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A double occurrence word (DOW) is a word in which every symbol appears exactly
twice. We define the symbol separation of a DOW w to be the number of letters between

the two copies of a symbol, and the separation of w to be the sum of separations over

all symbols in w. We then analyze relationship among size, reducibility and separation
of DOWs. Specifically, we provide tight bounds of separations of DOWs with a given
size and characterize the words that attain those bounds. We show that all separation
numbers within the bounds can be realized. We present recursive formulas for counting
the numbers of DOWs with a given separation under various restrictions, such as the

number of irreducible factors. These formulas can be obtained by inductive construction
of all DOWs with the given separation.
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1. Introduction

A word w over an alphabet Σ is a double occurrence word (DOW) if each element

(symbol) of Σ appears either zero or two times. DOWs have been studied in relation

to knot theory [8, 14], mathematical logic [5], and algebraic combinatorics [12].

DOWs are also known as Gauss words and are closely related to linear diagrams,

chord diagrams, and circle graphs. In the context of genomics, DOWs and operations

on DOWs have been used in studies of DNA rearrangement [1, 3, 7]. By modeling

the DNA rearrangement process using DOWs, it was observed that over 95% of the

scrambled genome of the ciliate Oxytricha trifallax could be described by iterative

insertions of certain patterns in DOWs [3, 9].

In [1], a DOW w corresponds to an arrangement of recombination sites (mod-

eled by the symbols of w) in a genetic sequence. The simple recombination, just

a deletion of a segment, is shown experimentally to be the earliest process during

the rearrangement. This occurs when the two recombination sites are ‘next’ to each

other, or when the DOW w has a factor of a form xx. The number of other symbols

between two occurrences of x in w, which we call the separation of x in w, can be

considered as a complexity measure of the recombination at the cite corresponding

to x. The sum of the separations over all symbols that appear in w can be seen as a

complexity measure of the rearrangements of the gene corresponding to w. In knot

theory, symbols in a DOW represent crossings of a knot diagram. The separation

is even for every symbol in a classical (versus virtual) knot diagram, but it can be

odd in virtual knot diagrams. Odd separations of symbols were used to define an

invariant for virtual knots in [10]. The separation, thus, seems to contain important

information of DOWs and corresponding chord diagrams.

With this paper we provide general combinatorial studies for separation proper-

ties of DOWs. We provide tight bounds of separations of DOWs with a given size,

and show that all separation values within those bounds can be realized. Moreover,

we characterize the words that achieve the separation bounds. We present formulas

for counting the numbers of DOWs with a given separation under various restric-

tions, such as irreducibility (when DOWs cannot be factored in smaller DOWs).

The proofs of these generating formulas are constructive and show how one can

obtain all words with a given separation having those properties.

More specific results and the organization of the paper follow. After an overview

of definitions, conventions and background material in Sec. 2, we define the sepa-

ration for DOWs in Sec. 3. This section also includes lemmas on basic properties

of the separation that are used in later sections. In particular, it is proved that

the separations are even numbers for all DOWs. We provide a range of separa-

tions for DOWs with a given size, and prove the realization of every even number

in this range. In Sec. 4, the relation between the number of irreducible factors of

DOWs and the possible separation ranges of DOWs together with their realizations

is studied. Furthermore, in the case of minimum and maximum separations, corre-

sponding DOWs are characterized. The formulas for the numbers of DOWs with
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various constraints are established in Sec. 5. We observe that the position of the

last appearing symbol (called the last symbol index) in DOW plays a key role, and

use it to provide counting formulas. In particular, formulas are presented for the

number of irreducible DOWs of a given size with a given separation. Realization

results under given constraints are also proved.

2. Preliminaries

An alphabet Σ is a set of symbols. We denote the empty symbol by ε. Let Σ be

an alphabet. A word u over Σ is a finite sequence u1u2 · · ·un of symbols, where

ui ∈ Σ for each i. We call each i the index of ui. Elements of u are called letters and

denoted by Σ[u]. The number of letters in u is called the length of u and denoted

by |u|. A subsequence v = uiui+1 · · ·uj−1uj of a word u = u1u2 · · ·un is called a

factor of u. The set of all words over Σ is denoted by Σ∗. In this paper, we assume

that Σ is an ordered alphabet and take Σ = N with its order.

The word u = u1u2 · · ·un over Σ is called a double occurrence word, or a DOW, if

for any b ∈ Σ, b occurs in u zero or two times. The set of all double occurrence words

over Σ is denoted by Σ∗DOW . We define the size of a DOW u by size(u) = |Σ[u]|,
which is the half of |u|.

Two words u and w are equivalent if there is a symbol-to-symbol bijection map-

ping u to w, in which case we write u ∼ w. A word u = u1u2 · · ·un ∈ Σ+ is in

ascending order if u1 = 1 and the first appearance of a symbol is one greater than

the largest of all preceding symbols in the word [2]. Every assembly word class [u]

contains a unique ascending order DOW v. Thus, we use v to identify [u], and call v

an assembly word. For instance, two DOWs 566577 and 133122 belong to the same

assembly word class identified by the assembly word 122133. For convenience, we

consider assembly words for further analysis of DOWs, and the following theorems

and lemmas for assembly words hold the same for DOWs. We define the last symbol

index `(w) of an assembly word w of size n to be the index of the first appearance

of the symbol n. Then, n ≤ `(w) ≤ 2n − 1. Note that any assembly word w of

size n+ 1 can be constructed by inserting two new symbols b = n+ 1 after the last

symbol index of an assembly word w′ of size n, and such insertion always results in

an ascending order word. We say that w is constructed from w′, and always use such

insertion to incrementally construct an assembly word from the assembly word 11.

Let u ∈ Σ∗DOW . Then, u is called a repeat word (respectively return word) of

size n if u ∼ 12 · · ·n12 · · ·n (respectively u ∼ 12 · · ·nn · · · 21). Also, u is called flat

if u ∼ 11. We define a tangled cord recursively as follows:

(1) A flat word is a tangled cord.

(2) If u = u1 · · ·u2n is a tangled cord, then u′ = u1 · · · bu2nb for a symbol b /∈ Σ[u]

is a tangled cord.

These notions of repeat, return and tangled cord words can be generalized as

in [6].
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3. Separations of DOWs

In this section we define the separation value of a DOW, which gives a measure of

how “scrambled” a DOW appears.

Definition 1. Given a DOW u and a symbol b ∈ Σ[u], suppose u = xbybz for

some x, y, z ∈ Σ[u]∗. The separation of b in u is sepb(u) = |y|. The value sep(u) =∑
b∈Σ[u] sepb(u) is called the separation of u.

Lemma 2. Given two assembly words w′ = xyz of size n − 1 and w = xbybz of

size n for some x, y, z ∈ Σ∗ and b = n, sep(w) = sep(w′) + 2(|y|+ |z|).

Proof. Since w is constructed from w′ by insertion of b, |x| ≥ `(w′), Σ[x] = Σ[w′]
and all symbols in y and z are distinct. Then, we can trace changes of the separation

of each symbol c in w′ (see Fig. 1).

(1) If the second appearance of c is in x, then there is no change of the separation.

(2) If the second appearance of c is in y, the separation of c increases by 1.

(3) If the second appearance of c is in z, the separation of c increases by 2.

In addition, sepb(w) = |y|. Thus, sep(w) = sep(w′) + |y| + 2|z| + |y| = sep(w) +

2(|y|+ |z|).

Corollary 3. Given an assembly word w, sep(w) is even.

Next, we define a permutation word.

Definition 4. Let u be a DOW. The word u is called a permutation word if

u ∼ 1 · · ·nσ(1) · · ·σ(n)

for a bijection σ : Σ→ Σ.

Note that there are n! distinct permutation assembly words of size n, and `(w) =

n if and only if w is a permutation assembly word. Repeat and return words are

special cases of permutation words.

x y z

b bn−1· · · · · · n−1

no change

increase by 1

increase by 2

Fig. 1. Insertion of two b’s and three different cases of changes of the separation.



November 27, 2020 17:50 112-IJFCS 2050034

Symbol Separation in Double Occurrence Words 919

Lemma 5. Let w be an assembly word of size n. Then, sep(w) ≤ n(n − 1). In

particular, sep(w) = n(n − 1) if and only if w is a permutation word, hence there

are n! assembly words of size n and separation n(n− 1).

Proof. We prove the statement by induction on n. When n = 1, the unique assem-

bly word 11 satisfies the statement. Now, assume that the statement holds for all

sizes less than n. Let w′ be an permutation (assembly) word of size n − 1 and

separation (n − 1)(n − 2). For an assembly word w of size n constructed from w′,
sep(w) = (n−1)(n−2)+2(|y|+ |z|) from Lemma 2. The maximum value of |y|+ |z|
is n − 1 when the new symbol is inserted right after the first n − 1. Then, w is a

permutation word and sep(w) = (n− 1)(n− 2) + 2(n− 1) = n(n− 1).

Lemma 6. Let n ∈ N. Then, for every even k where 0 ≤ k ≤ n(n− 1), there exists

an assembly word w of size n and separation k.

Proof. We prove the statement by induction on n. The result obviously holds for

n = 1. Suppose the statement holds for all size less than n. Then, for every even k

where 0 ≤ k ≤ (n − 1)(n − 2), there exists an assembly word w of size n − 1 and

separation k. From Lemma 2, separation can increase by an even number from 0

to 2(n − 1) in construction of an assembly word of size n by choosing appropriate

y and z. Thus, for every even k where 0 ≤ k ≤ n(n − 1), there exists an assembly

word w of size n and separation k.

Note that for an assembly word w with separation k and size m < n, there

exists an assembly word w′ with separation k and size n, constructed by attaching

n−m flat words before or after w. We call such construction padding, and call w′

a padding word of w. Since sep(11) = 0, the only word of size n and separation 0 is

1122 · · ·nn.

4. Irreducibility and Separation

In this section, we define irreducible DOWs and show how they play an important

role in determining the separation of a DOW.

Definition 7. Let u be a DOW. If u = vw for some DOW factors v and w, then

u is called reducible. Otherwise, it is irreducible. A decomposition of u is a t-tuple

(u1, . . . , ut) of irreducible DOWs, or simply u1 · · ·ut, if u = u1 · · ·ut.

Observation 8. If u is a DOW, there exists a unique decomposition of u. If an

irreducible assembly word w is constructed from w′, then w′ is irreducible.

Since the decomposition of a DOW is unique, we say that a DOW u is t-reducible

for 1 ≤ t ≤ size(u) if it can be decomposed to t factors. Note that permutation

words are special cases of irreducible words, and there exists a strongly irreducible

word which is not a permutation word, such as a tangled cord, i.e. 121323. Also, if

u is t-reducible and can be decomposed to u1 · · ·ut, then sep(u) =
∑t

i=1 sep(ui).
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Now, we give the generalized relationship among size, separation and the number

of irreducible factors.

Lemma 9. For given n ≥ 1, every irreducible assembly word w with size n has

separation sep(w) ≥ 2(n− 1).

Proof. We prove the lemma by induction on n. When n = 1, we have one assembly

word 11, that satisfies the given condition. Now, suppose that the lemma holds

for all sizes less than n by choosing y and z appropriately. We construct a given

irreducible assembly word w of size n from an assembly word w′ of size n− 1. Let

w′ = xyz and w = xbybz. From Lemma 2, sep(w) ≥ 2(n − 2) + 2(|y| + |z|). The

minimum value of |y| is 0.

(1) When |y| = 0, |z| ≥ 1 to make w irreducible. Thus, sep(w) ≥ 2(n − 2) + 2 =

2(n− 1).

(2) When |y| ≥ 1, sep(w) ≥ 2(n− 1).

Corollary 10. For given n ≥ 1 and 1 ≤ t ≤ n, a t-reducible assembly word w with

size n has separation 2(n− t) ≤ sep(w) ≤ (n− t)(n− t+ 1).

Proof. Let the ith irreducible factor of w be vi with size mi for 1 ≤ i ≤ t. Then,

sep(w) =
∑t

i=1 sep(vi). From Lemmas 5 and 9, 2(mi − 1) ≤ sep(vi) ≤ mi(mi − 1).

Thus, sep(w) ≥ ∑t
i=1 2(mi − 1) = 2(n − t). On the other hand, since p(p − 1) +

q(q − 1) ≤ (p + q − 1)(p + q − 2) for p, q ≥ 1, sep(w) ≤ ∑t
i=1mi(mi − 1) ≤

(n− t+ 1)(n− t).

Lemma 11. For given n ≥ 1 and an even number k where 2(n−1) ≤ k ≤ n(n−1),

there exists an irreducible assembly word w with size n. In particular, sep(w) =

2(n− 1) if and only if deleting all flat factors of w results in a tangled cord.

Proof. We prove the statement by induction on n. When n = 1, w = 11 satisfies the

given statement. Now, suppose the statement holds for all sizes less than n. For even

number k where 2(n− 2) ≤ k ≤ (n− 1)(n− 2), there exists an irreducible assembly

word w′ with size n − 1. We construct an irreducible assembly word w of size n

from w′. From Lemma 2, for appropriate x and y, sep(w) = sep(w′) + 2(|y| + |z|).
Note that if |y| = |z| = 0, w becomes reducible. Thus, for even number k where

sep(w′) + 2 ≤ k ≤ sep(w′) + 2(n− 1), there exists an irreducible assembly word w

of size n by choosing appropriate y and z. Combined with the condition for w′, for

even number k where 2(n− 1) ≤ k ≤ n(n− 1), there exists an irreducible assembly

word w of size n.

Let sep(w′) = 2(n−2). The condition sep(w) = 2(n−1) is satisfied by increasing

the separation by 2, which implies |y|+ |z| = 1. There are two cases:

(1) If |y| = 0 and |z| = 1, two new symbols are inserted right before the last symbol

of w′. Then, deleting all flat factors of w results in a tangled cord.
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(2) If |y| = 1 and |z| = 0, two new symbols are inserted right before and right after

the last symbol of w′. Then, deleting all flat factors of w results in a tangled

cord.

Corollary 12. For given n ≥ 1, 1 ≤ t ≤ n and an even number k where 2(n− t) ≤
k ≤ (n − t)(n − t + 1), there exists a t-reducible assembly word w with size n and

separation k. In particular,

(1) sep(w) = 2(n − t) if and only if deleting all flat factors of w results in tangled

cord factors, and

(2) sep(w) = (n− t)(n− t+ 1) if and only if w is a padding word of a permutation

word of size n− t+ 1.

Proof. Let a t-reducible assembly word w of size n be factored into v1, v2, . . . , vt
with sizes m1,m2, . . . ,mt respectively. From Lemma 11, for any even number ki
such that 2(mi−1) ≤ ki ≤ mi(mi−1), there exists an irreducible assembly word ui
such that sep(vi) = ki. Thus, for any even number k =

∑t
i=1 ki, sep(w) = k holds

when vi = ui for all 1 ≤ i ≤ t. Now, the minimum separation of w is achieved

by
∑t

i=1 2(mi − 1) = 2(n − t), and only can be achieved by an assembly word

where deleting all flat factors of w results in tangled cord factors. The maximum

separation of w is achieved by max(
∑t

i=1mi(mi − 1)) = (n − t)(n − t + 1). Note

that p(p − 1) + q(q − 1) = (p + q − 1)(p + q − 2) only when p or q is 1. Thus, the

maximum separation can only be achieved by an assembly word which is a padding

word of a permutation word of size n− t+ 1 by Lemma 5.

Corollary 13. Every size n assembly word of separation (n − 1)(n − 2) < k ≤
n(n− 1) is irreducible.

Corollary 14. Let w be an assembly word of size n. Then, sep(w) = 2 if and only

if w is a padding word of a size two repeat or return word. There are 2(n − 1)

assembly words of separation 2.

Observation 15. The set of all irreducible assembly words of size 3 and separation

4 is given by {122331, 121332, 122313, 121323}.

Corollary 16. Let u be an assembly word with sep(u) = 4 and size(u) = n. Then,

either of the following two cases hold :

(1) u consists of two padding words of a size two repeat or return word. The number

of assembly words of this form is 4
(n− 2

2

)
= 2(n− 2)(n− 3).

(2) u is a padding word of one irreducible factor v of separation 4 from Observa-

tion 15. The number of assembly words of size n and separation 4 that are of

this form is 4(n− 2).

Consequently, the number of assembly words of size n and separation 4 is 2(n −
1)(n− 2).
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5. Relationship among Size, Reducibility and Separation of DOWs

We propose formulas to count the number of assembly words according to the size,

reducibility, separation and last symbol index, and analyze relationship among these

properties of DOWs.

Proposition 17 ([11, 13]). The number Wn of assembly words of size n

is (2n− 1)!!.

We refer to the number of assembly words of size n, t-reducibility, separation k

and last symbol index ` as W(n,t,k,`). For these four arguments, we use ∗ to state

arguments that are irreverent in counting. For example, W(n,t,∗,∗) denotes the num-

ber of t-reducible assembly words with size n.

Lemma 18. The number W(n,t,∗,∗) of t-reducible assembly words of size n is given

by the following recursion :

• For t ≥ 2, W(n,t,∗,∗) =
∑n−t+1

i=1 (W(n−i,t−1,∗,∗) ·W(i,1,∗,∗)).

• For t = 1, W(n,1,∗,∗) = (2n− 1)!!−∑n−1
i=1 ((2(n− i)− 1)!! ·W(i,1,∗,∗)) [2, 4].

Proof. For t ≥ 2, a t-reducible assembly word of size n can be partitioned into two

factors: a t − 1-reducible prefix of size n − i and an irreducible suffix of size i for

1 ≤ i ≤ n− t+ 1. Thus, the given formula for t ≥ 2 holds.

Theorem 19. The number W(n,1,k,`) of irreducible assembly words of size n, sep-

aration k and last symbol index ` can be recursively calculated by

W(n,1,k,`) = (2n− `) ·
`−1∑

`′=n−1

(W(n−1,1,k−4n+2`+2,`′))

for n ≥ 3. For n = 1 or 2, W(n,1,k,`) = 0 except W(1,1,0,1) = 1 and W(2,1,2,2) = 2.

Proof. For each assembly word w′ of size n − 1, we insert two copies of a new

symbol b = n into w′ to construct an irreducible assembly word w of size n. Since

w is irreducible, w′ is also irreducible from Observation 8. Suppose that the first b

is inserted after the index 2(n − 1) − j. From Lemma 2, sep(w) = sep(w′) + 2j.

Since there are j + 1 different possible indices for the second b, we may say that

W(n−1,1,k′,`) · (j + 1) is added to W(n,1,k′+2j,2(n−1)−j+1) (see Fig. 2).

Based on this analysis, we can construct a partial recursive formula for W(n,1,k,`)

from W(n′,1,k′,`′): n
′ = n−1 and k′ = k−2j. Thus, W(n−1,1,k−2j,`0) · (j+1) is added

to W(n,1,k,`). Since the first b is inserted before the index 2n − j, we know that

j = 2n− `− 1. Since we insert the first b after `0, we know that n− 1 ≤ `′ ≤ `− 1.

Moreover, since w′ is irreducible, `′ ≤ 2n− 4 for n ≥ 3. Combining the conditions,
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ℓ(w′)

w′

size n−1, separation k′, ℓ(w′) = l

n−1

w

size n, separation k′+2j, ℓ(w) = 2(n−1)−j+1

⇓
b

...

j

((j + 1) cases)
b

b

b b

b

b

bn−1

n−1

n−1

n−1

Fig. 2. The general case where `(w) = 2(n− 1) − j + 1.

we have the following recursive formula:

W(n,1,k,`) = (2n− `) ·
min (2n−4,`−1)∑

`′=n−1

(W(n−1,1,k−4n+2`+2,`′)).

We need boundary conditions for arguments while calculating W(n,1,k,`). For

n, one simple condition n ≥ 1 is necessary. For k, we have the condition 0 ≤
k ≤ n(n − 1). For `, we have n ≤ ` ≤ 2n − 2 for n ≥ 2. For all W(n,1,k,`) that

fall out of these boundary conditions when n ≥ 2, we may regard W(n,1,k,`) = 0.

Now, according to these conditions, we claim that we can rewrite the upper bound

min (2n− 4, `− 1) to `− 1. The only situation where these two different conditions

make difference is when ` = 2n− 2, and W(n−1,1,k−4n+2`+2,`′=2n−3) is added to the

latter case. However, given the size n− 1 and the last symbol 2n− 3, we know that

such W equals zero from boundary conditions. Thus, we may successfully use the

upper bound `− 1 for `′. For initial conditions when n ≤ 2, we have W(1,1,0,1) = 1

and W(2,1,2,2) = 2.

For example, we can calculate W(4,1,6,6) as follows:

W(4,1,6,6) = 2 ·
5∑

`′=3

W(3,1,4,`′)

= 2 · [W(3,1,4,3) +W(3,1,4,4) +W(3,1,4,5)]

= 2 ·
[

3 ·
2∑

`′=2

W(2,1,0,`′) + 2 ·
2∑

`′=2

W(2,1,2,`′) + 2 ·
2∑

`′=2

W(2,1,4,`′)

]
= 2 · [3 ·W(2,1,0,2) + 2 ·W(2,1,2,2) + 2 ·W(2,1,4,2)]
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= 2 · [3 · 0 + 2 · 2 + 2 · 0]

= 8.

We propose an alternate way of counting W(n,1,k,`) by simulating recursive con-

struction of words by insertion of symbols, starting from the word 11. The goal is

to construct an irreducible assembly word of size n, separation k and last symbol

index ` after recursively inserting pairs of i’s for 2 ≤ i ≤ n. Let wi be an irre-

ducible assembly word after the ith iteration with separation ki and the last symbol

index `i. Also, let si = 2i− `i, which denotes the reversal index of the first symbol i

in wi. Then, the following observations hold:

(1) For each wi−1, there are (2i− `i) wi’s that share the same `i.

(2) 2 ≤ si ≤ si−1 + 1, since `i−1 ≤ `i.
(3) ki = ki−1 + 2(si − 1) and k = 2 ·∑n

i=2(si − 1).

Then, the number of all wn’s can be represented by the following alternate

formula:

W(n,1,k,`) =
∑

(s2,...,sn)

 n∏
j=2

sj

 ,

where s2 = 2, 2 ≤ si ≤ si−1 + 1 for 3 ≤ i ≤ n − 1, sn = (2n − `)

and k = 2 · ∑n
i=2(si − 1). This observation provides an alternative way to

compute W(n,1,k,`).

Theorem 20. The number W(n,1,k,`) of assembly words of size n, separation k and

last symbol index ` can be calculated by

W(n,1,k,`) =
∑

(s2,...,sn)

 n∏
j=2

sj

,
where s2 = 2, 2 ≤ si ≤ si−1 + 1 for 3 ≤ i ≤ n − 1, sn = (2n − `) and k =

2 ·∑n
i=2(si − 1).

Figure 3 shows a tree describing the counting W(5,1,10,8) by recursive insertion

of symbols.

Based on Theorems 19 and 20, we have the following corollary that provides the

count of irreducible assembly words of n symbols with separation k.

Corollary 21. The number W(n,1,k,∗) of irreducible assembly words of size n and

separation k can be recursively calculated by

W(n,1,k,∗) =
2n−2∑
`=n

(
(2n− `) ·

`−1∑
`′=n−1

(W(n−1,1,k−4n+2`+2,`′))

)



November 27, 2020 17:50 112-IJFCS 2050034

Symbol Separation in Double Occurrence Words 925

11
s2 = 2
k+ = 2

1212,1221

s3 = 2
k+ = 2

121323,121332,. . . 123123,123132,. . .

s3 = 3
k+ = 4

s4 = 2
k+ = 2

12312434,12312443,. . .12132434,12132443,. . .

s5 = 3
k+ = 4

1213245345,1213245354,1213245534,. . .

s4 = 3
k+ = 4

12134234,12134243,12134423,. . .

s4 = 2
k+ = 2

s5 = 2
k+ = 2

1213423545,1213423554,. . .

s5 = 2
k+ = 2

1231243545,1231243554,. . .

s5 = 3
k+ = 4

1231245345,. . .

s4 = 3
k+ = 4

12314234,. . .

s5 = 1
k+ = 0

1231423455,. . .

Fig. 3. Counting W(5,1,10,8) =
∑

(s2,...,s5)

(∏5
j=2 sj

)
= 2×2×2×3+2×2×3×2+2×3×2×2.

Symbols at `i’s are colored in red. The symbol k+ denotes increase of separation at each step, which

is equal to 2(si − 1). All combinations of si’s that do not match the conditions of Theorem 20 are

trimmed. The dashed lines in the figure are examples of branches that are trimmed. For example,
we cannot take the second leaf from the right in the formula, because the resulting separation is

12 which is > 10. Also, we cannot take the rightmost branch since its leaf has a reducible word.

for n ≥ 3. For n = 1 or 2, W(n,1,k,∗) = 0 except W(1,1,0,∗) = 1 and W(2,1,2,∗) = 2.

The formula can be represented by an alternate form

W(n,1,k,∗) =
∑

(s2,...,sn)

 n∏
j=2

sj

,
where s2 = 2, 2 ≤ si ≤ si−1+1 for 3 ≤ i ≤ n−1, 2 ≤ sn ≤ n and k = 2·∑n

i=2(si−1).

Corollary 21 and the fact that the separation of a t-reducible word is a sum of

separations of its irreducible factors leads to the following observation.

Corollary 22. The number W(n,t,k,∗) of t-reducible assembly words of size n and

separation k is given by the following recursion formula :

W(n,t,k,∗) =
∑

(n1,··· ,nt,k1,··· ,kt)

(
t∏

i=1

W(ni,1,ki,∗)

)

where
∑t

i=1 ni = n,
∑t

i=1 ki = k and 2(ni − 1) ≤ ki ≤ ni(ni − 1) for 1 ≤ i ≤ t.

Now, we prove the necessary and sufficient condition of k when n and ` are

given. Note that we already have relationship between n, t and k from Corollary 12,

and t and ` are not independent because ` ≥ 2t+ 1 holds.

Proposition 23. For given n ≥ 1, n ≤ ` ≤ 2n − 1 and an even number k where

F(n, `) = (2n−`)(2n−`−1) ≤ k ≤ P(n, `) = n(n+1)−2`, there exists an assembly

word w with size n, separation k and last symbol index `. In particular,

(1) sep(w) = F(n, `) if and only if w consists of ` − n flat words followed by a

permutation word of size 2n− `.
(2) sep(w) = P(n, `) if and only if deleting the last symbols results in a permutation

word of size n− 1.
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Proof. We prove the claim by induction on n. When n = 1, the only assembly

word is 11 where ` = 1 and k = 0, and the given statement is satisfied. Now,

assume that the statement holds for all sizes less than n. We construct an assembly

word w of size n, separation k and last symbol index ` from an assembly word w′ of

size n−1, separation k′ and last symbol index `′. We can follow insertion of two new

symbols b = n as Fig. 2 in the proof of Theorem 19. The changes in the separation

is determined by j = 2n − ` − 1, and k = k′ + 2j. Thus, if W(n−1,∗,k′,`′) > 0, then

W(n,∗,k′+2j,2(n−1)−j+1) > 0 for all 0 ≤ j ≤ 2n− `′ − 2.

From the induction hypothesis, for each even k′ where F(n − 1, `′) ≤ k′ ≤
P(n − 1, `′), W(n−1,∗,k′,`′) > 0. Thus, for given ` and `′ where n − 1 ≤ `′ ≤ ` − 1,

for each even k in F(n − 1, `′) + 2j ≤ k ≤ P(n − 1, `′) + 2j, W(n,∗,k,`) > 0 holds.

Let LB(`′) (UB(`′)) denote the lower (upper) bound of k for given `′. Note that

LB(`′) = `′2−(4n−5)`′+(4n2−6n+4−2`) and UB(`′) = −2`′+(n2 +3n−2−2`).

It is straightforward that UB(`′) decreases as `′ increases, and LB(`′) also decreases

since the domain of `′ is in the decreasing part of the parabola. Thus, min (LB(`′))
is (2n− `− 1)(2n− `− 2) + 2(2n− `− 1) = (2n− `− 1)(2n− `) when `′ = `− 1.

For an original word

w′ = 1122 · · · (`′ − n+ 1)(`′ − n+ 1)︸ ︷︷ ︸
`′−n+1 flat words

× (`′ − n+ 2) · · · (n− 1)σ(`′ − n+ 2) · · ·σ(n− 1)︸ ︷︷ ︸
permutation word of size 2n−`′−2

,

we observe that the resulting word

w = 1122 · · · (`′ − n+ 1)(`′ − n+ 1)︸ ︷︷ ︸
`−n flat words

× (`′ − n+ 2) · · · (n− 1)nσ(`′ − n+ 2) · · ·n · · ·σ(n− 1)︸ ︷︷ ︸
permutation word of size 2n−`

follows the form in the given statement. On the other hand, max (UB(`′)) is n(n−
1)− 2(n− 1) + 2(2n− `− 1) = n(n+ 1)− 2` when `′ = n− 1. For an original word

w′ = 12 · · · (n− 1)σ(1)σ(2) · · ·σ(n− 1)︸ ︷︷ ︸
permutation word of size 2n−1

,

we observe that the resulting word

w′ = 12 · · · (n− 1)σ(1)σ(2) · · ·n · · ·n · · ·σ(n− 1)

follows the form in the given statement. Therefore, (1) and (2) in Proposition 23

are inductively proven.

Now, we prove that for every even number k in the interval [F(n, `),P(n, `)],

W(n,∗,k,`) > 0. By the induction hypothesis, for every even number k in inter-

vals [LB(`′),UB(`′)], W(n,∗,k,`) > 0 as discussed above. Now, we claim that for all `′
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k

0

2

4

6

8

10

12

...

n2−3n+8

n2−3n+6

(n−1)(n−2)

...

n2−n−2

n(n−1)

n · · ·
2n−4

2n−3
2n−2

ℓ

· · ·
· · ·
...

...

· · ·
· · ·

n2−3n+4

n+1
2n−1

...

...
...

...
...

k

0

2

4

6

8

10

12

...

2(n−2)

2(n−1)

(n−1)(n−2)
...

...

n2−n−2

n(n−1)

1 2 · · ·
n−3

n−2
n−1

n t

...

...

...

· · ·

· · ·
...

...

· · ·
· · ·

Fig. 4. (Left) Area that W(n,t,k,∗) > 0 holds. (Right) Area that W(n,∗,k,`) > 0 holds. Blue circles

(red squares) represent the lower (upper) bound of k, and black crosses represent possible values
of k strictly within the bounds.

where n ≤ `′ ≤ `−2, it holds LB(`′) ≤ UB(`′+1). We have that LB(`′)−UB(`′+1) =

(2n− 2− `′)(2n− 3− `′)− n(n− 1) + 2`′ + 2 = `′2 − (4n− 5)`′ + (3n2 − 9n+ 8).

Since n ≤ `′ ≤ ` − 2 ≤ 2n − 3 < 4n−5
2 , the difference LB(`′) − UB(`′ + 1)

decreases as n increases. For `′ = n, the difference LB(`′) − UB(`′ + 1) becomes

`′2 − (4n − 5)`′ + (3n2 − 9n + 8) = 8 − 4n which is ≤ 0 when n ≥ 2. Thus,

the claim holds for n ≥ 2. This implies that the intervals [LB(`′),UB(`′)] and

[LB(`′ + 1),UB(`′ + 1)] overlap for all `′ satisfying n ≤ `′ ≤ ` − 2, hence, for

every even number k in the interval [LB(` − 1),UB(n)], we have W(n,∗,k,`) > 0.

Combined with the fact that P(n, `) = LB(n − 1) = UB(n − 1) = n2 + n − 2`,

UB(n) = n2 +n−2`−2 and LB(`−1) = F(n, `), we conclude that for every even k

in the interval [F(n, `),P(n, `)], the number of words with separation k of size n and

last symbol appearing in location ` is W(n,∗,k,`) > 0.

Figure 4 visualizes the possible range of separation k depending on the reducibil-

ity t and the last symbol index `, from Corollary 10 and Proposition 23.
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