


to easily extract representations of cells, rows, and

columns. Additionally, TABBIE uses a simplified

training objective compared to masked language

modeling: instead of predicting masked cells, we

repurpose ELECTRA’s objective function (Clark

et al., 2020) for tabular pretraining by asking the

model to predict whether or not each cell in a ta-

ble is real or corrupted. We emphasize that this

pretraining objective is a fundamental task in table

structure decomposition pipelines (Nishida et al.,

2017; Tensmeyer et al., 2019; Raja et al., 2020),

in which incorrectly predicting row/column separa-

tors or cell boundaries leads to corrupted cell text.

Unlike Clark et al. (2020), we do not require a sep-

arate “generator” model that produces corrupted

candidates, as we observe that simple corruption

processes (e.g., sampling cells from other tables,

swapping cells within the same column) yield pow-

erful representations after pretraining.

In a controlled comparison to TaBERT (pre-

training on the same number of tables and us-

ing a similarly-sized model), we evaluate TABBIE

on three table-based benchmarks: column popu-

lation, row population, and column type predic-

tion. On most configurations of these tasks, TABBIE

achieves state-of-the-art performance, outperform-

ing TaBERT and other baselines, while in others

it performs competitively with TaBERT. Addition-

ally, TABBIE was trained on 8 V100 GPUs in just

over a week, compared to the 128 V100 GPUs

used to train TaBERT in six days. A qualitative

nearest-neighbor analysis of embeddings derived

from TABBIE confirms that it encodes complex se-

mantic properties about textual and numeric cells

and substructures. We release our pretrained mod-

els and code to support further advances on table-

based tasks.2

2 Model

TABBIE is a self-supervised pretraining approach

trained exclusively on tables, unlike prior ap-

proaches (Herzig et al., 2020; Yin et al., 2020) that

jointly model tables and associated text snippets.

At a high level, TABBIE encodes each cell of a table

using two different Transformer models (Vaswani

et al., 2017), one operating across the rows of the

table and the other across columns. At each layer,

the representations from the row and column Trans-

formers are averaged and then passed as input to

the next layer, which produces a contextualized

2https://github.com/SFIG611/tabbie

representation of each cell within the table. We

place a binary classifier over TABBIE’s final-layer

cell representations to predict whether or not it

has been corrupted, or replaced by an intruder cell

during preprocessing, inspired by the ELECTRA

objective of Clark et al. (2020). In the remainder

of this section, we formalize both TABBIE’s model

architecture and pretraining objective.

2.1 Model Architecture

TABBIE takes an M×N table as input and produces

embeddings xij for each cell (where i and j are

row and column indices, respectively), as well as

embeddings for individual columns cj and rows ri.

Initialization: We begin by initializing the

cell embeddings xij using a pretrained BERT

model (Devlin et al., 2018).3 Specifically, for

each cell (i, j), we feed its contents into BERT

and extract the 768-d [CLS] token representation.

This step allows us to leverage the powerful seman-

tic text encoder of BERT to compute representa-

tions of cells out-of-context, which is important

because many tables contain cells with long-form

text (e.g., Notes columns). Additionally, BERT

has been shown to encode some degree of numer-

acy (Wallace et al., 2019), which helps represent

cells with numerical content. We keep this BERT

encoder fixed during training to reduce computa-

tional expense. Finally, we add learned positional

embeddings to each of the [CLS] vectors to form

the initialization of xij . More specifically, we have

two sets of positional embeddings, p
(r)
i ∈ R

H and

p
(c)
j ∈ R

H , which model the position of rows and

columns, respectively, and are randomly initialized

and fine-tuned via TABBIE’s self-supervised objec-

tive.

Contextualizing the cell embeddings: The cell

embeddings we get from BERT are uncontextual-

ized: they are computed in isolation of all of the

other cells in the table. While methods such as

TaBERT and TaPaS contextualize cell embeddings

by linearizing the table into a single long sequence,

we take a different and more computationally man-

ageable approach. We define a row Transformer,

which encodes cells across each row of the table,

as well as a column Transformer, which does the

same across columns.

Concretely, assume row i contains cell em-

beddings xi,1,xi,2, . . . ,xi,N . We pass this se-

3We use the BERT-base-uncased model in all experiments.
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Figure 2: TABBIE’s computations at one layer. For a given table, the row Transformer contextualizes the repre-

sentations of the cells in each row, while the column Transformer similarly contextualizes cells in each column.

The final cell representation is an average of the row and column embeddings, which is passed as input to the

next layer. [CLS] tokens are prepended to each row and column to facilitate downstream tasks operating on table

substructures.

quence of embeddings into a row Transformer

block, which uses self-attention to produce contex-

tualized output representations ri,1, ri,2, . . . , ri,N .

Similarly, assume column j contains cell em-

beddings x1,j ,x2,j , . . . ,xM,j ; the column Trans-

former produces contextualized representations

c1,j , c2,j , . . . , cM,j . After running the two Trans-

formers over all rows and columns, respectively,

each cell (i, j) of a table is associated with a row

embedding ri,j as well as a column embedding

ci,j .

The final step of cell contextualization is to com-

pose the row and column embeddings together be-

fore feeding the result to the next layer. Intuitively,

if we do not aggregate the two sets of embeddings

together, subsequent layers of the model will only

have access to information from a specific row or

column, which prevents contextualization across

the whole table. We implement this aggregation

through simple averaging: specifically, at layer L

of TABBIE, we compute cell embeddings as:

x
L+1
i,j =

r
L
i,j + c

L
i,j

2
(1)

The new cell representations xL+1
i,j are then fed

to the row and column Transformers at the next

layer L+ 1.

Extracting representations of an entire row or

column: The row and column Transformers de-

fined above produce separate representations for

every cell in a particular row or column. However,

many table-related downstream tasks (e.g., retrieve

similar columns from a huge dataset of tables to

some query column) can benefit from embeddings

that capture the contents of an entire row or column.

To enable this functionality in TABBIE, we simply

prepend [CLSROW] and [CLSCOL] tokens to the

beginning of each row and column in an input table

as a preprocessing step. After pretraining, we can

extract the final-layer cell representations of these

[CLS] tokens to use in downstream tasks.

2.2 Pretraining

Having described TABBIE’s model architecture, we

turn now to its training objective. We adapt the self-

supervised ELECTRA objective proposed by Clark

et al. (2020) for text representation learning, which

places a binary classifier over each word in a piece

of text and asks if the word either is part of the

original text or has been corrupted. While this ob-

jective was originally motivated as enabling more

efficient training compared to BERT’s masked lan-

guage modeling objective, it is especially suited for

tabular data, as corrupt cell detection is actually a

fundamental task in table structure decomposition

pipelines such as (Nishida et al., 2017; Tensmeyer

et al., 2019; Raja et al., 2020), in which incorrectly

predicted row/column separators or cell boundaries

can lead to corrupted cell text.

In our extension of ELECTRA to tables, a bi-

nary classifier takes a final-layer cell embedding

as input to decide whether it has been corrupted.

More concretely, for cell (i, j), we compute the



corruption probability as

Pcorrupt(celli,j) = σ(wᵀ
x
L
i,j) (2)

where L indexes TABBIE’s final layer, σ is the

sigmoid function, and w is a weight vector of the

same dimensionality as the cell embedding. Our

final loss function is the binary cross entropy loss

of this classifier averaged across all cells in the

table.

2.3 Cell corruption process

Our formulation diverges from Clark et al. (2020)

in how the corrupted cells are generated. In ELEC-

TRA, a separate generator model is trained with

BERT’s masked language modeling objective to

produce candidate corrupted tokens: for instance,

given Jane went to the [MASK] to check on her

experiments, the generator model might produce

corrupted candidates such as lab or office. Simpler

corruption strategies, such as randomly sampling

words from the vocabulary, cannot induce powerful

representations of text because local syntactic and

semantic patterns are usually sufficient to detect

obvious corruptions. For tabular data, however, we

show that simple corruption strategies (Figure 3)

that take advantage of the intra-table structure actu-

ally do yield powerful representations without the

need of a separate generator network. More specif-

ically, we use two different corruption strategies:

• Frequency-based cell sampling: Our first

strategy simply samples corrupt candidates

from the training cell frequency distribution

(i.e., more commonly-occurring cells are sam-

pled more often than rare cells). One draw-

back of this method is that oftentimes it can

result in samples that violate a particular col-

umn type (for instance, sampling a textual cell

as a replacement for a cell in a numeric col-

umn). Despite its limitations, our analysis in

Section 4 shows that this strategy alone results

in strong performance on most downstream

table-based tasks, although it does not result

in a rich semantic understanding of intra-table

semantics.

• Intra-table cell swapping: To encourage the

model to learn fine-grained distinctions be-

tween topically-similar data, our second strat-

egy produces corrupted candidates by swap-

ping two cells in the same table (Figure 3c,

d). This task is more challenging than the
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(d) swap cells on the same column

Figure 3: The different cell corruption strategies used

in our experiments.

frequency-based sampling strategy above, es-

pecially when the swapped cells occur within

the same column. While it underperforms

frequency-based sampling on downstream

tasks, it qualitatively results in more semantic

similarity among nearest neighbors of column

and row embeddings.

2.4 Pretraining details

Data: We aim for as controlled of a comparison

with TaBERT (Yin et al., 2020) as possible, as

its performance on table QA tasks indicate the

strength of its table encoder. TaBERT’s pretrain-

ing data was not publicly released at the time of

our work, but their dataset consists of 26.6M ta-

bles from Wikipedia and the Common Crawl. We

thus form a pretraining dataset of equivalent size

by combining 1.8M Wikipedia tables with 24.8M

preprocessed Common Crawl tables from Viznet

(Hu et al., 2019).4

Experimental settings: We train TABBIE for

seven epochs for just over a week on 8 V100 GPUs

using mixed precision. TABBIE has 12 layers and a

hidden dimensionality of 768 for both row and col-

umn Transformers, in an effort to be comparably-

sized to the TaBERT-Base model.5 Before com-

puting the initial cell embeddings using BERT, we

truncate each cell’s contents to the first 300 char-

acters, as some cells contain huge amounts of text.

We also truncate tables to 30 rows and 20 columns

to avoid memory issues (note that this is much

larger than the three rows used by TaBERT), and

4The vast majority of text in these tables is in English.
5

TABBIE is slightly larger than TaBERT-Base (170M to
133M parameters) because its row and column Transformers
are the same size, while TaBERT places a smaller “vertical”
Transformer over the output of a fine-tuned BERT model.
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Figure 4: The inputs and outputs for each of our table-

based prediction tasks. Column type prediction does

not include headers as part of the table.

our maximum batch size is set at 4,800 cells (on

average, 104 tables per batch). We use the Adam

optimizer (Kingma and Ba, 2015) with a learning

rate of 1e-5.

We compared two pretrained models trained

with different cell corruption strategy for down-

stream tasks. The first strategy (FREQ) uses exclu-

sively a frequency-based cell sampling. The second

strategy is a 50/50 mixture (MIX) of frequency-

based sampling and intra-table cell swapping,

where we additionally specify that half of the intra-

table swaps must come from the same row or col-

umn to make the objective more challenging.

3 Experiments

We validate TABBIE’s table representation quality

through its performance on three downstream table-

centric benchmarks (column population, row popu-

lation, and column type prediction) that measure se-

mantic table understanding. In most configurations

of these tasks, TABBIE outperforms TaBERT and

other baselines to set new state-of-the-art numbers.

Note that we do not investigate TABBIE’s perfor-

mance on table-and-text tasks such as WikiTable-

Questions (Pasupat and Liang, 2015), as our focus

is not on integrating TABBIE into complex task-

specific pipelines (Liang et al., 2018), although this

is an interesting avenue for future work.

3.1 Fine-tuning TABBIE

In all of our downstream experiments, we apply

essentially the same fine-tuning strategy to both

TABBIE and TaBERT: we select a subset of its final-

layer representations (i.e., cell or column repre-

sentations) that correspond to the tabular substruc-

Task Batch size LR Max epochs

Column population 12 1e-05 20

Row population 48 2e-05 30

Col. type prediction 12 2e-05 15

Table 1: Fine-tuning hyperparameters of each down-

stream task for TABBIE and TaBERT.

tures used in the downstream task, and we place a

classifier over these representations to predict the

training labels. We select task-specific hyperparam-

eters based on the size of each dataset (full details

in Table 1) and report the test performance of the

best-performing validation checkpoint. For both

models, we backpropagate the downstream error

signal into all of the model’s parameters (i.e., we

do not “freeze” our pretrained model).

3.2 Column Population

In the column population task, which is useful for

attribute discovery, tabular data augmentation, and

table retrieval (Das Sarma et al., 2012), a model

is given the first N columns of a “seed” table

and asked to predict the remaining column head-

ers. Zhang and Balog (2017) compile a dataset for

this task comprising 1.6M tables from Wikipedia

with a test set of 1,000 tables, formulated as a

multi-label classification task with 127,656 pos-

sible header labels. Importantly, we remove all of

the tables in the column population test set from

our pretraining data to avoid inflating our results

in case TABBIE memorizes the missing columns

during pretraining.6

To fine-tune TABBIE on this task, we first con-

catenate the column [CLSCOL] embeddings of the

seed table into a single vector and pass it through

a single linear and softmax layer, training with a

multi-label classification objective (Mahajan et al.,

2018). Our baselines include the generative proba-

bilistic model (GPM) of Zhang and Balog (2017)

as well as a word embedding-based extension

called Table2VecH (TH) devised by Deng et al.

(2019). As fine-tuning on the full dataset is ex-

tremely expensive for TABBIE and TaBERT, we

fine-tune on a random subset of 100K training ex-

amples; as a further disadvantage to these, we do

not use table captions (unlike GPM and GPM+TH)

during training. Nevertheless, as Table 2 shows,

TABBIE and TaBERT substantially outperform both

6Note that TaBERT’s pretraining data likely includes the
test set tables, which may give it an advantage in our compar-
isons.



N Method MAP MRR Ndcg-10 Ndcg-20

1

GPM 25.1 37.5 - -

GPM+TH 25.5 0.38.0 27.1 31.5

TaBERT 33.1 41.3 35.1 38.1

TABBIE (FREQ) 37.9 49.1 41.2 43.8

TABBIE (MIX) 37.1 48.7 40.4 43.1

2

GPM 28.5 40.4 - -

GPM+TH 33.2 44.0 36.1 41.3

TaBERT 51.1 60.1 54.7 56.6

TABBIE (FREQ) 52.0 62.8 55.8 57.6

TABBIE (MIX) 51.7 62.3 55.6 57.2

3

GPM 28.5 35.5 - -

GPM+TH 40.0 50.8 45.2 48.5

TaBERT 53.3 60.9 56.9 57.9

TABBIE (FREQ) 54.5 63.3 57.9 58.9

TABBIE (MIX) 54.1 62.3 57.4 58.7

Table 2: TABBIE outperforms all methods on the col-

umn population task, with the biggest improvement

coming with just a single seed column (N = 1).

Despite its simplicity, the FREQ corruption strategy

yields better results than MIX.

baselines, and TABBIE consistently outperforms

TaBERT regardless of how many seed columns are

provided, especially with only one seed column.

This result indicates that TABBIE encodes more se-

mantics about headers and columns than TaBERT.

3.3 Row Population

The row population task is more challenging than

column population: given the first N rows of a

table in which the first column contains entities

(e.g., “Country”), models must predict the remain-

ing entries of the first column. Making reasonable

predictions of which entities best fill the column

requires understanding the full context of the seed

table. The Zhang and Balog (2017) dataset also

contains a split for row population, which we use to

evaluate our models. Again, since the dataset is too

large for our large embedding models, we sample

a subset of tables for fine-tuning.7 Our label space

consists of 300K entities that occur at least twice

in Wikipedia tables, and we again formulate this

problem as multi-label classification, this time on

top of the first column’s [CLSCOL] representation.8

On this task, TaBERT and TABBIE again outper-

form the baseline Entitables model (which uses

external information in the form of table cap-

7We sample all tables that have at least five entries in the
left-most column, which results in roughly 200K tables.

8Due to the large number of labels, we resort to negative
sampling during training instead of the full softmax to cut
down on fine-tuning time. Negative samples are formed by
uniform random sampling on the label space.

N Method MAP MRR Ndcg-10 Ndcg-20

1

Entitables 36.8 45.2 - -

TaBERT 43.2 55.7 45.6 47.7

TABBIE (FREQ) 42.8 54.2 44.8 46.9

TABBIE (MIX) 42.6 54.7 45.1 46.8

2

Entitables 37.2 45.1 - -

TaBERT 43.8 56.0 46.4 48.8

TABBIE (FREQ) 44.4 57.2 47.1 49.5

TABBIE (MIX) 43.7 55.7 46.2 48.6

3

Entitables 37.1 44.6 - -

TaBERT 42.9 55.1 45.6 48.5

TABBIE (FREQ) 43.4 56.5 46.6 49.0

TABBIE (MIX) 42.9 55.5 45.9 48.3

Table 3: TABBIE outperforms baselines on row popula-

tion when provided with more seed rows N , although

TaBERT is superior given just a single seed row. Again,

the FREQ strategy produces better results than MIX.

tions). When given only one seed row, TaBERT

slightly outperforms TABBIE, but with more seed

rows, TABBIE exhibits small improvements over

TaBERT.

3.4 Column Type Prediction

While the prior two tasks involve predicting miss-

ing elements of a table, the column type prediction

task involves predicting a high-level type of a partic-

ular column (e.g., name, age, etc.) without access

to its header. This task is useful when indexing

tables with missing column names, which happens

relatively often in practice, or for schema match-

ing(Hulsebos et al., 2019; Rahm and Bernstein,

2001), and like the other tasks, requires understand-

ing the surrounding context. We evaluate our mod-

els on the same subset of VizNet Web Tables (Hu

et al., 2019)9 created by Zhang et al. (2019) to eval-

uate their column type predictor, SATO10. They

formulate this task as a multi-class classification

problem (with 78 classes), with a training set of

64,000 tables and a test set consisting of 16,000

tables. We set aside 6,400 training tables to form

a validation for both TABBIE and TaBERT, and

we fine-tune each of these models with small ran-

dom subsets of the training data (1000 and 10000

labeled tables) in addition to the full training set

to evaluate their performance in a simulated low-

resource setting.

Along with TaBERT, we compare with two

recently-proposed column type prediction meth-

9Again, we ensure that none of the test tables in this dataset
occur in TABBIE’s pretraining data.

10https://github.com/megagonlabs/sato



Method n=1000 n=10000 n=all

Sherlock - - 86.7

SATO - - 90.8

TaBERT 84.7 93.5 97.2

TABBIE (FREQ) 84.7 94.2 96.9

TABBIE (MIX) 84.1 93.8 96.7

Table 4: Support-weighted F1-score of different mod-

els on column type prediction. TaBERT and TABBIE

perform similarly in low resource settings (n=1000)

and when the full training data is used (n=all).

ods: Sherlock (Hulsebos et al., 2019), which uses

a multi-input neural network with hand-crafted fea-

tures extracted from each column, and the afore-

mentioned SATO (Zhang et al., 2019), which im-

proves Sherlock by incorporating table context,

topic model outputs, and label co-occurrence infor-

mation. Table 4 shows the support-weighted F1-

score for each method. Similar to the previous two

tasks, TABBIE and TaBERT significantly outper-

form the prior state-of-the-art (SATO). Here, there

are no clear differences between the two models,

but both reach higher F1 scores than the other base-

lines even when given only 1,000 training exam-

ples, which demonstrates the power of table-based

pretraining.

4 Analysis

The results in the previous section show that TAB-

BIE is a powerful table representation method, out-

performing TaBERT in many downstream task con-

figurations and remaining competitive in the rest.

In this section, we dig deeper into TABBIE’s repre-

sentations by comparing them to TaBERT across

a variety of quantitative and qualitative analysis

tasks, including our own pretraining task of corrupt

cell classification, as well as embedding clustering

and nearest neighbors. Taken as a whole, the anal-

ysis suggests that TABBIE is able to better capture

fine-grained table semantics.

4.1 Corrupt Cell Detection

We first examine how TaBERT performs on

TABBIE’s pretraining task of corrupt cell detec-

tion, which again is practically useful as a post-

processing step after table structure decomposition

(Tensmeyer et al., 2019; Raja et al., 2020) because

mistakes in predicting row/column/cell boundaries

(sometimes compounded by OCR errors) can lead

to inaccurate extraction. We fine-tune TaBERT on

100K tables using the MIX corruption strategy for

Corruption Method Prec. Rec. F1

Intra-row swap
TaBERT 85.5 83.0 84.2

TABBIE (FREQ) 99.0 81.4 89.4

TABBIE (MIX) 99.6 95.8 97.7

Intra-column swap
TaBERT 31.2 19.0 23.7

TABBIE (FREQ) 90.9 22.3 35.8

TABBIE (MIX) 91.5 55.0 68.8

Intra-table swap
TaBERT 81.2 69.5 74.9

TABBIE (FREQ) 98.2 73.3 84.0

TABBIE (MIX) 98.4 86.2 91.9

Random FREQ cell
TaBERT 86.7 87.0 86.8

TABBIE (FREQ) 99.3 98.2 98.8

TABBIE (MIX) 99.1 98.1 98.6

All
TaBERT 75.6 65.2 70.0

TABBIE (FREQ) 98.2 69.5 81.4

TABBIE (MIX) 97.8 84.1 90.5

Table 5: A fine-grained comparison of different models

on corrupt cell detection, with different types of corrup-

tion. TaBERT struggles on this task, especially in the

challenging setting of intra-column swaps. Unlike our

downstream tasks, the MIX strategy is far superior to

FREQ here.

ten epochs, and construct a test set of 10K tables

that are unseen by both TaBERT and TABBIE dur-

ing pretraining. While TABBIE of course sees an

order of magnitude more tables for this task during

pretraining, this is still a useful experiment to de-

termine if TaBERT’s pretraining objective enables

it to easily detect corrupted cells.

As shown in Table 5, TaBERT performs sig-

nificantly worse than TABBIE on all types of cor-

rupt cells (both random corruption and intra-table

swaps). Additionally, intra-column swaps are the

most difficult for both models, as TABBIE achieves

a 68.8 F1 on this subset compared to just 23.7 F1

by TaBERT. Interestingly, while the MIX strategy

consistently performs worse than FREQ for the

TABBIE models evaluated on the three downstream

tasks in the previous section, it is substantially bet-

ter at detecting more challenging corruptions, and

is almost equivalent to detecting random cells sam-

pled by FREQ. This result indicates that perhaps

more complex table-based tasks are required to take

advantage of representations derived using MIX

corruption.

4.2 Nearest neighbors

We now turn to a qualitative analysis of the repre-

sentations learned by TABBIE. In Figure 6 (top), we

display the two nearest neighbor columns from our

validation set to the date column marked by the red

box. TABBIE is able to model the similarity of feb.
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20 michelle graduate

0.0% 0.0% 0.0%
0.0% 0.0% 0.0%

3.3% 3.3% 1.5%
4.0% 6.6% 2.9%

Figure 5: In this figure, (b) and (c) contain the predicted

corruption probability of each cell in (a). Only TABBIE

MIX is able to reliably identify violations of numerical

trends in columns.

16 and saturday. february 5th despite the format-

ting difference, while TaBERT’s neighbors more

closely resemble the original column. Figure 6

(bottom) shows that TABBIE’s nearest neighbors

are less reliant on matching headers than TaBERT,

as the neighbors all have different headers (nom,

nombre, name).

4.3 Clustering

Are the embeddings produced by TABBIE useful

for clustering and data discovery? To find out, we

perform clustering experiments on the FinTabNet

dataset from Zheng et al. (2021). This dataset con-

tains ∼110K tables from financial reports of cor-

porations in the S&P-500. We use the [CLS] em-

bedding at the (0, 0) position (i.e., the top left-most

cell in the table), extracted from a TABBIE model

trained with the FREQ strategy, as a representative

embedding for each table in the dataset. Next, we

perform k-means clustering on these embeddings

using the FAISS library (Johnson et al., 2017), with

k=1024 centroids. While the FinTabNet dataset is

restricted to the homogenous domain of financial

tables, these tables cluster into sub-types such as

consolidated financial tables, jurisdiction tables,

insurance tables, etc. We then examine the con-

tents of these clusters (Figure 7) and observe that

TABBIE embeddings can not only be clustered into

these sub-types, but also that tables from reports

of the same company, but from different financial

years, are placed into the same cluster.

4.4 Identifying numeric trends

Next, we analyze how well TABBIE understands

trends in numerical columns by looking at specific

examples of our corrupt cell detection task. The

first column of the table in Figure 5 contains jersey

numbers sorted in ascending order. We swap two

cells in this column, 16 and 18, which violates

0 date

1 saturday, february 5th

2
wednesday, february 

9th

3 saturday, february 12th

4 tuesday, february 15th

0 date opponent

1 feb. 16 northern colorado

2 feb. 17
colorado mesa (ncaa div. 

ii)

3 feb. 22 utah state*

4 feb. 23 westminster

5 mar. 2 vs. uc-santa barbara

6 mar. 3 @ unlv

7 mar. 7 loyola marymount

8 mar. 9 simon fraser

mar. 

0 date

1 11.20

2 11.20

3 11.21

4 11.21

TABBIE’s top-2 columns:

week date

sept. 7

sept. 14

sept. 21

sept. 28

date date

1 feb. 18

2 feb. 26

3

4 mar. 4

TaBERT’s top-2 columns:

TABBIE’s top-3 columns:

TaBERT’s top-3 columns:

0 nom artiste

1 1 run cold holly golightly

2 2 indeed you do holly golightly

3 3 i let my daddy do that holly golightly

4 4 for all this holly golightly

5 5 painted on holly golightly

6 6 a length of pipe holly golightly

0 nom a

1 1 nothing changes pe

2 2 once pe

3 3 hero in flames pe

4 4 bad blood pe

0 nombre

1 1 brividi d'amore

2 2 primo appuntamento

3 3 una volta nella vita

4 4 un cuore malato

0 name

1 1 amor express

2 2 cahuates, pistaches

3 3 la suata

4 4 a la luz de las estrellas

0 nom a

1 1 nothing changes pe

2 2 once pe

3 3 hero in flames pe

4 4 bad blood pe

0 nom

1 1 the crackdown (original ve

2 2 the crackdown (dub version) [fe

3 3 the crackdown (instrument

4 4 the crackdown (radio edit) [fe

0 nom

1 1 trois piã¨ces brã¨ves: allegro

2 2 trois piã¨ces brã¨ves: anda

3 3 trois piã¨ces brã¨ves: asse

4 4 sechs bagatellen: allegro c

Figure 6: Nearest neighbors of the date and nom

columns from the tables on the left, from both TAB-

BIE and TaBERT. TABBIE’s nearest neighbors exhibit

more diverse formatting and less reliance on the header,

which is an example of its semantic representation ca-

pability.

the increasing trend. Both TaBERT (fine-tuned for

corrupt cell detection) and TABBIE FREQ struggle

to identify this swap, while TABBIE MIX is almost

certain that the two cells have been corrupted. This

qualitative result is further evidence that the MIX

model has potential for more complex table-based

reasoning tasks.

5 Related work

The staggering amount of structured relational data

in the form of tables on the Internet has attracted

considerable attention from researchers over the

past two decades (Cafarella et al., 2008; Limaye

et al., 2010; Venetis et al., 2011; Suchanek et al.,

2007; Embley et al., 2006), with applications in-

cluding retrieval (Das Sarma et al., 2012), schema-

matching (Madhavan et al., 2001, 2005), and entity

linking (Zhang et al., 2020).

Similar to popular large-scale language models

pretrained on tasks involving unstructured natural

language(Peters et al., 2018; Devlin et al., 2018;

Liu et al., 2019), our work is part of a recent

trend of self-supervised models trained on struc-

tured tabular data. TaBERT (Yin et al., 2020) and

TaPaS (Herzig et al., 2020) jointly model tables
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