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Abstract—Internet of Things (IoT) sensors often operate in
unknown dynamic environments comprising latency-sensitive
data sources, dynamic processing loads, and communication
channels of unknown statistics. Such settings represent a nat-
ural application domain of reinforcement learning (RL), which
enables computing and learning decision policies online, with no
a priori knowledge. In our previous work, we introduced a post-
decision state (PDS) based RL framework, which considerably
accelerates the rate of learning an optimal decision policy. The
present paper formulates an efficient hardware architecture for
the action evaluation step, which is the most computationally-
intensive step in the PDS based learning framework. By leverag-
ing the unique characteristics of PDS learning, we optimize its
state value expectation and known cost computational blocks,
to speed-up the overall computation. Our experiments show
that the optimized circuit is 49 times faster than its software
implementation counterpart, and six times faster than a Q-
learning hardware accelerator.

Index Terms—Reinforcement Learning, Hardware Accelera-
tion, Wireless Communication, Action Evaluation, IoT Systems,
Emerging Latency-Sensitive Applications.

1. INTRODUCTION

A variety of emerging applications spanning autonomous
driving, mobile augmented and virtual reality, remote multi-
view sensing, personalized healthcare, virtual teleportation,
UAV-IoT, 360° video streaming, remote robot navigation,
cooperative video delivery, and telemetry [1-10], rely on
computing and communication limited Internet of Things
(IoT) devices and sensors [11-13]. The stochastic processes
governing the captured latency-sensitive data and the channel
dynamics, arising in such emerging settings, are not known a
priori. This necessitates learning the respective desired optimal
transmission policies online, during operation, to adapt to the
experienced traffic and channel dynamics.

To this end, reinforcement learning (RL) [14, 15] has been
shown to be an extremely effective tool, with Q-learning
being its most widely-used method [16]. For instance, Q-
learning has been employed to maximize the throughput of
an energy-harvesting transmitter [17]. While Q-learning can
solve problems with small state/action spaces, it exhibits poor
convergence rates, which makes it inappropriate for problems
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involving large state/action spaces. Additionally, this approach
is purely data-driven, which does not incorporate any useful
information about the underlying system dynamics.

Recently, we explored and advanced the concept of post-
decision states (PDS) [14,15,18-23], which exploits basic
system knowledge to considerably advance the RL learning
rate. PDS capture the system state after an action is taken, but
before the unknown dynamics take place, which allows us to
decompose the problem into known and unknown components,
where only the latter must be learned. Though using PDS
can speed-up the convergence to the optimal policy, it intro-
duces the cost of increased action-selection complexity [15],
which brings challenges to real-time applications. Moreover,
the limited computing and power of wireless IoT systems
[24] represent further challenges to actual deployment. Thus,
hardware acceleration is a promising direction to enable real-
time IoT applications of PDS based learning [25, 26].

In this paper, we design an efficient architecture for action
evaluation, which computes the action to select given the
present state. This step is the computational bottleneck in PDS
based RL systems, as it is involved in greedy action selection
and state value updating in each iteration. The key novelty of
our design includes i) re-structuring the action evaluation of
PDS based RL for hardware optimization, which yields a speed
up of over 49 times, compared to the software counterpart; and
ii) further optimizing the hardware accelerator’s performance
by efficiently computing the transmission power costs (F%;,)
and packet loss rates (PLR) using lookup tables (LUTs), re-
ordering the register array for the value function V(s), and
parallelizing the computation with two dedicated trees. As a
result, the computational delay of our hardware accelerator is
further reduced by 66.3%, while the power consumption and
cells number are also decreased by 85% and 86%, respectively.
Meanwhile, when compared to Q-learning, our optimized
accelerator achieves a 83% delay reduction and a 59% power
consumption reduction.

The rest of this paper is organized as follows. Section II
reviews the mathematical background of PDS based RL and
conventional Q-learning. Then, our proposed architecture is
described in detail in Section III. Section IV presents the
experimental results to verify the effectiveness of the proposed
architectures. Finally, Section V concludes the paper.



II. BACKGROUND
A. PDS based Reinforcement Learning

We consider a time-slotted wireless IoT sensor and aim at
improving the wireless power management, with the specific
objective to minimize the sensor’s energy consumption, subject
to an operational delay constraint.

To implement RL for the wireless power management prob-
lem, we first formulate it into a constrained MDP. We assume
that time is divided into slots with length AT (seconds) and
that the system’s state in the n-th time slot is denoted by
s" & (b", ", 2™) € S, with packet buffer state b™ (ie.,
the number of packets stored in the buffer), channel fading
state h", and power management state « (radio on/off). At the
beginning of each time slot, the IoT sensor observes its state s™
and takes an action a" = (BEP™, y™, 2™), where BEP" is its
target bit-error probability, ¢y is its power management action
(turn on/off the radio), and z" is its packet throughput (number
of transmitted packets). We aim to determine the action in each
state to minimize the cost ¢(s™,a™) = p(s", a™) + Ag(s™, a™)
over time, where p(s, a) is the power cost, g(<;7 a) is the delay
cost, and A is a Lagrange multiplier to set the delay constraint.

The sequence of states s™ : {n = 0,1, ...} can be modeled
as a controlled Markov chain with transition probabilities
equal to the product of individual state transitions, as in
Equation (1), where o’ is defined by Equation (2). Here f
is the packet goodput (correctly received packets), [ is the
number of packet arrivals, and N, is the buffer’s capacity.

P(s'|s,a) =
b =min(b— f+1,Ny)

PP(V|[b, h],a) P (W' |h) P* (2 |z, a) (1)

(@)

From Equation (2), it can be concluded that P® depends
on the goodput distribution P/. Assuming independent packet
losses, P/(f|BEP,z) binomial(z,1 — PLR), where
PLR =1-(1— BEP)® is the packet loss rate for a packet
with size of L (bits). L

A post-decision state (PDS), represented by 5 £ (b, h,Z) €
S, denotes a state of the system after all known/controllable
dynamics have occurred but before the unknown dynamics
occur [14,15,27]. In our problem,

.n+1).

= ([bn_fn}vhnvl (3)

We can formulate our problem in terms of PDSs instead of
conventional states by decomposing the transition s — s’ into
two parts: a known transition s — s with cost ¢x(s,a) and
transition probability Pj(s]s,a), and an unknown transition
5 — &' with cost ¢,(5) and transition probability P,(s'|3).
We can define two optimal value functions V*(s) and V*(5s)
over the conventional states and PDSs, respectively. The two
value functions are related by the following equations:

V(3 = cu(®) YD s g PulS V(S
V*(s) 7(@"(?){ s,a +ZS < Pu(8ls,a) W (gj}. 5)

’g’ﬂ

“
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Knowing V*(3), the optimal policy 7* can be found by taking
the action in each state that minimizes the right-hand side of
Equation (5). To solve the problem online, we use the PDS
learning algorithm [15, 18, 27], which is a stochastic iterative
algorithm. PDS learning takes the greedy action in each time
slot and updates the value of the present state 5" by using
a weighted average of (i) the current PDS value function
estimate V' (s™), and (ii) a new sample estimate of the PDS
value function based on the next state’s estimated value as:

VHHLE") = (1= V(") +a" [ (3 + V" (5™ )] (6)

Since the unknown system dynamics are not dependent
on the action taken, using PDSs obviates the need for ac-
tion exploration. Algorithm 1 presents the pseudo-code for
the PDS learning algorithm using an adaptive learning rate
a™ € [0,1], where action evaluation requires computing

{er(s™, a)+ Y - P*(s|s™, a)V"(3)} in Equations (7) and (8).

Algorithm 1 Post-Decision State Learning

I: initialize V0(3) =0 for all 5 € S
2: for time slot n =0,1,2,... do
3: Take the greedy action:

{ck(s ,a) + ZPk(§|5"

4: Observe PDS 3", next state s"T1, unknown cost ch
5: Evaluate the state value function at time n + 1:

Vn(sn-l-l) — gél}z {Ck n+1 + ZPk s n+1 a n(~)} (8)

a" = arg min

acA

a)ff"(%)} )

6: Calculate V"1(5") using Equation (6)
7: end for

B. Conventional Q-Learning

For the algorithmic comparison, we also briefly introduce Q-
learning. The key step in Q-learning is performing an update at
the end of every time slot according to the current experience
tuple: (s",a", c", s"*1). The update can be expressed as:

QnJrl (8”, an) P

(1 _an)Qn(sn )

a™) + a"[c" +~ min Q"(s" 1, d)],
a’eA
where s"*! is distributed based on the transition probability
distribution P(s"*!|s", a™); a’ is the greedy action in time slot
n+1; o™ represents the time-varying learning rate parameter;
and Q°(s, a) can be initialized arbitrarily for all (s, a) € Sx.A.
In the literature, many researchers have explored various Q-
learning based RL hardware accelerator structures for better
performance and lower power consumption [28-31]. How-
ever, these hardware optimization techniques are not, at least
directly, applicable to our PDS learning algorithm, as PDS
based methods are uniquely optimized for emerging wireless
IoT systems to reduce the convergence time. Therefore, it is



important to exploit dedicated hardware accelerators for the
PDS based learning algorithms.

III. PROPOSED HARDWARE ARCHITECTURE

Here, we present an optimized hardware accelerator for the
action evaluation step to improve the efficiency and hence
facilitate real-world deployment of next-generation RL tech-
niques. The proposed hardware accelerator is mainly com-
posed by two components: Known Cost (KC) block and State
Value Expectation (SVE) block, as shown in Fig. 1. Specif-
ically, we optimize the lookup table (green), tree structure
(blue), and data selection (orange), according to the unique
characteristics of the PDS based RL algorithm to speedup the
computation and reduce the power consumption. We present
the detailed design and optimization approaches below.

Optimization Type:

[0 Lookup Table
State Value M Tree Structure
Expectation [ Selection Structure
[J Normal
Implementation
Expectation

V(s), S, A

z Choose
Lookup

Data
Selection | -

Action
Evaluation
under §

h-Address

] 1/h
H Lookup
]

Fig. 1: Top-level architecture of the proposed hardware ac-
celerator for action evaluation. It comprises two main blocks:
Known Cost and State Value Expectation.

A. Lookup Table Reduction and State Encoding for RL

To avoid an infinite number of channel states in the proposed
module, all analog states are quantized to discrete values. In or-
der to further reduce the computational complexity, we design
a lookup table reduction structure with state encoding. This
reduces execution time and lowers the power consumption of
the learning system, which are critical aspects for real-time
wireless IoT systems [32].

At the beginning stages of our module, most computations
are complex and computationally-intensive with heavy multi-
plications and power operations (e.g., (f) when computing
the Binomial goodput distribution, PLR = 1 — PRR =
1— (1 — BEP)L, and Py, defined by Equation (10), where
B is proportional to z, and erf() denotes the error function).
However, the combinations of the inputs are limited by the
size of state and action spaces. When the number of states is
small, a lookup table is proved to be a promising choice for
the implementation [33-35]. Therefore, we pre-process most
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computations at the input stage, which are then implemented
as lookup tables, as shown in Fig. 1.

VING(27 — D)erf (1 — £:BEP)
3xh ’

However, in the PDS learning algorithm, a large number of
state values are not used after quantization (e.g. There are
only 8 valid channel states, but 232 possible inputs for a 32-
bit system), which introduces redundant input space for the
lookup table and negatively impacts the performance. To this
end, the lookup tables for BEP and h are further optimized
by state encoding. Discrete values are encoded into successive
binary addresses to compress the input bit-width and unused
cases, as shown in Fig. 2, which achieved a reduction of 61x
for unused case numbers. As a result, the circuit cost, speed,
and power consumption are all improved by using a smaller
input size. In our implementation, the bit-widths of both BE P
and h are reduced from 32-bit to 3-bit for the 32-bit system.
Furthermore, the encoded case input makes the circuit more re-
programmable friendly across different applications [36,37].
The inputs can be encoded similarly based upon the resolution
used for the channel state and BEP (or any other continuous
parameter), while the lookup tables can be easily updated for
a different environment.

[ case Joo1010 | 011001 | 100110
| Value | Out0 | Outl | Out2 |

Ptz

(10)

95% Unused

Cases
State Encoding
|Encoded| 01 | 10 ‘ Only 25%
| Value | Out0 | Outl I Out2 Unused

Fig. 2: An example of case encoding, where the input bit-width
is compressed from 6 to 2, and unused cases are decreased
over 61 times.

B. State Value Expectation (SVE)

Tree Structure: When calculating the SVE, all probabilities
and state values for possible PDSs have to be collected and
calculated (7), which makes the SVE block in general much
slower than the KC block. Inspired by the parallel designs
in recent works of efficient hardware implementation [38—
40], we propose a parallelized structure for the SVE block
with two tree structures: power tree (Fig. 3(a)) and multi-sum
tree (Fig. 3(b)). The power tree takes a probability p as input
and outputs all of the p°-p'® simultaneously (all the outputs
will be read out at the same time when the circuit finishes
switching), while the multi-sum tree collects all PLR? (packet
loss rate), PRR' (packet receive rate), V(s), and chooses
values (%) based on the current state and action (77 values
in total), then computes E(V(5)) with only 3 multipliers and
5 adders. Besides accelerating the computation, the parallel
design can also reduce power consumption since it decreases
the critical path and eliminates the need for extra registers for
data buffering or redundant computation.



(a) Power Tree

(b) Multi-Sum Tree

Fig. 3: The proposed parallel structures for (a) power tree and
(b) multi-sum tree.

Data Selection: The data selection module in Fig. 1 is
responsible for preparing the corresponding (z choose ¢) values
and V(s) for the multi-sum tree. For the considered learning
model, there are 26 buffer states (b), 8 channel fading states
(h), and 2 power management states (z), which leads to 416
different joint states in total. For each action, no more than
22 of those will be selected as the candidates for the PDS. In
other words, the data selection module needs to select at most
22 V(3) from all 416 V(). Thus, the complexity of this block
is largely dependent on the addressing and indexing schemes
for the data. To this end, ordered storage array is employed
to reduce the circuit complexity, as shown in Fig. 4(a). It can
be observed from Equation (3) that all possible PDSs b are
continuous from the current index b to index (b — z). By
leveraging this property, we reorder the storage array in a
way that all candidates of the PDSs for each possible case are
stored consecutively. Consequently, only the position V' (s) for
the current index b is required to locate, while the subsequent
21 V(s) will be automatically addressed. Furthermore, since
the channel state & does not vary across different PDSs (h = h
as in Equation (3)), all V'(s) with the same h are indexed as
a group. We also pre-select all V' (s) with the current i before
reading the current action. All together, the V(3) selection
is optimized from 416-to-22 selection to 52-to-1 selection by
using the proposed ordered storage array.

Another issue for this module is that the length of § changes
based on the value of action z. We propose to adopt an
auto-disable technique in the data selection module as shown
in Fig. 4(b), which disables branches of the multi-sum tree
when the number of possible buffer states for PDS (b) is not
at the maximum, i.e. z < Zpq.. Under this circumstance,
the corresponding V' (S) and ¢; for the unused branches are
assigned as zeroes, which will automatically stop multipliers
and adders of the corresponding branches from switching.

C. Known Cost (KC)

The computation of transmission power P;, dominates the
complexity of the KC block, which includes multiplications,
power options, and the inverse error function, as expressed by
Equation (10). To speed up the computation, we decompose
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Fig. 4: Hardware optimizations for data selection module.

P, = g(z, BEP) x 1/h, where g(z, BEP) can be given by:

8 —1,, _ BxBEP
g(z,BEP):ﬂNO(Q l)ergf e il S

Consequently, we construct a lookup table for g(z, BEP) of
size size(z)*size( BEP) = 10x 5, which helps avoid integral
and power computations.

IV. EXPERIMENTAL RESULTS
A. Learning Algorithm Comparison

Fig. 5 compares the simulated performance between our
PDS learning implementation (Algorithm 1) and Q-learning.
All results are generated by a MATLAB based simulator over
3,000,000 time slots. It can be seem from Fig. 5 that the PDS
learning algorithm outperforms Q-learning in terms of both
cumulative average delay and power consumption.

Besides power and delay, we further analyse the conver-
gence speed of our algorithm in Fig. 6. The red curve (circle
markers) denotes the cumulative average cost incurred up
to time slot n by Q-learning (where the cost is defined in
Section II-A as a weighted sum of the power cost and delay
cost) and the blue curve (+ markers) denotes the cumulative
average cost for PDS learning. While PDS learning approxi-
mately converges in 250,000 time slots, Q-learning has still not
converged after 3,000,000 time slots, so it is at least 12 times
slower than PDS learning. This shows that PDS learning is a
better candidate for real-time IoT systems, where fast learning
is needed to adapt to the real environment.

B. Hardware Implementation

We implemented and evaluated the following four ap-
proaches: Our proposed efficient action-evaluation architec-
ture, a baseline straightforward hardware design without em-
ploying the proposed optimization, a software implementation
with C++, and a Q-learning circuit using Verilog HDL. For
a fair comparison, all common intrinsic variables and state
values V(s) use a bit-width of 32. They were all mapped to
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a 32nm technology node using a Synopsys Design Compiler.
The software is coded and tested with C++ on macOS, with
2.6 GHz 6-core Intel 17 processor and 16GB RAM. No multi-
threaded optimization is added to the code, which means the
software runs with only a single core under the limitation of
macOS. As wireless IoT systems usually have less computing
resources, we consider this setting as a guaranteed upper
bound for the software implementation’s speed.

We evaluate and compare the execution delays and aver-
age runtime for our two hardware designs and the software
implementation of PDS learning. Furthermore, the power and
area consumption of the optimized hardware accelerator and
the baseline design are compared to illustrate the effectiveness
of the proposed hardware optimization techniques. These
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results and comparisons are shown in Table I, where the
execution times and power/area consumptions are also shown
normalized to the optimized hardware design, for the baseline
hardware design and software implementation. According to
the experimental results, our optimized hardware accelerator is
3x faster than the baseline circuit, while achieving a 49 times
acceleration over the software implementation. The power
consumption and cells number are also decreased by 85% and
86% respectively, compared to the baseline hardware design.

TABLE I: Optimized vs. Baseline Architectures (32-Bit)

Optimized

Baseline
Hardware Software
(PDS) Hardware (PDS)
Delay (ns) 86.97 258.31 (3%) 4240 (49x)
Power (mW) 6.17 41.21 (7x) -
# of Cells 93448 666543 (7x) -

The comparison between our proposed architecture for PDS
learning and Q learning is presented in Table II. The imple-
mentation of Q-learning is based on Equation (9). According
to the simulation results in Section IV-A, Q-learning converges
over an order of magnitude slower than PDS based learning.
Therefore, since the hardware will be activated once for each
time slot, we normalize the hardware cost with respect to the
convergence time for a fair comparison. These results show
that the proposed PDS based learning accelerator achieves
reductions of 83% and 59% in delay and power consump-
tion, respectively, compared to Q-learning. Therefore, we can
conclude that the proposed PDS learning architecture is faster
and consumes less energy than Q-learning.

TABLE II: PDS vs. Q-learning on Hardware (32-Bit)

Optimized

Normalized
Hardware Q-learnin
(PDS) g
Delay (ns) 86.97 521.9 (6%)
Power (mW) 6.17 15 (2.4x)

In addition, to achieve better performance according to the
data range of a certain application scenario, designers vary
the bit-width of the implementation [41,42]. Thus, we also
studied the hardware cost of our PDS learning accelerator for
different bit-widths (i.e., 16, 32, and 64) as shown in Fig. 7. We
normalize all the results to those for 16-bit. It can be observed
that the hardware complexity increases approximately linearly
with the increase of the bit-width.

V. CONCLUSION

We presented an efficient hardware accelerator for action
evaluation of PDS based real-time RL for next generation
wireless communication systems. By algorithmic and hard-
ware co-optimization of the PDS learning implementation, we
achieved a significant speedup for the action evaluation process
of PDS, while simultaneously reducing its power consumption.
Future work will be directed towards generalization of the
proposed architecture to various wireless and IoT settings.
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