PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Yang Q, Gruenbacher DM, Brase GL,
Heier Stamm JL, DeLoach SA, Scoglio CM (2021)
Simulating human behavioral changes in livestock
production systems during an epidemic: The case
of the US beef cattle industry. PLoS ONE 16(6):
€0253498. https://doi.org/10.1371/journal.
pone.0253498

Editor: Grzegorz Wozniakowski, University of
Nicolaus Gopernicus in Torun, POLAND

Received: March 9, 2021
Accepted: June 6, 2021
Published: June 24, 2021

Copyright: © 2021 Yang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript and its S1 Data.

Funding: This work was supported by United
States National Science Foundation under Grant
Award CMMI-1744812. https://www.nsf.gov/
awardsearch/showAward?AWD_ID=1744812 The

funders had no role in study design, data collection
and analysis, decision to publish, or preparation of

the manuscript.

RESEARCH ARTICLE

Simulating human behavioral changes in
livestock production systems during an
epidemic: The case of the US beef cattle
industry

Qihui Yang®'*, Don M. Gruenbacher', Gary L. Brase?, Jessica L. Heier Stamm?, Scott
A. DeLoach?, Caterina M. Scoglio'

1 Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas, United
States of America, 2 Department of Psychological Sciences, Kansas State University, Manhattan, Kansas,
United States of America, 3 Department of Industrial and Manufacturing Systems Engineering, Kansas State
University, Manhattan, Kansas, United States of America, 4 Department of Computer Science, Kansas State
University, Manhattan, Kansas, United States of America

* gihui@ksu.edu

Abstract

Human behavioral change around biosecurity in response to increased awareness of dis-
ease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is
referred to as implementing control measures to decrease the chance of animal disease
spreading. However, social dynamics are largely ignored in traditional livestock disease
models. Not accounting for these dynamics may lead to substantial bias in the predicted epi-
demic trajectory. In this research, an agent-based model is developed by integrating the
human decision-making process into epidemiological processes. We simulate human
behavioral change on biosecurity practices following an increase in the regional disease
incidence. We apply the model to beef cattle production systems in southwest Kansas,
United States, to examine the impact of human behavior factors on a hypothetical foot-and-
mouth disease outbreak. The simulation results indicate that heterogeneity of individuals
regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior
factors need to be considered for improved epidemic forecasting. With the same initial bio-
security status, increasing the percentage of risk-averse producers in the total population
using a targeted strategy can more effectively reduce the number of infected producer loca-
tions and cattle losses compared to a random strategy. In addition, the reduction in epidemic
size caused by the shifting of producers’ risk attitudes towards risk-aversion is heavily
dependent on the initial biosecurity level. A comprehensive investigation of the initial biose-
curity status is recommended to inform risk communication strategy design.
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1. Introduction

Industrial livestock production is characterized by intensive and high-throughput systems,
with all parts of the chain from birth to slaughter always operating at full capacity. Disruptions
that initially occur at one part of the chain can immediately impact both upstream and down-
stream aspects due to entities’ demand-supply relationships. Such impacts could be amplified
and propagated throughout the chain [1, 2]. For instance, the ongoing COVID-19 pandemic
has dramatically impacted people’s normal activities and left significant economic conse-
quences to industries, among which the livestock production industries are one the most
negatively impacted sectors [3-5]. In the United States, outbreaks identified among meat-pro-
cessing workers led to the closure of several meat-processing plants, causing sharp disruptions
in livestock production. Peel et al. [6] suggested that COVID-19 could result in $13.6 billion
economic losses to the US beef industry, highlighting the fragility of today’s intensive livestock
production industries against unexpected events.

Fortunately, as livestock production has suffered substantial losses from many prior unex-
pected events such as foot-and-mouth disease (FMD) outbreaks and swine fever in the past,
the number of sophisticated models developed for livestock diseases has surged. However,
many of these epidemiological frameworks did not model human behavioral changes during
epidemics [7]. A proper understanding of animal disease dynamics depends not only on accu-
rate epidemiological parameter estimates and an appropriate underlying movement network,
but also on the disease-related human behavior factors. Not accounting for human behavioral
changes in epidemiological models could lead to a substantial bias. Thus, exploring the poten-
tial impact of behavioral changes on disease epidemics is vital to shedding light on future dis-
ease management [8, 9].

Several projects have applied multiplex networks to study the interplay between human
behavior factors and epidemic dynamics [10-13]. The substantial influence of human behavior
factors such as risk attitudes has again drawn scholars’ attention during the current global pan-
demic. Studies have found that more risk-averse attitudes were related to a dramatic decline in
human mobility and were significantly related to adherence to the recommended behaviors
[14, 15]. In the context of livestock production, biosecurity is referred to as implementing con-
trol measures to decrease the chance of animal disease spreading [16]. Several studies have
analyzed the factors that are likely to influence farmers’ willingness to comply with biosecurity
protocols, and examples of such factors include knowledge of disease prevalence, farmers’ risk
perception, and disease experience of neighboring farmers [7, 17, 18]. Mendes et al. [19]
emphasized the importance of controlling chronic livestock disease considering farmers’ dif-
ferent responses to the perceived risk. Tago et al. [20] illustrated how farmers’ strategic behav-
ior can considerably reduce the efficacy of movement restriction policy for disease spread in a
French cattle trade network.

This study aims at investigating how human behavioral changes around biosecurity could
affect disease transmission dynamics in livestock production systems. We will apply an agent-
based modeling (ABM) approach, which allows simulating interactions among heterogeneous
individuals in complex systems. As a bottom-up approach, ABM has been widely applied to
diverse areas, including economics, agriculture, transportation, and healthcare [21]. Abdulkar-
eem et al. [22], for example, used an agent-based approach to compare the effects of individual
and group learning on the decision-making process regarding risk appraisal and protective
decisions. Their results showed that behavioral changes could lead to different epidemic dura-
tions and sizes. Bucini et al. [23] found that shifting 37.5% of the producer agents toward a
risk-averse position could result in a significantly sharp decrease in the epidemic size of the
porcine epidemic diarrhea virus. Sok and Fischer [24] modeled farmers’ vaccination decisions
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over bluetongue disease, taking risk perception and social pressure into account. Their results
suggested that a risk communication strategy has an advantage over financial compensation in
increasing vaccination uptake. Regarding beef cattle production, prior ABMs have been
designed for disease prediction and control measures [25-29]. Other works have taken the cat-
tle industry as a case study to analyze the risk management strategies in reaction to disease out-
breaks, agricultural policy interventions, and market dynamics in social-ecological systems
[30-32]. To the best of the authors’ knowledge, few works have examined human behavioral
changes on animal disease transmission. This work adds a new element to this domain with a
focus on the following perspectives: (i) random or targeted selection in risk communication
audiences, and (ii) initial biosecurity status.

In this paper, we will model beef cattle production systems in southwest Kansas, the United
States, as a case study and examine the impact of human behavior factors on a hypothetical
FMD spreading. FMD could potentially threaten cloven-hoofed animals worldwide, and con-
cerns about its reintroduction into the US have escalated due to increased international trade
[33, 34]. It could spread so quickly through cattle herds that a delay of even a few days would
be devastating, resulting in losses in both animals and export markets. After a latent period of
1 day to 3 days, the individual cattle exposed to the FMD virus can become infectious and
infect other animals [35]. The modeled beef cattle production chain spans from cow-calf
ranches to stockers, to feedlots, to packers. We consider disease spreading through direct and
indirect contact routes, i.e., movement of infected animals and contaminated fomites. In addi-
tion, the model associates risk attitude categories to individuals, including producer agents,
packer agents, and fleet companies, and takes the biosecurity level as an indicator to reflect
human behavioral change during epidemics. We assume that individuals in the risk-averse cat-
egory are likely to increase their biosecurity levels more promptly when facing a rise in the
regional disease incidence than those with risk-tolerant attitudes. Here, biosecurity level indi-
cates individual’s compliance to biosecurity protocols, which are designed to reduce the risks
of introducing disease agents to the premises. For example, a producer with a high biosecurity
level will strictly follow the cleaning and disinfection guidelines of vehicles.

Resources for risk communication can be limited; for example, lack of employees may exist
during the crisis. Therefore, it is necessary to design an effective risk communication strategy
to protect livestock production. In scenario analyses, we change the percentage of producers in
the risk-tolerant category in the total producer population under both random and targeted
selection strategies. In the random strategy, producers are randomly selected as risk-averse or
risk-tolerant. In the targeted strategy, producers are selected as risk-averse in descending order
of their cattle capacity and the rest are assigned as risk-tolerant. In other words, risk communi-
cation resources will be allocated to large producers first, given the limited resources. In addi-
tion, we explore the impact of individuals’ initial biosecurity levels on the epidemic dynamics.
The outcomes are expected to deepen our understanding of the link between disease transmis-
sion dynamics and human behavioral changes, and improve disease management in livestock
production, from on-farm management to the transportation of animals.

2. Materials and methods

In this section, we present details about the agent-based model added with the human behavior
component.

2.1 Model description

The model was developed in AnyLogic software and built on top of the agent-based model in
Yang et al. [36, 37], which simulates the FMD spreading in the cattle production system. The
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added features integrated the human behavioral changes around biosecurity with the epidemic
spreading process. The model structure is shown in Fig 1.

The model explicitly simulates business operations of the beef cattle industry and the associ-
ated transportation services on a GIS map. Cattle are sold and transported between cattle pro-
ducers, including cow-calf ranches, stockers, and feedlots. In spring, cows produce a new
generation of calves that are fed until around 450 pounds and are then sold to stockers. Cattle
raised in stockers are sold to feedlots at about 650 pounds. Heifers and steers in feedlots are
moved to packers at approximately 1250 pounds and 1350 pounds, respectively. At each
packer, on average, 6000 head of cattle enter the meat-production process per day. Entry point
agents, placed on the system boundaries, represent cattle coming from outside southwest Kan-
sas. The packer, producer, and fleet (truck company) agents all possess and dispatch vehicles
to transport cattle among premises on the GIS map roads.

For a hypothetical FMD outbreak, we simulate disease transmission through the movement
of infected cattle (direct contact) and the movement of contaminated fomites (indirect con-
tact). Each cattle agent may transition among states of susceptible, exposed, infectious, and
removed. Each truck follows a clean-infected-clean cycle and may become contaminated by
visiting a fomite-infected location on its route. Contaminated trucks may further spread the
infection to subsequent locations visited. A producer agent will transition to the infected state
once it has infectious cattle. Then, after a total time from infection to starting control mea-
sures, the producer agent will depopulate all its cattle and follow movement restrictions. For
the sake of computational efficiency, a scaling factor of 15 is used for parameters related to the
number of cattle such that one cattle agent represents fifteen physical animals.
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Table 1. Model parameters.

Parameters Value References

Initial network parameters

Total producers (N) 301 Yang et al. [36]
Number of ranches 18 (5.98%)
Number of stockers 50 (16.61%)
Number of feedlots 233 (77.41%)
Total cattle inventory at the beginning of the simulation 2,913,007
Number of cattle at ranches 14,050
Number of cattle at stockers 79,768
Number of cattle at feedlots 2,819,189
Disease parameters
Probability of transmission when an infected cattle agent contacts a 0.95 Boklund et al.
susceptible cattle agent [38]
Length of cattle latent period (days) [Pert distribution] Pert(1.2,1.2,2.4) | Yadavetal.
(35]
Length of cattle infectious period (days) [Normal distribution] Normal(11.4,1.1) | Yadav et al.
(35]
Total time from infection to beginning control measures for the first FMD | u=8.6; 6.0 < Walz et al. [39]
case (days)[Triangular distribution] x<12.8
Total time from infection to beginning control measures for subsequent U=6.645< Walz et al. [39]
FMD cases [Triangular distribution] x <105
Contamination period Hy, for a truck or a loading/unloading area of 14 Rossi et al. [40]
premises (days)
Length of packer infection period (days) [Triangular distribution] u="50<x<10 | Wiltshire [41]
Indirect transmission probability P;,g pase 0.35 Bucini et al.
(23]
Probability that infected cattle will contaminate packer/producer receiving | 0.75 Wiltshire [41]

area PinLoadihase
Probability to comply with movement restrictions P,,;, pase 1.0 Assumed

https://doi.org/10.1371/journal.pone.0253498.t001

Information about the study population and parameters is shown in Table 1. The producer
agent includes three categories, namely ranches, stockers, and feedlots.

2.2 The human decision-making process

In the model, we incorporate the feature of risk attitude into each individual to influence its
decision to increase biosecurity level, thereby indirectly affecting the disease transmission in
the system. We consider two risk attitude categories, namely risk-averse and risk-tolerant,
which will influence individuals’ compliance with the biosecurity protocols.

As shown in Fig 1, each individual i is associated with variables of risk attitude category Att
and biosecurity level bs'. First, we initialize the value of Att for individual i, which will remain
unchanged during the simulation. Then, for each type of the agent population (producer/
packer/fleet agent), we set the initial biosecurity level (bs, ) for individual i according to the
assumed distributions. The biosecurity level bs! will change over time.

Each week, individual i makes a decision on whether to increase its biosecurity level based
on the following equation according to Bucini et al. [23]:

bs, = bs, | + Abs - y(Att',NL,), (1)

where the biosecurity increase Abs is a constant value and is assumed to be 2.5;

PLOS ONE | https://doi.org/10.1371/journal.pone.0253498 June 24, 2021 5/16


https://doi.org/10.1371/journal.pone.0253498.t001
https://doi.org/10.1371/journal.pone.0253498

PLOS ONE

Simulating human behavioral changes in livestock production systems during an epidemic

) 1 T T —— T T
= ~
= 7 Risk averse
bt / — — —Risk tolerant
2 08 / isk tolerant | _|
B /
) /
£ 06 / i
o
Pt
S /
= /

04 b
8 /
z /
5 02F / .
§ /

/
Qe_' 0 1 | — - 1 1 1 1
0 5 10 15 20 25 30 35

Number of infected producers

Fig 2. Probability to increase biosecurity as a function of the number of infected producers driven by risk
attitude.

https://doi.org/10.1371/journal.pone.0253498.g002

0’ lf s> Pincreaxe
1, if s<P,

increase

,s € U(0, 1); and bs! is assumed to range between [0, 8].

(At NI,) = {
P crease 18 the probability of increasing biosecurity level and is calculated by Eq (2).

1

Pincrase = T gmivt i) (2)
NI, equals the number of infected producers in southwest Kansas at time #; m = —0.95 and
rl, = 0.18 for a risk-averse category; and m = —0.8 and 7l = 16 for a risk-tolerant category. The
relationship between P;,.eqse and NI, (Eq (2)) is presented in Fig 2. It shows how the increase
in biosecurity level bs is influenced by the regional disease prevalence and an individual’s risk
attitude. As the number of infected producers increases, risk-averse individuals may be more
prompt to make changes in the biosecurity practices than the risk-tolerant ones.

The model uses the biosecurity level bs; in logistic functions (Eq (3)) to calculate the
human-behavior related disease parameters, including indirect transmission probability P/ ,,
the contamination period H', compliance probability with movement restrictions P! , and the

i

probability that infected cattle will contaminate the packer/producer receiving area P, , ..

. 1
Pt = Pid pace W
H =H,, 14 eml(bs;bso)
3
P =P, i —1 , ¥
mr 14 o (bsi—bs0)
P jnl_oud = Pitond_base ;
CE

In Eq (3), bsp = 4.0 and m = 1.3 according to Bucini et al. [23]. Values of P,y paser Hpases
Pov base Pintoad_base are set according to Table 1.

From Eq (3), a high biosecurity level will result in a low infection likelihood, indicating the
high effectiveness of biosecurity measures. For example, vehicles can be cleaned and
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Table 2. Location-specific value in the disease parameters.

Parameter | Description Interaction Location i
P, The probability that the truck will be infected if the producer/packer is Cattle shipment between producer
fomite-infected A—producer/packer B
The probability that producer/packer will be fomite-infected if the arriving | (1) Truck arrives at A (1)A
truck is contaminated (2) Truck arrives at B 2)B
H The contamination period of trucks - Truck owner (Producer/
Packer/Fleet)
The contamination period of the producer loading/unloading area Producer
The contamination period of the packer receiving area Packer
! Load The probability that producer/packer will be fomite-infected if there are Cattle shipment between producer
infectious cattle loaded/unloaded A—producer/packer B
(1) Loading cattle at A (1) A
(2) Unloading cattle at B 2)B
P Compliance probability - Producer

https://doi.org/10.1371/journal.pone.0253498.t1002

disinfected more frequently between subsequent shipments, leading to a shorter contamina-
tion period H'. FMD outbreaks would lead to movement restrictions in the region. Individuals
of higher biosecurity level will stop all movement of animals and vehicles with a higher compli-
ance probability P! . Producers can invest facilities and equipment for washing and disinfect-
ing vehicles entering the managed premises, which may lead to a smaller value of P! ,. Cattle
loading/unloading areas should be kept clean, suggesting a lower P ..

Location-specific values in the disease parameters are assigned following Table 2. For exam-
ple, if location A is fomite-infected, the probability that the truck will be infected when the
truck arrives at location A to begin a shipment from location A to location B will be P2 . If
location B is fomite-infected, the probability that the truck will be infected when the truck arri-
ves at location B will be P? . If the truck transporting cattle between location A and location B
is contaminated, the probability that location A will be fomite-infected due to the arrival of the
contaminated truck will be P} ,.

2.3 Scenario analysis

During initialization, a percentage of the packer/fleet population are randomly selected as
risk-averse (Att' = 0), and the rest are characterized as risk-tolerant (A#t' = 1). Within each risk
attitude category, we set up the initial biosecurity value (bs; ) for each packer/fleet agent i
according to the following initial biosecurity distribution: 50% of the total population with ini-
tial biosecurity bsiU = 0, 40% with bsiO = 2.7, 10% with bsiU = 5.3, 0% with bsiU = 8[23].

In Table 3, three simulation sets are designed based on different combinations of two fac-
tors in the producer population: (a) random or targeted selection strategy for risk-averse pro-
ducers, and (b) distribution of initial biosecurity levels. In the targeted selection strategy, we
progressively select producers to be risk-averse, one after another, in the decreasing order of
their cattle capacity, and the rest will be set as risk-tolerant. In the random selection strategy,
producers are randomly selected as risk-averse or risk-tolerant.

In simulation sets I and III, producers within each risk category follow the same distribu-
tion as packers and fleet companies. In simulation set II, the highest biosecurity levels are
assigned to 50% of the producers. Regarding risk category selection, we randomly select risk-
averse producers in simulation sets I and II but perform a targeted strategy in simulation set
III.
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Table 3. Description of the simulation set.

Simulation set | Risk-averse producer selection | Initial biosecurity distribution

I Random strategy bs,, for risk-averse category: [0, 2.7, 5.3, 8]—[50%, 40%, 10%, 0]
bs,U for risk-tolerant category: [0, 2.7, 5.3, 8] —[50%, 40%, 10%, 0]

I Random strategy bs, for risk-averse category: [0, 2.7, 5.3, 8]—[0, 40%, 10%, 50%]
bs,n for risk-tolerant category: [0, 2.7, 5.3, 8] —[0, 40%, 10%, 50%]

III Targeted strategy bs,, for risk-averse category: [0, 2.7, 5.3, 8]—[50%, 40%, 10%, 0]

bsm for risk-tolerant category: [0, 2.7, 5.3, 8] —[50%, 40%, 10%, 0]

https://doi.org/10.1371/journal.pone.0253498.t1003

Within each simulation set, each scenario represents a different proportion of risk-averse
producer agents in the total producer population () varied between 0 and 100% with an inter-
val of 20%. We record the number of infected producers/packers and the number of infected
cattle over time for each simulation. We perform 1000 simulation runs for each scenario, and
the simulation period for each run is 200 days.

3. Results and discussion

This section presents and compares the simulation results among the three simulation sets to
evaluate the impact of risk attitudes on epidemic dynamics.

Fig 3 shows the average number of cumulative infected producers and the number of cur-
rently infected producers over time with 95 percent confidence intervals. In Fig 3(a), as the
percentage of risk-averse producer agents (¢) increases from 0 to 100% with 20% as an inter-
val, the final average number of cumulative infected producers gradually decreases with inter-
vals ranging between 13.01-24.13. In Fig 3(b), 20% of producers in the risk-averse category
can achieve a relatively good performance in reducing epidemic size, and after 20%, the epi-
demic size reduces more slowly.

In Fig 3(c), the final average number of cumulative infected producers reduces sharply
from 100.94 to 31.92 as a varies between 0-40%, and then decreases gradually with smaller
gaps, ranging between 4.39-5.50. It suggests that the system needs at least 40% of the producer
population as risk-averse to achieve a significantly steeper decrease in the epidemic size under
a targeted strategy. In comparison, the number of cumulative infected producers under a ran-
dom strategy at o = 40% is 58.67 (95% CI: 57.65-59.69) in Fig 3(a).

Similar patterns are observed in the number of currently infected producers in Fig 3 (right
panel). In addition, simulation set IT has the lowest peak in terms of producer infection as its
overall initial biosecurity level is the highest among the three simulation sets.

Figs 4-8 present boxplots of the distributions of simulation results obtained from ABM for
the three simulation sets.

3.1 Impact of risk attitudes on producers

Fig 4 shows that increasing the percentage of producers in the risk-averse category can reduce
the number of infected producers for all simulation sets. For simulation set I (blue) and & rang-
ing from 0 to 100%, the median [interquartile range] number of cumulative infected farms
decreases dramatically from 103 [92-113] to 13 [9-21]. Compared to simulation set I, the
number of cumulative infected producers decreases much less sharply in simulation set II,
which is associated with a higher initial biosecurity level. More specifically, when o changes
from 0 to 80%, the number of cumulative infected producers changes from 30 [24-35] to 8 [6-
12] and then remains almost unchanged between o = 80% and a = 100%. It indicates that

PLOS ONE | https://doi.org/10.1371/journal.pone.0253498 June 24, 2021 8/16


https://doi.org/10.1371/journal.pone.0253498.t003
https://doi.org/10.1371/journal.pone.0253498

PLOS ONE

Simulating human behavioral changes in livestock production systems during an epidemic

120 - ‘ - - : ; ‘ . ‘
a=0
Z a=20%
S 100 F a=40% [
3 a=60%
% a=80%
v=100%

T sof =
3
<
£
R A
= |
El |
=}
= |
3 40t E
°
o
L
= /
g 20} 1) 4
z

0 . . . . . : L . :

0 10 20 30 40 50 60 70 80 90 100

Elapsed day after initial infection

Number of currently infected producers

120

80 [

40

M

I~

\

\
\
10 20 30 40 50 60 70 80 90 100

T T T T T
a=0
a=20%
a=40% | 4
a=60%
a=80%
a=100%

Elapsed day after initial infection

(a) Simulation set [—random selection with none to medium initial biosecurity level

120 . . . . . .
a=0
” a=20%
4
8 100 - a=40% | |
3 a=60%
g 0=80%
a=100%

T sof =
§53
&
8
2 e0f 1
=
g
5 40t 4
S
(=]
o
(]
E
S 20 1
Z p =

0 . . . . . . . . .

0 10 20 30 40 50 60 70 80 90 100

Elapsed day after initial infection

Number of currently infected producers

120

100

80

60

40

20

20

T T T T T

a=0
a=20%
a=40% | 4
a=60%
a=80%
a=100%

30 40 50 60 70 80 90 100
Elapsed day after initial infection

(b) Simulation set [I—random strategy with medium to high initial biosecurity level

120 T T T T T T T T T
=0
” 0=20%
3 100+ a=40% [+
E 0=60%
] a=80%
.§‘ sl a=100% | |
5]
&
g
2 60t 1
=
=
£
=
3 a0t E
o
c | —
E
E 2} |
z
0 s ; . : ) . . . :
0 10 20 30 40 50 60 70 80 90 100

Elapsed day after initial infection

Number of currently infected producers

120

80 [

40

20 [

a=0
a=20%
a=40% | |
a=60%
a=80%
a=100%

30 40 50 60 70 80 90 100
Elapsed day after initial infection

(c) Simulation set IIl—target strategy with none to medium initial biosecurity level

Fig 3. The number of cumulative infected and the number of currently infected producers over time. Simulation results are averaged
over 1000 runs and associated with 95% confidence intervals.
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Fig 8. Distributions of the total packer operating time.

https://doi.org/10.1371/journal.pone.0253498.9008

when the overall biosecurity level is relatively low, changing individuals’ risk attitudes towards
risk-averse can lead to a significant reduction in the epidemic size, which enhances the effec-
tiveness of control measures.

The epidemic size for simulation set III (targeted selection) is smaller than that under simu-
lation set I (random selection). For example, for o = 40%, the median number of infected pro-
ducers under random selection (58 [49-70]) is almost twice that under targeted selection,
which is 31 [22-40]. It indicates that risk communication based on a targeted strategy is more
effective than the random strategy to contain the epidemic. A similar pattern of epidemic dura-
tion is observed in Fig 5.

3.2 Impact of risk attitudes on cattle losses

In the simulation, when the producer agent detects an infection, it will depopulate its cattle (all
cattle transition to the removed state). Fig 6 shows the distributions of the number of cattle
removed, reflecting the cattle losses.

For simulation set I, when o varies between 0-100%, the median [interquartile range] num-
ber of cattle removed ranges changes from 2,199,045 [2,065,838-2,319,615] to 439,215
[270,210-702,540]. For simulation set II, as & increases from 0-100%, cattle losses reduced
from 848,640 [658,853-1,28,588] to 262,748 [166,830-385,223]. Comparing results in simula-
tion sets I and III, we can conclude that with the same initial biosecurity distributions, targeted
selection of producers to a more risk-averse behavior can yield fewer cattle losses than the ran-
dom strategy. For instance, the number of cattle removed is 739,778 [502,935-1,15,755] under
a targeted selection and 1,519,763 [1,275,960-1,744,928] under a random selection at o = 40%.
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3.3 Impact of risk attitudes on packers

The US beef slaughter industry is heavily concentrated, with just four packers in Kansas
accounting for more than 80% of the area’s total beef slaughter capacity [42]. As packers are a
critical component of the food production system, we visualize the distribution characteristics
across scenarios in Figs 7 and 8. As the simulation period for each run is 200 days, the maxi-
mum possible value of the total packer operating time is 800 days.

In Fig 7, the median number of infected packers is 4 for all scenarios in simulation sets I
and III. For simulation set II, the median number of infected packers is 4 for a < 60%, and
becomes 3 for & > 60%. Similarly, in Fig 8, the median total packer operating time across all
scenarios for simulation sets I and IIT ranges between 89-96 days and 90-95 days, respectively.
For simulation set II, the range of the medium total packer operating time is 94-99 days for o
< 60%, and is 262-264 days for a > 60%.

In summary, the overall patterns of the indicators across scenarios are consistent over the
three simulation sets. A more risk-averse population can reduce the number of infected pro-
ducers/packers and cattle losses. Notably, a targeted selection of producers is more effective
than the random strategy under the same initial biosecurity levels.

4. Conclusion

In this study, an agent-based model was developed to simulate the human decision-making
process during epidemics, a factor which is often ignored in conventional livestock disease
models. A case study of southwest Kansas was performed to demonstrate the model’s ability to
simulate the human decision-making process around biosecurity practices as disease dynamics
change. The assumptions relevant to the disease-related decision-making process enable the
model to capture the complicated interactions between disease spreading and individuals’
responsiveness on biosecurity measures, considering individuals’ heterogeneous risk attitudes.
The model developed can be used by policymakers to examine the effectiveness of various con-
trol measures and identify important human behavior factors related to epidemiological
parameters in disease transmission dynamics.

The simulation results show that human behavioral responses to biosecurity events, opera-
tionalized as risk attitude, substantially affect the epidemic dynamics and the effectiveness of
movement restrictions. Additionally, knowing the relevant stakeholders’ initial biosecurity
level is vital for cost-effective risk communication. When the initial biosecurity level is rela-
tively low, nudging producers’ risk attitudes towards greater risk-aversion can significantly
reduce the cumulative number of infected producer locations. When the initial biosecurity
level is high, communication to increase risk-aversion will lead to a smaller reduction in the
final epidemic size. Compared to the scenario in which all producers are risk-tolerant, we
observe that if about half of producers adopt a risk-averse behavior, this can lead to a sharp
decrease in the median number of infected producers, assuming that producers initially have
low compliance for biosecurity protocols. We also highlighted the advantage of a targeted
strategy based on producers’ capacity in selecting audiences for communications that promote
more risk-aversion over a random selection strategy. In terms of packer operations, there is lit-
tle difference between the random and targeted strategies for a low initial biosecurity level.
This implies that risk communication on producers towards risk-aversion regardless of their
biosecurity status cannot effectively protect the packers. Packers are the critical components in
the system, and it’s significant to ensure overall high compliance to biosecurity level in the
region to minimize the risk of disease outbreaks.
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