
Action Evaluation Hardware Accelerator for
Next-Generation Real-Time Reinforcement

Learning in Emerging IoT Systems

Jianchi Sun‡, Nikhilesh Sharma†, Jacob Chakareski∗, Nicholas Mastronarde†, Yingjie Lao‡
‡Clemson University, †University at Buffalo, ∗New Jersey Institute of Technology

Abstract—Internet of Things (IoT) sensors often operate in
unknown dynamic environments comprising latency-sensitive
data sources, dynamic processing loads, and communication
channels of unknown statistics. Such settings represent a nat-
ural application domain of reinforcement learning (RL), which
enables computing and learning decision policies online, with no
a priori knowledge. In our previous work, we introduced a post-
decision state (PDS) based RL framework, which considerably
accelerates the rate of learning an optimal decision policy. The
present paper formulates an efficient hardware architecture for
the action evaluation step, which is the most computationally-
intensive step in the PDS based learning framework. By leverag-
ing the unique characteristics of PDS learning, we optimize its
state value expectation and known cost computational blocks,
to speed-up the overall computation. Our experiments show
that the optimized circuit is 49 times faster than its software
implementation counterpart, and six times faster than a Q-
learning hardware accelerator.

Index Terms—Reinforcement Learning, Hardware Accelera-
tion, Wireless Communication, Action Evaluation, IoT Systems,
Emerging Latency-Sensitive Applications.

I. INTRODUCTION

A variety of emerging applications spanning autonomous

driving, mobile augmented and virtual reality, remote multi-

view sensing, personalized healthcare, virtual teleportation,

UAV-IoT, 360◦ video streaming, remote robot navigation,

cooperative video delivery, and telemetry [1–10], rely on

computing and communication limited Internet of Things

(IoT) devices and sensors [11–13]. The stochastic processes

governing the captured latency-sensitive data and the channel

dynamics, arising in such emerging settings, are not known a

priori. This necessitates learning the respective desired optimal

transmission policies online, during operation, to adapt to the

experienced traffic and channel dynamics.

To this end, reinforcement learning (RL) [14, 15] has been

shown to be an extremely effective tool, with Q-learning

being its most widely-used method [16]. For instance, Q-

learning has been employed to maximize the throughput of

an energy-harvesting transmitter [17]. While Q-learning can

solve problems with small state/action spaces, it exhibits poor

convergence rates, which makes it inappropriate for problems

The work of N. Sharma and N. Mastronarde was supported in part by
the National Science Foundation (NSF) under Award ECCS-1711335. The
work of J. Chakareski was supported in part by the NSF under Awards CCF-
1528030, ECCS-1711592, CNS-1836909, and CNS-1821875.

involving large state/action spaces. Additionally, this approach

is purely data-driven, which does not incorporate any useful

information about the underlying system dynamics.

Recently, we explored and advanced the concept of post-
decision states (PDS) [14, 15, 18–23], which exploits basic

system knowledge to considerably advance the RL learning

rate. PDS capture the system state after an action is taken, but

before the unknown dynamics take place, which allows us to

decompose the problem into known and unknown components,

where only the latter must be learned. Though using PDS

can speed-up the convergence to the optimal policy, it intro-

duces the cost of increased action-selection complexity [15],

which brings challenges to real-time applications. Moreover,

the limited computing and power of wireless IoT systems

[24] represent further challenges to actual deployment. Thus,

hardware acceleration is a promising direction to enable real-

time IoT applications of PDS based learning [25, 26].

In this paper, we design an efficient architecture for action

evaluation, which computes the action to select given the

present state. This step is the computational bottleneck in PDS

based RL systems, as it is involved in greedy action selection

and state value updating in each iteration. The key novelty of

our design includes i) re-structuring the action evaluation of

PDS based RL for hardware optimization, which yields a speed

up of over 49 times, compared to the software counterpart; and

ii) further optimizing the hardware accelerator’s performance

by efficiently computing the transmission power costs (Ptx)

and packet loss rates (PLR) using lookup tables (LUTs), re-

ordering the register array for the value function V (s), and

parallelizing the computation with two dedicated trees. As a

result, the computational delay of our hardware accelerator is

further reduced by 66.3%, while the power consumption and

cells number are also decreased by 85% and 86%, respectively.

Meanwhile, when compared to Q-learning, our optimized

accelerator achieves a 83% delay reduction and a 59% power

consumption reduction.

The rest of this paper is organized as follows. Section II

reviews the mathematical background of PDS based RL and

conventional Q-learning. Then, our proposed architecture is

described in detail in Section III. Section IV presents the

experimental results to verify the effectiveness of the proposed

architectures. Finally, Section V concludes the paper.

428

II. BACKGROUND

A. PDS based Reinforcement Learning

We consider a time-slotted wireless IoT sensor and aim at

improving the wireless power management, with the specific

objective to minimize the sensor’s energy consumption, subject

to an operational delay constraint.

To implement RL for the wireless power management prob-

lem, we first formulate it into a constrained MDP. We assume

that time is divided into slots with length ΔT (seconds) and

that the system’s state in the n-th time slot is denoted by

sn � (bn, hn, xn) ∈ S , with packet buffer state bn (i.e.,

the number of packets stored in the buffer), channel fading

state hn, and power management state x (radio on/off). At the

beginning of each time slot, the IoT sensor observes its state sn

and takes an action an = (BEPn, yn, zn), where BEPn is its

target bit-error probability, yn is its power management action

(turn on/off the radio), and zn is its packet throughput (number

of transmitted packets). We aim to determine the action in each

state to minimize the cost c(sn, an) = ρ(sn, an)+λg(sn, an)
over time, where ρ(s, a) is the power cost, g(s, a) is the delay

cost, and λ is a Lagrange multiplier to set the delay constraint.

The sequence of states sn : {n = 0, 1, ...} can be modeled

as a controlled Markov chain with transition probabilities

equal to the product of individual state transitions, as in

Equation (1), where b′ is defined by Equation (2). Here f
is the packet goodput (correctly received packets), l is the

number of packet arrivals, and Nb is the buffer’s capacity.

P (s′|s, a) = P b(b′|[b, h], a)Ph(h′|h)P x(x′|x, a) (1)

b′ = min(b− f + l, Nb) (2)

From Equation (2), it can be concluded that P b depends

on the goodput distribution P f . Assuming independent packet

losses, P f (f |BEP, z) = binomial(z, 1 − PLR), where

PLR = 1− (1−BEP)L is the packet loss rate for a packet

with size of L (bits).

A post-decision state (PDS), represented by s̃ � (̃b, h̃, x̃) ∈
S, denotes a state of the system after all known/controllable

dynamics have occurred but before the unknown dynamics

occur [14, 15, 27]. In our problem,

s̃n = ([bn − fn], hn, xn+1). (3)

We can formulate our problem in terms of PDSs instead of

conventional states by decomposing the transition s → s′ into

two parts: a known transition s → s̃ with cost ck(s, a) and

transition probability Pk(s̃|s, a), and an unknown transition

s̃ → s′ with cost cu(s̃) and transition probability Pu(s
′|s̃).

We can define two optimal value functions V ∗(s) and Ṽ ∗(s̃)
over the conventional states and PDSs, respectively. The two

value functions are related by the following equations:

Ṽ ∗(s̃) = cu(s̃) + γ
∑

s′∈S Pu(s
′|s̃)V ∗(s′) (4)

V ∗(s) = min
a∈A(s)

{
ck(s, a) +

∑
s̃∈S Pk(s̃|s, a)Ṽ ∗(s̃)

}
. (5)

Knowing Ṽ ∗(s̃), the optimal policy π∗ can be found by taking

the action in each state that minimizes the right-hand side of

Equation (5). To solve the problem online, we use the PDS

learning algorithm [15, 18, 27], which is a stochastic iterative

algorithm. PDS learning takes the greedy action in each time

slot and updates the value of the present state s̃n by using

a weighted average of (i) the current PDS value function

estimate Ṽ (sn), and (ii) a new sample estimate of the PDS

value function based on the next state’s estimated value as:

Ṽ n+1(s̃n) = (1−αn)Ṽ n(s̃n)+αn[cnu(s̃
n)+γV n(sn+1)]. (6)

Since the unknown system dynamics are not dependent

on the action taken, using PDSs obviates the need for ac-

tion exploration. Algorithm 1 presents the pseudo-code for

the PDS learning algorithm using an adaptive learning rate

αn ∈ [0, 1], where action evaluation requires computing

{ck(sn, a)+
∑

s̃ P
k(s̃|sn, a)Ṽ n(s̃)} in Equations (7) and (8).

Algorithm 1 Post-Decision State Learning

1: initialize Ṽ 0(s̃) = 0 for all s̃ ∈ S
2: for time slot n = 0, 1, 2, . . . do
3: Take the greedy action:

an = argmin
a∈A

{
ck(s

n, a) +
∑
s̃

P k(s̃|sn, a)Ṽ n(s̃)

}
(7)

4: Observe PDS s̃n, next state sn+1, unknown cost cnu
5: Evaluate the state value function at time n+ 1:

V n(sn+1) = min
a∈A

{
ck(s

n+1, a) +
∑
s̃

P k(s̃|sn+1, a)Ṽ n(s̃)

}
(8)

6: Calculate Ṽ n+1(s̃n) using Equation (6)

7: end for

B. Conventional Q-Learning

For the algorithmic comparison, we also briefly introduce Q-

learning. The key step in Q-learning is performing an update at

the end of every time slot according to the current experience

tuple: (sn, an, cn, sn+1). The update can be expressed as:

Qn+1(sn, an) ←
(1− αn)Qn(sn, an) + αn[cn + γ min

a′∈A
Qn(sn+1, a′)], (9)

where sn+1 is distributed based on the transition probability

distribution P (sn+1|sn, an); a′ is the greedy action in time slot

n+1; αn represents the time-varying learning rate parameter;

and Q0(s, a) can be initialized arbitrarily for all (s, a) ∈ S×A.

In the literature, many researchers have explored various Q-

learning based RL hardware accelerator structures for better

performance and lower power consumption [28–31]. How-

ever, these hardware optimization techniques are not, at least

directly, applicable to our PDS learning algorithm, as PDS

based methods are uniquely optimized for emerging wireless

IoT systems to reduce the convergence time. Therefore, it is

429

important to exploit dedicated hardware accelerators for the

PDS based learning algorithms.

III. PROPOSED HARDWARE ARCHITECTURE

Here, we present an optimized hardware accelerator for the

action evaluation step to improve the efficiency and hence

facilitate real-world deployment of next-generation RL tech-

niques. The proposed hardware accelerator is mainly com-

posed by two components: Known Cost (KC) block and State

Value Expectation (SVE) block, as shown in Fig. 1. Specif-

ically, we optimize the lookup table (green), tree structure

(blue), and data selection (orange), according to the unique

characteristics of the PDS based RL algorithm to speedup the

computation and reduce the power consumption. We present

the detailed design and optimization approaches below.

Fig. 1: Top-level architecture of the proposed hardware ac-

celerator for action evaluation. It comprises two main blocks:

Known Cost and State Value Expectation.

A. Lookup Table Reduction and State Encoding for RL

To avoid an infinite number of channel states in the proposed

module, all analog states are quantized to discrete values. In or-

der to further reduce the computational complexity, we design

a lookup table reduction structure with state encoding. This

reduces execution time and lowers the power consumption of

the learning system, which are critical aspects for real-time

wireless IoT systems [32].

At the beginning stages of our module, most computations

are complex and computationally-intensive with heavy multi-

plications and power operations (e.g.,
(
z
i

)
when computing

the Binomial goodput distribution, PLR = 1 − PRR =
1 − (1 − BEP)L, and Ptx defined by Equation (10), where

β is proportional to z, and erf() denotes the error function).

However, the combinations of the inputs are limited by the

size of state and action spaces. When the number of states is

small, a lookup table is proved to be a promising choice for

the implementation [33–35]. Therefore, we pre-process most

computations at the input stage, which are then implemented

as lookup tables, as shown in Fig. 1.

Ptx =

√
2N0(2

β − 1)erf−1(1− β∗BEP
4)

3 ∗ h . (10)

However, in the PDS learning algorithm, a large number of

state values are not used after quantization (e.g. There are

only 8 valid channel states, but 232 possible inputs for a 32-

bit system), which introduces redundant input space for the

lookup table and negatively impacts the performance. To this

end, the lookup tables for BEP and h are further optimized

by state encoding. Discrete values are encoded into successive

binary addresses to compress the input bit-width and unused

cases, as shown in Fig. 2, which achieved a reduction of 61×
for unused case numbers. As a result, the circuit cost, speed,

and power consumption are all improved by using a smaller

input size. In our implementation, the bit-widths of both BEP
and h are reduced from 32-bit to 3-bit for the 32-bit system.

Furthermore, the encoded case input makes the circuit more re-

programmable friendly across different applications [36, 37].

The inputs can be encoded similarly based upon the resolution

used for the channel state and BEP (or any other continuous

parameter), while the lookup tables can be easily updated for

a different environment.

95% Unused
Cases

Only 25%
Unused

State Encoding

Fig. 2: An example of case encoding, where the input bit-width

is compressed from 6 to 2, and unused cases are decreased

over 61 times.

B. State Value Expectation (SVE)

Tree Structure: When calculating the SVE, all probabilities

and state values for possible PDSs have to be collected and

calculated (7), which makes the SVE block in general much

slower than the KC block. Inspired by the parallel designs

in recent works of efficient hardware implementation [38–

40], we propose a parallelized structure for the SVE block

with two tree structures: power tree (Fig. 3(a)) and multi-sum

tree (Fig. 3(b)). The power tree takes a probability p as input

and outputs all of the p0-p10 simultaneously (all the outputs

will be read out at the same time when the circuit finishes

switching), while the multi-sum tree collects all PLRi (packet

loss rate), PRRi (packet receive rate), V (s), and chooses

values
(
z
i

)
based on the current state and action (77 values

in total), then computes E(V (s̃)) with only 3 multipliers and

5 adders. Besides accelerating the computation, the parallel

design can also reduce power consumption since it decreases

the critical path and eliminates the need for extra registers for

data buffering or redundant computation.

430

(a) Power Tree (b) Multi-Sum Tree

Fig. 3: The proposed parallel structures for (a) power tree and

(b) multi-sum tree.

Data Selection: The data selection module in Fig. 1 is

responsible for preparing the corresponding (z choose i) values

and V (s) for the multi-sum tree. For the considered learning

model, there are 26 buffer states (b), 8 channel fading states

(h), and 2 power management states (x), which leads to 416

different joint states in total. For each action, no more than

22 of those will be selected as the candidates for the PDS. In

other words, the data selection module needs to select at most

22 V (s̃) from all 416 V (s). Thus, the complexity of this block

is largely dependent on the addressing and indexing schemes

for the data. To this end, ordered storage array is employed

to reduce the circuit complexity, as shown in Fig. 4(a). It can

be observed from Equation (3) that all possible PDSs b̃ are

continuous from the current index b to index (b − z). By

leveraging this property, we reorder the storage array in a

way that all candidates of the PDSs for each possible case are

stored consecutively. Consequently, only the position V (s) for

the current index b is required to locate, while the subsequent

21 V (s) will be automatically addressed. Furthermore, since

the channel state h does not vary across different PDSs (h̃ = h
as in Equation (3)), all V (s) with the same h are indexed as

a group. We also pre-select all V (s) with the current h before

reading the current action. All together, the V (s̃) selection

is optimized from 416-to-22 selection to 52-to-1 selection by

using the proposed ordered storage array.

Another issue for this module is that the length of s̃ changes

based on the value of action z. We propose to adopt an

auto-disable technique in the data selection module as shown

in Fig. 4(b), which disables branches of the multi-sum tree

when the number of possible buffer states for PDS (̃b) is not

at the maximum, i.e. z < zmax. Under this circumstance,

the corresponding V (s̃) and ci for the unused branches are

assigned as zeroes, which will automatically stop multipliers

and adders of the corresponding branches from switching.

C. Known Cost (KC)

The computation of transmission power Ptx dominates the

complexity of the KC block, which includes multiplications,

power options, and the inverse error function, as expressed by

Equation (10). To speed up the computation, we decompose

(a) Ordered storage array (left) vs. random storage array (right)

(b) Component auto-disable

Fig. 4: Hardware optimizations for data selection module.

Ptx = g(z,BEP) ∗ 1/h, where g(z,BEP) can be given by:

g(z,BEP) =

√
2N0(2

β − 1)erf−1(1− β∗BEP
4)

3
. (11)

Consequently, we construct a lookup table for g(z,BEP) of

size size(z)∗size(BEP) = 10×5, which helps avoid integral

and power computations.

IV. EXPERIMENTAL RESULTS

A. Learning Algorithm Comparison

Fig. 5 compares the simulated performance between our

PDS learning implementation (Algorithm 1) and Q-learning.

All results are generated by a MATLAB based simulator over

3,000,000 time slots. It can be seem from Fig. 5 that the PDS

learning algorithm outperforms Q-learning in terms of both

cumulative average delay and power consumption.

Besides power and delay, we further analyse the conver-

gence speed of our algorithm in Fig. 6. The red curve (circle

markers) denotes the cumulative average cost incurred up

to time slot n by Q-learning (where the cost is defined in

Section II-A as a weighted sum of the power cost and delay

cost) and the blue curve (+ markers) denotes the cumulative

average cost for PDS learning. While PDS learning approxi-

mately converges in 250,000 time slots, Q-learning has still not

converged after 3,000,000 time slots, so it is at least 12 times

slower than PDS learning. This shows that PDS learning is a

better candidate for real-time IoT systems, where fast learning

is needed to adapt to the real environment.

B. Hardware Implementation

We implemented and evaluated the following four ap-

proaches: Our proposed efficient action-evaluation architec-

ture, a baseline straightforward hardware design without em-

ploying the proposed optimization, a software implementation

with C++, and a Q-learning circuit using Verilog HDL. For

a fair comparison, all common intrinsic variables and state

values V (s) use a bit-width of 32. They were all mapped to

431

100 102 104 106

Time slot (n)

0

5

10

15

20

25
D

el
ay

 (
sl

ot
s)

Q-Learning
PDS Learning

(a) Cumulative average delay.

100 102 104 106 108

Time slot (n)

0

100

200

300

P
ow

er
 (

m
W

)

Q-Learning
PDS Learning

(b) Cumulative average power.

Fig. 5: Comparison between PDS learning and Q-learning.

100 102 104 106

Time slot (n)

5

10

15

C
um

ul
at

iv
e

av
er

ag
e

co
st

Q-Learning
PDS Learning

Fig. 6: Comparison of convergence speed.

a 32nm technology node using a Synopsys Design Compiler.

The software is coded and tested with C++ on macOS, with

2.6 GHz 6-core Intel i7 processor and 16GB RAM. No multi-

threaded optimization is added to the code, which means the

software runs with only a single core under the limitation of

macOS. As wireless IoT systems usually have less computing

resources, we consider this setting as a guaranteed upper

bound for the software implementation’s speed.

We evaluate and compare the execution delays and aver-

age runtime for our two hardware designs and the software

implementation of PDS learning. Furthermore, the power and

area consumption of the optimized hardware accelerator and

the baseline design are compared to illustrate the effectiveness

of the proposed hardware optimization techniques. These

results and comparisons are shown in Table I, where the

execution times and power/area consumptions are also shown

normalized to the optimized hardware design, for the baseline

hardware design and software implementation. According to

the experimental results, our optimized hardware accelerator is

3× faster than the baseline circuit, while achieving a 49 times

acceleration over the software implementation. The power

consumption and cells number are also decreased by 85% and

86% respectively, compared to the baseline hardware design.

TABLE I: Optimized vs. Baseline Architectures (32-Bit)

Optimized
Hardware
(PDS)

Baseline
Hardware (PDS)

Software

Delay (ns) 86.97 258.31 (3×) 4240 (49×)
Power (mW) 6.17 41.21 (7×) -
of Cells 93448 666543 (7×) -

The comparison between our proposed architecture for PDS

learning and Q learning is presented in Table II. The imple-

mentation of Q-learning is based on Equation (9). According

to the simulation results in Section IV-A, Q-learning converges

over an order of magnitude slower than PDS based learning.

Therefore, since the hardware will be activated once for each

time slot, we normalize the hardware cost with respect to the

convergence time for a fair comparison. These results show

that the proposed PDS based learning accelerator achieves

reductions of 83% and 59% in delay and power consump-

tion, respectively, compared to Q-learning. Therefore, we can

conclude that the proposed PDS learning architecture is faster

and consumes less energy than Q-learning.

TABLE II: PDS vs. Q-learning on Hardware (32-Bit)

Optimized
Hardware
(PDS)

Normalized
Q-learning

Delay (ns) 86.97 521.9 (6×)
Power (mW) 6.17 15 (2.4×)

In addition, to achieve better performance according to the

data range of a certain application scenario, designers vary

the bit-width of the implementation [41, 42]. Thus, we also

studied the hardware cost of our PDS learning accelerator for

different bit-widths (i.e., 16, 32, and 64) as shown in Fig. 7. We

normalize all the results to those for 16-bit. It can be observed

that the hardware complexity increases approximately linearly

with the increase of the bit-width.

V. CONCLUSION

We presented an efficient hardware accelerator for action

evaluation of PDS based real-time RL for next generation

wireless communication systems. By algorithmic and hard-

ware co-optimization of the PDS learning implementation, we

achieved a significant speedup for the action evaluation process

of PDS, while simultaneously reducing its power consumption.

Future work will be directed towards generalization of the

proposed architecture to various wireless and IoT settings.

432

15 20 25 30 35 40 45 50 55 60 65

Bit Width

0

2

4

6

8

10

12
N

or
m

al
iz

ed
 V

al
ue

Delay
Power
Cell Number

Fig. 7: Comparison of different bit-widths. All results are

normalized to those for 16-bit, whose delay is 49.89 ns, power

is 1.87 mW, and cell number is 32,030 cells.

REFERENCES

[1] J. Chakareski, “UAV-IoT for next generation virtual reality,” IEEE Trans.
Image Process., vol. 28, no. 12, pp. 5977–5990, Dec. 2019.

[2] A. Seyedi and B. Sikdar, “Energy efficient transmission strategies for
body sensor networks with energy harvesting,” IEEE Trans. Commun.,
vol. 58, no. 7, pp. 2116–2126, 2010.

[3] J. Chakareski and B. Girod, “Rate-distortion optimized packet schedul-
ing and routing for media streaming with path diversity,” in Proc. IEEE
Data Compression Conference, Snowbird, UT, Mar. 2003, pp. 203–212.

[4] J. Chakareski, V. Velisavljević, and V. Stanković, “User-action-driven
view and rate scalable multiview video coding,” IEEE Trans. Image
Process., vol. 22, no. 9, pp. 3473–3484, Sep. 2013.

[5] N. Thomos, J. Chakareski, and P. Frossard, “Randomized network
coding for UEP video delivery in overlay networks,” in Proc. IEEE
Int’l Conf. Multimedia and Expo, June/July 2009, pp. 730–733.

[6] J. Chakareski and P. Frossard, “Distributed collaboration for enhanced
sender-driven video streaming,” IEEE Trans. Multimedia, vol. 10, no. 5,
pp. 858–870, Aug. 2008.

[7] N. Mastronarde, F. Verde, D. Darsena, A. Scaglione, and M. van der
Schaar, “Transmitting important bits and sailing high radio waves: A
decentralized cross-layer approach to cooperative video transmission,”
IEEE J. Selected Areas in Communications, vol. 30, no. 9, Oct. 2012.

[8] J. Chakareski, “Uplink scheduling of visual sensors: When view popu-
larity matters,” IEEE Trans. Commun., vol. 2, no. 63, Feb. 2015.

[9] J. Chakareski, R. Aksu, X. Corbillon, G. Simon, and V. Swaminathan,
“Viewport-driven rate-distortion optimized 360◦ video streaming,” in
Proc. IEEE Int’l Conf. Communications, May 2018.

[10] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski, “Viewport-
adaptive navigable 360-degree video delivery,” in Proc. IEEE Int’l Conf.
Communications. Paris, France: IEEE, May 2017.

[11] N. C. Luong, D. T. Hoang, P. Wang, D. Niyato, D. I. Kim, and Z. Han,
“Data collection and wireless communication in Internet of Things
(IoT) using economic analysis and pricing models: A survey,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 4, 2016.

[12] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet
of things (IoT) communication protocols,” in Proc. IEEE Int’l Conf.
Information Technology (ICIT), 2017, pp. 685–690.

[13] F. Wu, C. Rüdiger, and M. Yuce, “Real-time performance of a self-
powered environmental IoT sensor network system,” Sensors, 2017.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

[15] N. Mastronarde and M. van der Schaar, “Joint physical-layer and system-
level power management for delay-sensitive wireless communications,”
IEEE Trans. Mobile Comput., vol. 12, no. 4, pp. 694–709, 2013.

[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[18] N. Mastronarde and M. van der Schaar, “Fast reinforcement learning for
energy-efficient wireless communication,” IEEE Trans. Signal Process.,
vol. 59, no. 12, pp. 6262–6266, 2011.

[17] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach
to energy harvesting communication system optimization,” IEEE Trans.
Wireless Commun., vol. 12, no. 4, pp. 1872–1882, 2013.

[19] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality. John Wiley & Sons, 2007, vol. 703.

[20] N. Toorchi, J. Chakareski, and N. Mastronarde, “Fast and low-
complexity reinforcement learning for delay-sensitive energy harvesting
wireless visual sensing systems,” in Proc. IEEE Int’l Conf. Image
Processing, Phoenix, AZ, USA, Sep. 2016, pp. 1804–1808.

[21] N. Sharma, N. Mastronarde, and J. Chakareski, “Delay-sensitive energy-
harvesting wireless sensors: Optimal scheduling, structural properties,
and approximation analysis,” IEEE Trans. Communications, vol. 68,
no. 4, pp. 2509–2524, Apr. 2020.

[22] N. Sharma, N. Mastronarde, and J. Chakareski, “Accelerated structure-
aware reinforcement learning for delay-sensitive energy harvesting wire-
less sensors,” IEEE Trans. Signal Processing, vol. 68, no. 1, Dec. 2020.

[23] N. Mastronarde, J. Modares, C. Wu, and J. Chakareski, “Reinforcement
learning for energy-efficient delay-sensitive CSMA/CA scheduling,” in
Proc. IEEE Global Telecommunications Conf., Dec. 2016.

[24] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. Leung,
and Y. L. Guan, “Wireless energy harvesting for the Internet of Things,”
IEEE Communications Magazine, vol. 53, no. 6, pp. 102–108, 2015.

[25] A. Polianytsia, O. Starkova, and K. Herasymenko, “Survey of hardware
IoT platforms,” in Proc. IEEE Int’l Scientific-Practical Conf. Problmes
of Infocommunications Science and Technology, 2016, pp. 152–153.

[26] A. Sengupta and S. Kundu, “Guest editorial: Securing IoT hardware:
threat models and reliable, low-power design solutions,” IEEE Trans.
Very Large Scale Integration Systems, vol. 25, no. 12, 2017.

[27] N. Salodkar, A. Bhorkar, A. Karandikar, and V. Borkar, “An on-line
learning algorithm for energy efficient delay constrained scheduling over
a fading channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, 2008.

[28] P. R. Gankidi, “FPGA accelerator architecture for Q-learning and its
applications in space exploration rovers,” Ph.D. dissertation, Arizona
State University, 2016.

[29] A. Amravati, S. B. Nasir, S. Thangadurai et al., “A 55nm time-domain
mixed-signal neuromorphic accelerator with stochastic synapses and
embedded reinforcement learning for autonomous micro-robots,” in
Proc. IEEE Int’l Solid-State Circuits Conference, 2018, pp. 124–126.

[30] H. Huang, R. S. Khalid, W. Liu, and H. Yu, “Work-in-progress: A
fast online sequential learning accelerator for IoT network intrusion
detection,” in Proc. IEEE Int’l Conf. Hardware/Software Codesign and
System Synthesis, 2017, pp. 1–2.

[31] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area
networks: An overview,” IEEE Comm. Surveys & Tutorials, 2017.

[32] H. Kopetz, “Internet of things,” in Real-time systems. Springer, 2011.

[33] M. Imani, D. Peroni, and T. Rosing, “Nvalt: Nonvolatile approximate
lookup table for GPU acceleration,” IEEE Embedded Systems Letters,
vol. 10, no. 1, pp. 14–17, 2017.

[34] M. S. Abdulnabi and H. Ahmed, “Design of efficient cyclic redundancy
check-32 using FPGA,” in Proc. IEEE Int’l Conf. Computer, Control,
Electrical, and Electronics Engineering, 2018, pp. 1–5.

[35] Y. Tian, T. Wang, Q. Zhang, and Q. Xu, “ApproxLUT: A novel
approximate lookup table-based accelerator,” in Proc. IEEE/ACM Int’l
Conf. Computer-Aided Design, 2017, pp. 438–443.

[36] R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping
program for lookup table-based field programmable gate arrays,” in
Proc. ACM/IEEE Design Automation Conference, 1991, pp. 613–619.

[37] Y. Takemura, “Lookup table and programmable logic device including
lookup table,” Feb. 14 2017, US Patent 9,571,103.

[38] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU:
A scalable deep learning accelerator unit on FPGA,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, 2016.

[39] D. Kim, J. Ahn, and S. Yoo, “Zena: Zero-aware neural network accel-
erator,” IEEE Design & Test, vol. 35, no. 1, pp. 39–46, 2017.

[40] W. Song, D. Koch, M. Luján, and J. Garside, “Parallel hardware
merge sorter,” in Proc. IEEE Int’l Symp. Field-Programmable Custom
Computing Machines, 2016, pp. 95–102.

[41] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by
optimizing the necessary precision/range of floating-point arithmetic,”
IEEE Trans. Very Large Scale-Integration Systems, 2000.

[42] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in Proc. IEEE
Int’l Symp. High-Performance Computer Architecture, 1999, pp. 13–22.

433

