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Abstract

Existing work on tabular representation-
learning jointly models tables and associated
text using self-supervised objective functions
derived from pretrained language models such
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as BERT. While this joint pretraining improves
tasks involving paired tables and text (e.g., an-
swering questions about tables), we show that
it underperforms on tasks that operate over
tables without any associated text (e.g., pop-
ulating missing cells). We devise a simple
pretraining objective (corrupt cell detection)
that learns exclusively from tabular data and
reaches the state-of-the-art on a suite of table-
based prediction tasks. Unlike competing ap-
proaches, our model (TABBIE) provides em-
beddings of all table substructures (cells, rows,
and columns), and it also requires far less com-
pute to train. A qualitative analysis of our
model’s learned cell, column, and row repre-
sentations shows that it understands complex
table semantics and numerical trends.

1 Introduction

Large-scale self-supervised pretraining has sub-
stantially advanced the state-of-the-art in natural
language processing (Peters et al., 2018; Devlin
et al.,, 2018; Liu et al., 2019). More recently,
these pretraining methods have been extended to
jointly learn representations of tables as well as
text (Herzig et al., 2020; Yin et al., 2020), which
enables improved modeling of tasks such as ques-
tion answering over tables. However, many prac-
tical problems involve semantic understanding of
tabular data without additional text-based input,
such as extracting tables from documents, retriev-
ing similar columns or cells, and filling in miss-
ing information (Zhang and Balog, 2020). In this
work, we design a pretraining methodology specifi-
cally for tables (Tabular Information Embedding
or TABBIE) that resembles several core tasks in
table extraction and decomposition pipelines and

Figure 1: TABBIE is a table embedding model trained
to detect corrupted cells, inspired by the ELEC-
TRA (Clark et al., 2020) objective function. This sim-
ple pretraining objective results in powerful embed-
dings of cells, columns, and rows, and it yields state-
of-the-art results on downstream table-based tasks.

allows easy access to representations for different
tabular substructures (cells, rows, and columns).

Existing table representation models such as
TaBERT (Yin et al., 2020) and TaPas (Herzig et al.,
2020) concatenate tabular data with an associated
piece of text and then use BERT’s masked lan-
guage modeling objective for pretraining. These
approaches are computationally expensive due to
the long sequences that arise from concatenating
text with linearized tables, which necessitates trun-
cating the input sequences' to make training fea-
sible. We show that TABERT underperforms on
downstream table-based applications that operate
independent of external text (e.g., deciding whether
cell text was corrupted while extracting a table
from a PDF), which motivates us to investigate an
approach that preserves the full table during pre-
training.

Our TABBIE architecture relies on two Trans-
formers that independently encode rows and
columns, respectively; their representations are
pooled at each layer. This setup reduces the se-
quence length of each Transformer’s input, which
cuts down on its complexity, while also allowing us

! Herzig et al. (2020) use a fixed limit of 128 tokens for
both text and table, while Yin et al. (2020) drop all but three
rows of the table during pretraining.



to easily extract representations of cells, rows, and
columns. Additionally, TABBIE uses a simplified
training objective compared to masked language
modeling: instead of predicting masked cells, we
repurpose ELECTRA’s objective function (Clark
et al., 2020) for tabular pretraining by asking the
model to predict whether or not each cell in a ta-
ble is real or corrupted. We emphasize that this
pretraining objective is a fundamental task in table
structure decomposition pipelines (Nishida et al.,
2017; Tensmeyer et al., 2019; Raja et al., 2020),
in which incorrectly predicting row/column separa-
tors or cell boundaries leads to corrupted cell text.
Unlike Clark et al. (2020), we do not require a sep-
arate “generator” model that produces corrupted
candidates, as we observe that simple corruption
processes (e.g., sampling cells from other tables,
swapping cells within the same column) yield pow-
erful representations after pretraining.

In a controlled comparison to TaBERT (pre-
training on the same number of tables and us-
ing a similarly-sized model), we evaluate TABBIE
on three table-based benchmarks: column popu-
lation, row population, and column type predic-
tion. On most configurations of these tasks, TABBIE
achieves state-of-the-art performance, outperform-
ing TaBERT and other baselines, while in others
it performs competitively with TaBERT. Addition-
ally, TABBIE was trained on 8 V100 GPUs in just
over a week, compared to the 128 V100 GPUs
used to train TaBERT in six days. A qualitative
nearest-neighbor analysis of embeddings derived
from TABBIE confirms that it encodes complex se-
mantic properties about textual and numeric cells
and substructures. We release our pretrained mod-
els and code to support further advances on table-
based tasks.?

2 Model

TABBIE is a self-supervised pretraining approach
trained exclusively on tables, unlike prior ap-
proaches (Herzig et al., 2020; Yin et al., 2020) that
jointly model tables and associated text snippets.
At a high level, TABBIE encodes each cell of a table
using two different Transformer models (Vaswani
et al., 2017), one operating across the rows of the
table and the other across columns. At each layer,
the representations from the row and column Trans-
formers are averaged and then passed as input to
the next layer, which produces a contextualized

https://github.com/SFIG611/tabbie

representation of each cell within the table. We
place a binary classifier over TABBIE’s final-layer
cell representations to predict whether or not it
has been corrupted, or replaced by an intruder cell
during preprocessing, inspired by the ELECTRA
objective of Clark et al. (2020). In the remainder
of this section, we formalize both TABBIE’s model
architecture and pretraining objective.

2.1 Model Architecture

TABBIE takes an M x [NV table as input and produces
embeddings x;; for each cell (where 7 and j are
row and column indices, respectively), as well as
embeddings for individual columns ¢; and rows 7;.

Initialization: We begin by initializing the
cell embeddings x;; using a pretrained BERT
model (Devlin et al., 2018).> Specifically, for
each cell (i,7), we feed its contents into BERT
and extract the 768-d [CLS] token representation.
This step allows us to leverage the powerful seman-
tic text encoder of BERT to compute representa-
tions of cells out-of-context, which is important
because many tables contain cells with long-form
text (e.g., Notes columns). Additionally, BERT
has been shown to encode some degree of numer-
acy (Wallace et al., 2019), which helps represent
cells with numerical content. We keep this BERT
encoder fixed during training to reduce computa-
tional expense. Finally, we add learned positional
embeddings to each of the [CLS] vectors to form
the initialization of x;;. More specifically, we have
two sets of positional embeddings, pZ(T) e R and
p(-c) € R, which model the position of rows and
columns, respectively, and are randomly initialized
and fine-tuned via TABBIE’s self-supervised objec-
tive.

Contextualizing the cell embeddings: The cell
embeddings we get from BERT are uncontextual-
ized: they are computed in isolation of all of the
other cells in the table. While methods such as
TaBERT and TaPaS contextualize cell embeddings
by linearizing the table into a single long sequence,
we take a different and more computationally man-
ageable approach. We define a row Transformer,
which encodes cells across each row of the table,
as well as a column Transformer, which does the
same across columns.

Concretely, assume row ¢ contains cell em-
beddings x;1,%;2,...,x;n. We pass this se-

3We use the BERT-base-uncased model in all experiments.
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Figure 2: TABBIE’s computations at one layer. For a given table, the row Transformer contextualizes the repre-
sentations of the cells in each row, while the column Transformer similarly contextualizes cells in each column.
The final cell representation is an average of the row and column embeddings, which is passed as input to the
next layer. [CLS] tokens are prepended to each row and column to facilitate downstream tasks operating on table

substructures.

quence of embeddings into a row Transformer
block, which uses self-attention to produce contex-
tualized output representations 7; 1, 7; 2, ..., T N-
Similarly, assume column j contains cell em-
beddings x1 j, T2 j,...,Tnm ;; the column Trans-
former produces contextualized representations
€1,,€2j,.-.,CM ;. After running the two Trans-
formers over all rows and columns, respectively,
each cell (7, j) of a table is associated with a row
embedding 7; ; as well as a column embedding
(& je

The final step of cell contextualization is to com-
pose the row and column embeddings together be-
fore feeding the result to the next layer. Intuitively,
if we do not aggregate the two sets of embeddings
together, subsequent layers of the model will only
have access to information from a specific row or
column, which prevents contextualization across
the whole table. We implement this aggregation
through simple averaging: specifically, at layer L
of TABBIE, we compute cell embeddings as:

e TiLJ + Cl’LJ (1)
1,7 2

The new cell representations :Bf;rl are then fed
to the row and column Transformers at the next
layer L + 1.

Extracting representations of an entire row or
column: The row and column Transformers de-
fined above produce separate representations for
every cell in a particular row or column. However,

many table-related downstream tasks (e.g., retrieve
similar columns from a huge dataset of tables to
some query column) can benefit from embeddings
that capture the contents of an entire row or column.
To enable this functionality in TABBIE, we simply
prepend [CLSROW] and [CLSCOL] tokens to the
beginning of each row and column in an input table
as a preprocessing step. After pretraining, we can
extract the final-layer cell representations of these
[cLs] tokens to use in downstream tasks.

2.2 Pretraining

Having described TABBIE’s model architecture, we
turn now to its training objective. We adapt the self-
supervised ELECTRA objective proposed by Clark
et al. (2020) for text representation learning, which
places a binary classifier over each word in a piece
of text and asks if the word either is part of the
original text or has been corrupted. While this ob-
jective was originally motivated as enabling more
efficient training compared to BERT’s masked lan-
guage modeling objective, it is especially suited for
tabular data, as corrupt cell detection is actually a
fundamental task in table structure decomposition
pipelines such as (Nishida et al., 2017; Tensmeyer
et al., 2019; Raja et al., 2020), in which incorrectly
predicted row/column separators or cell boundaries
can lead to corrupted cell text.

In our extension of ELECTRA to tables, a bi-
nary classifier takes a final-layer cell embedding
as input to decide whether it has been corrupted.
More concretely, for cell (7, j), we compute the



corruption probability as

Pcorrupt(celli,j) = U(wTwiI:j) 2)

where L indexes TABBIE’s final layer, o is the
sigmoid function, and w is a weight vector of the
same dimensionality as the cell embedding. Our
final loss function is the binary cross entropy loss
of this classifier averaged across all cells in the
table.

2.3 Cell corruption process

Our formulation diverges from Clark et al. (2020)
in how the corrupted cells are generated. In ELEC-
TRA, a separate generator model is trained with
BERT’s masked language modeling objective to
produce candidate corrupted tokens: for instance,
given Jane went to the [MASK] to check on her
experiments, the generator model might produce
corrupted candidates such as lab or office. Simpler
corruption strategies, such as randomly sampling
words from the vocabulary, cannot induce powerful
representations of text because local syntactic and
semantic patterns are usually sufficient to detect
obvious corruptions. For tabular data, however, we
show that simple corruption strategies (Figure 3)
that take advantage of the intra-table structure actu-
ally do yield powerful representations without the
need of a separate generator network. More specif-
ically, we use two different corruption strategies:

* Frequency-based cell sampling: Our first
strategy simply samples corrupt candidates
from the training cell frequency distribution
(i.e., more commonly-occurring cells are sam-
pled more often than rare cells). One draw-
back of this method is that oftentimes it can
result in samples that violate a particular col-
umn type (for instance, sampling a textual cell
as a replacement for a cell in a numeric col-
umn). Despite its limitations, our analysis in
Section 4 shows that this strategy alone results
in strong performance on most downstream
table-based tasks, although it does not result
in a rich semantic understanding of intra-table
semantics.

* Intra-table cell swapping: To encourage the
model to learn fine-grained distinctions be-
tween topically-similar data, our second strat-
egy produces corrupted candidates by swap-
ping two cells in the same table (Figure 3c,
d). This task is more challenging than the

(a) original table (b) sample cells from other tables

Rank | Country | Gold Rank | Size Gold
1 France 9 1 France | 3.6
2 Italy 5 2 Italy 5
3 Spain 4 3 Spain 4

S

) swap cells on the same row (d) swap cells on the same column

Rank | Country | Gold Rank | Country | Gold
1 France 9 1 France 9
2 5 Italy 3 Italy 5
3 Spain 4 2 Spain 4

Figure 3: The different cell corruption strategies used
in our experiments.

frequency-based sampling strategy above, es-
pecially when the swapped cells occur within
the same column. While it underperforms
frequency-based sampling on downstream
tasks, it qualitatively results in more semantic
similarity among nearest neighbors of column
and row embeddings.

2.4 Pretraining details

Data: We aim for as controlled of a comparison
with TaBERT (Yin et al., 2020) as possible, as
its performance on table QA tasks indicate the
strength of its table encoder. TaBERT’s pretrain-
ing data was not publicly released at the time of
our work, but their dataset consists of 26.6M ta-
bles from Wikipedia and the Common Crawl. We
thus form a pretraining dataset of equivalent size
by combining 1.8M Wikipedia tables with 24.8M
preprocessed Common Crawl tables from Viznet
(Hu etal., 2019).%

Experimental settings: We train TABBIE for
seven epochs for just over a week on 8 V100 GPUs
using mixed precision. TABBIE has 12 layers and a
hidden dimensionality of 768 for both row and col-
umn Transformers, in an effort to be comparably-
sized to the TABERT-Base model.> Before com-
puting the initial cell embeddings using BERT, we
truncate each cell’s contents to the first 300 char-
acters, as some cells contain huge amounts of text.
We also truncate tables to 30 rows and 20 columns
to avoid memory issues (note that this is much
larger than the three rows used by TaBERT), and

*The vast majority of text in these tables is in English.

STABBIE is slightly larger than TABERT-Base (170M to
133M parameters) because its row and column Transformers
are the same size, while TABERT places a smaller “vertical”
Transformer over the output of a fine-tuned BERT model.
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Figure 4: The inputs and outputs for each of our table-
based prediction tasks. Column type prediction does
not include headers as part of the table.

our maximum batch size is set at 4,800 cells (on
average, 104 tables per batch). We use the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of le-5.

We compared two pretrained models trained
with different cell corruption strategy for down-
stream tasks. The first strategy (FREQ) uses exclu-
sively a frequency-based cell sampling. The second
strategy is a 50/50 mixture (MIX) of frequency-
based sampling and intra-table cell swapping,
where we additionally specify that half of the intra-
table swaps must come from the same row or col-
umn to make the objective more challenging.

3 Experiments

We validate TABBIE’s table representation quality
through its performance on three downstream table-
centric benchmarks (column population, row popu-
lation, and column type prediction) that measure se-
mantic table understanding. In most configurations
of these tasks, TABBIE outperforms TaBERT and
other baselines to set new state-of-the-art numbers.
Note that we do not investigate TABBIE’s perfor-
mance on table-and-text tasks such as WikiTable-
Questions (Pasupat and Liang, 2015), as our focus
is not on integrating TABBIE into complex task-
specific pipelines (Liang et al., 2018), although this
is an interesting avenue for future work.

3.1 Fine-tuning TABBIE

In all of our downstream experiments, we apply
essentially the same fine-tuning strategy to both
TABBIE and TaBERT: we select a subset of its final-
layer representations (i.e., cell or column repre-
sentations) that correspond to the tabular substruc-

Task Batchsize LR  Max epochs
Column population 12 le-05 20
Row population 48 2e-05 30
Col. type prediction 12 2e-05 15

Table 1: Fine-tuning hyperparameters of each down-
stream task for TABBIE and TaBERT.

tures used in the downstream task, and we place a
classifier over these representations to predict the
training labels. We select task-specific hyperparam-
eters based on the size of each dataset (full details
in Table 1) and report the test performance of the
best-performing validation checkpoint. For both
models, we backpropagate the downstream error
signal into all of the model’s parameters (i.e., we
do not “freeze” our pretrained model).

3.2 Column Population

In the column population task, which is useful for
attribute discovery, tabular data augmentation, and
table retrieval (Das Sarma et al., 2012), a model
is given the first N columns of a “seed” table
and asked to predict the remaining column head-
ers. Zhang and Balog (2017) compile a dataset for
this task comprising 1.6M tables from Wikipedia
with a test set of 1,000 tables, formulated as a
multi-label classification task with 127,656 pos-
sible header labels. Importantly, we remove all of
the tables in the column population test set from
our pretraining data to avoid inflating our results
in case TABBIE memorizes the missing columns
during pretraining.®

To fine-tune TABBIE on this task, we first con-
catenate the column [CLSCOL] embeddings of the
seed table into a single vector and pass it through
a single linear and softmax layer, training with a
multi-label classification objective (Mahajan et al.,
2018). Our baselines include the generative proba-
bilistic model (GPM) of Zhang and Balog (2017)
as well as a word embedding-based extension
called Table2VecH (TH) devised by Deng et al.
(2019). As fine-tuning on the full dataset is ex-
tremely expensive for TABBIE and TaBERT, we
fine-tune on a random subset of 100K training ex-
amples; as a further disadvantage to these, we do
not use table captions (unlike GPM and GPM+TH)
during training. Nevertheless, as Table 2 shows,
TABBIE and TaBERT substantially outperform both

®Note that TaBERT’s pretraining data likely includes the
test set tables, which may give it an advantage in our compar-
isons.



N Method MAP MRR Ndcg-10 Ndcg-20 N Method MAP MRR Ndcg-10 Ndcg-20
GPM 25.1 37.5 - - Entitables 36.8 45.2 - -
| GPM+TH 25.5 0.38.0 27.1 31.5 | TaBERT 432 55.7 45.6 47.7
TaBERT 33.1 41.3 35.1 38.1 TABBIE (FREQ) 42.8 54.2 44.8 46.9
TABBIE (FREQ) 379 49.1 41.2 43.8 TABBIE MIX) 42.6 54.7 45.1 46.8
TABBIE (MIX) 37.1 48.7 40.4 43.1 Entitables 372 45.1 ] j
GPM 28.5 40.4 - - ’ TaBERT 43.8 56.0 46.4 48.8
) GPM+TH 33.2 44.0 36.1 41.3 TABBIE (FREQ) 444 57.2 47.1 49.5
TaBERT 51.1 60.1 54.7 56.6 TABBIE (MIX) 43.7 55.7 46.2 48.6
TABBIE (FI\IZIE)?) gg gz'g 22'2 g;g Entitables ~ 37.1 446 - -
TABBIE MIX)  S1. : : : 5 TaBERT 429 551 456 48.5
GPM 285 355 - - TABBIE (FREQ) 434 565  46.6 49.0
3 GPM+TH 40.0 50.8 45.2 48.5 TABBIE (MIX) 429 55.5 459 48.3
TaBERT 53.3 60.9 56.9 579
TABBIE (FREQ) 545 633 579 58.9 Table 3: TABBIE outperforms baselines on row popula-
TABBIE (MIX) 54.1 62.3 57.4 58.7

Table 2: TABBIE outperforms all methods on the col-
umn population task, with the biggest improvement
coming with just a single seed column (N = 1).
Despite its simplicity, the FREQ corruption strategy
yields better results than MIX.

baselines, and TABBIE consistently outperforms
TaBERT regardless of how many seed columns are
provided, especially with only one seed column.
This result indicates that TABBIE encodes more se-
mantics about headers and columns than TaBERT.

3.3 Row Population

The row population task is more challenging than
column population: given the first NV rows of a
table in which the first column contains entities
(e.g., “Country”), models must predict the remain-
ing entries of the first column. Making reasonable
predictions of which entities best fill the column
requires understanding the full context of the seed
table. The Zhang and Balog (2017) dataset also
contains a split for row population, which we use to
evaluate our models. Again, since the dataset is too
large for our large embedding models, we sample
a subset of tables for fine-tuning.” Our label space
consists of 300K entities that occur at least twice
in Wikipedia tables, and we again formulate this
problem as multi-label classification, this time on
top of the first column’s [CLSCOL] representation.®

On this task, TABERT and TABBIE again outper-
form the baseline Entitables model (which uses
external information in the form of table cap-

"We sample all tables that have at least five entries in the
left-most column, which results in roughly 200K tables.

8Due to the large number of labels, we resort to negative
sampling during training instead of the full softmax to cut
down on fine-tuning time. Negative samples are formed by
uniform random sampling on the label space.

tion when provided with more seed rows N, although
TaBERT is superior given just a single seed row. Again,
the FREQ strategy produces better results than MIX.

tions). When given only one seed row, TaABERT
slightly outperforms TABBIE, but with more seed
rows, TABBIE exhibits small improvements over
TaBERT.

3.4 Column Type Prediction

While the prior two tasks involve predicting miss-
ing elements of a table, the column type prediction
task involves predicting a high-level fype of a partic-
ular column (e.g., name, age, etc.) without access
to its header. This task is useful when indexing
tables with missing column names, which happens
relatively often in practice, or for schema match-
ing(Hulsebos et al., 2019; Rahm and Bernstein,
2001), and like the other tasks, requires understand-
ing the surrounding context. We evaluate our mod-
els on the same subset of VizNet Web Tables (Hu
etal., 2019)° created by Zhang et al. (2019) to eval-
uate their column type predictor, SATO!°. They
formulate this task as a multi-class classification
problem (with 78 classes), with a training set of
64,000 tables and a test set consisting of 16,000
tables. We set aside 6,400 training tables to form
a validation for both TABBIE and TaBERT, and
we fine-tune each of these models with small ran-
dom subsets of the training data (1000 and 10000
labeled tables) in addition to the full training set
to evaluate their performance in a simulated low-
resource setting.

Along with TaBERT, we compare with two
recently-proposed column type prediction meth-

° Again, we ensure that none of the test tables in this dataset
occur in TABBIE’S pretraining data.
Uhttps://github.com/megagonlabs/sato



Method n=1000 n=10000 n=all
Sherlock - - 86.7
SATO - - 90.8
TaBERT 84.7 93.5 97.2
TABBIE (FREQ) 84.7 94.2 96.9
TABBIE (MIX) 84.1 93.8 96.7

Table 4: Support-weighted F1-score of different mod-
els on column type prediction. TaBERT and TABBIE
perform similarly in low resource settings (n=1000)
and when the full training data is used (n=all).

ods: Sherlock (Hulsebos et al., 2019), which uses
a multi-input neural network with hand-crafted fea-
tures extracted from each column, and the afore-
mentioned SATO (Zhang et al., 2019), which im-
proves Sherlock by incorporating table context,
topic model outputs, and label co-occurrence infor-
mation. Table 4 shows the support-weighted F1-
score for each method. Similar to the previous two
tasks, TABBIE and TaBERT significantly outper-
form the prior state-of-the-art (SATO). Here, there
are no clear differences between the two models,
but both reach higher F1 scores than the other base-
lines even when given only 1,000 training exam-
ples, which demonstrates the power of table-based
pretraining.

4 Analysis

The results in the previous section show that TAB-
BIE is a powerful table representation method, out-
performing TaBERT in many downstream task con-
figurations and remaining competitive in the rest.
In this section, we dig deeper into TABBIE’s repre-
sentations by comparing them to TaBERT across
a variety of quantitative and qualitative analysis
tasks, including our own pretraining task of corrupt
cell classification, as well as embedding clustering
and nearest neighbors. Taken as a whole, the anal-
ysis suggests that TABBIE is able to better capture
fine-grained table semantics.

4.1 Corrupt Cell Detection

We first examine how TaBERT performs on
TABBIE’s pretraining task of corrupt cell detec-
tion, which again is practically useful as a post-
processing step after table structure decomposition
(Tensmeyer et al., 2019; Raja et al., 2020) because
mistakes in predicting row/column/cell boundaries
(sometimes compounded by OCR errors) can lead
to inaccurate extraction. We fine-tune TaBERT on
100K tables using the MIX corruption strategy for

Corruption Method Prec. Rec. Fl

TaBERT 855 83.0 842
TABBIE (FREQ) 99.0 814 894
TABBIE (MIX) 99.6 958 97.7

Intra-row swap

TaBERT 312 19.0 237
TABBIE (FREQ) 909 223 358
TABBIE (MIX) 91.5 550 68.8

Intra-column swap

TaBERT 812 695 749
TABBIE (FREQ) 98.2 733 84.0
TABBIE (MIX) 984 862 919

Intra-table swap

TaBERT 86.7 87.0 86.8

Random FREQ cell | o 0\i (FREQ) 993 982 98.8
TABBIE (MIX) 99.1 98.1 98.6
Al TaBERT 756 652 70.0

TABBIE (FREQ) 98.2 69.5 814
TABBIE (MIX) 97.8 84.1 90.5

Table 5: A fine-grained comparison of different models
on corrupt cell detection, with different types of corrup-
tion. TaBERT struggles on this task, especially in the
challenging setting of intra-column swaps. Unlike our
downstream tasks, the MIX strategy is far superior to
FREQ here.

ten epochs, and construct a test set of 10K tables
that are unseen by both TABERT and TABBIE dur-
ing pretraining. While TABBIE of course sees an
order of magnitude more tables for this task during
pretraining, this is still a useful experiment to de-
termine if TABERT’s pretraining objective enables
it to easily detect corrupted cells.

As shown in Table 5, TaBERT performs sig-
nificantly worse than TABBIE on all types of cor-
rupt cells (both random corruption and intra-table
swaps). Additionally, intra-column swaps are the
most difficult for both models, as TABBIE achieves
a 68.8 F1 on this subset compared to just 23.7 F1
by TaBERT. Interestingly, while the MIX strategy
consistently performs worse than FREQ for the
TABBIE models evaluated on the three downstream
tasks in the previous section, it is substantially bet-
ter at detecting more challenging corruptions, and
is almost equivalent to detecting random cells sam-
pled by FREQ. This result indicates that perhaps
more complex table-based tasks are required to take
advantage of representations derived using MIX
corruption.

4.2 Nearest neighbors

We now turn to a qualitative analysis of the repre-
sentations learned by TABBIE. In Figure 6 (top), we
display the two nearest neighbor columns from our
validation set to the date column marked by the red
box. TABBIE is able to model the similarity of feb.



(a) Input table (b) TABBIE (MIX) (c) TaBERT
# name year # name year # name year
15 allysia junior 0.0% 0.1% 0.0% 2.6% 1.6% 8.9%
18 maria senior 100% | 0.0% | 0.0% 32% | 2.6% 1.9%

17 emily |[sophomore 0.0% | 0.0% 0.0% 4.3% 7.6% 5.2%
16 hydn |sophomore| [99.9% | 0.0% 0.0% 2.2% 0.3% 0.5%
19 hayley |sophomore 0.0% | 0.0% 0.0% 3.3% | 3.3% 1.5%
20 |michelle | graduate 0.0% | 0.0% 0.0% 4.0% | 6.6% 2.9%

Figure 5: In this figure, (b) and (c) contain the predicted
corruption probability of each cell in (a). Only TABBIE
MIX is able to reliably identify violations of numerical
trends in columns.

16 and saturday. february 5th despite the format-
ting difference, while TABERT’s neighbors more
closely resemble the original column. Figure 6
(bottom) shows that TABBIE’s nearest neighbors
are less reliant on matching headers than TABERT,
as the neighbors all have different headers (nom,
nombre, name).

4.3 Clustering

Are the embeddings produced by TABBIE useful
for clustering and data discovery? To find out, we
perform clustering experiments on the FinTabNet
dataset from Zheng et al. (2021). This dataset con-
tains ~110K tables from financial reports of cor-
porations in the S&P-500. We use the [CLS] em-
bedding at the (0, 0) position (i.e., the top left-most
cell in the table), extracted from a TABBIE model
trained with the FREQ strategy, as a representative
embedding for each table in the dataset. Next, we
perform k-means clustering on these embeddings
using the FAISS library (Johnson et al., 2017), with
k=1024 centroids. While the FinTabNet dataset is
restricted to the homogenous domain of financial
tables, these tables cluster into sub-types such as
consolidated financial tables, jurisdiction tables,
insurance tables, etc. We then examine the con-
tents of these clusters (Figure 7) and observe that
TABBIE embeddings can not only be clustered into
these sub-types, but also that tables from reports
of the same company, but from different financial
years, are placed into the same cluster.

4.4 Identifying numeric trends

Next, we analyze how well TABBIE understands
trends in numerical columns by looking at specific
examples of our corrupt cell detection task. The
first column of the table in Figure 5 contains jersey
numbers sorted in ascending order. We swap two
cells in this column, /6 and /8, which violates

|date opponent ‘ TABBIE’s top-2 columns:

|feb. 16 {northern colorado ‘ date ‘date
b, 17 colorado mesa (ncaa div. saturday, february 5th ‘11.20
i wednesday, february  [[11.20

oth (1121
saturday, february 12th |75,

|feb. 22 (Jutah state*

|feb. 23 fwestminster

|mar. 2 |Ivs. uc-santa barbara TaBERT'’s top-2 columns:

|mar. 3 |@ unlv date |date

feb. 18 |sept.7
feb. 26 [|sept. 14
|sept.21

|ma.r. 7 floyola marymount

|ma.r4 9 [simon fraser

TABBIE’s top-3 columns:

lnom ‘nombre name

‘nothing ‘brividi d'amfamor express

[nom artiste | lonce ‘primo appur]cahuates, pistaches

‘run cold holly golightlyl ‘hero in f‘una volta nejla suata

‘indccd you do holly gclightly| bad blodlun cuore maja la luz de las estrellas|

i let my daddy do that|holly golightly| TaBERT's top-3 columns:

(for all this holly golightly| [rom nom_ |lnom
I‘Pa‘med on - olly golfghtlyl lncthing chithe crad|trois pid“ces brd ves: alld
la length of pipe holly gollgh[ly| ‘once ‘the crag ‘trois pid“ces brd"ves: an(

lhero in flas ‘lhe crad ‘lrois pid“ces bra“ves: ass|

[bad blood lthe cradlsect s bagatellen: allegrol

Figure 6: Nearest neighbors of the date and nom
columns from the tables on the left, from both TAB-
BIE and TaBERT. TABBIE’s nearest neighbors exhibit
more diverse formatting and less reliance on the header,
which is an example of its semantic representation ca-
pability.

the increasing trend. Both TaBERT (fine-tuned for
corrupt cell detection) and TABBIE FREQ struggle
to identify this swap, while TABBIE MIX is almost
certain that the two cells have been corrupted. This
qualitative result is further evidence that the MIX
model has potential for more complex table-based
reasoning tasks.

5 Related work

The staggering amount of structured relational data
in the form of tables on the Internet has attracted
considerable attention from researchers over the
past two decades (Cafarella et al., 2008; Limaye
et al., 2010; Venetis et al., 2011; Suchanek et al.,
2007; Embley et al., 2006), with applications in-
cluding retrieval (Das Sarma et al., 2012), schema-
matching (Madhavan et al., 2001, 2005), and entity
linking (Zhang et al., 2020).

Similar to popular large-scale language models
pretrained on tasks involving unstructured natural
language(Peters et al., 2018; Devlin et al., 2018;
Liu et al., 2019), our work is part of a recent
trend of self-supervised models trained on struc-
tured tabular data. TABERT (Yin et al., 2020) and
TaPaS (Herzig et al., 2020) jointly model tables
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Figure 7: Sample tables from clusters obtained by running k-means on TABBIE’s [CLS] embeddings on the FinTab-
Net dataset. TABBIE not only clusters embeddings into reasonable semantic types, such as Table of Contents (first
row), but it also places tables of the same type from the same company into the same cluster (second and third
rows). We provide the source images of the corresponding tables in this figure.

with text (typically captions or questions), and are
thus more suited for tasks like question answer-
ing (Pasupat and Liang, 2015). For pretraining,
TaBERT attempts to recover the name and data-
type of masked column headers (masked column
prediction), in addition to contents of a particular
cell (cell value recovery). The pretraining objec-
tives of TaPaS, on the other hand, encourage tabular
textual entailment. In a concurrent work, the TUTA
model (Wang et al., 2020) uses masked language
modeling, cell-level cloze prediction, and table-
context retrieval as pretraining objectives. Further,
in addition to traditional position embeddings, this
work accounts for the hierarchical nature of tabular
data using tree-based positional embeddings. Sim-
iliarly, in Deng et al. (2020), the authors perform
a variant of MLLM called masked entity recovery.
In contrast, TABBIE is pretrained strictly on tabular
data and intended for more general-purpose table-
based tasks, and uses corrupt-cell classification as
its pretraining task.

6 Conclusion

In this paper, we proposed TABBIE, a self-
supervised pretraining method for tables without
associated text. To reduce the computational cost
of training our model, we repurpose the ELECTRA
objective for corrupt cell detection, and we use two

separate Transformers for rows and columns to min-
imize complexity associated with sequence length.
On three downstream table-based tasks, TABBIE
achieves competitive or better performance to ex-
isting methods such as TaBERT, and an analysis
reveals that its representations include a deep se-
mantic understanding of cells, rows, and columns.
We publicly release our TABBIE pretrained mod-
els and code to facilitate future research on tabular
representation learning.

7 Ethics Statement

As with any research work that involves training
large language models, we acknowledge that our
work has a negative carbon impact on the environ-
ment. A cumulative of 1344 GPU-hours of compu-
tation was performed on Tesla V100 GPUs. Total
emissions are estimated to be 149.19 kg of CO»
per run of our model (in total, there were two runs).
While this is a significant amount (equivalent to
~ 17 gallons of fuel consumed by an average mo-
tor vehicle'!), it is lower than TaBERT’s cost per
run by more than a factor of 10 assuming a similar
computing platform was used. Estimations were
conducted using the Machine Learning Impact cal-
culator presented in Lacoste et al. (2019).

Uhttps://www.epa.gov/greenvehicles/
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