

4833

represented in the averaged vector. The represen-

tations are computed recursively, and when a tree

that looks locally not important is given a weak

score, as shown in Figure 1, it will be washed out.

This weakness in local decision making is similar

to the label bias problem (Lafferty et al., 2001) in

sequence prediction.

In this paper, we extend DIORA so that it can

easily recover from local errors (§3). We replace

the weight assignment used for vector averaging

with a sparse operator equivalent to a one-hot

argmax function, ensuring that each representa-

tion accurately encodes a single tree (hence, we

call our method S-DIORA). In S-DIORA, it is not

possible for a subtree to be washed out, although it

is still possible to make an error by ignoring a po-

tentially important subtree. Fortunately, this can

be alleviated by adding a beam to each cell of the

chart, allowing multiple subtrees over any span to

be considered. The key benefit of our modifica-

tion is that error recovery is easily possible, where

previously the vector serves as a bottleneck that

makes error recovery difficult or impossible.

We initialize an instance of S-DIORA using

the previously released DIORA model, then fine-

tune before evaluating on the target domain, con-

stituency parse trees from the English WSJ Tree-

bank (PTB, Marcus et al. 1993). In one experi-

mental setting, we assume no access to the evalua-

tion domain and use a subset of DIORA’s training

data, a concatenation of the SNLI (Bowman et al.,

2015) and Multi-NLI (Williams et al., 2018b) cor-

pora (hereinafter NLI). In the other setting, we

assume access to raw text in the target domain,

parse tree labels excluded. In both cases, we see

S-DIORA improves on the original DIORA per-

formance by at least 4 F1, and training on the PTB

raw text leads to more than 3 F1 over the previous

state of the art in constituency parsing.

In summary, the main contributions in this paper

are: (a) An extension to DIORA called S-DIORA

that allows for easy recovery from local errors;

(b) New results in unsupervised constituency pars-

ing, improving over the previous state of the art

by 2.2− 6% F1 depending on the data used for

fine-tuning; and (c) Thorough error analysis of the

parse tree output revealing useful insights of why

S-DIORA improves over baselines, for example,

capturing marginally less prepositional phrases in

the parse tree output yet making half the PP-

attachment errors.

2 DIORA (Drozdov et al., 2019a)

Drozdov et al. (2019a) introduced DIORA, an un-

supervised model that learns to ‘reconstruct the in-

put by discovering and exploiting syntactic reg-

ularities of the text.’ It operates much like a

masked language model or denoising autoencoder

— first it encodes all-but-one of the words from

the input sentence as a vector representation, then

it decodes from this vector the missing word.

DIORA encodes the sentence in the shape of a

constituency tree, yet the model is trained using

raw text only and without access to tree anno-

tations. The ‘ground truth’ tree is unknown, so

all valid trees are considered simultaneously us-

ing an efficient dynamic program with soft vector

weighting.

Here is a sketch for how this approach works.

Consider the hypothetical sentence with tokens:

x0x1x2x3. Although the ‘ground truth’ tree is un-

known, one valid tree is τ = ((x0(x1x2))x3). For

each span of token xi:j DIORA computes an in-

side vector h
in
i,j , summarizing the information in

that span. Additionally, DIORA computes an out-

side vector hout
i,j representing the tokens not in xi:j .

Assume that x2 is the target token to predict, then

for the parse tree τ the token x1 is in the inside

context for x2 because x1 is the immediate sibling

of x2 in the subtree capturing both tokens. The to-

kens x0 and x3 are not captured in this subtree and

are considered to be in the outside context of x2.

DIORA represents the inside context as h
in
1,1 and

the outside context as hout
1,2 to compute hout

2,2,k. The

k in the subscript indicates that this is only one

of many possible valid trees for the hypothetical

sentence. DIORA assigns a weight to each valid

tree s2,2,k where higher weight values indicate the

tree is more helpful for predicting the target to-

ken. The vector used to predict the target token

is a weighted summation of all the tree represen-

tations h
out
2,2 =

P

k q2,2,kh
out
2,2,k where qi,j,k is a

weight DIORA assigns to each subtree.

The rest of this section covers in more techni-

cal detail how to recursively compute the inside

and outside vectors and weights for DIORA. The

recursive computation is done efficiently using a

chart data structure and dynamic program simi-

lar to the inside-outside algorithm (Baker, 1979).

Part of this computation involves a softly weighted

summation, which is an efficient way to encode all

valid trees, yet has some downsides (§2.3).

4834

n − 1k + 1kj + 1jii − 10ki jk + 1

Inside Outside

Figure 2: In the inside pass (left) DIORA composes

two neighboring vectors. In the outside pass (right)

DIORA computes the values for a target span (i, j) re-

cursively from its sibling inside span (j+1, k) and out-

side spans (0, i − 1) and (k + 1, n − 1). The sibling

span on the outside pass can appear to the left of the

target span, in which case the indexing is adjusted.

2.1 Scoring and Composition

To fill the chart, DIORA learns to compose vec-

tors using a multi-layer neural network (referred

to as MLP), and to score vectors using a bi-linear

function. In this section, we describe the chart-

filling procedure from Drozdov et al. (2019a) us-

ing the indexing scheme as demonstrated by Fig-

ure 2. The exact equations used to fill the inside

chart are:

h
in
i,j,k = MLPin(hin

i,k;h
in
k+1,j)

sini,j,k = (hin
i,k)

>Wh
in
k+1,j + sini,k + sink+1,j

In the inside chart, when i = j the scalars sin

equal 0, the matrix W is learned, and the vectors

h
in are equal to the embedding of the token for the

i-th position in the sentence x.

The equations for filling the outside chart are:

h
out
i,j,k =

(

MLPout(hin
j+1,k;h

out
i,k), if k > j

MLPout(hin
k,i�1;h

out
k,j), else

souti,j,k =

8

>

>

>

>

<

>

>

>

>

:

(hin
j+1,k)

>Uh
out
i,k + sinj+1,k, if k > j

+ souti,k

(hin
k,i�1)

>Uh
out
k,j + sink,i�1, else

+ soutk,j

In the outside chart, when i = 0 and j = |S|−1
the scalars sout equal 0, the matrix U is learned,

and the vector hout is learned independent of the

sentence (analogous to the initial hidden state in a

recurrent neural network).

For a given span (i, j) there may be multiple

valid split points or parent-sibling contexts. If

each was considered separately, this would lead

to a combinatorial explosion of paths to explore.

Instead, DIORA averages the scalars and vectors

that share the same (i, j) values. This is identical

for the outside or inside pass, taking the following

form:

qi,j,k =
si,j,k

P

k0 si,j,k0

hi,j =
X

k

qi,j,khi,j,k

si,j =
X

k

qi,j,ksi,j,k

2.2 Learning

DIORA is trained end to end via word prediction.

The bottom-most vectors in the outside chart rep-

resent the entire sentence x except for a single to-

ken. By predicting this missing token xi from the

outside vector h
out
i,i , we may update the model’s

parameters without any parse tree labels.1 The

training objective for a single sentence is:

Jrec = −
1

|x|

X

i2|x|

logP (xi|{x}�i) (1)

2.3 Parse Tree Inference

Although DIORA is not trained with any parse

tree annotations, its chart filling procedure can

be used to extract binary unlabeled parse trees.

First, fill the inside chart following §2.1. After-

wards, use the CKY algorithm to find ŷ the max-

imal scoring tree where the score for a tree y is

S(y) =
P

(i,j,k)2y s
in
i,j,k. This approach demon-

strated impressive results for unsupervised con-

stituency parsing (Drozdov et al., 2019a).

To understand better the effectiveness decoding

parse trees with DIORA, we train DIORA for su-

pervised parsing using a binarized version of the

‘ground truth’ parse trees from the English Penn

Treebank (Marcus et al., 1993). The training pro-

cedure is done by optimizing the structured SVM

loss:

J
sup
tree = max(0, S(ŷ)− S(y) + 1),

where S(ŷ) is the score of the maximal tree and

S(y) is the score of the ‘ground truth’.

1Since the outside vector is used for word prediction,
tricks associated with the inside-outside algorithm using only
backpropagation of the inside-pass (Eisner, 2016) are not ob-
viously applicable, if at all.

4835

We use the off-the-shelf parser from Kitaev and

Klein (2018) as a baseline and the results are

shown in Table 1. Although DIORA is strong in

unsupervised parsing, the supervised parsing re-

sults are not as competitive with the baseline as

we had expected, and lead us to consider deeply

why this might be the case.

We posit the low performance in supervised

parsing is due to DIORA’s inability to effectively

recover from local errors. Predicting trees in

DIORA is exact — you are guaranteed to find

the highest scoring tree given the scalar values as-

sociated with each span, but there is a weakness

when assigning the scalar values. Specifically,

the scalar values are assigned using local infor-

mation, and may assign a low weight to a subtree

which, when given more information, deserves to

be given higher weight. Said plainly, this might

occur when the sentence has structural ambigu-

ity that requires context to resolve. For instance,

the clause ‘We saw the dog with my phone,’ has a

more likely parse tree depending on the context.2,3

In the next section we present our extension to

DIORA that addresses this downside.

n ≤ 20 n ≤ 40

Model Binary N-ary Binary N-ary

Kitaev and Klein (2018) 87.5 84.0 85.9 83.6

DIORA 86.0 73.9 81.7 69.1

S-DIORA 89.9 77.5 84.8 73.2

Table 1: Supervised parsing results on the validation set

of PTB using parsing F1 with binarized trees. DIORA

does not do well because of its inherent weakness, and

the best setting from S-DIORA (Table 2) is superior.

3 S-DIORA: Single Tree Encoding

We improve DIORA by making it more robust

to local errors. DIORA is sensitive to errors be-

cause its vector averaging approach makes it diffi-

cult or impossible to recover when important sub-

trees have been washed out. The first modification

we present prevents trees from being washed out

by replacing the weights q with a sparse opera-

tor q0 equivalent to a one-hot argmax. This effec-

tively replaces vector averaging with selection of

the highest scoring subtree for each span.

2In this particular example, we assume the rest of the sen-
tence serves as sufficient context rather than unavailable in-
formation (i.e. world knowledge).

3Two valid parses for this clause are: ‘(We (saw the dog)
(with my phone))’ and ‘(We (saw (the dog (with my phone)))).’

q0i,j,k = argmax
k0

[si,j,k0][k]

hi,j =
X

k

q0i,j,khi,j,k

si,j =
X

k

q0i,j,ksi,j,k

This change alone is not sufficient. If using only

a single highest-scoring tree, S-DIORA would re-

main as vulnerable, or more so, to local errors

that are inevitable when using the context-free ap-

proach of the inside-outside algorithm. Instead,

at each cell in the chart we record up to β val-

ues corresponding to the highest scoring subtrees.

We refer to β as beam-size, and our experiments

demonstrate that using a beam-size of 2 already

gives a great improvement in results, although any

size of β can be used at test time regardless what

was used during training.

In the popular K-means algorithm, each point

minimizes its distance to only one centroid. Us-

ing this as motivation, we train S-DIORA s.t. each

sentence is only drawn towards one tree. We im-

plement this change using a variant of the struc-

tured SVM loss:

J
unsup
tree (x) = min(0, S(y1)− S(y0) + 1),

where S(yi) is the score for the i-th tree repre-

sented on the beam and S(y) =
P

(i,j,k)2y s
in
i,j,k.

S-DIORA trains with this loss in addition to the re-

construction loss (the original DIORA objective):

JS-DIORA = Jrec + J
unsup
tree

A natural question to ask is whether S-DIORA

is difficult to train given argmax is relatively

non-smooth. To help train S-DIORA, we em-

ployed different tricks. During our unsupervised

parsing experiments, we used gumbel-top-k (Kool

et al., 2019) for q0 to ensure the model would suf-

ficiently explore multiple parse trees. We also

added regularization via mixout (Lee et al., 2019a)

or L2 regularization for the initial parameters so

that the model would not diverge drastically from

its initialization and suffer catastrophic forgetting.

Empirically, we found that none of these addi-

tions were necessary, and that fine-tuning with the

JS-DIORA objective was sufficient. One possible

explanation for why this is so is that training with

β > 1 already lets S-DIORA explore multiple

subtrees for each span during training.

4836

4 Experiments and Results

The model and approach in this paper are moti-

vated mainly by wash out in DIORA with respect

to its vector averaging. In this section we experi-

mentally test the following hypotheses:

• There are often multiple valid parse trees for

a clause (in other words, phrases can have

structural ambiguity), therefore we expect

that S-DIORA with a beam should be more

effective at supervised parsing than DIORA.

• Word prediction benefits from parsing sen-

tences with their most likely constituency

tree, therefore S-DIORA, which is trained via

word prediction, should be more effective at

unsupervised parsing than DIORA because it

can recover from local errors.

• Parsers are sensitive to their training domain.

Although we expect training with S-DIORA

to be helpful for unsupervised parsing, we ex-

pect an even bigger benefit when training on

the same domain as used for evaluation.

4.1 Preliminaries: Constituency Parsing

We measure the performance of our changes via

unsupervised and supervised parsing on the test set

of the WSJ Penn Treebank (Marcus et al., 1993).4

All models (S-DIORA and baselines) output unla-

beled binary trees5 and are evaluated via sentence

level F1 (S-F1).

• True Positives (TP) are the spans in both parse trees
(inferred and ground truth).

• False Positives (FP) are spans predicted but not in the
ground truth.

• False Negatives (FN) are spans in the ground truth but
not the predicted tree.

• Sentence F1 =
1

|X|

P
x2X

2⇥TP(x)
2⇥TP(x)+FP(x)+FN(x)

Following previous work, we consider only

non-trivial spans (covering 2 or more words, and

ignoring spans covering the entire sentence). For

pre-processing we remove punctuation.

4We evaluate all models using the eval script from Kim
et al. (2019). We noticed a small bug in the eval script where
some spans covering the entire sentence were not being ig-
nored. This lead to a very small change in the numbers, but
for this reason, our numbers for baselines may appear slightly
different from previous work.

5Although models output binary trees, the ground truth
has n-ary trees. This establishes an upper bound on the high-
est possible F1 since each model has an unavoidable penalty
to precision.

4.2 Supervised Parsing

For supervised constituency parsing we use the

off-the-shelf parser from Kitaev and Klein (2018)

as a baseline to compare against DIORA and S-

DIORA. For training we use the parse trees from

training split of PTB and evaluate using the valida-

tion data. We binarize the ground truth using the

Stanford parser (Manning et al., 2014) and train

for 10 epochs. Results against the binary trees

and original n-ary (ingoring labels in both cases) is

shown in Table 1. Both DIORA and S-DIORA are

trained from random initialization using the struc-

tured SVM loss from Kitaev and Klein (2018).

We see that DIORA is not competitive with the

Kitaev and Klein (2018) parser, and attribute this

to wash out and its inability to recover from errors.

For S-DIORA we train and evaluate with β ∈

{1, 2, 3, 4} and results are shown in Table 2. We

see, unsurprisingly, that regardless of the beam-

size at training, when β = 1 at test time the per-

formance is worse than DIORA. This is because

even though S-DIORA does not suffer from wash

out, when the beam is too small it can not recover

from errors. As the beam-size increases, so does

performance, surpassing DIORA by 3 F1 in the

best case (β = 3 for training; β = 4 at test time).

n ≤ 20 n ≤ 40

β 1 2 3 4 1 2 3 4

1 84.6 87.8 88 88.2 77.7 81.5 82.3 82.6

2 85.1 88.8 89.4 89.7 78.6 83 83.9 84.4

3 85.7 88.9 89.7 89.9 79.4 83.3 84.5 84.8

4 84.7 88.7 89.3 89.5 78.4 82.8 83.8 84.2

Table 2: Supervised parsing results on the validation set

of PTB using binarized trees for S-DIORA. The grid

represents parsing F1 with different values of β at train

time (rows) and test time (columns). The model is not

effective when β at test time is 1 because it can not

recover from errors. Increasing β for both training and

test test time is helpful, with the best performance for

βtrain = 3 and βtest = 4. Beam search benefits short

sentences (length n ≤ 20) and long ones (n ≤ 40).

4.3 Unsupervised Parsing

We explored two settings in unsupervised parsing.

In the first, the zero-shot case, we assume no ac-

cess to the evaluation domain. Instead, we sample

a subset from the NLI data used to train DIORA

and use this to fine-tune S-DIORA. The subset in-

cludes the same number of sentences as the train-

4837

ing data from PTB and the same sentence length

distribution. The results are shown in Table 3 with

the model name S-DIORANLI . This model does

substantially better than the original DIORA (and

improvement of more than 5 F1) and is even com-

petitive with the state-of-the-art model C-PCFG

(Kim et al., 2019).

In the other experimental setting we assume

access to raw text in the target domain is avail-

able but annotations are not. We fine-tune us-

ing the training data from PTB (about 40k sen-

tences) and results are shown in Table 3 with the

model name S-DIORAPTB . This improves upon

S-DIORAPTB by a full 2 F1 points and is also

substantially better than the previous state of the

art by 3.5 F1.

S-DIORA sees a large improvement in WSJ-10.

These sentences are length 10 or less and previ-

ously DIORA was on-par with ON-LSTM (Shen

et al., 2019). When we bucket F1 by sentence

length, we see that S-DIORA improves not only

short sentences but on all sentence lengths.

To determine whether fine-tuning is necessary,

we initialize S-DIORA from DIORA and evaluate

it immediately. In this setting DIORANone per-

forms 5 F1 less than DIORA, confirming the im-

portance of fine-tuning.

To further determine if the extra training data

was the main factor in the improved performance,

we train DIORA with the an equivalent amount of

data and see no improvement. This is not surpris-

ing given that the pre-trained DIORA was trained

initially until convergence on relatively more data.

WSJ

Model F1max F1µ F1n10

ON-LSTM (Shen et al., 2019) 50.21 48.1† 61.02

C-PCFG (Kim et al., 2019) 60.32 55.2† 68.82

DIORA (Drozdov et al., 2019a) 56.75 - 60.55

S-DIORANone (Ours) 51.56 - 59.36

S-DIORANLI (Ours) 61.68 54.8 70.41

S-DIORAPTB (Ours) 63.96 57.6 71.80

Table 3: Unsupervised parsing results. We evaluate

each model on the full PTB test set using the evalua-

tion script provided by Kim et al. (2019). The average

across random seeds is F1µ
6and the best model’s F1 is

reported as F1max. We take the best model and also

evaluate it on sentences of length of 10 or less and re-

port the value in F1n≤10. Values with a † are copied

from Kim et al. (2019). We only had access to a single

DIORA model so no F1µ is reported.

4.4 Training and Implementation Details

When applicable, we use the MLP with ‘softmax

loss’ model checkpoint provided by Drozdov et al.

(2019a). S-DIORA makes an impactful change to

DIORA, but its parameters are exactly the same,

making it easy to load a pretrained DIORA model

for S-DIORA. Our implementation of S-DIORA,

checkpoints of best models, training scripts, and

all parsing output are available online.7 Additional

training details are covered in the Appendix A.1.

5 Discussion and Analysis

In this section we examine the parse tree output of

the models in our experimental setup with more

fine-grained detail than parsing F1. Given the

prevalence of pre-trained language models in NLP

tasks, we also include in our analysis recent re-

sults using transformers for unsupervised parsing.

In addition, we present a new baseline demonstrat-

ing that pretrained language models are better at

unsupervised parsing than previously known.

5.1 Linguistic Error Analysis

Parsing F1 is useful to quickly compare perfor-

mance between parsers, and previous work in un-

supervised parsing often also report segment recall

to give a sense of which phrases are most often

captured in the output. To provide an even more

thorough treatment of linguistic errors we add la-

bels to the parse trees using the parser from Ki-

taev and Klein (2018) and then run the Berkeley

parser analyzer (Kummerfeld et al., 2012). This

latter tool classifies mistakes for each predicted

tree by the type of phrases (or patterns like coordi-

nation) involved in the error, allowing analysis of

the types of errors being made by a model. In Ta-

ble 4 we show the parsing F1, segment recall, and

error counts as determined by the analyzer.

By segment recall, we see that C-PCFG outper-

forms DIORA in segment recall for NP and PP,

explaining its high S-F1. The linguistic analysis

tells a slightly different story — C-PCFG makes

less errors associated with NP internal structure

and clause attachment, but substantially more er-

rors associated with PP attachment.

7https://github.com/iesl/s-diora
7S-DIORA F1µ is reported across 5 random seeds with

the same hyperparameters. S-DIORANone is evaluated after
initialization, so F1µ = F1max. Since we use early stopping
it is not possible for the best model to be worse than initializa-
tion, hence S-DIORA performance is strictly ≥ performance
of S-DIORANone.

https://github.com/iesl/s-diora

4838

Model β S-F1 SBAR NP VP PP ADJP ADVP Mod. NP-I NP-A PP-A VP-A Clause Coord.

ELMo - 42.3 40.3% 50.7% 43.7% 45.9% 57.0% 74.0% 826 1416 211 1943 21 1239 124

XLNetλ=0 - 40.8 35.3% 57.1% 28.1% 37.4% 53.0% 58.0% 974 1348 221 1935 14 1423 103

XLNetλ=1.5 - 48.0 60.9% 52.8% 51.7% 56.2% 51.4% 68.3% 673 1347 182 1748 50 1375 117

DIORA - 56.9 68.1% 74.2% 61.4% 55.1% 54.7% 74.4% 634 784 237 1356 47 928 165

C-PCFG - 61.2 62.1% 82.0% 53.5% 69.7% 54.0% 62.6% 655 753 253 1997 42 858 166

S-DIORANone 1 50.6 55.5% 67.4% 48.2% 48.0% 54.7% 64.1% 837 931 281 1629 44 939 174

S-DIORANLI 1 59.7 55.4% 73.5% 72.9% 59.9% 46.0% 53.1% 642 952 293 1076 76 704 180

S-DIORAPTB 1 61.9 56.8% 76.3% 76.4% 65.9% 43.9% 60.7% 537 922 281 930 84 933 187

S-DIORANone 3 51.6 59.4% 67.4% 51.5% 48.4% 57.5% 61.1% 803 945 252 1432 46 910 164

S-DIORANLI 3 61.3 58.0% 75.2% 76.5% 61.2% 50.9% 56.9% 585 920 292 910 76 753 177

S-DIORAPTB 3 63.3 59.2% 78.0% 78.9% 67.1% 49.1% 59.9% 487 917 265 861 91 954 186

Table 4: To better understand the difference between models, displayed above are the segment recall on the WSJ

validation set separated by phrase type (the left columns). For a more informative look at linguistic phenomenon,

we use the Berkeley parser analyzer (Kummerfeld et al., 2012) and display error counts (the right columns). Since

the unsupervised parsing models do not provide labels, we use high performing supervised constituency parser

(Kitaev and Klein, 2018) to label the trees. β is beam size. The frequency of each label in the validation set is

ADJP=428, ADVP=262, NP=10350, PP=3877, SBAR=1091, VP=5407. The error types are: Modifier Attach-

ment (Mod.), NP Internal Structure (NP-I), NP Attachment (NP-A), PP Attachment (PP-A), Clause Attachment

(Clause), and Coordination (Coord).

5.2 Unsupervised Parsing with Large

Pre-trained LMs

We introduce a new unsupervised parsing baseline

using ELMo (Peters et al., 2018), so that we may

compare S-DIORA with large pre-trained LMs, a

class of models that have recently proven very ef-

fective across NLP tasks. To extract a parse tree

from ELMo, we first compute vector similarity be-

tween phrase embeddings in the output, then use

these scalar values as input to the CKY algorithm.8

Compared to ELMo we see that S-DIORA cap-

tures less ADVP phrases yet also makes less NP-I

errors. Although S-DIORA has a strong affinity

for VP phrases ELMo makes less VP-A errors.

For further comparison we include the best

models from Kim et al. (2020). We see that

XLNetλ=0 is the worst of all models in S-F1 and

VP segment recall, but also has the fewest VP-A

errors. This suggests that errors related to seg-

ment recall are likely folded into a different cat-

egory such as PP attachment. The right-skewed

model XLNetλ=1.5 substantially improves over

XLNetλ=0 in SBAR recall and is comparable in

this category with S-DIORA.

Interestingly, although increasing the size of β

8To compute phrase embeddings, we follow the procedure
from (Kitaev and Klein, 2018) which concatenates the for-
ward and backward LSTM vectors at the beginning and end
of each phrase. To compute vector similarity we follow the
procedure in Kobayashi et al. (2019) which uses ELMo sen-
tence embeddings for RST parsing — rather than document
level parsing, our work pertains to sentence level parsing.

in S-DIORA results in a near monotonic improve-

ment in all categories (with some minor excep-

tions), S-DIORA shows a very different error pro-

file when compared to pre-trained LMs, despite

having a better S-F1. For instance, the pre-trained

LMs make fewer coordinations errors, and per-

form better with adverbial phrases (ADVP), than

any version of S-DIORA. In future work, it may be

useful to understand why parser performance does

not increase monotonically. Perhaps this is an ar-

tifact of the current state of unsupervised parsing

research and will change once parsers improve be-

yond some threshold.

5.3 The Benefit of Error Recovery

5.3.1 DIORA versus S-DIORA

It is not sufficient to initialize S-DIORA from

DIORA without fine-tuning. DIORANone does

worse than DIORA in nearly every category. Fur-

thermore, the biggest benefit is gained when using

S-DIORA with β > 1, otherwise error recovery is

not possible (see Figure 3).

DIORA is trained on NLI and it is not surprising

it incurs so many errors in coordination and clause

attachment, which are frequently observed in do-

main mis-match (Kummerfeld et al., 2012). We

used the same checkpoint for finetuning with the

original formulation of DIORA — any improve-

ments would be from exposure to more training

data. When using NLI for finetuning, across 5

4839

The vote was a test of the government 's resolve to proceed with a restructuring program

The vote was a test of the government 's resolve to proceed with a restructuring program

The vote was a test of the government 's resolve to proceed with a restructuring program

The vote was a test of the government 's resolve to proceed with a restructuring program

Figure 3: In this example, a beam-size of 1 is not

sufficient for S-DIORA to improve upon DIORA —

error recovery is only achieved with larger β. The

trees from top to bottom are from PTB, DIORA, then

S-DIORAPTB with β = 1, 3. Although larger β can

lead to more errors in certain situations (specifically

clausal attachment), here they decrease.

random seeds there was no improvement over the

pre-trained model. This is not surprising given

the original models were trained until convergence

with relatively large amounts of training data.

Training on NLI provides S-DIORA with a sub-

stantial advantage in segment recall for VP and PP.

S-DIORA does much worse in capturing the low

frequency ADVP category. This does not incur

much penalty in S-F1 but is reflected in NP-I.9

5.3.2 Effects of Beam Size

Performance improves across the board as we in-

crease beam size β, and S-DIORAPTB improves

over DIORA suggesting that single tree encoding

already provided some benefit (recall that we fine-

tuned DIORA on both NLI and PTB with no im-

provements in unsupervised parsing). Most bene-

fit is achieved using β = 3, although in some cases

it helps to increase it further (see Figure 5). In-

creasing the beam also helps with different classes

of errors. In Figure 4 we see the benefit in sen-

tences with tricky coordination.

5.4 Labeled Parsing

We evaluate the labeled trees from §5.1, and the

best performing S-DIORA model achieves 80.7

9The NP-I category covers missed gold phrases within
large noun phrases. In general, much of NP structure in
PTB is not annotated, and in future work it is worth using
the data provided by Vadas and Curran (2011) to investigate
NP structure, as determined by unsupervised parsers, more
thoroughly.

The exchanges and the Securities and Exchange Commission agree on conditions for halting or staying

The exchanges and the Securities and Exchange Commission agree on conditions for halting or staying

The exchanges and the Securities and Exchange Commission agree on conditions for halting or staying

He was punched and kicked by one player and the other broke his jaw

He was punched and kicked by one player and the other broke his jaw

He was punched and kicked by one player and the other broke his jaw

Figure 4: Two sentences where beam-search helps with

ambiguous coordination structures, correctly nesting

noun phrases (top) and getting better coordination of

verb phrases (bottom). The displayed parse tree out-

put, top to bottom, are from PTB, then S-DIORAPTB

with β = 1, 3 respectively.

labeled parsing F1 on the validation data (72.3

recall, 91.2 precision, and 11.7 complete match)

when evaluated this way. This suggests that unsu-

pervised parsers are closer to supervised parsers

than previously realized, and although deciding

which phrases are in the tree is the harder task

(Klein and Manning, 2002), it may be worth pur-

suing unsupervised labeling10 for more informa-

tive error analysis (Bisk and Hockenmaier, 2015).

6 Related Work

Avoiding errors by using rich feature models.

The nature of unsupervised parsing is that good

performance is a result of strong inductive bias,

explaining why DIORA and S-DIORA are so ef-

fective, yet their context-free approach to chart

parsing is also the cause of local errors. S-DIORA

employees a beam at each cell to recover from

local errors, but this would be less helpful if er-

rors were less frequent. Top performing super-

10Typically unsupervised constituency parsing is purely
evaluated by its structure, although recent work from Droz-
dov et al. (2019b) shows that a simple approach to induce
labels with DIORA can be done by clustering the inside and
outside phrase vectors.

4840

From the outset the tobacco industry has been uncertain as to what strategy to follow

From the outset the tobacco industry has been uncertain as to what strategy to follow

From the outset the tobacco industry has been uncertain as to what strategy to follow

From the outset the tobacco industry has been uncertain as to what strategy to follow

Figure 5: As the beam-size increases, S-DIORA’s out-

put tends to match the ground truth more closely. The

displayed output, top to bottom, are from PTB, then

S-DIORAPTB with β = 1, 3, 5 respectively.

vised parsers do not need error recovery because

they use models with rich features and model each

span score independently (Cross and Huang, 2016;

Stern et al., 2017; Kitaev and Klein, 2018; Mrini

et al., 2019). Previous research has attempted to

achieve the “best of both worlds” by distilling a

strong model for supervised parsing via an unsu-

pervised model’s output (Le and Zuidema, 2015).

These approaches are closely related to fast and

accurate parsing. More accurate models tend to

use richer features that are more expensive to com-

pute, influencing researchers to find efficient tech-

niques to offset the loss in speed (Vieira and Eis-

ner, 2017). In this paper, we use the most simple

approach to learn to parse with the capability to

recover from local errors by maintaining a beam

of size β at each cell in the chart. S-DIORA is of-

ten faster and discovers better trees than DIORA,

but there are other methods for extracting lists

of best or plausible parses (Resnik, 1992; Roark

and Johnson, 1999; Charniak and Johnson, 2005;

Huang and Chiang, 2005; Bouchard-côté et al.,

2009) that might further improve performance.

Sparse structured inference. Various work

has explored sparse alternatives to soft-weighting.

Sparsemax (Martins and Astudillo, 2016) is a de-

terministic sparse alternative to the softmax, and

Gumbel-Softmax (Jang et al., 2017) uses the cat-

egorical reparameterization trick to sample a dis-

crete value during training. Both have attractive

properties but alone would not be sufficient for

overcoming local errors in S-DIORA. Nonethe-

less, these options would be worth exploring for

unsupervised parsing when training with more

data or when the ground truth parse trees are

very different than the ones in S-DIORA’s out-

put frontier after initialization. Other work has

explored methods for differentiable structured in-

ference (Niculae et al., 2018; Mensch and Blon-

del, 2018; Corro and Titov, 2019a,b), which may

also be suitable. It’s worth noting that PCFGs

are not graphical models (Liang et al., 2009), and

marginal inference is often not tractable,11 which

is why these approximate methods may be helpful.

Grammar induction. There is a rich research

history in grammar induction and unsupervised

parsing (Fu and Booth, 1975; Angluin, 1980; Car-

roll and Charniak, 1992). We cover notable work

not already mentioned in Appendix A.2.

7 Conclusion

We introduce S-DIORA, an extension to DIORA

that enables for easy recovery from local errors

and is not subject to wash out from vector aver-

aging. Our experiments in supervised parsing ver-

ify S-DIORA improves upon the representational

power of DIORA. Unsupervised fine-tuning with

S-DIORA leads to new impressive results in un-

supervised constituency parsing, improving upon

the previous state of the art by 2.2− 6% F1, de-

pending on the data used.

Acknowledgements

We are grateful to our colleagues at UMass for

help and advice, and to the UMass NLP reading

group and the anonymous reviewers for feedback

on drafts of this work. This work was supported

in part by the Center for Intelligent Information

Retrieval, in part by the Chan Zuckerberg Initia-

tive, and in part by the National Science Foun-

dation (NSF) grant numbers DMR-1534431, IIS-

1514053, CNS-0958392, and IIS-1955567. Any

opinions, findings and conclusions or recommen-

dations expressed in this material are those of the

authors and do not necessarily reflect those of the

sponsor.

11Although marginal inference is effectively leveraged in
C-PCFG (Kim et al., 2019), the recursive vector composition
in DIORA and S-DIORA makes this intractable. McAllester
et al. (2008) propose case-factor diagrams which can effi-
ciently encode PCFGs and compute the normalizing partition
function, although it is not clear how to leverage them for
self-supervised training with neural networks.

4841

References

Dana Angluin. 1980. Inductive inference of formal
languages from positive data. Information and con-
trol, 45(2):117–135.

J. K. Baker. 1979. Trainable grammars for speech
recognition. In Speech communication papers pre-
sented at th 97th Meeting of the Acoustical Society
of America, pages 547–550.

Yonatan Bisk and Julia Hockenmaier. 2015. Probing
the linguistic strengths and limitations of unsuper-
vised grammar induction. In Association for Com-
putational Linguistic (ACL).

Rens Bod. 2006. An all-subtrees approach to unsu-
pervised parsing. In Association for Computational
Linguistics (ACL).

Alexandre Bouchard-côté, Slav Petrov, and Dan Klein.
2009. Randomized pruning: Efficiently calculat-
ing expectations in large dynamic programs. In Ad-
vances in Neural Information Processing Systems
(NeurIPS).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Empirical Methods in Natural Language Process-
ing (EMNLP).

Glenn Carroll and Eugene Charniak. 1992. Two
experiments on learning probabilistic dependency
grammars from corpora. In AAAI Workshop on
Statistically-Based NLP Techniques.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Association for Computational Lin-
guistics (ACL).

Caio Corro and Ivan Titov. 2019a. Differentiable
perturb-and-parse: Semi-supervised parsing with a
structured variational autoencoder. In International
Conference on Learning Representations (ICLR).

Caio Corro and Ivan Titov. 2019b. Learning latent trees
with stochastic perturbations and differentiable dy-
namic programming. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1–11. Associ-
ation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In North American Association for Com-
putational Linguistics (NAACL).

Andrew Drozdov, Pat Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019a. Unsuper-
vised latent tree induction with deep inside-outside
recursive autoencoders. In North American Associ-
ation for Computational Linguistics (NAACL).

Andrew Drozdov, Patrick Verga, Yi-Pei Chen, Mohit
Iyyer, and Andrew McCallum. 2019b. Unsuper-
vised labeled parsing with deep inside-outside recur-
sive autoencoders. In Empirical Methods in Natural
Language Processing (EMNLP).

Gregory Druck, Gideon Mann, and Andrew McCal-
lum. 2009. Semi-supervised learning of dependency
parsers using generalized expectation criteria. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP. Association for Computational
Linguistics (ACL).

King-Sun Fu and Taylor L Booth. 1975. Grammati-
cal inference: Introduction and survey-part ii. IEEE
Transactions on Systems, Man, and Cybernetics,
(4):409–423.

Kevin Gimpel and Mohit Bansal. 2014. Weakly-
supervised learning with cost-augmented contrastive
estimation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Aria Haghighi and Dan Klein. 2006. Prototype-driven
grammar induction. In Proceedings of the 21st In-
ternational Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Associa-
tion for Computational Linguistics (ACL).

Liang Huang and David Chiang. 2005. Better k-
best parsing. In Proceedings of the Ninth Interna-
tional Workshop on Parsing Technology, Vancou-
ver, British Columbia. Association for Computa-
tional Linguistics (ACL).

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions (ICLR).

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang
goo Lee. 2020. Are pre-trained language models
aware of phrases? simple but strong baselines for
grammar induction. In International Conference on
Learning Representations (ICLR).

http://papers.nips.cc/paper/3710-randomized-pruning-efficiently-calculating-expectations-in-large-dynamic-programs.pdf
http://papers.nips.cc/paper/3710-randomized-pruning-efficiently-calculating-expectations-in-large-dynamic-programs.pdf
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://www.aclweb.org/anthology/W05-1506
https://www.aclweb.org/anthology/W05-1506
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB

4842

Yoon Kim, Chris Dyer, and Alexander M Rush. 2019.
Compound probabilistic context-free grammars for
grammar induction. In Association for Computa-
tional Linguistics (ACL).

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Association for
Computational Linguistic (ACL).

Dan Klein and Christopher D Manning. 2002. Natu-
ral language grammar induction using a constituent-
context model. In Advances in neural information
processing systems (NeurIPS).

Naoki Kobayashi, Tsutomu Hirao, Kengo Naka-
mura, Hidetaka Kamigaito, Manabu Okumura, and
Masaaki Nagata. 2019. Split or merge: Which is
better for unsupervised RST parsing? In EMNLP.

Philipp Koehn and Kevin Knight. 2003. Feature-rich
statistical translation of noun phrases. In proceed-
ings of the 41st Annual Meeting of the association
for Computational Linguistics, pages 311–318.

Wouter Kool, Herke Van Hoof, and Max Welling.
2019. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without
replacement. In International Conference on Ma-
chine Learning (ICML).

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of error
types in parser output. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning.

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried,
Dani Yogatama, Laura Rimell, Chris Dyer, and Phil
Blunsom. 2020. Syntactic structure distillation pre-
training for bidirectional encoders. arXiv preprint
arXiv:2005.13482.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning.

Phong Le and Willem Zuidema. 2015. Unsupervised
dependency parsing: Let’s use supervised parsers.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2019a. Mixout: Effective regularization to finetune
large-scale pretrained language models. In Inter-
national Conference on Learning Representations
(ICLR).

Jay Yoon Lee, Sanket Vaibhav Mehta, Michael R.
Wick, Jean-Baptiste Tristan, and Jaime G. Car-
bonell. 2019b. Gradient-based inference for net-
works with output constraints. In AAAI.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Probabilistic grammars and hierarchical dirichlet
processes. In The Handbook of Applied Bayesian
Analysis.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Association for Computational
Linguistics (ACL): System Demonstrations.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

André F. T. Martins and Ramón Fernández Astudillo.
2016. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In ICML.

David McAllester, Michael Collins, and Fernando
Pereira. 2008. Case-factor diagrams for structured
probabilistic modeling. Journal of Computer and
System Sciences.

Arthur Mensch and Mathieu Blondel. 2018. Differen-
tiable dynamic programming for structured predic-
tion and attention. In International Conference on
Machine Learning (ICML).

Anhad Mohananey, Katharina Kann, and Samuel R.
Bowman. 2020. Self-training for unsupervised pars-
ing with prpn. In IWPT.

Khalil Mrini, Franck Dernoncourt, Trung Bui, Wal-
ter Chang, and Ndapa Nakashole. 2019. Re-
thinking self-attention: An interpretable self-
attentive encoder-decoder parser. arXiv preprint
arXiv:1911.03875.

Tahira Naseem and Regina Barzilay. 2011. Using se-
mantic cues to learn syntax. In AAAI.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing.

Vlad Niculae, André F. T. Martins, Mathieu Blondel,
and Claire Cardie. 2018. Sparsemap: Differentiable
sparse structured inference. In ICML.

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In 30th Annual Meeting of the Association for
Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In North American Association for Com-
putational Linguistics (NAACL).

http://arxiv.org/abs/2005.13455
http://arxiv.org/abs/2005.13455

4843

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. In Associa-
tion for Computational Linguistics (ACL).

Philip Resnik. 1992. Left-corner parsing and psy-
chological plausibility. In COLING 1992 Volume
1: The 15th International Conference on Computa-
tional Linguistics.

Brian Roark and Mark Johnson. 1999. Efficient prob-
abilistic top-down and left-corner parsing. In Pro-
ceedings of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 421–
428, College Park, Maryland, USA. Association for
Computational Linguistics.

Alexander M Rush and MJ Collins. 2012. A tutorial
on dual decomposition and lagrangian relaxation for
inference in natural language processing. Journal of
Artificial Intelligence Research.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018. Neural language modeling
by jointly learning syntax and lexicon. In Inter-
national Conference on Learning Representations
(ICLR).

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
International Conference on Learning Representa-
tions (ICLR).

Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen
Livescu. 2019. Visually grounded neural syntax ac-
quisition. In Association for Computational Lin-
guistics (ACL).

Noah A Smith and Jason Eisner. 2005a. Contrastive
estimation: Training log-linear models on unlabeled
data. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics.

Noah A Smith and Jason Eisner. 2005b. Guiding un-
supervised grammar induction using contrastive es-
timation. In IJCAI Workshop on Grammatical Infer-
ence Applications.

Benjamin Snyder, Tahira Naseem, and Regina Barzi-
lay. 2009. Unsupervised multilingual grammar in-
duction. In ACL/IJCNLP.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-Informed Self-Attention for Seman-
tic Role Labeling. In Empirical Methods in Natural
Language Processing (EMNLP).

Swabha Swayamdipta, Sam Thomson, Kenton Lee,
Luke Zettlemoyer, Chris Dyer, and Noah A. Smith.
2018. Syntactic scaffolds for semantic structures. In
Empirical Methods in Natural Language Processing
(EMNLP).

David Vadas and James R. Curran. 2011. Parsing noun
phrases in the penn treebank. Computational Lin-
guistics.

Tim Vieira and Jason Eisner. 2017. Learning to prune:
Exploring the frontier of fast and accurate parsing.
Transactions of the Association for Computational
Linguistics, 5:263–278.

Adina Williams, Andrew Drozdov, and Samuel R Bow-
man. 2018a. Do latent tree learning models iden-
tify meaningful structure in sentences? Transac-
tions of the Association of Computational Linguis-
tics (TACL), 6:253–267.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018b. A broad-coverage challenge corpus for sen-
tence understanding through inference. In North
American Association for Computational Linguis-
tics (NAACL).

https://www.aclweb.org/anthology/C92-1032
https://www.aclweb.org/anthology/C92-1032
https://doi.org/10.3115/1034678.1034743
https://doi.org/10.3115/1034678.1034743
https://doi.org/10.1162/tacl_a_00060
https://doi.org/10.1162/tacl_a_00060

4844

A Appendices

A.1 Training Details

All key details for training and evaluating our

method, S-DIORA, are described in the main text.

In this Appendix section we repeat those details

and provide an organized reference to aid repro-

ducibility.

A.1.1 Supervised Parsing Loss and Training

In supervised parsing, we assume access to binary

non-projective constituency trees y for each sen-

tence x. Predicting a tree ŷ with DIORA can be

done using the CKY method described in Drozdov

et al. (2019a). Similarly, backtracking the various

max operations from the inside-pass in S-DIORA

can be used to decode ŷ.12 The conditional prob-

ability of a tree given a sentence is proportional

to the sum of scalar values for each span and split

(i, j, k) in the tree, depicted in Eq. 2.

P (y|x) ∝ S(y) =
X

(i,j,k)2y

sini,j,k (2)

To train DIORA or S-DIORA to predict the

most likely tree for an input sentence, we use the

structured SVM loss employed by multiple other

work in supervised parsing (Stern et al., 2017; Ki-

taev and Klein, 2018) with a margin of 1 and do

not use loss augment inference, depicted in Eq. 3.

J
sup
tree = max(0, S(ŷ)− S(y) + 1) (3)

In our experiments, we train DIORA and S-

DIORA on the training from PTB (roughly 40k

sentences). Both models are trained from random

initialization and using the same hyperparameters.

Early stopping is done by evaluating against the

validation data each epoch. S-DIORA is trained

with different beam-size β = {1, 2, 3, 4}.

This paper is primarily concerned with unsuper-

vised parsing, and we only explored one hyperpa-

rameter setting as supervised parsing is used pri-

marily to verify the benefit of beam search in S-

DIORA and its improvement over DIORA. Those

hyperparameters are listed here:

12Each value save on the beam in S-DIORA represents a
unique tree — duplicate trees can not appear on the beam.

Learning Rate (η): 2�3

Model Dimension: 400

Max Training Length: 20

Batch Size: 32

Max Epochs: 10

Optimization Algorithm: Adam

Hardware: 1x1080ti

Training Time: O(12h)

For both supervised and unsupervised training,

each batch is restricted to sentences of uniform

length.

A.1.2 Unsupervised Loss and Training

DIORA and S-DIORA are models especially ef-

fective for unsupervised parsing. In this setting

we assume no access to parse tree labels, only raw

text. The models are trained end-to-end by re-

constructing the input sentence from the outside

vectors. Reconstruction is defined as predicting

a word xi given its context {x}�i which are the

words in the rest of the sentence. Unlike Drozdov

et al. (2019a), we use a fixed vocabulary instead

of sampling, which includes the 10k most frequent

words from the training data.13 The objective for

a single sentence is depicted in Eq. 4.

Jrec = −
1

|x|

X

i2|x|

logP (xi|{x}�i) (4)

As mentioned in §3, we also train S-DIORA to

increase the confidence gap between its highest-

scoring tree on the beam and other trees. To ac-

complish this we use the same structured SVM

from supervised parsing, but instead of the ground

truth y, we include the highest-scoring tree on the

beam y0 and the second highest y1. This loss is

depicted in Eq. 5, and the total loss for S-DIORA

is simply the sum of the reconstruction and ‘tree’

losses (Eq. 6).

J
unsup
tree = max(0, S(y1)− S(y0) + 1) (5)

JS-DIORA = Jrec + J
unsup
tree (6)

For S-DIORANLI we train using a subset of

NLI.14 The subset is sampled once from NLI and

13The vocabulary is different between NLI and PTB.
14A concatenation of the training data from SNLI (Bow-

man et al., 2015) and Multi-NLI (Williams et al., 2018b).

4845

used across all experiments, and consists of the

same number of sentences as the training data

from PTB and also the same distribution of sen-

tence lengths. For S-DIORAPTB we use the train-

ing data from PTB. Early stopping is done by eval-

uating against the validation data each epoch. We

explore various hyperparameter settings, and for

S-DIORA we also train with different beam-sizes

β. S-DIORA is initialized from the MLP with

‘softmax loss’ DIORA checkpoint15 that was re-

leased by Drozdov et al. (2019a). The hyperpa-

rameters explored are listed below:

Learning Rate (η): 2�3, 1�3, 6�4, 2�4

Model Dimension: 400

Beam-size (β): 2, 3

Max Training Length (n): 20, 30

Batch Size: 32

Max Epochs: 5

Optimization Algorithm: Adam

Hardware: 1x1080ti

Training Time: O(8h)

We ran each setting for 5 random seeds. The

best performing hyperparameter setting was cho-

sen using validation performance, and the best

performing setting (η,β, n) for S-DIORANLI and

S-DIORAPTB were (1�3, 2, 30) and (2�3, 2, 30)

respectively.

A.2 Other Work in Grammar Induction and

Unsupervised Parsing

There is a rich research history in grammar induc-

tion and unsupervised parsing. In the main text,

we cover the work most relevant to frame our sci-

entific questions and experimental results. Instead,

here, we mention loosely related work that would

be useful for further analysis and future research.

Furthermore, some of the mentioned work might

be in dependency parsing rather than constituency

parsing, or about measuring syntactic information

without parse trees.

15DIORA and S-DIORA have exactly the same parame-
ters, so one can be initialized easily from the other. The num-
ber of parameters is the same, but the runtime of S-DIORA is
slower by an order of β. Even so, a correctly implemented S-
DIORA should be as fast as DIORA or faster since the sparse
operator q0 can be leveraged to avoid computation when there
are many possible subtrees for a span.

A.2.1 Partial Semantic Information

We assume access to no text annotation, but of-

ten some might be available (Pereira and Schabes,

1992) and this can be leveraged to constrain in-

duced syntax in a useful way. Naseem and Barzi-

lay (2011) explore syntactic structure of seman-

tic relations, presenting an approach that encour-

ages structural consistency for each occurrence of

a specific semantic relation, but also allowing for

variation. DIORA and S-DIORA represent spans

as vectors, and a simple extension would be to en-

courage span vectors associated with the same se-

mantic relation to be similar through contrastive

estimation (Smith and Eisner, 2005a,b; Gimpel

and Bansal, 2014). Rather than encouraging simi-

larity within a relation, Shi et al. (2019) have suc-

cess encouraging similarity between an image and

constituents in its caption.

A.2.2 Multilingual Alignment

Syntactic phrase types do not necessarily trans-

late to the same type across languages (Koehn and

Knight, 2003), but can still leverage parallel text

to improve unsupervised constituency parsing as

a phrase in one language may have less uncertain

structure in another (Snyder et al., 2009).

A.2.3 Label Refinement

Similarities across languages can be used to create

fine-grained grammar rules that are helpful when

applied as soft constraints for grammar induction

since they serve as a prior to contradict patterns

seen in the data (Naseem et al., 2010). These

linguistic priors need not be derived from cross-

lingual data (Druck et al., 2009) — using a small

set of simple rules (e.g. a determiner followed by a

noun is a noun phrase) can be helpful for grammar

induction and can be derived from a few positive

examples of phrases (Haghighi and Klein, 2006).

A.2.4 Model Consistency

Williams et al. (2018a) measure self F1 in addi-

tion to parsing F1 and find the models that con-

sistently converge to the same grammar were also

the ones most different from ground truth, al-

though this was an extreme case as the pertinent

model made trivial predictions (nearly always left-

branching). Follow up work from Mohananey

et al. (2020) shows that self-training is helpful

for training PRPN (Shen et al., 2018) and parsing

F1 improves with self-agreement, with the biggest

benefit for longer sentences.

