (2018),
which uses a linear interpolation across frequency samples over
which the accumulated phase difference ¢ between a fiducial
waveform and nearby waveforms is less than a tunable
threshold. This effectively downsamples the number of
frequency points used to compute the likelihood, thereby
speeding up the parameter estimation.

The implementation of relative binning used by Zackay et al.
(2018) did not incorporate a coherent network detection
statistic. We extend their method to include the extrinsic
parameters that are needed to measure the sky location of an
event: R.A. «, decl. 6§, geocentric time of coalescence f.,
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Figure 1. Left: the wall-clock time in minutes that it takes to perform the parameter estimation using the coherent relative binning likelihood and nested sampling on
32 cores of an Intel® Xeon® Gold 6140 processor running at a clock speed of 2.3 GHz as a function of the network signal-to-noise ratio of the maximum likelihood
template. The average run-time for a single signal is 10.8 minutes, with the maximum run-time being 20 minutes for all signals. Increasing the number of cores does
not significantly decrease the wall-clock run-time. The run-time shows a slight increase as a function of the signal-to-noise ratio, as expected given that signals with a
larger signal-to-noise ratio have a more narrowly peaked likelihood. Right: the fraction of injections recovered within a credible interval plotted as a function of
credible interval. Fidelity to the 1:1 diagonal line is an indication of probability being uniformly distributed across a given parameter’s posterior distribution and is a
measure of the accuracy of this analysis at the population level. We find that all of the parameters of interest are estimated in an unbiased way by our parameter

estimation method.

inclination angle ¢, and gravitational-wave polarization angle
1. These parameters are incorporated into the likelihood by
projecting each template waveform onto the individual
detectors in the network. A general frequency domain wave-
form template 4 as seen by a detector can be written as

h(f) = F+(Oé, 6’ 1/1)h+(f) + Fx(a’ 6’ w)hx(f)» (4)

where h, . are the plus and cross polarizations of the
waveform, and F, , are the detector antenna responses to the
two polarizations (Anderson et al. 2001). The amplitude of the
individual waveform polarizations depend on the inclination
angle ¢ (Thorne 1987)

hy o %(1 + cos?1), 5)

hy o< coS L. (6)

We generate waveforms using both polarizations in order to
capture this dependence. Similarly, we measure «, 6, f., and
dependence through the detector antenna responses as the
orientation of the detector arms, and thus the sensitivity to the
two polarizations, will change as the Earth moves. To account
for coherent network timing delays, we calculate detector-
specific arrival times for each template waveform using «, 9,
and 7., based on the geometry of the network with respect to the
source at the time of the signal, along with the light travel time
from the Earth center (Fairhurst 2009).

The relative-binned likelihood calculation requires a fiducial
waveform known to be near the peak of the likelihood. The
chirp mass of the template used to generate a candidate by a
search pipeline is accurate to within a few 10> M, for binary
neutron star signals (Berry et al. 2016; Biscoveanu et al. 2019)
and to approximately 1% for neutron star-black hole signals
(Canton et al. 2020). Since the chirp mass is the leading order
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Figure 2. Fraction of injections recovered as a function of the 90% confidence
localization area. The localization results from our parameter estimation
analysis are shown in blue, and those from the Bayestar algorithm are in
orange. The dotted lines show the results for the entire set of signals, while
solid lines show only signals that were above the detection threshold in all three
detectors in our simulated search. We find our localization areas are
consistently smaller than those from Bayestar, as indicated by the blue
lines lying to the left of the orange lines, although the difference in areas is not
large. The improvement in localization area between Bayestar and our
analysis is 14 deg® on average, and is comparable between the set of triple-
coincident signals and the set of all signals.

parameter governing phase evolution for a binary inspiral
(Peters & Mathews 1963), the best-fit template will be near the
peak of the likelihood. We therefore use the parameters that the
search pipeline reports for a signal to generate the fiducial
waveform that seeds the relative binning method. For the
fiducial sky location, inclination, and polarization, we arbi-
trarily choose oy = 7, 6y =0, ¢y = 0, and 1)y = 7, as we find
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Figure 3. Chirp mass and mass ratio recovery metrics for the binary neutron star (left column) and neutron star-black hole (right column) signals in our analysis. Top
row: difference between source-frame chirp mass estimates and the true injected value, as a function of signal-to-noise ratio. Blue circles denote differences from the
median posterior values from parameter estimation, while orange circles show differences from best-fit template values from the search. We find that on average our
parameter estimation results improve on the accuracy of the best-fit template by a factor of 2. Middle and bottom rows: fractional uncertainties on chirp mass and mass
ratio, respectively, calculated as the ratio of standard deviation and mean of the posterior distributions. Uncertainties from our relative-binned analysis are shown as
blue circles, and those from a standard nonrelative likelihood analysis on a subset of the population are shown as orange diamonds. Our relative-binned results are
consistent with the nonrelative analysis, and also with the results in Farr et al. (2016).

that more accurate initial estimates are unnecessary to correctly
recover the source parameters. The fiducial coalescence time is
set to be the arithmetic mean of the coalescence time reported
by the search pipeline for each detector.

Parameter estimation is performed over the detector-frame
chirp mass M, the mass ratio g = m/my, m; > m,, the
component-aligned spins X, the geocentric time of coales-
cence f., the inclination angle ¢, the R.A. «, the decl. 4, the
luminosity distance d;, and the gravitational-wave polarization
angle . The likelihood calculation includes an analytic
marginalization over the coalescence phase ¢.. We use the
TaylorF2 approximant to generate the likelihood for binary
neutron star waveforms and the IMRPhenomD approximant for
the neutron star-black hole waveforms. For all simulated
signals we use a low-frequency cutoff of 30 Hz and a sample
rate of 2048 Hz.

The prior distributions used in the parameter estimation are
the same as those of the corresponding population of simulated
signals for each parameter, with the exception of the chirp mass
that we restrict to be uniform in M € [M,; — 0.1, M, + 0.1]
M, where M is the chirp mass of the template reported by
the search. This constraint on the chirp mass prior enables
quicker convergence of the parameter estimation, but in all

cases the restricted bounds are well outside the region of
posterior support and so do not affect the accuracy of recovery.

For each simulated signal recovered with false-alarm rate
more significant than 1 per month by the search pipeline, we
run the relative-binned parameter estimation analysis to
produce posterior distributions for the 10-dimensional set of
waveform parameters 0 = (M, q, X}, Xp» te> L @, 6, dp, V).
For each signal, we measure the wall-clock time that it takes
to perform the parameter estimation on 32 cores of an Intel®
Xeon® Gold 6140 processor running at a clock speed of
2.3 GHz.

4. Results

The timing results for the two simulated populations as a
function of the network signal-to-noise ratio of the maximum
likelihood template are shown in the left panel of Figure 1. The
average run time for a single signal is 10.8 minutes, with the
maximum run-time being 20 minutes for all signals. The
parallelization used by the nested-sampling algorithm is
saturated at approximately 32 cores, so while a small decrease
in wall-clock time may be gained by fine-tuning the number of
cores, increasing the number beyond 32 does not significantly
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Figure 4. Difference between parameter estimates and true injected values for some component parameters of interest, plotted against signal-to-noise ratio. The left
column shows results for the component masses of binary neutron star signals, and the right column shows results for the component masses and black hole spin of
neutron star—black hole signals. Differences are computed from median posterior values, and masses have been converted to the source frame using the distance
posteriors. We find both component masses of binary neutron star signals are generally constrained to within ~0.5 M, of the true value for all signals, while the
majority of primary and secondary masses of neutron star—black hole signals are within about 3 M, and 1 M., respectively. We find our black hole spin measurements
are uninformative below a signal to noise of 20, but for louder signals the spin is within about 0.3 of the true value.

decrease the run time. Processors with a faster clock speed will
generally decrease run time, however.

To determine whether our method of measuring the
parameters is accurate for the population of injected signals,
we perform a percentile—percentile (PP) test on each of the
main parameters of interest: chirp mass M, mass ratio g,
effective spin yegr = (myx1 + max2)/(my + my), RA. o, decl.
0, luminosity distance d;, and inclination (. The PP test
calculates the distribution of percentile ranks for all injected
parameter values within their respective posteriors and
constructs the fraction of injections recovered within a credible
interval as a function of credible interval. Any deviation from
uniformity in this distribution for a parameter is an indication
of measurement bias. We measure any deviation with the
Kolmogorov—Smirnov (KS) test (Massey 1951), which com-
putes the distance between the empirical distribution that we
find for the PP test and the expected distribution. The results of
the PP tests are shown in the right panel of Figure 1. For every
parameter of interest, we find that the PP test follows the ideal
distribution well, with the KS test indicating that the percentile
rank distributions cannot be meaningfully distinguished from
uniform. Our results show that our analysis produces unbiased
estimates for each of the parameters of interest.

To examine the accuracy of sky localization, we calculate
the area on the sky containing 90% of the probability for the
location of the source. We compare the area of this probability
contour to the 90% credible interval of the sky-map produced
in low latency by the Bayestar algorithm (Singer &
Price 2016). Figure 2 shows the cumulative fraction of signals

recovered as a function of the 90% confidence localization area
for our method and by Bayestar. For direct comparison to
the results of Singer & Price (2016), we calculate the
cumulative fraction using all recovered signals, and the subset
of the recovered signals that is detected above threshold in all
three detectors. We find that the area of the 90% credible region
improves by an average of 14 deg” when using the relative
binning parameter estimation compared to Bayestar.

To examine the accuracy of parameter recovery, we calculate
the difference between the median of the posterior and the
known injected value for each parameter. The accuracy of chirp
mass recovery in the source frame is shown in the top panels of
Figure 3 as a function of the network signal-to-noise ratio for
each recovered signal. As expected, the accuracy of recovery
increases as the signal to noise increases. For binary neutron
star signals the difference between the median value of the
chirp mass posterior and the injected value is less than
~5 % 1072M,, for all simulated signals. This accuracy
improves by a factor of 2 for signal to noise greater than 20.
Neutron star-black hole signals generally have larger uncer-
tainties on their parameters and we find chirp mass residuals for
these signals to be less than 10~ M, for signal to noise greater
than 10 and a factor of 2 less than that for signal to noise
greater than 20. For comparison, we show the accuracy of the
source-frame chirp mass of the best-fit template from the
search. The search measures the detector-frame parameters of
the gravitational-wave signal, so we convert this to the source
frame by computing the redshift at the median distance
reported by Bayestar for the candidate event. The accuracy
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Figure 5. Posterior distributions from a relative-binned parameter estimation analysis of GW170817 (black contour) as compared to a run using the standard
nonrelative likelihood (blue contour). Marginalized one-dimensional histograms for each parameter are shown along the diagonal, with vertical dashed lines at the
median value and the bounds of the 90% credible interval. Off-diagonal plots show two-dimensional slices of the parameter space with contours delineating the 50%
and 90% credible regions. The relative-binned analysis completed in 20 minutes versus roughly 3 hr in the nonrelative case, and all parameter distributions are

consistent between the two analyses.

of the best-fit chirp mass from the search is an order of
magnitude worse than estimated by Biscoveanu et al. (2019).
However, the majority of the error comes from the calculation
of the source-frame chirp mass. Comparing the detector-frame
chirp mass of the simulated signal to the best-fit template, we
find errors of ~107>M.. While the accuracy of the best-fit
template degrades for quieter signals, using this estimate as a
seed for the relative-binned analysis does not affect the
recovery of the source parameters.

The middle row of Figure 3 shows the fractional uncertainty
in the chirp mass o/ (M), where o and (M) are the standard
deviation and mean of the posterior distribution. By this
measure we find the accuracy of our method for the binary
neutron star population is comparable to that of Farr et al.
(2016). As an additional check we also run parameter
estimation using the full likelihood for a subset of the
population and find that the accuracy of the relative binning
method is consistent with results using the full likelihood for
both binary neutron star and neutron star—black hole signals.
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These results show that our recovery of the chirp mass for all
signals has more than sufficient accuracy to determine the
expected type of electromagnetic counterpart and the possible
fate of the merger remnant using the method of Margalit &
Metzger (2019).

The gravitational-wave phase evolution is less sensitive to
changes in the mass ratio and so the component masses of the
binary are less well recovered than the chirp mass (Cutler &
Flanagan 1994). A degeneracy exists between the mass ratio
and component spins of the binary that makes measuring the
component masses and spins challenging, especially for
neutron star—black hole systems (Hannam et al. 2013). The
bottom row of Figure 3 shows the accuracy of measuring the
mass ratio g = m;/m,. Although the measurement of this
parameter is less accurate than that of the chirp mass, our
results are again comparable to those seen by Farr et al. (2016)
and they are consistent with our comparison analysis using the
full likelihood on a subset of the population. This demonstrates
that the reduced accuracy is intrinsic to the measurability of the
parameter and not a result of using the relative binning
algorithm.

To further illustrate the utility of our method in recovering
parameters of interest to the observing community, Figure 4
shows the source-frame component mass residuals for all
signals as well as the black hole spin residuals for the neutron
star—black hole signals, plotted as a function of the network
signal-to-noise ratio. The binary neutron star component
masses are shown in the left panels of the figure. The residuals
on the primary mass are generally less than about 0.5 M, with
only a slight tendency to smaller values as signal to noise
increases. The secondary mass residuals are somewhat smaller,
less than about 0.3 M., which can be attributed to the relatively
narrow mass parameter space (1-3 M) and our convention
requiring m, < my.

Neutron star—black hole signals have larger uncertainties on
their intrinsic parameter estimates owing to the larger mass and
spin parameter space and the known degeneracy between mass
ratio and spin (Hannam et al. 2013). However, these quantities
are important in determining whether a merger will produce an
electromagnetic counterpart. The residuals on component
masses and black hole spin for our neutron star—black hole
signals are shown in the right panels of Figure 4. We find the
primary and secondary mass residuals are mostly less than
3 M. and 1 M, respectively. Our estimates of the black hole
spin are generally uninformative below a signal to noise of 20,
but above this threshold we find the residuals are constrained to
be less than ~0.3.

As a final example of the effectiveness of our method, we
apply it to GW170817 (Abbott et al. 2017b) without including
any prior knowledge of host galaxy location or distance. For
comparison, we also repeat the analysis using a standard
nonrelative likelihood, and the posteriors from both runs are
shown in Figure 5. For all measured parameters, we find the
posterior distributions from the relative and nonrelative
analyses are nearly identical, in agreement with Dai et al.
(2018). However, the analysis using the relative binning
likelihood seeded by a search took only 20 minutes to
complete, as compared to over 3 hr for the standard likelihood
computation. In the only confirmed observation of a multi-
messenger gravitational-wave source to date, our analysis is
able to provide the same localization region as the standard
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likelihood as well as the same intrinsic parameter estimates in
substantially less computational time.

5. Conclusion

In previous LIGO-Virgo observing runs, the information
provided in low latency to astronomers consisted of the time of
the signal, an estimate of its statistical significance (false-alarm
rate), and a three-dimensional localization probability in sky
location and distance. In the recent third observing run, two
additional classifications were released that bin events into one
of five broad categories (binary neutron star, binary black hole,
neutron star-black hole, mass gap, or terrestrial noise) and
estimate the probability that the event produced an electro-
magnetic counterpart (Canton et al. 2020; Kapadia et al. 2020).
Both of these methods are based on the parameters of the best-
fit matched-filter template recorded by the low-latency search.
Biscoveanu et al. (2019) performed a template-bank simulation
that estimated that the low-latency chirp mass point estimate for
binary neutron stars is accurate to ~107> M_.; however, they
note that there can be significant bias in mass ratio and effective
spin from the best-fit template. Canton et al. (2020) demon-
strated that the best-fit chirp mass from a search can be used to
inform a classification scheme in which the classifications are
correct in a large majority of cases.

Here, we have extended the relative binning algorithm
(Cornish 2013; Zackay et al. 2018) for fast likelihood
evaluation in gravitational-wave parameter estimation to a
fully coherent detector network and demonstrated that it can be
seeded by the output of a matched-filter search. We have
applied our method to a set of 559 simulated signals (306
binary neutron star and 253 neutron star—black hole binaries) as
well as to GW170817. We find that in all cases our method
produces unbiased estimates for all measured parameters in less
than 20 minutes. We have shown that our method is capable of
producing full posterior distributions for all signal parameters,
which do not suffer from the biases seen when attempting to
measure the mass ratio and spin from the best-fit template. In
the case of GW170817, the relative-binned analysis produces
results nearly identical to those from a standard analysis using
the full likelihood, emphasizing our method’s utility in
producing fast parameter estimates that are of particular interest
for electromagnetic follow-up.

For gravitational-wave events in LIGO’s third observing run,
the average time between an initial trigger alert and the first
Bayesian parameter estimation results being made available
was about 10 hr (although only updated sky maps are released
and not measurement of the source’s parameters). We have
demonstrated our method could reduce this delay time
considerably, which would allow for electromagnetic follow-
up campaigns to be conducted more efficiently. We encourage
the LIGO Scientific and Virgo collaborations to adopt these
methods to provide the observing community with fast and
accurate estimates of the parameters of detected signals so that
these can be used to inform and prioritize electromagnetic
follow-up strategies. Finally, we note that given the computa-
tional cost, very few large-scale injection studies of low-mass
gravitational-wave signals have been done. Our implementa-
tion of the relative binning method into PyCBC Inference
brings these sorts of studies within reach for even modestly
equipped computing facilities.
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