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Abstract

Recent progress in language modeling has
been driven not only by advances in neural ar-
chitectures, but also through hardware and op-
timization improvements. In this paper, we re-
visit the neural probabilistic language model
(NPLM) of Bengio et al. (2003), which sim-
ply concatenates word embeddings within a
fixed window and passes the result through a
feed-forward network to predict the next word.
When scaled up to modern hardware, this
model (despite its many limitations) performs
much better than expected on word-level lan-
guage model benchmarks. Our analysis re-
veals that the NPLM achieves lower perplex-
ity than a baseline Transformer with short in-
put contexts but struggles to handle long-term
dependencies. Inspired by this result, we mod-
ify the Transformer by replacing its first self-
attention layer with the NPLM’s local concate-
nation layer, which results in small but con-
sistent perplexity decreases across three word-
level language modeling datasets.

1 Introduction

Over the past decade, state-of-the-art neural ar-
chitectures for language modeling (LM) have
transitioned from simple recurrent neural net-
works (Mikolov et al., 2011) to LSTMs (Zaremba
et al., 2014) and finally to Transformers (Vaswani
et al., 2017). This progress is not due solely to LM-
specific advances, however, as general-purpose
upgrades such as residual connections (He et al.,
2016) and layer normalization (Ba et al., 2016)
have enabled scaling to huge datasets and model
sizes (Kaplan et al., 2020) on powerful GPUs.

In this paper, we revisit the neural probabilistic
language model (NPLM) of Bengio et al. (2003),
the first (and simplest) neural architecture proposed
for language modeling, through the lens of modern
architecture design, hardware, and optimization.
Given an input sequence of tokens, the NPLM first
concatenates the previous n token embeddings and
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Figure 1: A modernized version of the neural proba-
bilistic language model of Bengio et al. (2003), which
concatenates token embeddings within a fixed local
window and feeds them to a stack of feed-forward lay-
ers to predict the next token. Our modified version addi-
tionally concatenates representations of the distant con-
text, which are computed by applying a weighted aver-
age to token representations outside the local window.

then passes the result through a feed-forward net-
work to predict the next token. Due to its small
context window and lack of parameter sharing, the
NPLM has been rendered obsolete, discarded in
favor of LSTMs and Transformers.

To what extent are its limitations mitigated by
modern design and optimization choices? To an-
swer this question, we design an upgraded NPLM
featuring increased depth and window size n that
incorporates residual connections, layer normaliza-
tion, and dropout. We also include global context
representations to the concatenation layer by ap-
plying simple aggregation functions to embeddings
outside of the local context window. These modi-
fications substantially improve the NPLM: on the
WIKITEXT-103 benchmark dataset, the original
NPLM of Bengio et al. (2003) reaches a validation
perplexity of 216, compared to 31.7 for our imple-
mentation, and 25.0 for a Transformer baseline.

Can we improve Transformer language models
by hybridizing them with NPLMs? Interestingly,
we discover that our NPLM actually outperforms

the Transformer when given shorter input contexts
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(Figure 2), although it is unable to take full ad-
vantage of longer contexts. Inspired by this re-
sult, we create two simple variants of the Trans-
former, one in which the first self-attention layer is
replaced with the NPLM’s concatenation layer, and
the other in which self-attention in the first layer is
constrained to a small local window.1 These adjust-
ments result in small but consistent perplexity de-
creases compared to a baseline Transformer across
three word-level language modeling datasets (the
first variant obtains 24.1 validation perplexity on
WIKITEXT-103). Our qualitative analysis shows
that the modified Transformers are better at predict-
ing rare tokens and named entities, especially those
that have already appeared in the context.

2 Neural probabilistic language models

Modern neural language models (NLMs) compute
the conditional probability of a token wt given pre-
ceding (or prefix) tokens w<t by first computing a
dense vector representation of the prefix and then
feeding it into a classifier to predict the next word.
More concretely, a composition function g is ap-
plied to the sequence of token embeddings x<t

associated with the prefix, which results in a dense
vector z = g(x<t). A softmax classifier then takes
z as input and produces a distribution P (wt | w<t)
over the vocabulary. Transformers (Vaswani et al.,
2017) are currently the most popular choice for the
composition function g.

NPLM definition: First introduced by Bengio
et al. (2003), the NPLM uses a simple composition
function reminiscent of n-gram language modeling.
It concatenates the last k prefix embeddings and
passes the result through a feed-forward layer:

z = tanh(W[xt−k−1;xt−k . . . ;xt−1]) (1)

The NPLM has many intuitive limitations: (1)
it ignores the global context provided by prefix
tokens further than k tokens away; (2) it uses a
different set of parameters for each position in the
prefix window; and (3) it has a relatively small
number of parameters, which limits its expressivity.

2.1 A modern update to the NPLM

To what extent are these limitations mitigated after
scaling up the NPLM using modern advances in

1Code available at https://github.com/

SimengSun/revisit-nplm

Model # Params Val. perplexity

Transformer 148M 25.0
NPLM-old 32M2 216.0
NPLM-old (large) 221M3 128.2

NPLM 1L 123M 52.8
NPLM 4L 128M 38.3
NPLM 16L 148M 31.7

- Residual connections 148M 660.0
- Adam, + SGD 148M 418.5
- Global embedding 146M 41.9
- Global kernel, + average 148M 37.7
- Layer normalization 148M 33.0

Table 1: NPLM model ablation on WIKITEXT-103.

neural network training? Here, we investigate the
impact of a number of modifications to the NPLM
on WIKITEXT-103 validation perplexity (all results
in Table 1).

Increased depth and dimensionality: We pass
the concatenated representation into a multi-layer
network instead of a single layer, and we also
substantially increase the embedding and hidden
layer dimensionality to 410 and 2100 respectively.
WIKITEXT-103 validation perplexity drops from
216 for the original one-layer NPLM (32M param-
eters) to 41.9 for a 16-layer NPLM with 148M
parameters (no global prefix embeddings).

Better optimization for deep networks: To im-
prove gradient flow across the multi-layer network,
we apply residual connections (He et al., 2016) and
layer normalization (Ba et al., 2016) at each layer.
We additionally apply dropout (Srivastava et al.,
2014), use rectified linear units (ReLU) instead
of the tanh non-linearity, and train our NPLM
with the Adam optimizer (Kingma and Ba, 2015).4

These modifications are crucial for training our
16-layer NPLM: without residual connections, we
reach a perplexity of 660, while using standard
SGD instead of Adam yields a perplexity of 418.5.

Increased window size: While hardware consid-
erations limited the window size k of the original
NPLM to just five tokens, modern GPUs allow us
to quickly train models with much larger memory
footprints. We train models up to k = 50 (Figure 2)

2Similar to (Bengio et al., 2003) we set embedding dimen-
sion to 60 and hidden dimension to 100.

3We use the same embedding dimension and hidden di-
mension of our modern NPLM model. Weights are not tied.

4Similar to Baevski and Auli (2019), we first linearly
warm up learning rate for 4K steps and then anneal with one
cycle cosine learning rate scheduler. We did not observe
improvements annealing with cyclical scheduler.
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Model Test Control CF LF Ent.

NPLM 0.40 30.46 - - -
Transformer 30.60 35.84 38.94 29.47 32.26
Transformer-N 32.51 37.06 42.33 30.14 33.95
Transformer-C 32.23 37.34 42.65 31.58 35.03

Table 3: NPLM and Transformer variants on LAM-
BADA target word accuracy (%). Variants perform bet-
ter on context-frequent (CF) tokens that appear at least
twice in previous context, low frequency (LF) tokens
with frequency < 1500, and named entities (Ent).

ing a token is possible only when longer contexts
are provided.

Table 3 shows that our upgraded NPLM achieves
less than 1% accuracy (argmax prediction) on the
test set but 30% on a control set that does not test
long-term dependencies. As the baseline Trans-
former reaches over 30% accuracy on the test set,
this result shows that the convolutional kernels in
our modernized NPLM are incompetent at model-
ing long-range context.

On the other hand, both Transformer-N and
Transformer-C outperform the baseline Trans-
former (Table 3) by over 1.5% on the test set. To
better understand these improvements, we perform
a fine-grained analysis of the tokens for which these
models improve over the Transformer. This anal-
ysis reveals that the gains stem mainly from three
types of target tokens: (1) context-freqeunt (CF)
tokens that appear more than twice in the prefix; (2)
low frequency tokens (LF) with frequency below
1500; and (3) named entity tokens (Ent) detected
by the spaCy (Honnibal et al., 2020) NER tagger.
The three right-most columns of Table 3 shows
that both Transformer variants are more accurate
at predicting these tokens, which demonstrates the
benefits of enforcing local focus at the first layer.

4 Related work

The NPLM model in this paper based entirely on
the original formulation from Bengio et al. (2003).
The variants in our analysis are based on the Trans-
former model (Vaswani et al., 2017) and Trans-
former LMs (Baevski and Auli, 2019; Dehghani
et al., 2019; Dai et al., 2019; Sukhbaatar et al.,
2019; Khandelwal et al., 2020; Wang et al., 2019;
Press et al., 2020a; Mandava et al., 2020; Press
et al., 2020b). The constrained local attention in
Transformer-C is adopted at all layers of models
such as Longformer (Beltagy et al., 2020) and Big
Bird (Zaheer et al., 2020) due to its sparsity. Our

work conceptually resembles that of Chiu and Rush
(2020), who modernize HMM language models, as
well as simple RNN-based language models (Mer-
ity et al., 2018). Our linguistic analysis is inspired
by experiments from Khandelwal et al. (2018).

5 Conclusion

We discover that general-purpose advances in neu-
ral architecture design, hardware, and optimization
significantly improve the NPLM, a classic language
model. An analysis of our upgraded NPLM in-
spires us to hybridize it with a modern Transformer
LM and obtain perplexity decreases across three
word-level LM datasets.

Ethics statement

Misuse of language models Our research in-
volves training large language models on publicly
available benchmark datasets. They share the same
issues faced by many pretrained language models,
such as being used maliciously to generate unfaith-
ful, biased or offensive output.

Energy costs We train our models and variants
on 4 GeForce GTX 1080 Ti GPUs for all datasets
except WIKITEXT-2. We use only one GPU for
experiments on WIKITEXT-2. The Transformer
and its variants take longer to train (40h, 102h,
and 108h on WIKITEXT-103, LAMBADA, and EN-
WIK8 respectively). Our modernized NPLM does
not have attention module, and therefore trains rel-
atively faster (32h, 45h, and 88h for the above
datasets). The energy costs of training and tuning
these models, as well as doing exploratory exper-
iments in the initial stages of the project, cannot
be ignored. That said, compared to Transformer
models, the modernized NPLM has significantly
reduced training time, and hence carbon costs. We
hope our work contains useful insights for future
research that aims to develop simpler and more
efficient language models.
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A Experiment details

Dataset Train #Tokens Vocab. size

WIKITEXT-2 2M 33K
WIKITEXT-103 103M 267K
LAMBADA 203M 60K
ENWIK8 100M 205

Table 4: Dataset statistics

Dataset statistics are shown in Table 4.

Dataset Train len Test len Tgt. len

WIKITEXT-2 512 512 128
WIKITEXT-103 512 512 128
LAMBADA 512 512 128
ENWIK8 1024 1024 512

Table 5: Training sequence length as well as scored
target length and total test sequence length during eval-
uation we used on each dataset.

Evaluation We follow the practice in (Khandelwal
et al., 2020) to provide extra prior context for the
scored tokens. We provide the training sequence
length, test total sequence length, and test target
sequence length in Table 5.

B Model configurations

Detailed model configurations are shown in Table
6. Training details are shown in Table 7.
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WIKITEXT-2 WIKITEXT-103 ENWIK8 LAMBADA

NPLM Transformer NPLM Transformer NPLM Transformer NPLM Transformer
# Layers 6 6 16 16 12 12 16 16
Emb. dimension 256 256 410 410 512 512 512 512
Hidden dimension 1024 1024 2100 2100 2048 2048 4096 4096
Concat hidden dimension 400 - 2000 - 1400 - 2000 -
# Attention heads - 4 - 10 - 8 - 16
Adaptive softmax no no yes yes no no no no
# Concat tokens 15 - 15 - 15 - 15 -
# Kernel global 5 - 5 - 5 - 5 -
Dropout 0.3 0.3 0.2 0.1 0.2 0.1 0.2 0.1
#Param 13M 13M 149M 148M 38M 38M 115M 115M

Table 6: Model configuration on WIKITEXT-2 , WIKITEXT-103 , ENWIK8 , LAMBADA .

Warmup steps Learning rate Max steps Batch size Training time

WIKITEXT-2 100 5e-4 10k 5120 1.2h/1h
WIKITEXT-103 4k 2.5e-4/3.5e-4 200k 10240 40h/32h
ENWIK8 0 2.5e-4 400k 22528 102h/45h
LAMBADA 4k 3e-4 400k 8192 108h/88h

Table 7: Details of training on the four datasets. Models are trained on single 1080Ti GPU for WIKITEXT-2, and
on four 1080Ti GPUs for the rest datasets. When a configuration is different for Transformer and NPLM, it’s
shown in the order Transformer/NPLM.


