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A double occurrence word (DOW) is a word in which every symbol appears exactly
twice. We define the symbol separation of a DOW w to be the number of letters between
the two copies of a symbol, and the separation of w to be the sum of separations over
all symbols in w. We then analyze relationship among size, reducibility and separation
of DOWSs. Specifically, we provide tight bounds of separations of DOWs with a given
size and characterize the words that attain those bounds. We show that all separation
numbers within the bounds can be realized. We present recursive formulas for counting
the numbers of DOWSs with a given separation under various restrictions, such as the
number of irreducible factors. These formulas can be obtained by inductive construction

of all DOWSs with the given separation.
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1. Introduction

A word w over an alphabet ¥ is a double occurrence word (DOW) if each element
(symbol) of X appears either zero or two times. DOWSs have been studied in relation
to knot theory [8, 14], mathematical logic [5], and algebraic combinatorics [12].
DOWs are also known as Gauss words and are closely related to linear diagrams,
chord diagrams, and circle graphs. In the context of genomics, DOWSs and operations
on DOWs have been used in studies of DNA rearrangement [1, 3, 7]. By modeling
the DNA rearrangement process using DOWs, it was observed that over 95% of the
scrambled genome of the ciliate Ozytricha trifallaz could be described by iterative
insertions of certain patterns in DOWs [3, 9].

In [1], a DOW w corresponds to an arrangement of recombination sites (mod-
eled by the symbols of w) in a genetic sequence. The simple recombination, just
a deletion of a segment, is shown experimentally to be the earliest process during
the rearrangement. This occurs when the two recombination sites are ‘next’ to each
other, or when the DOW w has a factor of a form zx. The number of other symbols
between two occurrences of x in w, which we call the separation of x in w, can be
considered as a complexity measure of the recombination at the cite corresponding
to z. The sum of the separations over all symbols that appear in w can be seen as a
complexity measure of the rearrangements of the gene corresponding to w. In knot
theory, symbols in a DOW represent crossings of a knot diagram. The separation
is even for every symbol in a classical (versus virtual) knot diagram, but it can be
odd in virtual knot diagrams. Odd separations of symbols were used to define an
invariant for virtual knots in [10]. The separation, thus, seems to contain important
information of DOWs and corresponding chord diagrams.

With this paper we provide general combinatorial studies for separation proper-
ties of DOWSs. We provide tight bounds of separations of DOWSs with a given size,
and show that all separation values within those bounds can be realized. Moreover,
we characterize the words that achieve the separation bounds. We present formulas
for counting the numbers of DOWs with a given separation under various restric-
tions, such as irreducibility (when DOWSs cannot be factored in smaller DOWs).
The proofs of these generating formulas are constructive and show how one can
obtain all words with a given separation having those properties.

More specific results and the organization of the paper follow. After an overview
of definitions, conventions and background material in Sec. 2, we define the sepa-
ration for DOWSs in Sec. 3. This section also includes lemmas on basic properties
of the separation that are used in later sections. In particular, it is proved that
the separations are even numbers for all DOWs. We provide a range of separa-
tions for DOWs with a given size, and prove the realization of every even number
in this range. In Sec. 4, the relation between the number of irreducible factors of
DOWs and the possible separation ranges of DOWs together with their realizations
is studied. Furthermore, in the case of minimum and maximum separations, corre-
sponding DOWSs are characterized. The formulas for the numbers of DOWs with
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various constraints are established in Sec. 5. We observe that the position of the
last appearing symbol (called the last symbol indez) in DOW plays a key role, and
use it to provide counting formulas. In particular, formulas are presented for the
number of irreducible DOWs of a given size with a given separation. Realization
results under given constraints are also proved.

2. Preliminaries

An alphabet X is a set of symbols. We denote the empty symbol by €. Let ¥ be
an alphabet. A word u over ¥ is a finite sequence wujus - - - u, of symbols, where
u; € X for each i. We call each i the index of u;. Elements of u are called letters and
denoted by X[u]. The number of letters in w is called the length of u and denoted
by |u|. A subsequence v = u;u;q1 - uj_1u; of a word u = uqug---u, is called a
factor of u. The set of all words over X is denoted by ¥*. In this paper, we assume
that ¥ is an ordered alphabet and take ¥ = N with its order.

The word u = uyus - - - u, over X is called a double occurrence word, or a DOW, if
for any b € X, b occurs in u zero or two times. The set of all double occurrence words
over ¥ is denoted by X},,y,. We define the size of a DOW u by size(u) = |X[u]],
which is the half of |ul.

Two words v and w are equivalent if there is a symbol-to-symbol bijection map-
ping u to w, in which case we write u ~ w. A word u = ujuy---u, € XV is in
ascending order if u; = 1 and the first appearance of a symbol is one greater than
the largest of all preceding symbols in the word [2]. Every assembly word class [u]
contains a unique ascending order DOW v. Thus, we use v to identify [u], and call v
an assembly word. For instance, two DOWs 566577 and 133122 belong to the same
assembly word class identified by the assembly word 122133. For convenience, we
consider assembly words for further analysis of DOWs, and the following theorems
and lemmas for assembly words hold the same for DOWs. We define the last symbol
index ¢(w) of an assembly word w of size n to be the index of the first appearance
of the symbol n. Then, n < ¢(w) < 2n — 1. Note that any assembly word w of
size n 4+ 1 can be constructed by inserting two new symbols b = n + 1 after the last
symbol index of an assembly word w’ of size n, and such insertion always results in
an ascending order word. We say that w is constructed from w’, and always use such
insertion to incrementally construct an assembly word from the assembly word 11.

Let u € 5w - Then, u is called a repeat word (respectively return word) of
size n if uw ~ 12---nl12---n (respectively u ~ 12---nn---21). Also, u is called flat
if u ~ 11. We define a tangled cord recursively as follows:

(1) A flat word is a tangled cord.
(2) If u = uy - uay is a tangled cord, then u' = wuy - - - bug,b for a symbol b ¢ X[u]
is a tangled cord.

These notions of repeat, return and tangled cord words can be generalized as
in [6].
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3. Separations of DOWs

In this section we define the separation value of a DOW, which gives a measure of
how “scrambled” a DOW appears.

Definition 1. Given a DOW u and a symbol b € X[u], suppose u = zbybz for
some z,y,z € X[u]*. The separation of b in u is sep,(u) = |y|. The value sep(u) =
> besiu) SePy(u) is called the separation of .

Lemma 2. Given two assembly words w' = zyz of size n — 1 and w = zbybz of

size n for some x,y,z € &* and b = n, sep(w) = sep(w’) + 2(|y| + |2])-

Proof. Since w is constructed from w’ by insertion of b, |z| > ¢(w’), X[z] = L[w']
and all symbols in y and z are distinct. Then, we can trace changes of the separation
of each symbol ¢ in w’ (see Fig. 1).

(1) If the second appearance of ¢ is in x, then there is no change of the separation.
(2) If the second appearance of ¢ is in y, the separation of ¢ increases by 1.
(3) If the second appearance of ¢ is in z, the separation of ¢ increases by 2.

In addition, sep,(w) = |y|. Thus, sep(w) = sep(w’) + |y| + 2|z| + |y| = sep(w) +
2(Jyl + [2])- 0

Corollary 3. Given an assembly word w, sep(w) is even.
Next, we define a permutation word.

Definition 4. Let u be a DOW. The word u is called a permutation word if
ur~1-no(l) - -o(n)
for a bijection o : ¥ — X.

Note that there are n! distinct permutation assembly words of size n, and ¢(w) =
n if and only if w is a permutation assembly word. Repeat and return words are
special cases of permutation words.

increase by 2

increase by 1

no change

TN - [ - Nl BT

Fig. 1. Insertion of two b’s and three different cases of changes of the separation.
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Lemma 5. Let w be an assembly word of size n. Then, sep(w) < n(n — 1). In
particular, sep(w) = n(n — 1) if and only if w is a permutation word, hence there
are n! assembly words of size n and separation n(n — 1).

Proof. We prove the statement by induction on n. When n = 1, the unique assem-
bly word 11 satisfies the statement. Now, assume that the statement holds for all
sizes less than n. Let w’ be an permutation (assembly) word of size n — 1 and
separation (n — 1)(n — 2). For an assembly word w of size n constructed from w’,
sep(w) = (n—1)(n—2)+2(Jy| +|2|) from Lemma 2. The maximum value of |y|+ |z|
is n — 1 when the new symbol is inserted right after the first n — 1. Then, w is a
permutation word and sep(w) = (n —1)(n —2) + 2(n — 1) = n(n — 1). O

Lemma 6. Let n € N. Then, for every even k where 0 < k < n(n— 1), there exists
an assembly word w of size n and separation k.

Proof. We prove the statement by induction on n. The result obviously holds for
n = 1. Suppose the statement holds for all size less than n. Then, for every even k
where 0 < k < (n — 1)(n — 2), there exists an assembly word w of size n — 1 and
separation k. From Lemma 2, separation can increase by an even number from 0
to 2(n — 1) in construction of an assembly word of size n by choosing appropriate
y and z. Thus, for every even k where 0 < k < n(n — 1), there exists an assembly
word w of size n and separation k. O

Note that for an assembly word w with separation k and size m < n, there
exists an assembly word w’ with separation k and size n, constructed by attaching
n — m flat words before or after w. We call such construction padding, and call w’
a padding word of w. Since sep(11) = 0, the only word of size n and separation 0 is
1122---nn.

4. Irreducibility and Separation

In this section, we define irreducible DOWs and show how they play an important
role in determining the separation of a DOW.

Definition 7. Let u be a DOW. If u = vw for some DOW factors v and w, then
u is called reducible. Otherwise, it is irreducible. A decomposition of u is a t-tuple
(uq,...,us) of irreducible DOWs, or simply uq - - - ug, if = ug -+ uy.

Observation 8. If u is a DOW, there exists a unique decomposition of w. If an
irreducible assembly word w is constructed from w', then w' is irreducible.

Since the decomposition of a DOW is unique, we say that a DOW wu is t-reducible
for 1 <t < size(u) if it can be decomposed to ¢ factors. Note that permutation
words are special cases of irreducible words, and there exists a strongly irreducible
word which is not a permutation word, such as a tangled cord, i.e. 121323. Also, if
u is t-reducible and can be decomposed to u; - - - ug, then sep(u) = Sr_, sep(u;).
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Now, we give the generalized relationship among size, separation and the number
of irreducible factors.

Lemma 9. For given n > 1, every irreducible assembly word w with size n has
separation sep(w) > 2(n — 1).

Proof. We prove the lemma by induction on n. When n = 1, we have one assembly
word 11, that satisfies the given condition. Now, suppose that the lemma holds
for all sizes less than n by choosing y and z appropriately. We construct a given
irreducible assembly word w of size n from an assembly word w’ of size n — 1. Let
w' = zyz and w = zbybz. From Lemma 2, sep(w) > 2(n — 2) + 2(|y| + |z|). The
minimum value of |y is 0.

(1) When |y| = 0, |z| > 1 to make w irreducible. Thus, sep(w) > 2(n —2) +2 =
2(n —1).
(2) When |y| > 1, sep(w) > 2(n — 1). O

Corollary 10. For given n > 1 and 1 <t <mn, a t-reducible assembly word w with
size n has separation 2(n —t) < sep(w) < (n—t)(n —t+ 1).

Proof. Let the ith irreducible factor of w be v; with size m; for 1 < ¢ < t. Then,
sep(w) = Z§=1 sep(v;). From Lemmas 5 and 9, 2(m; — 1) < sep(v;) < m;(m; — 1).
Thus, sep(w) > Y¢_, 2(m; — 1) = 2(n — t). On the other hand, since p(p — 1) +
glg—1) < (p+qg—1Dp+q—2) for pg > 1, sep(w) < Yi_;m(m; — 1) <
(n—t+1)(n—1). |

Lemma 11. For givenn > 1 and an even number k where 2(n—1) < k <n(n—1),
there exists an irreducible assembly word w with size n. In particular, sep(w) =
2(n — 1) if and only if deleting all flat factors of w results in a tangled cord.

Proof. We prove the statement by induction on n. When n = 1, w = 11 satisfies the
given statement. Now, suppose the statement holds for all sizes less than n. For even
number k where 2(n —2) < k < (n— 1)(n — 2), there exists an irreducible assembly
word w’ with size n — 1. We construct an irreducible assembly word w of size n
from w’. From Lemma 2, for appropriate z and y, sep(w) = sep(w’) + 2(|y| + |z])-
Note that if |y| = |z] = 0, w becomes reducible. Thus, for even number k where
sep(w’) + 2 < k < sep(w’) + 2(n — 1), there exists an irreducible assembly word w
of size n by choosing appropriate y and z. Combined with the condition for w’, for
even number k where 2(n — 1) < k < n(n — 1), there exists an irreducible assembly
word w of size n.

Let sep(w’) = 2(n—2). The condition sep(w) = 2(n—1) is satisfied by increasing
the separation by 2, which implies |y| + |z| = 1. There are two cases:

(1) If |yl = 0 and |2| = 1, two new symbols are inserted right before the last symbol
of w’. Then, deleting all flat factors of w results in a tangled cord.
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(2) If |y = 1 and |z| = 0, two new symbols are inserted right before and right after
the last symbol of w’. Then, deleting all flat factors of w results in a tangled
cord. O

Corollary 12. For givenn > 1,1 <t < n and an even number k where 2(n—t) <
k< (n—t)(n—t+1), there exists a t-reducible assembly word w with size n and
separation k. In particular,

(1) sep(w) = 2(n —t) if and only if deleting all flat factors of w results in tangled
cord factors, and

(2) sep(w) = (n—t)(n—t+1) if and only if w is a padding word of a permutation
word of size n —t + 1.

Proof. Let a t-reducible assembly word w of size n be factored into vy, vs, ..., v;
with sizes my,mo, ..., m; respectively. From Lemma 11, for any even number k;
such that 2(m; —1) < k; < m;(m; —1), there exists an irreducible assembly word u;
such that sep(v;) = k;. Thus, for any even number k = Y>'_, k;, sep(w) = k holds
when v; = u; for all 1 < ¢ < ¢t. Now, the minimum separation of w is achieved
by Y2'_,2(mi — 1) = 2(n — t), and only can be achieved by an assembly word
where deleting all flat factors of w results in tangled cord factors. The maximum
separation of w is achieved by max(3_r_; m;(m; — 1)) = (n — t)(n — t + 1). Note
that p(p — 1) +q(¢ —1) = (p+¢—1)(p + ¢ — 2) only when p or ¢ is 1. Thus, the
maximum separation can only be achieved by an assembly word which is a padding
word of a permutation word of size n —t 4+ 1 by Lemma 5. O

Corollary 13. Fvery size n assembly word of separation (n — 1)(n —2) < k <
n(n — 1) is irreducible.

Corollary 14. Let w be an assembly word of size n. Then, sep(w) = 2 if and only
if w is a padding word of a size two repeat or return word. There are 2(n — 1)
assembly words of separation 2.

Observation 15. The set of all irreducible assembly words of size 3 and separation
4 is given by {122331,121332,122313,121323}.

Corollary 16. Let u be an assembly word with sep(u) = 4 and size(u) = n. Then,
either of the following two cases hold:

(1) u consists of two padding words of a size two repeat or return word. The number
of assembly words of this form is 4(" 5 2) =2(n—2)(n—3).

(2) w is a padding word of one irreducible factor v of separation 4 from Observa-
tion 15. The number of assembly words of size n and separation 4 that are of
this form is 4(n — 2).

Consequently, the number of assembly words of size n and separation 4 is 2(n —
1)(n—2).
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5. Relationship among Size, Reducibility and Separation of DOWs

We propose formulas to count the number of assembly words according to the size,
reducibility, separation and last symbol index, and analyze relationship among these
properties of DOWs.

Proposition 17 ([11, 13]). The number W, of assembly words of size n
is (2n — D).

We refer to the number of assembly words of size n, t-reducibility, separation k
and last symbol index ¢ as W, ¢ 1 ¢)- For these four arguments, we use * to state
arguments that are irreverent in counting. For example, W(,, ; . .) denotes the num-
ber of t-reducible assembly words with size n.

Lemma 18. The number W, ¢ . ., of t-reducible assembly words of size n is given
by the following recursion:

o Fort > 27 W(n,t,*,*) = Z?;1t+1(W(n—i,t—l,*,*) : W(i,l,*,*))-
o Fort=1,Wyiwe=2n— =020 —i) = DI Wiiaw) [2,4].

Proof. Fort > 2, a t-reducible assembly word of size n can be partitioned into two
factors: a t — 1-reducible prefix of size n — ¢ and an irreducible suffix of size i for
1 <i<n—t+1. Thus, the given formula for ¢ > 2 holds. O

Theorem 19. The number W, 1 r¢) of irreducible assembly words of size n, sep-
aration k and last symbol index £ can be recursively calculated by

-1
Wik = (2n —£) - Z (Win—1,1,k—an+2042,0))

V=n—1

form>3. Forn=1 or 2, Wni,ke =0 except Wi 101) =1 and Wig12,0) = 2.

Proof. For each assembly word w’ of size n — 1, we insert two copies of a new
symbol b = n into w’ to construct an irreducible assembly word w of size n. Since
w is irreducible, w’ is also irreducible from Observation 8. Suppose that the first b
is inserted after the index 2(n — 1) — j. From Lemma 2, sep(w) = sep(w’) + 2j.
Since there are j + 1 different possible indices for the second b, we may say that
Wn—1,1,k,0) - (j + 1) is added to Wiy, 1 5 425,2(n—1)—j+1) (see Fig. 2).

Based on this analysis, we can construct a partial recursive formula for W, 1 1 ¢)
from Wy 1 g eny: 0’ =n—1and k' = k—2j. Thus, W,_1,1,k—2j.4,) - (j +1) is added
to Wy,1,k,0). Since the first b is inserted before the index 2n — j, we know that
j =2n —£— 1. Since we insert the first b after £y, we know that n —1 < ¢ < ¢ —1.
Moreover, since w’ is irreducible, ¢/ < 2n — 4 for n > 3. Combining the conditions,
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L(w")
w’ B

size n—1, separation £/, f(w') =1

m—1 b b
w m—1 b b
(( + 1) cases) 1 b b

| = I T T

size n, separation k'+2j, {(w) = 2(n—1)—j+1

Fig. 2. The general case where £(w) =2(n —1) —j + 1.

we have the following recursive formula:

min (2n—4,(—1)
Wi ke = (2n—1)- Z (Win—1,1,k—an+2042,0))-

V/=n—1

We need boundary conditions for arguments while calculating Wi, 1 1) For
n, one simple condition n > 1 is necessary. For k, we have the condition 0 <
k < n(n —1). For £, we have n < £ < 2n — 2 for n > 2. For all W(, ;) that
fall out of these boundary conditions when n > 2, we may regard W, 11 = 0.
Now, according to these conditions, we claim that we can rewrite the upper bound
min (2n — 4,¢ — 1) to £ — 1. The only situation where these two different conditions
make difference is when £ = 2n — 2, and W,,_1 1 k—ant2042,0/=2n—3) is added to the
latter case. However, given the size n — 1 and the last symbol 2n — 3, we know that
such W equals zero from boundary conditions. Thus, we may successfully use the
upper bound ¢ — 1 for . For initial conditions when n < 2, we have W1 1 91) =1
and W(27172,2) = 2. O

For example, we can calculate W4 166 as follows:

5
Wia1,66 =2- Z W3,1,4,01)
=3

=2- Wz 1,43 + W44 + Wi

2 2 2
=213 Z W0y +2- Z W20y +2- Z W14,
=2 =2 =2

=2-[3-Wii02 +2-Wai22) +2 - Waia2)
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=2-[3-0+2-24+2-0]
= 8.

We propose an alternate way of counting W, 1 ¢ by simulating recursive con-
struction of words by insertion of symbols, starting from the word 11. The goal is
to construct an irreducible assembly word of size n, separation k and last symbol
index { after recursively inserting pairs of i’s for 2 < ¢ < n. Let w; be an irre-
ducible assembly word after the ith iteration with separation k; and the last symbol
index ¢;. Also, let s; = 2i — ¢;, which denotes the reversal index of the first symbol i
in w;. Then, the following observations hold:

(1) For each w;_1, there are (2 — ¢;) w;’s that share the same ¢;.
(2) 2 S S; S Si—1 + 1, since Ei,1 S El
(3) ki=ki_1+2(s;, —1)and k=2->"" ,(s; — 1).

Then, the number of all w,’s can be represented by the following alternate

formula:
Wi ke = Z Hsj ,
(52,s80) \J=2
where s = 2, 2 < s < g1+ 1for 3 < i < n-1,8, = (2n — ¥
and k = 2 -3 " ,(s; — 1). This observation provides an alternative way to

Compute W(n,l,k,f) .

Theorem 20. The number W, 1 1.0y of assembly words of size n, separation k and
last symbol index ¢ can be calculated by

Woano = >, (Il
(525-y8n) \J=2
where s = 2,2 < 5, < s;1+1for3<i<n-1 s, = 2n—1¥) and k =

230 (s —1).

Figure 3 shows a tree describing the counting W(s 1 10,8) by recursive insertion
of symbols.

Based on Theorems 19 and 20, we have the following corollary that provides the
count of irreducible assembly words of n symbols with separation k.

Corollary 21. The number W, 11 «) of irreducible assembly words of size n and
separation k can be recursively calculated by

2n—2 -1
Witk = Z ((2n—€)- Z (W(n1,1,k4n+2e+2,e'))>

l=n V=n—1
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121323

s4=2 - —a
k=2 it = 4 Too-kb=d
12132434,]12132443,. .. A 1231243412312443,. .. 12314234.. ..
85 = p Te-l 85=3 s5=1,
k+=4 k+ = 2| “~\\lg+‘:4 k+=0

1213245345[1213245354,1213245534,. .. 1213423545/1213423554,. .. 1231243545[1231243554,...  [1231245345]. .. 12314234351. ..

Fig. 3. Counting W(s 1,10,8) = > (sy,....55) ([[j=2 8j) = 2X2X2X3+2X2X3X2+2X3X2X2,
Symbols at ¢;’s are colored in red. The symbol k+ denotes increase of separation at each step, which
is equal to 2(s; —1). All combinations of s;’s that do not match the conditions of Theorem 20 are
trimmed. The dashed lines in the figure are examples of branches that are trimmed. For example,
we cannot take the second leaf from the right in the formula, because the resulting separation is
12 which is > 10. Also, we cannot take the rightmost branch since its leaf has a reducible word.

forn > 3. Forn =1 or2, Wy, 15+ = 0 except Wi 104 =1 and Wiz 1,2 = 2.
The formula can be represented by an alternate form

W(ml,lc,*) = Z H S|,

(82,-58n) \J=2

where s =2,2<5; <s;_1+1for3<i<n—-1,2<s,<nandk= 2-2?:2(51—1).

Corollary 21 and the fact that the separation of a t-reducible word is a sum of
separations of its irreducible factors leads to the following observation.

Corollary 22. The number Wy, 1 1« of t-reducible assembly words of size n and
separation k is given by the following recursion formula:

¢
Wit k) = Z H Wini 1,ki )
i=1

(n1,yme ke, k)
where 22:1 n; =n, 22:1 ki=k and 2(n; — 1) < k; <ni(n; — 1) for 1 <i<t.

Now, we prove the necessary and sufficient condition of & when n and ¢ are
given. Note that we already have relationship between n, t and k from Corollary 12,
and ¢ and ¢ are not independent because £ > 2t + 1 holds.

Proposition 23. For givenn > 1, n < ¢ < 2n — 1 and an even number k where
F(n,t) = 2n—0)(2n—0—1) <k <P(n,l) =n(n+1)—2¢, there exists an assembly
word w with size n, separation k and last symbol index £. In particular,

(1) sep(w) = F(n,?) if and only if w consists of £ — n flat words followed by a
permutation word of size 2n — L.

(2) sep(w) = P(n,?) if and only if deleting the last symbols results in a permutation
word of size n — 1.
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Proof. We prove the claim by induction on n. When n = 1, the only assembly
word is 11 where ¢ = 1 and k = 0, and the given statement is satisfied. Now,
assume that the statement holds for all sizes less than n. We construct an assembly
word w of size n, separation k and last symbol index £ from an assembly word w’ of
size n— 1, separation k&’ and last symbol index ¢'. We can follow insertion of two new
symbols b = n as Fig. 2 in the proof of Theorem 19. The changes in the separation
is determined by j = 2n — £ — 1, and k = k&’ + 2j. Thus, if W,_1 . & ¢y > 0, then
Win s b 425.2(n—1)—j+1) > 0 forall 0 <j<2n—{¢ —2.

From the induction hypothesis, for each even k' where F(n — 1,¢) < k' <
P(n —1,0"), W1 4,4y > 0. Thus, for given £ and ¢’ where n —1 < ¢/ < /£ —1,
for each even k in F(n — 1,0') +2j < k < P(n — 1,¢') 4+ 25, Wy 1,0y > 0 holds.
Let LB(¢') (UB(¢')) denote the lower (upper) bound of k for given ¢'. Note that
LB({") = "2 — (4n—5)0' + (4n® —6n+4—2¢) and UB({') = —20'+ (n®+3n—2—2/).
It is straightforward that UB(¢') decreases as ¢’ increases, and LB(¢') also decreases
since the domain of ¢ is in the decreasing part of the parabola. Thus, min (LB(¢'))
is(2n—0-1)2n—(—-2)+22n—0—-1)=(2n—{(—1)(2n — ¢) when ¢' = ¢ — 1.
For an original word

w =1122---({' = n+1)({' —n+1)

¢ —n+1 flat words

X (W' —n+2)---(n—1o(l' —n+2)---a(n—1),

permutation word of size 2n—¢—2

we observe that the resulting word

w=1122--- (' =n+1)({' —=n+1)

¢—n flat words

X (W' —n+2)---(n—Dno(l —n+2)---n---o(n—1)

permutation word of size 2n—¢

follows the form in the given statement. On the other hand, max (UB(¢)) is n(n —
1)=2(n—=1)+22n—¢—1) =n(n+1) —2¢ when ¢’ = n — 1. For an original word

w' =12---(n—1)o(1)o(2)---o(n — 1),

permutation word of size 2n—1

we observe that the resulting word
w=12---(n—1)o(1)o(2)---n---n---o(n—1)

follows the form in the given statement. Therefore, (1) and (2) in Proposition 23
are inductively proven.

Now, we prove that for every even number k in the interval [F(n,£), P(n,?)],
Win,s,k,0p > 0. By the induction hypothesis, for every even number k in inter-
vals [LB(¢'), UB(¢')], Wn,,k,¢) > 0 as discussed above. Now, we claim that for all ¢/
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k A K A

n(n—1)L 4 n(n—1)1 4

n?-n-21 n?-n-2 | o
(n—=1)(n-2)L « o n?—3n+8 | x .. &

: Do n?—3n+6 | x ... x o

2(n—1)L o « n?—3n+4 | x % x o

2(n—2)L o« (n=1)(n-2) L e " x x x o
120 ... @ 124 e x x x
104 S ox 104 X x x
8 1 ek 8 X x %
6L e o 61 e x x
4.1 o 4.1 X x
21 . 21 ° x
O bttt Ottt

1 2 I n—2 n t n s 2n—3 2n—1 l
n—3 n—1 n+1 2n—4  2n—2

Fig. 4. (Left) Area that W, ; 1 .) > 0 holds. (Right) Area that W(,, , 1 ¢) > 0 holds. Blue circles
(red squares) represent the lower (upper) bound of k, and black crosses represent possible values
of k strictly within the bounds.

where n < ¢/ < £—2,it holds LB(¢') < UB(¢'+1). We have that LB(¢')—UB(¢'+1) =
Cn—2-0)2n—-3—-0)—n(n—1)+20' +2 =102 — (4n - 5){' (Sn —9n +8).
Sincen < ¢ < (-2 <2n-3 < 4"275 the difference LB(¢') — UB(¢' + 1)
decreases as n increases. For ¢/ = n, the difference LB(¢') — UB(¢' + 1) becomes
02 — (4n — 5)0' + (3n? — 9n + 8) = 8 — 4n which is < 0 when n > 2. Thus,
the claim holds for n > 2. This implies that the intervals [LB(¢), UB(¢')] and
[LB(¢ 4 1),UB(¢ + 1)] overlap for all ¢ satisfying n < ¢ < ¢ — 2, hence, for
every even number k in the interval [LB({ — 1),UB(n)], we have W, , ¢ > 0.
Combined with the fact that P(n,f) = LB(n — 1) = UB(n — 1) = n? + n — 24,
UB(n) =n?+n—2¢—2 and LB({—1) = F(n, ), we conclude that for every even k
in the interval [F(n, £), P(n,¢)], the number of words with separation k of size n and
last symbol appearing in location ¢ is W, . ¢ > 0. O

Figure 4 visualizes the possible range of separation k£ depending on the reducibil-
ity t and the last symbol index ¢, from Corollary 10 and Proposition 23.
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