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Abstract—We propose a framework to use Nesterov’s
accelerated method for constrained convex optimization
problems. Our approach consists of first reformulating the
original problem as an unconstrained optimization problem
using a continuously differentiable exact penalty function.
This reformulation is based on replacing the Lagrange
multipliers in the augmented Lagrangian of the original
problem by Lagrange multiplier functions. The expressions
of these Lagrange multiplier functions, which depend upon
the gradients of the objective function and the constraints,
can make the unconstrained penalty function non-convex
in general even if the original problem is convex. We estab-
lish sufficient conditions on the objective function and
the constraints of the original problem under which the
unconstrained penalty function is convex. This enables us
to use Nesterov’s accelerated gradient method for uncon-
strained convex optimization and achieve a guaranteed rate
of convergence which is better than the state-of-the-art
first-order algorithms for constrained convex optimization.
Simulations illustrate our results.

Index Terms—Constrained optimization, accelerated
flows, smooth exact penalty functions, convex functions.

I. INTRODUCTION

CONVEX optimization problems arise in areas like signal
processing, control systems, estimation, communication,

data analysis, and machine learning. They are also useful
to bound the optimal values of certain nonlinear program-
ming problems, and to approximate their optimizers. Due to
their ubiquitous nature and importance, much effort has been
devoted to efficiently solve them. This letter is motivated by
the goal of designing fast methods that combine the simplicity
and ease of gradient methods with acceleration techniques to
efficiently solve constrained optimization problems.

Literature review: Gradient descent is a widespread
method to solve unconstrained convex optimization problems.

Manuscript received March 9, 2020; revised May 19, 2020; accepted
June 8, 2020. Date of publication June 16, 2020; date of current version
July 1, 2020. This work was supported in part by the ARPA-e Network
Optimized Distributed Energy Systems (NODES) Program under Award
DE-AR0000695, and in part by NSF under Award ECCS-1917177.
Recommended by Senior Editor G. Cherubini. (Corresponding author:
Priyank Srivastava.)

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California at San Diego, San Diego, CA 92122
USA (e-mail: psrivast@ucsd.edu; cortes@ucsd.edu).

Digital Object Identifier 10.1109/LCSYS.2020.3002687

However, gradient descent suffers from slow convergence. To
achieve local quadratic convergence, one can use Newton’s
method [1]. Newton’s method uses second-order information
of the objective function and requires the inversion of the
Hessian of the function. In contrast, the accelerated gradient
descent method proposed by Nesterov [2] uses only first-
order information combined with momentum terms [3], [4]
to achieve an optimal convergence rate. For constrained
convex optimization, generalizations of gradient algorithms
include the projected gradient descent [5] (for simple set
constraints where the projection of any point can be com-
puted in closed form) and (continuous-time) saddle-point or
primal-dual dynamics (for general constraints), see, e.g., [6]–
[9]. When the saddle function is strongly convex-strongly
concave, the primal-dual dynamics converges exponentially
fast, see, e.g., [10]. Recent work [11]–[14] has explored the
partial relaxation of the strong convexity requirement while
retaining the exponential convergence rate. A method with
improved rate of convergence for constrained problems is
accelerated mirror descent [15] which, however necessitates
the choice of an appropriate mirror map depending on the
geometry of the problem and requires that each update solves
a constrained optimization problem (which might be chal-
lenging itself). Some works [16], [17], [18] have sought to
generalize Newton’s method for equality constrained prob-
lems, designing second-order updates that require the inversion
of the Hessian matrix of the augmented Lagrangian. Similar
to gradient descent, a generalization of Nesterov’s method
for constrained convex optimization described in [5] uses
the projection for simple set constraints. Here we follow an
alternative route involving continuously differentiable exact
penalty functions [19], [20] to convert the original problem
into the unconstrained optimization of a nonlinear function.
The works [21], [22], [23] generalize these penalty func-
tions and establish, under appropriate assumptions on the
constraint set, complete equivalence between the solutions
of the constrained and unconstrained problems. We employ
these penalty functions to reformulate the constrained convex
optimization problem and identify sufficient conditions under
which the unconstrained problem is also convex. Our previous
work [24] explores the distributed computation of the gradient
of the penalty function when the objective is separable and the
constraints are locally expressible.

Statement of contributions: We consider equality-
constrained convex optimization problems. Our starting
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point is the exact reformulation of this problem as the
optimization of an unconstrained continuously differentiable
function. We show via a counterexample that the uncon-
strained penalty function might not be convex for any value
of the penalty parameter even if the original problem is
convex. This motivates this letter of sufficient conditions on
the objective and constraint functions of the original problem
for the unconstrained penalty function to be convex. Our
results are based on analyzing the positive semi-definiteness
of the Hessian of the penalty function. We provide explicit
bounds below which, for any value of the penalty parameter,
the penalty function is either convex or strongly convex on
the domain, resp. Since the optimizers of the unconstrained
convex penalty function are the same as the optimizers of
the original problem, we deduce that the proposed Nesterov
implementation solves the original constrained problem with
an accelerated convergence rate starting from an arbitrary
initial condition. Finally, we establish that Nesterov’s algo-
rithm applied to the penalty function renders the feasible
set forward invariant. This, coupled with the fact that the
penalty terms vanish on the feasible set, ensures that the
accelerated convergence rate is also achieved from any
feasible initialization.

II. PRELIMINARIES

We collect here1 basic notions of convex analysis [1], [25]
and optimization [26].

Convex Analysis: Let C ⊆ R
n be a convex set. A func-

tion f : R
n → R is convex on C if f (λx + (1 − λ)y) ≤

λf (x) + (1 − λ)f (y), for all x, y ∈ C and λ ∈ [0, 1]. Convex
functions have the property of having the same local and
global minimizers. A continuously differentiable f : Rn → R

is convex on C iff f (y) ≥ f (x) + (y − x)�∇f (x), for all
x, y ∈ C. A twice differentiable function is convex iff its
Hessian is positive semi-definite. A twice differentiable func-
tion f : Rn → R is strongly convex on C with parameter
c ∈ R>0 iff ∇2f (x) ≥ cI for all x ∈ C.

Constrained Optimization: Consider the following nonlinear
optimization problem

min
x∈D

f (x)

s.t. h(x) = 0, (1)

where f : R
n → R, h : R

n → R
p are twice continuously

differentiable functions with p ≤ n and D ⊂ R
n is a compact

set which is regular (i.e., D = Do). The feasible set of (1)
is F = {x ∈ D | h(x) = 0}. Linear independence constraint
qualification (LICQ) holds at x ∈ R

n if {∇hk(x)}k∈{1,...,p} are
linearly independent.

The Lagrangian L : Rn × R
p → R associated to (1) is

L(x, μ) = f (x) + μ�h(x),

1Throughout this letter, we employ the following notation. Let R, R>0,
R≥0 and N be the set of real, positive real, non-negative real and natural
numbers, resp. We use X o to denote the interior of a set X . en

i denotes the
n−dimensional unit vector in direction i. Given a matrix A, N (A) denotes
its nullspace, A� its transpose, ‖A‖ its 2-norm, λmin(A) and λmax(A) its
minimum and maximum eigenvalue, resp. If A is positive semi-definite, we
let λ2(A) denote the smallest positive eigenvalue, regardless of the multiplicity
of the eigenvalue 0. Finally, V⊥ denotes the orthogonal complement of the
vector space V .

where μ ∈ R
p is the Lagrange multiplier (also called dual vari-

able) associated with the constraints. A Karush-Kuhn-Tucker
(KKT) point for (1) is (x̄, μ̄) such that

∇xL(x̄, μ̄) = 0, h(x̄) = 0.

Under LICQ, the KKT conditions are necessary for a point to
be locally optimal.

Continuously Differentiable Exact Penalty Functions: With
exact penalty functions, the idea is to replace the constrained
optimization problem (1) by an equivalent unconstrained
problem. Here, we discuss continuously differentiable exact
penalty functions following [20], [21]. The key observation is
that one can interpret a KKT tuple as establishing a relation-
ship between a primal optimal solution x̄ and the dual optimal
μ̄. In turn, the following result introduces multiplier functions
that extend this relationship to any x ∈ R

n.
Proposition 1 (Multiplier Functions and Their

Derivatives [21]): Assume that LICQ is satisfied at all
x ∈ D. Define N : R

n → R
p×p as N(x) = ∇h(x)�∇h(x).

Then N(x) is a positive definite matrix for all x ∈ D. Given the
function x 
→ μ(x) defined by μ(x) = −N−1(x)∇h(x)�∇f (x),
the following holds

(a) if (x̄, μ̄) is a KKT point for (1), then μ(x̄) = μ̄;
(b) μ : Rn → R

p is a continuously differentiable function.
The multiplier function can be used to replace the multiplier

vector in the augmented Lagrangian to define a continuously
differentiable exact penalty function. Consider the continu-
ously differentiable function f ε : Rn → R,

f ε(x) = f (x) + μ(x)�h(x) + 1

ε
‖h(x)‖2. (2)

The next result shows when f ε is an exact penalty function.
Proposition 2 (Continuously Differentiable Exact Penalty

Function [21]): Assume LICQ is satisfied at all x ∈ D and
consider the unconstrained problem

min
x∈Do

f ε(x). (3)

Then, there exists ε̄ such that the set of global minimizers
of (1) and (3) are equal for all ε ∈ (0, ε̄].

III. PROBLEM STATEMENT

Consider the following convex optimization problem

min
x∈D

f (x)

s.t. Ax − b = 0, (4)

where f : Rn → R is a twice continuously differentiable con-
vex function and D is a convex set. Here A ∈ R

p×n and b ∈ R
p

with p < n. Without loss of generality, we assume A has full
row rank (implying that LICQ holds at all x ∈ R

n).
Our aim is to design a Nesterov-like fast method to

solve (4). We do this by reformulating the problem as an
unconstrained optimization using continuously differentiable
penalty function methods, see Section II. Then, we employ
the Nesterov’s accelerated gradient method to design

xk+1 = yk − α∇f ε(yk), (5a)

ak+1 =
1 +

√
4a2

k + 1

2
, (5b)
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yk+1 = xk+1 + ak − 1

ak+1
(xk+1 − xk), (5c)

where α ∈ R>0 is the stepsize. If f ε is convex with Lipschitz
gradient L and the algorithm is initialized at an arbitrary ini-
tial condition x0 with y0 = x0 and a0 = 1, then according
to [2, Th. 1],

f ε(xk) − f ε(x∗) ≤ C

(k + 1)2
, (6a)

where x∗ ∈ R
n is a global minimizer of f ε and C ∈ R≥0 is a

constant dependant upon the initial condition and L. If f ε is
strongly convex with parameter s ∈ R>0, and (5b) and (5c)
are replaced by

yk+1 = xk+1 +
√

L − √
s√

L + √
s
(xk+1 − xk), (5d)

then one has from [5, Th. 2.2.1]

f ε(xk) − f ε(x∗) ≤ Cs exp

(
−k

√
s

L

)
, (6b)

where Cs ∈ R≥0 is a constant dependant upon the initial con-
dition, s, and L. The key technical point for this approach to be
successful is to ensure that the penalty function f ε is (strongly)
convex. Section IV below shows that this is indeed the case
for suitable values of the penalty parameter under appropriate
assumptions on the objective and constraint functions of the
original problem (4).

Remark 1 (Distributed Algorithm Implementation): We
note here that the algorithm (5) is amenable to distributed
implementation if the objective function is separable and the
constraints are locally coupled. In fact, our previous work [24]
has shown how, in this case, the computation of the gradi-
ent of the penalty function in (5a) can be implemented in
a distributed way. Based on this observation, one could use
the framework proposed here for fast optimization of convex
problems in a distributed way. To obtain fast convergence, one
could also use second-order augmented Lagrangian methods,
e.g., [17], [18], but their distributed implementation faces the
challenge of computing the inverse of the Hessian of the aug-
mented Lagrangian to update the primal and dual variables.
Even if the Hessian is sparse for separable objective functions
and local constraints, its inverse in general is not.

IV. CONVEXITY OF THE PENALTY FUNCTION

We start by showing that the continuously differentiable
exact penalty function f ε defined in (2) might not be con-
vex even if the original problem (4) is convex. For the convex
problem (4), the penalty function takes the form

f ε(x) = f (x)

− ([AA�]−1A∇f (x))�(Ax − b) + 1

ε
‖Ax − b‖2. (7)

A look at this expression makes it seem like a sufficiently
small choice of ε might make f ε convex for all x ∈ D. The
following shows that this is always not the case.

Example 1: (Non-Convex Penalty Function): Consider

min
x∈D

x4
1 + x4

2

s.t. x1 + x2 = 0.

The optimizer is (0, 0). The penalty function takes the form

f ε(x) = x4
1 + x4

2 + μ(x)�(x1 + x2) + 1

ε
(x1 + x2)

2,

where μ(x) = −(2x3
1 + 2x3

2). The Hessian of this function is

∇2f ε(x) =
⎡
⎢⎣

−12x2
1 − 12x1x2 + 2

ε
−6x2

1 − 6x2
2 + 2

ε

−6x2
1 − 6x2

2 + 2

ε
−12x2

2 − 12x1x2 + 2

ε

⎤
⎥⎦.

If x1 = 0, then the determinant of ∇2f ε(x) evaluates to −36x4
2,

which is independent of ε. Hence, f ε cannot be made convex
over any set containing the vertical axis.

Example 1 shows that the penalty function cannot always
be convexified by adjusting the value of ε. Intuitively, the
reason for this fact is that the term susceptible to be scaled
in the expression (7) which depends on the parameter ε is
not strongly convex. This implies that there are certain sub-
spaces where non-convexity arising from the term that involve
the Lagrange multiplier function cannot be countered. In turn,
these subspaces are defined by the kernel of the Hessian of
the last term in the expression (7) of the penalty function.

These observations motivate this letter of conditions on the
objective function and the constraints that guarantee that the
penalty function is convex. In our discussion, we start by pro-
viding sufficient conditions for the convexity of the penalty
function over D.

A. Sufficient Conditions for Convexity Over the Domain

Here we provide conditions for the convexity of the penalty
function f ε by establishing the positive semi definiteness of its
Hessian. Throughout the section, we assume f is three times
differentiable. Note that the gradient and the Hessian of f ε are
given, resp., by

∇f ε(x) = ∇f (x) − ∇2f (x)A�[AA�]−1(Ax − b)

− A�[AA�]−1A∇f (x) + 2

ε
A�(Ax − b), (8a)

∇2f ε(x) = ∇2f (x) − W(x) − ∇2f (x)A�[AA�]−1A

− A�[AA�]−1A∇2f (x) + 2

ε
A�A, (8b)

where we use the short-hand notation

W(x) =
n∑

i=1

∇xi∇2f (x)A�[AA�]−1(Ax − b)en�
i . (9)

The following result provides sufficient conditions under
which the penalty function (7) is convex on D.

Theorem 1 (Convexity of the Penalty Function): For the
optimization problem (4), assume ∇2f (x) − W(x) � 0 for all
x ∈ D and let

ε̄ = min
x∈D

2λmin(AA�)λmin(∇2f (x) − W(x))

λ2
max(∇2f (x)) + R(x)λmin(∇2f (x) − W(x))

,

where R(x) = 2λmax(∇2f (x)) − λmin(∇2f (x) − W(x)). Then
f ε is convex on D for all ε ∈ (0, ε̄] and consequently the
convergence guarantee (6a) holds.

Proof: For an arbitrary x ∈ D, we are interested in deter-
mining the conditions under which ∇2f ε(x) � 0, or in other
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words, v�∇2f ε(x)v ≥ 0 for all v ∈ R
n. From (8b),

v�∇2f ε(x)v = 2

ε
v�A�Av + v�(∇2f (x) − W(x))v

− 2v�(∇2f (x)A�[AA�]−1A)v. (10)

Let us decompose v as v = v‖+v⊥, where v‖ is the component
of v in the nullspace N (A) of A and v⊥ is the component
orthogonal to it. Then (10) becomes

v�∇2f ε(x)v = 2

ε
v⊥�A�Av⊥ + v�(∇2f (x) − W(x))v

− 2v‖�∇2f (x)A�[AA�]−1Av⊥

− 2v⊥�∇2f (x)A�[AA�]−1Av⊥.

Since A�(AA�)−1Av⊥ = v⊥, see [27, Th. 1.1.1], the above
expression reduces to

v�∇2f ε(x)v = 2

ε
v⊥�A�Av⊥ + v�(∇2f (x) − W(x))v

− 2v‖�∇2f (x)v⊥ − 2v⊥�∇2f (x)v⊥

≥
(

2

ε
λ2(A

�A) − 2λmax(∇2f (x))

)
‖v⊥‖2

+ λmin(∇2f (x) − W(x))(‖v⊥‖2 + ‖v‖‖2)

−2λmax(∇2f (x))‖v⊥‖‖v‖‖
=

[‖v⊥‖
‖v‖‖

]� [
S(x) −λmax(∇2f (x))

−λmax(∇2f (x)) λmin(∇2f (x) − W(x))

]

︸ ︷︷ ︸
P(x)

[‖v⊥‖
‖v‖‖

]
,

where S(x) = 2

ε
λmin(AA�) − R(x). Therefore, we deduce

that ∇2f ε(x) � 0 if ε is such that P(x) � 0. Being a
2 × 2-matrix, the latter holds if S(x) and determinant of P(x)
are non-negative. The determinant is non-negative if and only
if

ε ≤ 2λmin(AA�)λmin(∇2f (x) − W(x))

λ2
max(∇2f (x)) + R(x)λmin(∇2f (x) − W(x))

.

The above value of ε also ensures that S(x) > 0. Taking the
minimum over all x ∈ D completes the proof.

Remark 2 (Differentiability of the Objective Function):
Note that the implementation of (5) requires the objective
function f to be twice continuously differentiable, while the
definition of W in (9) involves the third-order partial deriva-
tives of f . We believe that an extension of Theorem 1 could
be pursued in case the objective function is only twice differ-
entiable using tools from nonsmooth analysis, e.g., [28], but
we do not pursue it here for space reasons.

The next result provides sufficient conditions under which
the penalty function is strongly convex on D.

Corollary 1 (Strong Convexity of the Penalty Function): For
the optimization problem (4), assume ∇2f (x)− W(x) � cI for
all x ∈ D and let

ε̄s = min
x∈D

2λmin(AA�)(c − s)

λ2
max(∇2f (x)) + 2(c − s)λmax(∇2f (x)) − (c − s)2

.

Then f ε is strongly convex on D with parameter s ∈ (0, c) for
all ε ∈ (0, ε̄s] and the convergence guarantee (6b) holds.

Proof: Let us decompose ∇2f (x) − W(x) as ∇2f (x) −
W(x) = B(x) + sI. Since ∇2f (x) − W(x) � cI, it follows
that B(x) � (c − s)I. Establishing that the penalty function is

strongly convex with parameter s is equivalent to establishing
that, for all x ∈ D, v�(∇2f ε(x) − sI)v ≥ 0 for all v ∈ R

n.
Following the same steps as in the proof of Theorem 1, one
can verify that this is true if, for all x ∈ D, ε is less than or
equal to

2λmin(AA�)λmin(B(x))

λ2
max(∇2f (x)) + 2λmin(B(x))λmax(∇2f (x)) − λ2

min(B(x))
.

Replacing λmin(B(x)) by c − s, it follows that the penalty
function is strongly convex with parameter s if ε ≤ ε̄s.

It is easy to verify that Example 1 does not satisfy the
sufficient condition identified in Theorem 1. This condition
can be interpreted as requiring the original objective function
to be sufficiently convex to handle the non-convexity arising
from the penalty for being infeasible. Finding the value of ε̄

still remains a difficult problem as computing λmin(∇2f (x) −
W(x)) for all x ∈ D is not straightforward. The next result
simplifies the conditions of Theorem 1 for linear and quadratic
programming problems.

Corollary 2 (Sufficient Conditions for Problems With
Linear and Quadratic Objective Functions):

(i) If the objective function in problem (4) is linear, then
the penalty function is convex on R

n for all values of ε;
(ii) If the objective function in problem (4) is quadratic with

Hessian Q � 0, then the penalty function is convex on
R

n for all ε ∈ (0, ε̄], where

ε̄ = 2λmin(AA�)λmin(Q)

λ2
max(Q) + 2λmin(Q)λmax(Q) − λ2

min(Q)
.

In either case, the convergence guarantee (6a) holds.
Proof: We present our arguments for each case separately.

For case (i), we have ∇2f (x) = 0. Hence,

∇2f ε(x) = 2

ε
A�A,

which means that ∇2f ε(x) ≥ 0 for all x ∈ R
n. For case (ii),

f (x) = 1

2
x�Qx + h�x,

where Q ∈ R
n×n and h ∈ R

n. The expression for the Hessian
of f ε becomes

∇2f ε(x) = Q + 2

ε
A�A − QA�[AA�]−1A

− A�[AA�]−1AQ.

Clearly W(x) = 0 for all x ∈ R
n, and the result follows from

Theorem 1.
Following Corollary 1, one can also state similar condi-

tions for the penalty function to be strongly convex in the
case of quadratic programs, but we omit them here for space
reasons. From Corollary 2, ensuring that the penalty function
convex is easier when the objective function is quadratic. This
follows from the fact that W(x), which depends on the third
order derivatives of the objection function, vanishes. Hence, in
the quadratic case, the condition in Theorem 1 requiring the
Hessian of the objective function to be greater than W(x) for
all x ∈ D is automatically satisfied. In what follows we provide
a very simple approach for general objective functions.
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B. Convexity Over Feasible Set Coupled With Invariance

Here we present a simplified version of the proposed
approach, which is based on the fact that inside the feasi-
ble set the values of the penalty and the objective functions
is the same. To build on this observation, we start by charac-
terizing the extent to which the constraints are satisfied under
the Nesterov’s algorithm.

Lemma 1 (Forward Invariance of the Feasible Set Under
Nesterov’s Algorithm Applied to the Penalty Function):
Consider the Nesterov’s accelerated gradient algorithm (5)
applied to the penalty function (7) for an arbitrary ε ≥ 0.
If the algorithm is initialized at y0 = x0, with x0 belonging to
the feasible set F , then {xk}∞k=0, {yk}∞k=0 ∈ F .

Proof: We need to prove that Axk = b and Ayk = b for all
k ≥ 0 if Ax0 = Ay0 = b. We use the technique of mathematical
induction to prove this. Since this clearly holds for k = 0, we
next prove that if Axk = Ayk = b, then Axk+1 = Ayk+1 = b.
From (5a) and (8a), we have

Axk+1 = Ayk − αA∇f ε(yk)

= Ayk − αA(∇f (yk) − ∇2f (yk)A
�[AA�]−1(Ayk − b)

− A�[AA�]−1A∇f (yk) + 2

ε
A�(Ayk − b)).

Substituting Ayk = b, the above expression evaluates to b inde-
pendent of ε ≥ 0. Then from (5c), one has Ayk+1 = b. Since
the argument above is independent of the values of ak for all
k ∈ N, it holds for the strongly convex case (5d) as well, thus
completing the proof by induction.

As a consequence of this result, if the trajectory starts in the
feasible set F , then it remains in it forever. This observation
allows us to ensure the convergence rate guarantee for any
convex objective function.

Corollary 3 (Accelerated Convergence With Feasible
Initialization): For the optimization problem (4) and arbi-
trary ε ≥ 0, the algorithm (5) initialized in F enjoys the
guarantee (6) on convergence to the optimal value.

Proof: Note that f ε(x) = f (x) whenever Ax = b, and hence
by definition, is automatically (strongly) convex on F regard-
less of the value of ε. The convergence guarantee follows from
this fact together with Lemma 1.

Remark 3: (Robustness of the Proposed Approach): Given
any x0 ∈ R

n, one can find a feasible initial point x0 −
A�[AA�]−1(Ax0 − b) by projecting x0 onto the feasible set
F , and then implement Nesterov’s accelerated method with the
projected gradient as (I−A�[AA�]−1A)∇f (x). In fact, this pro-
jected gradient method coincides with the approach proposed
here when evaluated over F . The advantage of our approach
resides in the incorporation of error-correcting terms incorpo-
rating the value of Ax−b, see (8a), that penalize any deviation
from the feasible set and hence provide additional robustness
in the face of disturbances. By contrast, the projected gradi-
ent approach requires either an error-free execution or else, if
error is present, the trajectory may leave and remain outside
the feasible set unless repeated projections of the updated state
are taken. The inherent robustness property of the approach
proposed here is especially important in the context of dis-
tributed implementations, see Remark 1, where agents need
to collectively estimate (and hence only implement approxi-
mations of) A�[AA�]−1A∇f (x) and taking the projection in
a centralized fashion is not possible. The approach proposed

here can also be extended to problems with convex inequality
constraints, see [21], whereas computing the projection in
closed form is not possible for general convex constraints.

V. SIMULATIONS

In this section, we show the effectiveness of the proposed
approach through numerical simulations. We consider

min
x∈Rn

n∑
i=1

1

2
βix

2
i + γi exp(xi)

s.t.
n∑

i=1

xi = 100,

where βi, γi ∈ R>0. We evaluate different scenarios with
values of n as 10, 50, 100, 500, 1000, 5000 and 10000. We
take D = {x ∈ R

n | ‖x‖∞ ≤ 5,
∑n

i=1 xi − 100 ≤ 50}. By
Corollary 1, for n = 50, the penalty function is strongly
convex on D with parameter s = 0.01 for all ε ∈ (0, ε̄s],
where ε̄s = 0.3603. In our simulations, we use ε = 10−1

and α = 10−3, resp. Figure 1 compares the performance
of the proposed method with the second-order augmented
Lagrangian method [17], the saddle-point dynamics [9], [12]
applied to the Lagrangian and the augmented Lagrangian,
resp., and the gradient descent applied to the penalty func-
tion. Figure 1(a) shows the evolution of the error between
the objective function and its optimal value for n = 50. For
the same level of accuracy, the number of iterations taken
by the second-order augmented Lagrangian method is smaller
by an order of magnitude compared to the proposed method.
However, one should note that the second-order augmented
Lagrangian method involves the inversion of Hessian, which
becomes increasingly expensive as the number of variables
increases (see also Remark 1). To illustrate this, Figure 1(b)
shows the computation time per iteration of the algorithms
in MATLAB version 2018a running on a Macbook Pro with
2GHz i5 processor and 8 GB ram. The time taken by the
first-order algorithms is about the same, and is smaller by
several orders of magnitude (depending on the number of vari-
ables) than the second-order augmented Lagrangian method.
When both aspects (number of iterations and computation time
per iteration) are considered together, the proposed approach
outperforms the other methods, especially if the problem
dimension is large.

VI. CONCLUSION

We have presented a fast approach for constrained convex
optimization. We have provided sufficient conditions under
which we can reformulate the original problem as the uncon-
strained optimization of a continuously differentiable convex
penalty function. Our proposed approach is based on the
accelerated gradient method given by Nesterov for uncon-
strained convex optimization, and has guaranteed convergence
rate when the penalty function is (strongly) convex. From
simulations, it is clear that in terms of computation time
required to reach the desired accuracy, the proposed method
performs the best compared to other state-of-the-art methods.
Based on our previous work, this method is amenable to dis-
tributed optimization if, in the original problem, the objective
function is separable and the constraint functions are locally
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Fig. 1. Performance comparison of the proposed algorithm (Nesterov’s acceleration on the penalty function) with the second-order augmented
Lagrangian method [17], the saddle-point dynamics [9], [12] applied to the Lagrangian and the augmented Lagrangian, respectively, and the gradient
descent of the penalty function. (a) shows the evolution of the error between the objective function and its optimal value for n = 50 and (b) shows
the computation time per iteration (note that the difference between second-order and first-order methods increases significantly with the problem
dimension). For a desired level of accuracy, the proposed method outperforms the other methods when the number of iterations and the CPU time
per iteration are jointly considered.

expressible. Future work would explore the effect of the choice
of penalty parameter on the convergence speed of the proposed
strategy, the generalization of the conditions identified here to
ensure the penalty function is (strongly) convex with inequality
constraints, the extension of Nesterov’s accelerated gradient
techniques to specific classes of non-convex functions (e.g.,
quasi-convex functions).
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