Hurdles to Progress in Long-form Question Answering

Kalpesh Krishna®*

Aurko Roy*®

Mohit Iyyer®

#University of Massachusetts Amherst, “Google Research
{kalpesh,miyyer}@cs.umass.edu
aurkor@google.com

Abstract

The task of long-form question answering
(LFQA) involves retrieving documents rele-
vant to a given question and using them to
generate a paragraph-length answer. While
many models have recently been proposed
for LFQA, we show in this paper that
the task formulation raises fundamental chal-
lenges regarding evaluation and dataset cre-
ation that currently preclude meaningful mod-
eling progress. To demonstrate these chal-
lenges, we first design a new system that
relies on sparse attention and contrastive re-
triever learning to achieve state-of-the-art per-
formance on the ELI5 LFQA dataset. While
our system tops the public leaderboard, a de-
tailed analysis reveals several troubling trends:
(1) our system’s generated answers are not ac-
tually grounded in the documents that it re-
trieves; (2) ELIS contains significant train / val-
idation overlap, as at least 81% of ELIS5 vali-
dation questions occur in paraphrased form in
the training set; (3) ROUGE-L is not an infor-
mative metric of generated answer quality and
can be easily gamed; and (4) human evalua-
tions used for other text generation tasks are
unreliable for LFQA. We offer suggestions to
mitigate each of these issues, which we hope
will lead to more rigorous LFQA research and
meaningful progress in the future.'

1 Introduction

Long-form question answering (LFQA) integrates
the retrieval component of open-domain QA,
which involves searching a large external knowl-
edge source for documents relevant to a given ques-
tion, with a text generation component to produce
paragraph-length answers. Significant progress
has been made on open-domain QA datasets such
as Natural Questions (Kwiatkowski et al., 2019),

* Work done during an internship at Google Research.
'Resources accompanying our paper can be found in
https://github.com/martiansideofthemoon/
hurdles—-longform-ga

whose questions are answerable with short phrases
and entities, by leveraging dense retrieval tech-
niques like ORQA (Lee et al., 2019), REALM (Guu
et al., 2020), and DPR (Karpukhin et al., 2020;
Lewis et al., 2020c; Izacard and Grave, 2020).
Methods inspired by these results have recently
been combined with pretrained language mod-
els (Lewis et al., 2020b; Petroni et al., 2020) and
applied to the Reddit-derived “Explain Like I'm
Five” (ELI5) dataset (Fan et al., 2019), which is the
only publicly-available large-scale LFQA dataset.

The recently proposed KILT benchmark (Petroni
et al., 2020), which compares retrieval-augmented
models across a variety of knowledge-intensive
tasks including ELIS, automatically evaluates
LFQA models by the quality of both generated an-
swers (ROUGE-L against reference answers) and
retrieved documents (R-precision against human-
annotated relevant documents). In this paper, we
build a state-of-the-art system? for ELIS by using
a sparse Transformer variant (Roy et al., 2020) to
condition over Wikipedia paragraphs returned by a
REALM-style retriever (Guu et al., 2020).

However, despite its success on the KILT leader-
board, our system does not actually use the doc-
uments that it retrieves! To measure the effect of
retrieval on generation quality, we design a con-
trol experiment in which retrieved documents are
replaced with randomly-sampled documents at in-
ference time. Results from both human A/B tests
and automatic metrics like ROUGE-L demonstrate
that conditioning on random documents has almost
no effect on generated answer quality (Figure 1c¢).
We recommend that future LFQA research report
the results of such control experiments in addition
to reporting generation and retrieval quality.

How can a system using random retrieval per-

“State-of-the-art as of April 3, 2021 — the “Google
Research & UMass Amherst” team entry on https:
//evalai.cloudcv.org/web/challenges/
challenge-page/689/leaderboard/1908
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(a) Many held-out questions are
paraphrased in the training set.
Best answer to similar train
questions gets 27.4 ROUGE-L

Val Q: Can you protect electronics from
EMPs/solar flares? If so, how?

(b) Simply retrieving answers
to random unrelated training
questions yields relatively
high ROUGE-L, while actual
gold answers underperform
generations

Train Q1: How does an EMP ruin electronics?)
[=>| What does it do? How would they be fixed?
Can It be protected against? How?

Train Q2: If Earth were hit with a massive
EMP, would all of our currently technology be
completely unusable permanently?

Train Q3: Whenever a electromagnetic pulse
(EMP) is released what does it do to
electronics to disable them?

Train Q4: If earth was hit with an EMP, could
we ever restore electricity? If not, why?

Train Q5: What are solar flares and why does

[=>{ it impact our electronics?

Train Q6. When an EMP goes off, can the
| electronics affected be replaced?

Random Train Ans, 19.4 ROUGE-L

The fast lane/slow lane is a bit of a
misnomer. It gives the impression that
new, faster lanes are being built. In
reality, normal speed will be...

Gold Answer, 18.6 ROUGE-L

I'll start with the grounding question,
because that's the easiest to answer:
Doesn't help a bit. All that matters is
that the metal container is conductive
and doesn't have gaps...completely
seal your Faraday cage. Consider
soldering the lid on to that paint can...
look at little baggie it comes in. Sealed
mylar. That protected that chip from
air travel at 35,000 feet, land travel
through rural, urban, and suburban
areas, and all the electromagnetic
radiation that the trip entails... No lead
shielding. No safes....

(c) Conditioning answer generation on random
documents instead of relevant ones does not
measurably impact its factual correctness. Longer
outputs get higher ROUGE-L

(d) Annotators find it difficult to judge long answers
(with repetition) & correctness of technical content

Generation using predicted retrievals, 19.0 ROUGE-L

Yes, you can shield them. But it's a slow process... Also,
the equipment that's powered by them is a lot more
expensive than you'd think, so it's hard to make sure that
you're not just shielding them from your remote control.

Generation using random retrievals, 24.8 ROUGE-L

Yes, you absolutely can, in fact you can build a Faraday
cage around your electronics, and protect them from
solar flares... This is what is done

with the Faraday cage around your electronics, which is
the problem. The reason it is expensive is because it
requires a huge amount of power and is expensive to
replace... designed to shield your electronics from solar
flares, you will have to pay for the protection. This is
because you have to buy a piece of equipment that is
designed to shield your electronics from solar flares, and
that is expensive. ... This is also expensive, but not as
expensive as the protection you need to shield your
electronics from solar flares... designed to be as cheap
as possible...

Figure 1: A summary of the major hurdles (a-d) to progress in long-form question answering with ELIS.

form well on ELI5S? Our analysis reveals that this
result is partially due to significant train / valida-
tion overlap in the ELI5 dataset (Figure 1a), which
eliminates the need for external retrieval. A hu-
man study shows that at least 81% of validation
questions have a paraphrase in the training set, and
almost all validation questions are topically similar
to a training set question. While Fan et al. (2019)
attempted to identify and remove question overlap
using TF-IDF similarity, more complex semantic
matching methods & human verification is needed
to address this issue in future LFQA datasets.

Digging deeper, we identify fundamental issues
with using ROUGE-L to evaluate generated answer
quality (Figure 1b). Simple baselines such as just
repeatedly copying the question, or choosing a ran-
dom training set answer, can outperform LFQA sys-
tems such as RAG (Lewis et al., 2020c) in terms of
ROUGE-L. On the other hand, our system achieves
higher ROUGE-L than reference human-written
answers, which is misleading since human A/B
testers strongly prefer reference answers to our sys-
tem’s. We conclude that ROUGE-L is not a reliable
metric to evaluate LFQA due to its large and rela-
tively unconstrained output space (e.g., compared
to translation or summarization), and we offer sug-
gestions for better automatic & human evaluations
to enable meaningful progress on this task.

2 A state-of-the-art LFQA system

The ELIS task (Fan et al., 2019) asks models to
generate paragraph-length answers to open-ended
questions in English that often rely on world knowl-
edge (e.g., how do jellyfish function without brains
or nervous systems?). LFQA systems thus benefit
from conditioning answer generation on relevant
documents from the web (such as the Wikipedia
article about jellyfish). While large-scale pretrained
language models store surprising amounts of world
knowledge within their parameters (Petroni et al.,
2019; Roberts et al., 2020), external document re-
trieval not only augments this intrinsic knowledge
but also grounds model outputs in a knowledge
source, which provides interpretability.

In this section, we describe our proposed LFQA
system, which conditions answer generation on
Wikipedia articles identified by a pretrained re-
triever. We use a dense retriever trained by scaling
up a distantly supervised algorithm from Jernite
(2020). Since retrieved articles can be quite long
and often exceed the maximum sequence length of
pretrained models like BERT (Devlin et al., 2019),
we use a sparse-attention variant of the Transformer
to allow modeling over longer sequences. While
our system sets a new state-of-the-art on ELIS, we
question the significance of this result in Section 3.
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2.1 Retriever

We begin by specifying our dense retriever (“‘con-
trastive REALM” or C-REALM), which returns
documents related to an input question. Consider
a corpus of long-form questions and answers, rep-
resented by (g;, ai)i]\il' Our retriever uses ¢; as a
query to retrieve K documents (Ti,j)jK:1 from a
knowledge corpus (Wikipedia), which is enabled
by an encoder network that projects both questions
and candidate documents to a 128-d shared embed-
ding space. Like REALM (Guu et al., 2020), our
encoder is a BERT-base Transformer (Devlin et al.,
2019) with a final projection layer.

Since the ELIS dataset does not include gold
retrievals, we train our retriever by scaling up a
method recently introduced by Jernite (2020) that
uses gold answers for distant supervision. The
key idea is to push the encoded vector for a ques-
tion close to a vector representation of its ground-
truth answer(s), but away from all other answer
vectors in the mini-batch (negative examples). In-
tuitively, this method works because both ELIS
answers and external documents are of paragraph
length (documents are paragraph-length chunks
from Wikipedia). Concretely, we optimize the loss,

exXpd; - a;
> a,cB XD " A

loss = — Z log

(gi,a:;)€B

where B is the mini-batch and q;, a; are the
encoded vector representations for (¢;, a;). This
objective is based on contrastive learning, a method
that has been used effectively for semi-supervised
learning (Chen et al., 2020) and dense retriever
training (Karpukhin et al., 2020). Scaling up
from Jernite (2020), who used a mini-batch size of
512 and initialized their retriever with BERT, we
use much large mini-batches of size 12,288 (and
hence, many more negative examples) and initial-
ize our retriever with a strong pretrained retriever,
the REALM model (Guu et al., 2020) trained on the
Common Crawl News (CC-News) corpus. These
design decisions greatly improve retriever qual-
ity, as we observe in an ablation study (see Ap-
pendix A.2). During inference, we perform a maxi-
mum inner-product search (MIPS) with the ScaNN
library (Guo et al., 2020) to efficiently find the
top K documents. In all our experiments we use
K =7, following the setup in Guu et al. (2020).

2.2 Generator

We next describe our generator model, which condi-
tions its generated answers on retrieved documents
returned by C-REALM. We use the Routing Trans-
former (RT) from Roy et al. (2020), which is the
current state-of-the-art in long-form language mod-
eling. The RT is a sparse attention model that em-
ploys local attention as well as mini-batch k-means
clustering to better model long-range dependencies
in sequences (attention maps in Appendix A.1).
Long-form language models such as RT are well-
suited to ELI5 as the task requires conditioning
answer generation not only on a short question but
also many lengthy retrieved documents.

We pretrain our RT model on PG-19, a long-
form language modeling benchmark (Rae et al.,
2020) created from approximately 28,000 Project
Gutenberg books published before 1919. PG-19
has 1.9B tokens and an average context size of 69K
words. While this data is out-of-domain for ELIS,
we choose it to encourage long & coherent gener-
ation. Our RT is a 22-layer model with 1032 hid-
den units (486M parameters), maximum sequence
length of 8192 tokens, and a vocabulary of 98K
subwords.? We fine-tune our model in a decoder-
only fashion (Liu et al., 2018; Wolf et al., 2018)
by concatenating the top K retrieved documents
to the question [Tz‘,K7 TiK—1 - Tily Qis ai] and
training the model to predict tokens of the answer
a;. We do not backpropagate gradients through
the retriever.* Retrievals slightly improve perplex-
ity (18.1 vs 17.8) as seen in Wang and McAllester
(2020), but do not improve generations (§3.1).

2.3 Main Experiments

Dataset & Evaluation details: We evaluate our
model on the KILT validation & test subsets of
ELIS (Petroni et al., 2020), since the original ELIS
dataset does not have human annotations to mea-
sure retriever performance. We downloaded the
ELI5 dataset (Fan et al., 2019) from the KILT
Github repository.’> This version of the dataset
has 272,634 training examples, 1,507 validation ex-
amples and 600 test examples. The test set answers

30ur hyperparameters have been chosen manually with
minimal tuning. See Appendix A.1 for details.

*We tried training the retriever jointly with RT using the at-
tention bias scheme proposed in MARGE (Lewis et al., 2020a).
This improved perplexity only in autoencoding settings where
the gold answer itself is used as a retrieval query (like the
setup in Lewis et al., 2020a), which is not valid in LFQA.

Sgithub.com/facebookresearch/KILT
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Retrieval Generation

Model RPr. R@5 FI R-L KRL
T5-base 0.0 00 16.1 19.1 0.0
BART 0.0 00 192 20.6 0.0
RAG 110 229 145 141 1.7
BART + DPR 10.7 269 179 174 1.9
p=20.9

RT + REALM 6.7 155 251 215 1.4
RT + c-REALM 102 244 254 215 2.1
p=20.6

RT + REALM 6.7 157 231 234 1.5

RT + c-REALM 107 246 229 232 24

Table 1: Results on the KILT test set for ELIS for
(1) retrieval performance, using R-precision and Re-
call@5 (RPrec, R@5), and (2) generation quality, using
ROUGE-L (R-L). These scores are combined to pro-
duce the final metric KILT R-L (KRL). We outperform
prior work on both generation & combined scores.

are hidden, and hosted on a public leaderboard in
the EvalAl platform (Yadav et al., 2019).

Answer quality is measured by the maximum
overlap of generations with a set of gold answers
in terms of unigram F1 score and ROUGE-L (Lin,
2004). Petroni et al. (2020) collected human
annotations of Wikipedia articles which support
ELI5 gold answers, which enables measuring
retrieval quality by computing R-precision (if
the top-1 retrieval matches the annotation) and
Recall @5 using the top-5 retrievals. Finally, the
KILT benchmark combines R-prec. and ROUGE-L
to measure the overall performance of the system
by “KILT ROUGE-L”. This metric is similar to
ROUGE-L, but assigns a score of 0 whenever the
top-1 retrieval does not match the gold annotation.

Baselines: We compare our model with the other
entries on the ELI5 KILT leaderboard which are
either generation-only, like T5-base (Raffel et al.,
2020) and BART (Lewis et al., 2020b), or variants
of BART using retrieval such as RAG (Lewis et al.,
2020c) and BART + DPR (Petroni et al., 2020).
These systems are based on massive pretrained lan-
guage models, with similar number of parameters
as our model (details in Appendix A.3).

Results: Table 1 contains our results on the test
set of the ELI5 (also on the public KILT leader-
board). We present four variants of our system, us-
ing a different retriever during inference (REALM
or C-REALM), and different nucleus sampling p
values (Holtzman et al., 2020). All variants outper-

Q: Why are almost all boats white?

A: Boats are generally painted white for obvious reasons,
as they are inexpensive and easy to clean. Ships are also
often painted to provide a visible visual contrast to the sea.
Boats also often have high visibility ports to allow for easy
international trade. In addition, many boats have an air-
breathing function that makes them easier to spot and stay
afloat, which is a good thing if you’re a pirate or trying to
get into some country’s waters. Lastly, many ships are built
in the last few decades, so they are not as exotic looking
as they were thirty years ago. And lastly, many ships are
made out of materials that are easy to work with, and so
many of them are painted white as a practical matter. There
are many, many more reasons for why ships are white, but
those are the ones I know of. I’'m sure there are many other
reasons, but those are the ones I know of. Edit: I forgot to
mention that the other answers about visibility and easy to
see ports are also true. Ships are painted to appear to be
larger, and more expensive. That makes them appear more
impressive, and so they are more likely to be bought by
people who want to show off their wealth and status.

Figure 2: Example generation from our LFQA system
with p = 0.9. Generations are long & coherent, but
suffer from repetition towards the end. (more in Ap-
pendix A.4 and attached data supplementary material).

form prior work in generation quality, with lower-
entropy models (p = 0.6) performing best.® c-
REALM performs competitively to RAG and DPR
despite being only distantly supervised, and out-
performs REALM. Our proposed RT+C-REALM
system achieves a new state-of-the-art on combined
performance (KILT R-L). Generations from our
model are provided in Figure 2 and Appendix A.4.

3 Analysis

In this section, we conduct a thorough analysis of
our model’s usage of retrievals (Section 3.1), the
impact of overlap in ELI5’s train / validation / test
folds (Section 3.2), issues with ROUGE-L and per-
formance bounds (Section 3.3), and the difficulty in
human evaluation for this task (Section 3.4). At the
end of each section, we provide short takeaways
with suggestions for future work.

3.1 Are generations grounded in retrieval?

While our retrieval-augmented system achieves
state-of-the-art performance, we find little evidence
that it is actually using the retrieved documents. To
measure this, we run an ablation study where at
inference time we replace retrieved paragraphs with

®As in Holtzman et al. (2020), a human study reveals that
higher entropy (p = 0.9) answers are slightly more coherent
and sensible, but lower entropy answers (p = 0.6) are more
relevant to the question (details in Appendix A.5).
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vs predicted retr.  vs random retr.

R-L l-g 2-g l-g 2-¢g
Predicted 24.42 52.3 9.0 38.8 3.9
Random 24.20 51.2 8.5 38.5 3.9
Gold Ans - 54.1 9.1 40.2 3.8

Table 2: Comparison of generations (with p = 0.6)
conditioned on predicted retrievals (Predicted) and ran-
domly chosen retrievals (Random). Notice small dif-
ferences in: (1) ROUGE-L vs gold answers (R-L); (2)
n-gram overlap (n-g) with predicted retrievals (vs pre-
dicted retr.). Gold answers also have a similar overlap
with predicted retrievals. To control for stopwords, we
show overlaps with the random retrievals.

A B Prefer A Prefer B Tie
Forp =0.6

pred. random 40% (78) 33% ( 64) 27% (51)
pred. goldans. 14% (29) 68% (138) 18% (36)
Forp =0.9

pred. random 31% (52) 37% ( 63) 32% (54)
pred. goldans. 17% (49) 72% (203) 11% (31)

Table 3: Human evaluation results with exact number
of ratings shown in (-). Annotators are shown a ques-
tion along with two answers (A, B) in random order and
ask them to choose one (details in Appendix A.5). For
both model variants (p = 0.6, 0.9), we see (1) little dif-
ference between generations conditioned on predicted
(pred.) or random (rand.) retrievals; (2) strong prefer-
ence for gold answers over generations.

randomly sampled paragraphs from Wikipedia.
We compare this Random baseline with our
original system (Predicted) in terms of generation
quality as well as the n-gram overlap between the
generation and the retrieved paragraphs.

Generations are similar irrespective of type of
retrievals: We present our results in Table 2. De-
spite not being conditioned on any meaningful re-
trievals, the Random retrieval model has similar
ROUGE-L scores as our Predicted system. More-
over, generations from the Random and Predicted
models have similar amounts of 1-gram and 2-
gram overlap with the paragraphs retrieved by C-
REALM, despite the fact that the Random model
does not actually see the retrieved paragraphs.’
The n-gram overlaps are possibly overestimates
due to stopwords (e.g., prepositions, punctuation)
and entities which are copied from the question.

"Corresponding experiments with the p = 0.9 variant of
our model are presented in Appendix A.7.

vs random retr.
but not in gn.

vs predicted retr.
but not in gn.

Vs qn.

(lemmatized nouns, proper nouns, numbers only)

Predicted  13.4% 34.4% 11.9%
Random 13.7% 31.7% 12.1%
Gold Ans 8.3% 28.8% 15.1%

Table 4: A fine-grained version of Table 2 measuring
the unigram overlap of nouns/numbers in the genera-
tions with the input question (vs gn.), retrievals pre-
dicted by C-REALM (vs predicted retr.) and randomly
sampled retrievals (vs random retr.). Similar to Table 2,
notice very little difference with and without retrieval.

To tackle this issue, in Table 4 we measure the
fractions of lemmatized nouns, proper nouns and
numbers in the generated answer which are present
in the predicted retrievals but not in the question.
We notice similar trends as before, with only small
differences between the two systems. Finally, there
is almost no correlation (Spearman p = 0.09)
between the Predicted model’s generation quality
and the amount of unigram overlap between
its outputs and the retrieved documents (scatter
plots in Appendix A.7), strengthening our hypoth-
esis that generations are not grounded in retrievals.®

Human evaluation validates our findings: As
ROUGE-L and n-gram overlap have major
limitations for LFQA (Section 3.3), we perform
additional human A/B testing on the output of
Random and Predicted. Specifically, we ask human
volunteers’ to choose between answers generated
by the two systems (presented in random order).
As seen in Table 3, humans struggle to choose
which of the two answers is more relevant to the
question. For both model variants (p = 0.6, 0.9),
there is a less than 7% preference for a particular
answer type, with humans preferring answers (by
6%) from the Random model for p = 0.9!

Other systems also have this issue, possibly
due to source-reference divergence and train-
validation overlap: We note that this issue is not
unique to our system — other systems on the
KILT leaderboard like BART + DPR and RAG
actually perform worse than their no-retrieval
counterpart (BART) in generation quality, as

8 All these trends persist even on questions for which our
retriever predicts the ground-truth document (Appendix A.7)
“Details of our experimental setup in Appendix A.5.
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shown in Table 1. Qualitatively, we found no
evidence of retrieval usage in a publicly hosted
ELI5 model demo by Jernite (2020).!° A possible
explanation for this issue is high source-reference
divergence, a common problem in table-to-text
generation (Wiseman et al., 2017; Tian et al., 2019).
In Table 2 and Table 4, we measure the n-gram
overlap of top-ranked gold validation answers
(Gold Ans) with predicted retrievals. This overlap
is low and similar to that of our generations,
which we suspect encourages our model to ignore
retrievals. A second explanation is the large
amount of train-validation overlap (Section 3.2),
which eliminates the need for retrieval.

Why does our model do well compared to other
systems despite not using retrievals? While our
model has similar capacity as the BART/RAG
baselines (comparison in Appendix A.3), we
hypothesize that our improvements in ROUGE-L
are due to a different pretraining objective. BART
is pretrained on a masked infilling task on short
sequences. Instead, we pretrain our model to
perform next-word prediction on long sequences
from Project Gutenberg, which encourages long &
fluent generations. To illustrate this length effect,
in Appendix A.6 we show that truncated outputs
from our model get lower ROUGE-L scores
on ELIS.!! Prior summarization literature (Sun
et al., 2019) has also shown that ROUGE scores
vary heavily by length. To compare the same
systems on shorter length outputs, we also tried
finetuning the pretrained model on Wizard of
Wikipedia (Dinan et al., 2019), an unconstrained
dialogue generation task with single sentence
dialogues (much shorter than ELIS). As seen on
the public KILT leaderboard,'?> our system has
lower ROUGE-L scores than the BART / RAG
baselines. Another possible explanation is issues
with ROUGE-L itself, as discussed in Section 3.3.

Takeaway (better evaluation of grounding): For
evaluating LFQA, it is important to run control
experiments with random retrievals & measure
grounding of generations in retrieval. While the
KILT benchmark does attempt to measure the com-

Yhttps://huggingface.co/qa

"While we do not have access to generations from base-
lines on the KILT leaderboard, example generations from the
demo of the BART model in Jernite (2020) are significantly
shorter (59 words avg.) than our generations (187 words avg.).

Phttps://eval.ai/web/challenges/
challenge-page/689/leaderboard/1909

bined retrieval + generation performance via KILT
RL, it does not check whether the generations actu-
ally used the retrievals. In other words, one can sub-
mit independent retrieval & generation systems, but
still perform well on the combined score. This may
not be an issue for short-form QA tasks like Natural
Questions, since the gold answer is often exactly
contained as a span in the gold retrieval. Also, as
retrieval might be less important for large language
models with parametric knowledge (Roberts et al.,
2020), the KILT-RL strategy of simply aggregat-
ing top-1 retrieval score with ROUGE-L unfairly
penalizes systems not relying on retrieval.'3

3.2 Training / Validation Overlap

Our experiments in Section 3.1 show that model
performance is mostly unchanged by conditioning
generation on randomly sampled retrievals instead
of predictions from C-REALM. Despite not using
retrievals, we observe qualitatively that our model
displays a large amount of parametric knowledge
(“Faraday Cage” in Figure 1c), which is surprising
since it was pretrained on novels from Project
Gutenberg (not Wikipedia). In this section, we
discover that a major reason for ignoring retrievals
is the large amount of train / validation overlap in
ELI5. While Fan et al. (2019) attempted to fix
this issue through TF-IDF overlap, this method is
insufficient to identify all question paraphrases, as
we find significant overlap between the training set
and the KILT validation set of ELI5.'* ELIS is not
the only dataset with substantial train / test overlap:
Lewis et al. (2020d) identify similar issues with
short-form QA datasets like Natural Questions.

Finding similar questions & measuring overlap:
We use our retriever C-REALM to retrieve similar
questions from the training set, since it has learned
to map questions to a feature-rich embedding space.
For each validation question, we retrieve the 7 most
similar training set questions. We use both human
and automatic evaluation to calculate the amount
of overlap. For human evaluation, we show anno-
tators on Amazon Mechanical Turk'” a validation
set question and a retrieved training set question,

13 Another issue of KILT-RL is ignoring non top-1 retrievals,
penalizing models using multiple retrievals together in context.

14The ELI5 demo from Jernite (2020) also retrieves the top-
1 similar training set question. Qualitatively, we found many
validation examples had near-identical train paraphrases.

5We pay workers 4 cents per question pair ($8-12 / hr). We
only hire workers from USA, UK and Australia with a 95%
or higher approval rating and at least 1000 approved HITs.
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qns with at least one train set paraphrase 81% Retrieval Generation

qns with at least one train set topically similar ~ 100% Split RPrec R@5 F1 R-L

% of all pairs marked paraphrases 39.5% QQP classifier (1.5k examples)

% of all pairs marked topically similar 47.8%

% of all pairs marked as non-paraphrases 12.7% overlap (43.6%) 17.0 258 26.0 24.6
not overlap (56.4%) 104 17.7 252 242

Table 5: A human evaluation measuring the amount of
overlap between validation set questions (gns) and re-
trieved questions from the training set.

and ask them to annotate the pair as 0: No para-
phrase relationship; 1: on similar topics, but differ-
ent questions; 2: approximately the same question
(an adaptation of the paraphrase evaluation of Kok
and Brockett, 2010). We take 300 validation set
questions and ask three crowd-workers to rate them
against retrieved training questions on this scale,
and consider the label with majority rating. To im-
prove quality, we manually verify their annotations.
Table 5 shows that 81% of validation set ques-
tions have at least one paraphrase in the training
set, while all annotated questions have at least one
topically similar question in the training set, which
indicates substantial training / validation overlap.
The experiment had “fair agreement” with a Fleiss
k of 0.29 (Fleiss, 1971; Landis and Koch, 1977).
As manually annotating question overlap
can be expensive and time-consuming, we also
experiment with automatic overlap detection
methods. In particular, we use a ROBERTa-large
binary classifier (Liu et al., 2019) fine-tuned on the
Quora Question Paraphrase (QQP) dataset (Iyer
et al., 2017) from the GLUE benchmark (Wang
et al., 2019). For 43.6% of the ELI5 validation set,
this classifier marked at least one retrieved question
as a paraphrase (46% for the 300 questions we
annotated). Qualitatively, we notice that this
classifier often mis-classifies retrieved questions
that are valid paraphrases but exhibit significant
lexical or syntactic divergence. This observation,
along with the smaller fraction of valid paraphrases
in the QQP training set (37%), partially explains
the gap between automatic & human evaluations.

Using retrieved QA for generation: Since ELI5
contains significant amount of overlap between the
training and validation sets, a system can simply
copy the answers of retrieved training set questions
instead of actually doing generation. Table 7
shows that by using the longest answer within
the top-K retrieved questions, we outperform
two prior systems (RAG, BART + DPR) that
use retrieval-augmented generation. As an upper

AMT evaluation (300 examples)

overlap (81%) 14.0 20.0 25.0 243
not overlap (19%) 5.3 179 245 248

Table 6: ELIS performance difference (for the p = 0.6
model) between subsets of validation QA having a
question paraphrase (overlap) and not having a ques-
tion paraphrase (not overlap) in the training set. We
see the overlap subset has much better retrieval perfor-
mance and slightly better generation performance.

bound, we also consider a system which uses
the best possible answer to retrieved training
set questions in terms of ROUGE-L (best top-K
train answer). This system gets 28.5 ROUGE-L,
outperforming all others.

ELIS performance on overlapping QA: Finally,
we measure the performance difference between
validation questions that overlap with the training
set vs. those that do not. Since we only have
human annotations for 300 questions (the no-
overlap subset has only 53 samples), we present
this analysis using the QQP classifier’s outputs as
well. In Table 6, we notice large differences of 6.6
RPrec, 8.1 R@5 in retrieval performance favoring
the overlap subset, but only a small generation
score gain of 0.8 F1, 0.4 R-L (which may be
misleading as discussed in Section 3.3).

Takeaway (careful held-out curation): Based on
our findings, we suggest that more careful dataset
curation for LFQA tasks is needed to prevent du-
plicates. While we acknowledge the efforts of Fan
et al. (2019) to fix this issue, we also suggest alter-
native methods to control overlap and focus on eval-
uating generalization in held-out sets: (1) automat-
ically retrieving paraphrases and then running hu-
man validation to eliminate them; or (2) holding out
entire genres or domains to reduce the possibility
of overlap — for example, keeping Q/A on Sports
only in the held-out sets. Note that simply pruning
the existing splits using these criteria will signif-
icantly reduce the size of the held-out datasets;
so we suggest re-splitting the train/validation/test
splits from the entire pool of collected questions.
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3.3 ROUGE-L Bounds on ELI5 Performance

We have seen that simply copying the answer of
a close question paraphrase from the training set
achieves 28.5 ROUGE-L with an optimal selection
among retrieved questions and outperforming all
computational models. But how “good” is this
absolute number? What are some suitable upper
& lower bounds to ROUGE-L scores on ELI5? Is
ROUGE-L an informative metric for LFQA?

Lower bounds are trivial baselines used to test the
vulnerability of datasets or metrics to simple heuris-
tic strategies that do not actually perform the task.
Recent examples include hypothesis-only baselines
for natural language inference (Gururangan et al.,
2018) and passage-only baselines for reading com-
prehension (Kaushik and Lipton, 2018). We evalu-
ate two ROUGE-L lower bounds on ELIS5:

(1) copy the question 5 times and concatenate, as
longer outputs boost ROUGE-L (Appendix A.6);
(2) retrieve a random training set answer.

Our first baseline contains entities often present
in the gold answer, but without actually answer-
ing the question. Our second baseline follows
the “style” of an answer but is completely off-topic.

As an upper bound, we estimate the ROUGE-L
of gold answers themselves. On an average, there
are 12 gold answers per question, so we measure
the ROUGE-L of the longest gold answer with
respect to the other gold answers. We also measure
the maximum pairwise ROUGE-L between two
gold answers for the same question.!® We only
calculate upper bounds for the validation set, since
the gold answers of the KILT test set are hidden.

Lower bounds beat prior work, upper bounds
have low ROUGE-L: We compare our bounds
with actual retrieval augmented generation systems
in Table 7. Both our lower bounds (random
training answer, copy input) are quite competitive,
outperforming RAG (Lewis et al., 2020c) and
performing close to BART + DPR (Petroni et al.,
2020) without actually answering the question!
This shows that ROUGE-L is fairly sensitive
to simply copying entities from the question

!$Note that different gold answers were not written indepen-
dently as Reddit users writing answers can read existing an-
swers and may want to provide a non-overlapping perspective.
Due to the high train/valid overlap, the best top-7 retrieved
answer could be a better upper bound since it is from another
Reddit post (and performs better than best gold answer).

Validation Test
Scheme F1 R-L F1 R-L
random train answer ({.) 17.8 162 17.1 155
copy input ({) 16.6 200 14.8 169
RAG (2020c) 172 161 145 14.1
BART + DPR (2020) 18.8 185 179 174

longest top-1 train answer 252 20.7 21.6 18.7
longest top-7 train answer 269 21.1 22.0 185
RT + c-REALM (ours) 25.6 244 229 232

best top-1 train answer (1) 259 224 - -
best top-7 train answer (1) 31.5 28.5 - -
longest gold answer (1) 267 21.2 - -
best gold answer (1) 29.5 262 - -

Table 7: Upper (1) and lower (/) bounds to perfor-
mance on ELI5. Lower bounds have been submitted
to the public KILT leaderboard, as “Metrics Test”.

as well as stylistic properties of ELI5. On the
other hand, upper bounds (longest gold answer)
perform worse than our system (21.2 vs 24.4).
Suspecting that this result is misleading, we run
another human A/B test by showing volunteers
a question and asking them to choose between
answers generated by our system and the longest
gold answer, shuffled at random.!” As seen in
Table 3, the majority of humans prefer the gold
reference answers vs generations (68% vs 14% for
p = 0.6). In interviews with human annotators
after completing the task, they reported that both
answers were often fluent and stylistically similar,
but one eventually veered off-topic.

Takeaway (better automatic metrics needed):
Our experiments demonstrate that computing the
ROUGE-L of generations against gold answers
is not a meaningful way to evaluate LFQA sys-
tems, since it is not selective enough to differenti-
ate between valid/invalid answers. There is a very
small margin of improvement between trivial lower
bounds and strong upper bounds, with the abso-
lute scores of upper bounds being quite low. We
suspect this is due to the long length of answers
and fairly unconstrained and large output space.
The ELIS dataset has several open-ended questions
with many plausible answers (like What causes
traffic?), often involving analogies. A possible fix
is a sentence-level evaluation and then aggregating
scores across generated sentences, but appropri-
ate penalties are needed for lack of diversity (Zhu
et al., 2018) and short lengths. Other possible fixes

""Human A/B testing details in Appendix A.5.
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include learning task-specific metrics to measure
semantic overlap (Sellam et al., 2020) or metrics to
check factual correctness (Zhang et al., 2020) and
faithfulness to input (Wang et al., 2020; Durmus
et al., 2020; Zhou et al., 2020). Ultimately, all au-
tomatic metrics have their limitations, and human
evaluation is necessary (Celikyilmaz et al., 2020).

3.4 Difficulty of Human Evaluation

To better understand the inherent difficulty of
evaluation in ELI5, we interviewed human
annotators (of Table 3) and found two challenges:

(1) Unfamiliarity with question topics: While
most annotators found the Q/A interesting, they
were often unfamiliar with the technical topics
discussed in the questions. This made it hard
for them to assess answer correctness. The
ELIS dataset has questions in a wide variety of
topics (History, Politics, Biology etc.), while
most annotators were Computer Science graduate
students. While we did allow annotators to use
Wikipedia, they mentioned domain-experts will be
better judges of factual correctness of answers.

(2) Length of Answers: Annotators mentioned
the paragraph-long length of answers made the
task quite challenging. Annotators reported taking
an average of 2 minutes per answer pair, many of
which required careful thought & concentration.
This was especially difficult when only part of the
answer was correct and the rest had contradictions
or repetitions, a common theme in our generations.

Takeaway: Human evaluation is challenging but
necessary for evaluating LFQA. Crowd-workers
are unlikely to spend time reading & analyzing
long text (Akoury et al., 2020). Hence, it is imper-
ative to design simpler evaluations. One effort in
this direction is Dugan et al. (2020), who reveal one
generated sentence at a time and estimate system
quality based on the number of sentences which
fooled humans. Another promising direction is ex-
trinsic evaluation (Celikyilmaz et al., 2020) where
humans actually interact with systems in real-world
scenarios such as the Alexa Prize (Ram et al., 2018)
or STORIUM (Akoury et al., 2020).

4 Conclusion

We present a “retrieval augmented” generation sys-
tem that achieves state-of-the-art performance on

the ELIS long-form question answering dataset.
However, an in-depth analysis reveals several is-
sues not only with our model, but also with the
ELI5 dataset & evaluation metrics. We hope that
the community works towards solving these issues
so that we can climb the right hills and make mean-
ingful progress on this important task.
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Ethical Considerations

Our system faces a similar set of issues as most
modern text generation technology, like fabrica-
tion of facts (Zellers et al., 2019), potential for
misuse (Brown et al., 2020) and reflecting biases
prevalent on Reddit (the ELI5 dataset has been
built using the r/ELI5 subreddit). In our work,
we attempted to make text generators more fac-
tually grounded by conditioning generations on
retrieved Wikipedia articles, hoping to reduce fact
fabrication. Unfortunately, a thorough analysis
(Section 3.1) has revealed that our system is still
not grounding its generations in retrievals, and we
have recommended the design of better metrics to
measure factual correctness to tackle this issue.
Our final models were trained using 64 Google
Cloud TPUs for a total of 32 hours. As men-
tioned in the Google 2019 environment report,'

Bhttps://www.gstatic.com/
gumdrop/sustainability/
google-2019-environmental-report.pdf

4948



“TPUs are highly efficient chips which have been
specifically designed for machine learning applica-
tions”. These accelerators run on Google Cloud,
which has “matched 100% of its electricity con-
sumption with renewable energy purchases, and
has committed to fully decarbonize its electricity

supply by 2030” (https://cloud.google.

com/sustainability). More details on train-
ing time are provided in Appendix A.1.
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A Appendices for ‘“Hurdles to Progress
in Long-form Question Answering”

A.1 Training & Model Details

All our models are developed and trained us-
ing TensorFlow 1.15 (Abadi et al., 2016) and
Tensor2Tensor (Vaswani et al., 2018). Our imple-
mentations are based on the open-source codebases
of REALM ' and the Routing Transformer.
Similar to the REALM implementation, we use
separate processes to run the retriever and generate
training data (using a MIPS search). Since our
retriever is frozen, we do not use the document
index refresher available in their codebase.

Retriever: Our retriever is trained on 64 Google
Cloud TPUs for a total of 4k steps and a
batch size of 12288. We do early stopping on
the validation data (with a smaller batch size
of 512 due to smaller P100 GPU memory).
Our model converges quite fast, reaching its
best performance in 1.5k steps (in 43 minutes)
and needing 103 minutes for the full set of 4k steps.

Generator: Our generator is trained on 64
Google Cloud TPUs, for a total of 100k
steps on the ELIS training set. We use the
pgl9_local_cluster8k configuration avail-
able in the Routing Transformer implementation.
Besides the default hyperparameters, setting 15%
input, attention and ReL U dropout was critical to
prevent overfitting on the training set. We use a
learning rate of 5e-5. Our retrievals, questions and
answers are truncated / padded to 288 subword
tokens (using the PG19 subword tokenizer). We
use a minibatch size of 128 QA pairs, which
corresponds to 332k tokens per mini-batch (of
which, the loss is computed over the last 288
answer tokens, or 37k total tokens). We do not
compute loss over padded tokens, and use special
symbols to separate different parts of the input
context. We reverse the retrieved paragraphs in
context since the model uses local attention layers,
and we wanted higher ranked retrievals to appear
closer to the answer tokens. Our models take about
30 hours to finish 100k steps (0.92 steps / second).

Yhttps://github.com/google-research/
language/tree/master/language/realm

Pnttps://github.com/google-research/
google—research/tree/master/routing
transformer

Attention Maps: We show the 2D plots of our
generator’s attention maps in Figure 3.

L .y

(a) Local attention (b) Routing attention

Figure 3: Figures (from Roy et al., 2020) showing 2-D
attention schemes for the sparse attention mechanism
used in Routing Transformer. Lower layers pool in lo-
cal information via sliding window local attention (Sub-
figure 3a) while upper layers gather global information
for every token via clustering (Sub-figure 3b).

Hyperparameter Choices: We experimented
with several different pretraining strategies (using
Wikipedia), smaller model variants and hyperpa-
rameter choices manually in preliminary exper-
iments. All these experiments performed quite
poorly on ELIS5, producing very short and some-
times incoherent responses. Finally, switching to a
Routing Transformer model which was pretrained
on a longform language modeling dataset (PG-19)
significantly improved generation quality. Hyper-
parameters for this pretrained model (like hidden
size / number of layers) were manually chosen with
model capacity in mind. For our final experiments
with this pretrained model we did not perform any
hyperparameter search during training, primarily
due to the expensive setup required to train the
system. During inference, we tuned the nucleus
sampling value from 0.0 to 1.0 in increments of
0.1, choosing the value with the best validation set
performance. Our hyperparameter choices for con-
trastive learning on the retriever have been justified
in an ablation study in Appendix A.2. Notably, we
use very large minibatches of 12,288 to scale the
number of negative examples. To train this model,
we used the standard trick of data parallelism across
64 hardware accelerators. This resulted in an ef-
fective mini-batch size of 192 per chip, which is
small enough to fit a BERT-base sized model on a
TPU v3 chip’s memory. To accumulate information
across different chips before the final softmax, we
usedthe tf.tpu.cross_replica_sum func-
tion (using an open-source wrapper found here).
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A.2  Ablation Study of C-REALM

One of our contributions is scaling up a distantly
supervised objective for training retrievers on ELIS5,
originally described in Jernite (2020). This method
uses in-batch negative sampling, making mini-
batch size a critical hyperparameter for better con-
strastive learning. We perform controlled exper-
iments initializing our retrievers with REALM-
CCNews (Guu et al., 2020) and varying batch size
and keeping all other hyperparameters consistent.
In Table 8, we notice a steady increase in perfor-
mance as minibatch size is increased, with the
largest gains coming by doubling the batch size
in Jernite (2020) from 512 to 1024. Finally, in pre-
liminary experiments we saw no benefit of more
intelligent negative sampling schemes.

Batch size R-Prec Recall@5
REALM (pretrained) 6.6 14.9
256 6.2 11.0
512 (Jernite, 2020) 6.8 12.6
1024 11.5 21.0
12288 (Ours) 13.3 21.2

Table 8: The effect of minibatch size on the validation
performance of C-REALM. As a baseline, we also add
the retrieval performance of the REALM pretrained
model which is used as an initialization.

Next, we investigate the effect of initialization on
the training of C-REALM. Unlike Jernite (2020)
who initialize their model with BERT, before train-
ing we initialize our retriever with a pretrained
self-supervised retriever. As a baseline, we initial-
ize our model with ICT, a weaker self-supervised
retriever introduced in Lee et al. (2019). Both mod-
els are trained with minibatch sizes of 12228. In
Table 9, we notice a large improvement in perfor-
mance when using a better initialization, confirm-
ing our design decisions.

A.3 Number of trainable parameters

In Table 10 we present the number of trainable pa-
rameters in our model compared to baselines on
the leaderboard. Our generator is slightly larger
than the models used in prior work, but we utilize a
smaller retriever due to the shared query and candi-
date encoders in REALM. Overall, our system has
a similar total number of parameters as baseline
models like RAG and BART + DPR.

Initialization R-Prec. R@5
REALM (pretrained) 6.6 149
ICT (Lee et al., 2019) 93 165
REALM (Guu et al., 2020) 133 212

Table 9: The effect of initialization on C-REALM. As
a baseline, we also add the retrieval performance of the
REALM-CCNews pretrained model without any fine-
tuning on ELIS.

Model Generator Retriever Index
T5-base 220M - -
BART 406M - -
RAG 406M 220M 15B
BART + DPR 406M 220M 15B
RT + c-REALM 486M 110M 15B

Table 10: The number of parameters used by our model
and baselines. Our generator is slightly bigger than
other submissions on the leaderboard, but we use a
smaller retriever with a similar sized index.

A.4 Generations from our System

More generations have been provided (along with
retrievals, highlighted to show n-gram overlap) in
the supplementary material (data) as HTML files.
We also present a few samples in Table 16.

A.5 Human Evaluation Setup

We conducted several A/B tests between variants
of our model using human annotators. We asked
a total of 20 participants for help who voluntarily
agreed to help with the annotation process. Most
participants were English-speaking graduate stu-
dents in computer science. In every test, partici-
pants were shown a question along with two an-
swers (generated by different systems) presented
in a random order. They were then asked to choose
which generation (1) answered the question better
/ which answer was more relevant to the question;
(2) was more coherent / had less repetition; (3) was
more factually correct. Since some annotators had
a limited time, we asked them to prioritize ques-
tion (1) over (2) / (3). Annotators were allowed to
select “Tie” if they could not choose between the
systems. We also permitted them to use search en-
gines, but suggested restricting search to Wikipedia.
We present all our results in Table 15. We also in-
terviewed some participants after the annotation
process and discuss our findings in Section 3.4.
Note that while these A/B tests help us understand
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which system is relatively better, they do not pro-
vide an absolute measure of performance (Celikyil-
maz et al., 2020) — annotators reported that there
were cases where both answers were very good and
other cases where both were very poor. This is a
limitation of A/B testing.

A.6 Effect of length on ROUGE-L

In this section we measure the effect of outputs
lengths on ROUGE-L scores. To conduct this ex-
periment, we truncate generations by our system to
a fixed fraction of tokens across all instances. As
we see in Table 11 in the Truncate column, shorter
generations tend have lower ROUGE-L. To disen-
tangle the effects of length and content, we also
measure the generation quality by repeating the
truncated generations several times until it matches
the original generation length. In the Repeat 1/ f
times column, we notice a gap between our model’s
original generation (24.4 ROUGE-L) and the equal-
length truncated generations with repetition. These
results indicate that while length helps improve
ROUGE-L scores, simple repetition is insufficient.

Fraction f # Tokens Truncate Repeat 1/f times
0.1 18.2 174 18.2
0.2 37.0 20.8 21.1
0.3 55.7 22.2 224
04 74.4 22.9 23.1
0.5 93.4 23.4 23.6
0.6 112.0 23.9 239
0.8 149.4 242 243
1.0 187.3 244 244

Table 11: Effect of truncating generations (Truncate)
from the p = 0.6 model to keep the first f fraction
of tokens, and then repeating the truncated generations
1/ f times to match the original length (Repeat ...). No-
tice a consistent increase in ROUGE-L with longer out-
puts, but a gap between the original generations (24.4)
and equal-length generations formed by repeating trun-
cations (Repeat 1/ f times column).

A.7 More experiments on measuring
retrieval grounding of generations

In this section we provide some more experiments
testing the grounding of generations in retrieved
documents. Overall, trends are consistent with our
observations in Section 3.1.

Scatter plots between generation quality and
unigram overlap with retrievals: We present
this scatter plot in Figure 4. There is virtually
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ROUGE-L vs references
Figure 4: Scatter plot for generations from the p = 0.6
model between generative quality (ROUGE-L vs refer-
ence on X-axis) and grounding with retrieval (unigram

overlap with retrieved documents on Y-axis). The plot
shows no correlation between the two quantities.

no correlation between the two quantities, with
Spearman p = 0.09.

Instances with correct predicted retrieval: In
Table 12, we present results similar to Section 3.1
considering only those instances where at least one
retrieved document matched the gold annotation
(roughly 23% instances). We also present a scatter
plot on the same set of instances in Figure 5 and
note a low correlation of p = 0.13.

vs predicted retr.  vs random retr.
R-L l-g 2-g l-g 2-g

p = 0.6, correct retrieval examples

Predicted 23.74 544 10.0 39.7 43
Random 2391 52.5 9.6 38.8 4.0

p = 0.9, correct retrieval examples

Predicted  22.40 54.9 9.2 409 43
Random 22.22 54.7 9.2 411 42

Table 12: Comparison of generations conditioned on
retrievals from C-REALM (Predicted) and randomly
chosen retrievals (Random), for those cases where C-
REALM predicted the correct retrieval. Notice very
small differences in generation quality (R-L) as well as
the fraction of n-grams (n-g) in the generation overlap-
ping with retrievals predicted by C-REALM (vs pre-
dicted retr.). To control for overlap due to stopwords,
we also add n-gram overlaps with the randomly sam-
pled retrievals.

Experiments with p = 0.9: We conduct addi-
tional experiments studying our model variant with
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Figure 5: Scatter plot for generations from the p = 0.6
model between generative quality (ROUGE-L vs refer-
ence on X-axis) and grounding with retrieval (unigram
overlap with retrieved documents on Y-axis). Unlike
Figure 4, this plot only considers those cases where
C-REALM predicted the correct retrieval. The plot
shows very little correlation between the two quantities
(Spearman p = 0.13).

vs predicted retr.  vs random retr.

R-L l-g 2-g¢g l-g  2-g
Predicted  22.62 539 8.7 40.7 4.1
Random 22.56 53.1 8.4 40.7 4.1
Gold Ans - 54.1 9.1 40.2 38

Table 13: Comparison of generations (with p = 0.9)
conditioned on retrievals from C-REALM (Predicted)
and randomly chosen retrievals (Random). Notice very
small differences in: (1) ROUGE-L vs gold answers (R-
L); (2) n-gram overlap (n-g) with retrievals predicted
by C-REALM (vs predicted retr.). Gold answers also
have a similar overlap with predicted retrievals. To con-
trol for overlap due to stopwords, we also add n-gram
overlaps with the randomly sampled retrievals.

higher nucleus sampling values. As we saw in Sec-
tion 2.3, these generations tend to be more fluent
and coherent, but less relevant to the question. In
Table 13 and Table 14 we find consistent trends
as Section 3.1, with very little difference between
models conditioned on retrievals from C-REALM
and random retrievals.

vs random retr.
but not in gn.

vsqn. vs predicted retr.

but not in gn.

(lemmatized nouns, proper nouns, numbers only)

Predicted  9.1% 32.4% 12.0%
Random 9.4% 30.2% 12.3%
Gold Ans 8.3% 28.8% 15.1%

Table 14: A fine-grained version of Table 13 measur-
ing the unigram overlap of nouns/numbers in the gen-
erations with the input question (vs qn.), retrievals pre-
dicted by C-REALM (vs predicted retr.) and randomly
sampled retrievals (vs random retr.). Similar to Ta-
ble 13, notice very little difference with and without
retrieval.
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A B Question Prefer A Prefer B Tie

Experiment 1: A comparison between nucleus sampling p values (0.6, 0.9), conditioning on predicted retrievals (pred.).
Result: Lower entropy more relevant to question, but higher entropy more coherent and lesser repetition.

p=0.6,pred. p=0.9,pred. Which generation answers the question better? 41% (65) 30% (48)  29% (46)
Which answer is more coherent? 27% (42) 50% (79)  23% (37)
Which ans. is more factually correct + sensical?  30% (47) 37% (58)  33% (52)

Experiment 2: A comparison between generations conditioned on predicted (pred.) and random retrievals (rand.).
Result: Little difference in generation quality / coherence / relevance to question, high amounts of tie.

p=0.6,pred. p=0.6,rand. Which generation answers the question better? 40% (78) 33% (64)  27% (51)
Which answer is more coherent?** 55% (12) 27% ( 6) 18% ( 4)
Which ans. is more factually correct...** 48% (10) 9% (2) 43%(9)

p=0.9,pred. p=0.9,rand. Which generation answers the question better? 31% (52) 37% (63)  32% (54)
Which answer is more coherent? 32% (26) 36% (30)  32% (26)
Which ans. is more factually correct + sensical?  28% (23) 35% (29)  37% (30)

Experiment 3: A comparison between generations conditioned on predicted retrievals (pred.) and the longest gold answer.
Result: Strong preference for gold answers over generations.

p = 0.6, pred. gold answer Which generation answers the question better? 14% (29) 68% (138)  18% (36)
Which answer is more coherent? 7% (8) T1% ( 77) 21% (23)
Which ans. is more factually correct + sensical? 2% ( 2) 76% ( 65) 22% (19)

p=0.9,pred. gold answer Which generation answers the question better? 17% (49) 72% (203) 11% (31)
Which answer is more coherent? 13% (14)  61% ( 65) 25% (27)
Which ans. is more factually correct + sensical? 6% (6) T2% ( 78) 22% (24)

Table 15: Human evaluations experiments with exact number of ratings shown in (-). Differences greater than
10% with more than 50 total samples have been bold marked. The experiments marked with ** have less than 50
samples, so it is difficult to draw meaningful conclusions.
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Q: What causes the trail behind jets at high altitude?

A: The same thing that causes the clouds you see at the start of a storm to form in the first place. The air pressure changes as
the jet moves through the air, causing it to cool down and condense into water droplets. These droplets are in fact a lot
bigger than the water droplets in the clouds, so when the plane passes through them, they can cause the air pressure to
change, causing the water droplets to condense into clouds. This is what you see when you look at a cloud formation from
the ground. In addition to this, when the plane passes through the clouds, it also moves through the air, causing it to change
its temperature, causing the water droplets to condense and form clouds. These clouds are often quite large, and can block
out the sun. This is what you see when you look at a contrail. Finally, the water vapor that forms at high altitudes is cooled
by the air above, and as it cools, it condenses into clouds. This is what you see when you look at a cumulonimbus cloud.
These clouds are even larger than the water droplets in the clouds, and they block out the sun.

Q: How do shampoo and conditioner work?

A: The key ingredients in shampoo and conditioner are usually surfactants, they tend to attract oil from your skin. Shampoo
will usually contain an anti-dandruff agent (dandruff is caused by fungi in your skin which cause dandruff). They also
contain some moisturizing agents (moisturizers are things that stay in your skin longer and protect your scalp from cleaning),
and a lot of anti-dandruff (dandruff is a side effect of high doses of both surfactants and moisturizers) Conditioner will
contain moisturizing agents, like a skin moisturizer. They tend to cause oils to be separated from your hair (e.g. wash your
hair with conditioner instead of shampoo). They both have a foaming agent that makes them foam up (usually Hydrogen
Peroxide). They also have a foaming agent that stops dirt from attaching to your hair. Some conditioner will also suppress
the action of the shampoo (to help prevent dirt from attaching to your hair). So what’s the difference between shampoo and
conditioner? Well, if you combine both the shampoo and conditioner

Q: When glancing at a clock, why does the first second after glancing at it sometimes feel longer than the rest?

A: This is known as chronostasis. Your brain gets used to seeing the second hand move after the first, so it ignores the first
one. If you were to look at the clock a lot, you’d see the second hand move a lot more than the first, and you’d be able to
tell the difference between the second and the first. The second hand will appear to move much slower than the first hand
because your brain is used to seeing the second hand move a lot more than the first. If you were to go on a long trip, you’d
get used to the second hand moving a lot more than the first, and you’d have no problem telling the difference between the
second and the first hand. It’s kind of like how you don’t notice your nose when you’re driving, but if you look at it for a
while, you start to notice it. Your brain is just getting used to seeing the nose move a lot more than the other, and it can’t tell
the difference between the two. It’s kind of like that with your eyes.

Q: Why do Britain and other English empire countries still bow to monarchs? What real purpose does the queen serve?

A: Depends what you define as "purpose". There is no specific purpose for the British monarch - rather, they are figureheads
that serve a role. The role is to have a high degree of influence over a country, though the rules of the monarchy can
somewhat vary from country to country, and the ceremony of "kissing the royal corpse" does not always involve kissing the
monarch. Whether that’s the only reason for the custom, or if it was the only reason, I can’t say, but that’s the reasoning.
When the U.K. was in full power, the monarch was a puppet of Parliament, and the powers of the monarch were transferred to
the Prime Minister and thus to the Prime Minister’s deputy, who then became the Prime Minister. Since then, Parliament has
been able to vote on legislation that goes through the monarch, although they may still act as the monarch’s representative in
negotiating treaties, which can have very very deep consequences. The Queen’s role, as a representative of Britain, doesn’t
necessarily involve her formal approval of any of the laws or legislation that goes through Parliament, though. All that’s left
is for the legislature to pass laws

Q: What exactly is fire, in detail? How can light and heat come from something we can’t really touch?

A: Fire is the chemical reaction of fuel (oxygen) with (what we call) impurities (ash, soot, oil etc). These impurities are
created due to a number of things. If you were to study the chemical composition of a log (or a candle) and analyse it you
would discover the chemical formula (A, C, and G) which is a simplified version of what actually happens. There is always
fuel, and there is always the ash/soot. Wood is made up of mostly carbon and hydrogen and these are the fuels that create
the fire. Hydrogen and oxygen are reactive, and they form water (H20) and CO2 (CO2). If we split a log into smaller
pieces, we start to see the process of combustion as it occurs. The carbon is burned, and with the explosion of CO, H20 and
H2CO2, we get water and carbon dioxide (mostly). If we smash a log together, we start to see what happens when we also
hit another log with another log...imagine smashing two sand castles together. We see how the sand castles and brick castles
form and collapse at different rates...then it starts to burn. The smoke, ash and flames are the actual combustion of fuel.

Q: What goes on in those tall tower buildings owned by major banks?

A: The actual buildings are not there for profit but for show. There are many real world historical buildings that have little to
no effect other than being a symbol of an economic entity or symbol of an era or location, and nothing more. For example
look at Sears, Sears didn’t care what went on inside, it was all about the _appearance_ of its location, the prestige of the
location, the facilities and so on. It didn’t care about how long it took it to operate, it was about how much people would pay
to go see it. Sears was a landmark as a cultural movement and other big companies followed suit, so if you want to see a
building you’ve never seen before, you have to go see Sears, just like you have to see a Toyota Camry for Toyota Camry.
They used to be all about building new factories, some of them if I recall, but now that they’re bigger, that means that more
factory jobs are coming to them. You’ve probably seen them in stores as stores where people buy and sell stuff, so there
aren’t that many places for them to come from. Instead, it’s just for show, a symbol of rich people.

Table 16: Example generations from our LFQA system with p = 0.9.
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