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ABSTRACT

Rationale: Recent advances in the learning sciences offer remarkable potential for improving medical learning and perform-
ance. Difficult to teach pattern recognition skills can be systematically accelerated using techniques of perceptual learning
(PL). The effectiveness of PL interventions is amplified when they are combined with adaptive learning (AL) technology in
perceptual–adaptive learning modules (PALMs).
Innovation: Specifically, PALMs incorporate the Adaptive Response Time-based Sequencing (ARTS) system, which leverages
learner performance (accuracy and speed) in interactive learning episodes to guide the course of factual, perceptual, or pro-
cedural learning, optimize spacing, and lead learners to comprehensive mastery. Here we describe elements and scientific
foundations of PL and its embodiment in learning technology. We also consider evidence that AL systems utilizing both
accuracy and speed enhance learning efficiency and provide a unified account and potential optimization of spacing effects
in learning, as well as supporting accuracy, transfer, and fluency as goals of learning.
Results: To illustrate this process, we review some results of earlier PALMs and present new data from a PALM designed to
accelerate and improve diagnosis in electrocardiography.
Conclusions: Through relatively short training interventions, PALMs produce large and durable improvements in trainees’
abilities to accurately and fluently interpret clinical signs and tests, helping to bridge the gap between novice and
expert clinicians.

Introduction

Recent advances in the learning sciences offer profound

potential to improve medical education. In this paper, we

describe two areas of recent innovation that offer new prin-

ciples and new learning technology in medical learning.

The first, perceptual learning (PL) approaches, teach pattern

recognition, structural intuition, and fluency. The second,

adaptive learning (AL) technologies, optimize learning for

each individual, embed objective assessment throughout

learning, and implement objective mastery criteria. We also

describe recent combinations of these in perceptual–adap-

tive learning modules (PALMs), summarizing their effects in

medical learning domains and providing a detailed

example of their formulation and outcomes based on a

PALM for training interpretation of electrocardiograms.

Conceptions of learning

Underlying much of our work are changing conceptions of

what learning is. As is the case in most instructional set-

tings, medical learning is dominated by declarative know-

ledge – facts and concepts that can be verbalized, and

procedural knowledge – sets of steps that can be enacted.

These are surely important parts of learning; however, they

are neither exhaustive nor do they cover much of what a

medical student or resident needs to master in order to be

an effective practitioner. Bereiter and Scardamalia (1998)

suggested that a pervasive “folk psychology” stereotype

about what learning is affects ordinary people,

practitioners, and learning researchers alike. They called

this implicit standard view the “container” model of the

mind: Learning consists of facts, concepts, and procedures

that we place into the container (the mind), and for later

performance, we retrieve these items.

This conception is much too narrow, and what is miss-

ing relates to persistent problems, and considerable frustra-

tion, in learning and instruction. Students who have been

carefully taught and who have diligently absorbed declara-

tive and procedural inputs fail to recognize key structures

and patterns in real-world tasks, such as interpreting radio-

graphs, ECGs, cytology, and other clinical images and tests.

Trainees may know procedures but fail to understand their

conditions of application or which ones apply to new

Practice points
� Perceptual learning (PL) occurs via experience and

is fundamental to developing mastery in many

areas of medical learning.

� Adaptive Response Time-based Sequencing (ARTS)

is a novel adaptive learning approach that pro-

motes mastery of factual information, procedures,

or perceptual classifications.

� Perceptual and adaptive learning modules

(PALMs) combine ARTS and PL to greatly acceler-

ate learning by novices of complex pattern recog-

nition-based skills.

CONTACT Philip J. Kellman Kellman@cognet.ucla.edu Department of Psychology, University of California, Franz Hall 2349, 405 Hilgard Avenue, Los
Angeles, CA 90095-1563, USA

� 2018 Informa UK Limited, trading as Taylor & Francis Group

MEDICAL TEACHER

2018, VOL. 40, NO. 8, 797–802

https://doi.org/10.1080/0142159X.2018.1484897



problems or situations. And learners may understand but

process slowly, with high cognitive load, causing them to

be impaired in demanding, complex, or time-limited tasks.

In the realm of medicine, there is clearly a gap between

the foundational knowledge gained in medical school and

the ability to recognize relevant, clinical patterns during

residency and beyond.

In the literature on expertise, rather than learning, we

find important clues to what is missing. Studies of experts

in any domain reveal that they extract and incorporate

information differently from novices (Chase and Simon

1973; Kellman and Garrigan 2009). In particular, experts

selectively pick up meaningful structures and relations

while ignoring irrelevancies, and they process task-relevant

information rapidly and with low attentional load. Much of

their expertise arises from perceptual systems that have

become progressively attuned and adapted to the structure

of information in the task domain.

Perceptual learning

How do these expert abilities arise? They are products of

perceptual learning (PL). PL is broadly defined as experi-

ence-induced improvements in the extraction of informa-

tion (Gibson 1969). For example, one learns to recognize

the voices of family and friends, and distinguish among

them, based on experience rather than an analysis of the

frequency characteristics of each. In analogous fashion,

experienced physicians are able to accurately and efficiently

pick out key features of patient scripts and interpret pat-

terns in clinical test results based on experience, rather

than by recalling facts and procedures that they were ini-

tially taught as guides to making such interpretations. A

wealth of research supports the notion that, with appropri-

ate practice in any domain, the brain progressively

improves information extraction to optimize task perform-

ance in that domain (for reviews, see Gibson 1969;

Goldstone 1998; Kellman 2002; Kellman and Garrigan 2009).

PL effects improve information extraction in a variety of

ways. Kellman (2002) argued that there are two broad cate-

gories of improvements: discovery and fluency effects.

Discovery effects involve finding the information that is

relevant to a domain or classification. Fundamental among

discovery effects is selection (Gibson 1969; Petrov et al.

2005): We discover and extract the information relevant for

a task, ignoring or inhibiting information that is irrelevant.

We come to process complex relationships in the available

input to which we were initially insensitive – an improve-

ment in sensitivity in a signal detection sense. PL in the

contemporary sense involves improved use of information

available in the stimulus environment rather than changing

criterion or bias (Gibson and Gibson 1955; Kellman and

Garrigan 2009). Fluency effects involve the efficiency of

extracting discovered information – faster encoding, pickup

of larger chunks (Chase and Simon 1973; Goldstone 2000)

or more parallel processing and reduced cognitive load

(Schneider and Shiffrin 1977). Discovery and fluency may

work iteratively in that a dividend of more fluent perform-

ance is that it frees up resources for discovery of even

higher-order task-relevant information (Bryan and Harter

1899; Kellman and Garrigan 2009).

These effects are evident in experts in many areas of

medical practice. As has been documented in a number of

other domains (Kellman and Garrigan 2009), experts in

medical image interpretation locate targets much more

quickly and accurately than novices and use more efficient

search patterns (Krupinski 2010). As is typically the case, PL

is highly domain-specific (Kellman and Garrigan 2009), and

expertise in medical image interpretation in a given area is

specifically related to repeated experience with relevant

images (e.g. radiologists are not better than lay people at

detecting non-medical targets, such as finding Waldo in

“Where’s Waldo” picture books; Nodine and Krupinski

1998). Interestingly, while expert performance indicates

remarkable domain-specific changes in sensitivity to rele-

vant information, it is not reliably accompanied by con-

scious awareness of how the detection or classification is

being accomplished.

At higher levels of pattern recognition, a surgeon recog-

nizes anatomy in novel cases, distinguishes various tissues,

structures, and planes, and senses the position, progress,

and force of instruments; emergency medical doctors inter-

pret patterns on monitors in trauma care, and experienced

diagnosticians more rapidly and accurately see relations

among tests and symptoms, and combine information from

different sources to make accurate diagnoses.

Perceptual learning technology

Conventional declarative and procedural instruction does

little to advance expert pattern recognition and fluency. In

most domains, in fact, there has been a tacit assumption

that we cannot teach this kind of knowing. Among the

problems in addressing PL with conventional instructional

methods is that much of PL occurs unconsciously (c.f.

Reber 1993; Seitz and Watanabe 2003; Mettler and Kellman

2006). In accord with this assumption, radiologists, sur-

geons, and pathologists, as well as chemists, pilots, and air

traffic controllers, advance through apprenticeship: The eye

of the expert is thought to emerge from “seasoning,”

or “experience.”

PL grows from many classification episodes and feed-

back and from encountering sufficient variation within and

between categories to be learned (Kellman and Garrigan

2009). Computational models of PL stress the discovery and

selective weighting of relevant features and relations

(Petrov et al. 2005; Kellman and Garrigan 2009), a process

that often occurs gradually across many classifica-

tion episodes.

Understanding that pattern recognition learning grows

by classification events opens the possibility of systematic-

ally addressing and accelerating PL using appropriate com-

puter-based interventions. We have developed an

emerging technology of PL (Kellman and Kaiser 1994;

Kellman 2013; Kellman and Massey 2013; Mettler and

Kellman 2014), and in recent research, it has been success-

fully applied to a number of medical learning domains

(Krasne et al. 2013; Rimoin et al. 2015; Thai et al. 2015;

Romito et al. 2016; Krasne et al. under review). PL is sys-

tematically advanced by presenting learners with many

short, interactive episodes during which they encounter a

sufficient number and variety of exemplars, which they

classify into appropriate categories, to train both accurate
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generalization to new exemplars of the same category (e.g.

learning to recognize related examples despite their wide

variation in appearance) and differentiation (learning to

make fine discriminations between easily confusable cate-

gories, such as between melanomas and benign moles or

seborrheic keratoses). Items in the software are organized

into target categories (e.g. diagnostic categories, structural

identifications). Item sets are large, so that individual exem-

plars are unlikely to repeat, and learners master each learn-

ing category to proficiency, with a continuous stream of

specific feedback for both correct responses and various

error types.

Adaptive learning technology

Medical learning could be vastly improved by technology

that adapts to the needs of the individual learner. Students

have different starting points, receive instruction of varying

quality, and differ in components of instruction that they

learn well or poorly. Testing often occurs at the end, not in

the midst, of learning, and it often involves global scoring

rather than rich descriptions of what has and has not been

learned. Improved systems would use accuracy and fluency

measures to guide the spacing (how soon in a sequence a

category should be repeated) and sequencing of learning

events. Likewise, performance measures would guide the

learner to objective mastery criteria for all components of

learning tasks. These are benefits realizable from recent

innovations in AL technology.

There have been a variety of efforts in AL, and evidence

is strong that they produce robust improvements in learn-

ing (e.g. Atkinson 1972; Pavlik and Anderson 2008). Some

limitations of most approaches are as follows: (1) They use

elaborate models that require obtaining prior data from

relevant learners and subject matter to estimate parameters

(e.g. Atkinson 1972; Pavlik and Anderson 2008); (2) they are

primarily focused on accuracy data alone; and 3) they

either do not incorporate spacing effects in learning

(Atkinson 1972) or they add spacing elements in an ad hoc

manner (Pavlik and Anderson 2008).

Considerable research indicates the importance of spac-

ing in optimizing learning and retention. But what is opti-

mal spacing? Some evidence suggests that learning is best

using a fixed schedule of expanded presentation intervals

(Landauer and Bjork 1978; Storm et al. 2010). Other work

suggests equal spacing intervals produce the best retention

(Karpicke and Roediger 2007). Recent work (Mettler et al.

2016) suggests that there is no single, correct answer to

the question of what predetermined recurrence schedule

optimizes learning. The most ideal time for a memory item

or a category in perceptual classification to recur is when

the learner can still respond successfully with some effort

(Pyc and Rawson 2009; Mettler et al. 2016), but this interval

depends on current learning strength of an individual

learner for that item or category. Any predetermined sched-

ule is non-adaptive and thus is insensitive to differences

among learners, differences among items, and interactions

of the two. Further, spacing paradigms based solely on

accuracy as a measure of learning are unable to distinguish

between slower deliberative processes versus automatic

pattern recognition or rapid memory retrieval. Rapid per-

formance with low attentional load is important to compe-

tent performance in complex and/or time-critical tasks,

such as driving, surgical procedures, or decision-making in

medical emergency settings. Adding response time (RT)

provides a window into the type of processing the learner

is using and can also be used to ensure fully fluent per-

formance. Fluent mastery is realized when a learner can

respond accurately and rapidly over long delays.

Adaptive Response Time-based Sequencing (ARTS)

(Mettler et al. 2011) is a novel approach to AL that incorpo-

rates recent research findings regarding spacing and other

principles of learning and memory in a natural way and

uses both accuracy and response speed in spacing and

sequencing categories and for setting learning criteria. In

ARTS, response accuracy and the speed of (accurate)

responses (fluency) are indicators of current learning

strength and serve as inputs to a dynamic spacing algo-

rithm that uses a priority score system to automatically

space and interleave active learning categories. Each cat-

egory is assigned a priority score indicating the relative

benefit of a new exemplar of that category appearing on

the next learning trial, and all learning categories compete

simultaneously as a function of their priority score. Priority

scores for each category are updated after every trial as a

function of accuracy, response time, and trials elapsed since

the previous presentation (Mettler et al. 2011). As learning

strength for a given category increases, the ARTS algorithm

automatically generates lower priority, and longer recur-

rence intervals, as an inverse function of the log of RT.

Figure 1 illustrates how this sequencing and spacing are

determined. The left-hand image illustrates the case of an

incorrect answer, for which another exemplar of the cat-

egory will be presented soon. The middle image illustrates

the case in which an item is quickly classified into its cor-

rect category, for which there will be a long delay before

another exemplar from that category is presented. The

right-hand image illustrates the case of a correct, but slow,

classification event, for which another exemplar of the cat-

egory will be presented with an intermediate number of

intervening trials.

For category learning, learners must respond accurately

and fluently to novel exemplars of categories across delays,

indicating that they are picking up key diagnostic

Figure 1. Illustration of adaptive spacing and sequencing based on response accuracy and speed.
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information amidst irrelevant variation. These features are

fundamental aspects of our AL system that produce trans-

fer and robust learning for real-world settings.

Fluency is used both in arranging the flow of interactive

learning events and is itself a goal of learning, included in

mastery criteria. Meeting mastery criteria requires successful

responses within a designated maximum response time to

multiple successive spaced exemplars of a category. For

example, a mastery criterion for correctly recognizing a spe-

cific histopathologic process (category) might require three

consecutive, accurate identifications of exemplars of that

process with each accurate response occurring within

10 seconds (s). Published research shows that ARTS offers

clear advantages in efficiency and durability of learning in

general (Mettler et al. 2011; Mettler et al. 2016) and in PL

specifically (Mettler and Kellman 2014). The ARTS outper-

forms random presentation (Mettler and Kellman 2014) and

also outperforms a classic AL system (Atkinson 1972) in

tasks involving learning of factual items (Mettler

et al. 2011).

A feature that adds considerable power to the system is

the use of category retirement. Upon meeting mastery crite-

ria, a category is removed from the learning set, which

allows AL to focus each learner’s effort where it is needed

most, on those categories which have not yet been mas-

tered. Pyc and Rawson (2007) used the term “dropout” for

this idea and found evidence that greater learning effi-

ciency can be achieved with this feature, especially in

highly demanding learning situations. The assessment capa-

bilities guide learning to criterion and also offer rigorous,

objective bases for certification. Furthermore, the ARTS sys-

tem is easily configured to provide remarkably efficient

recurrent training. Rapid, automated assessments determine

which categories, classifications, facts, or concepts are still

well-learned and which require refreshment. For the latter,

learning is resumed and is guided to objective mas-

tery criteria.

Perceptual and adaptive learning modules
(PALMs) in medical education

The ARTS system is quite general in that it applies to fac-

tual information, procedures, or perceptual classification. Of

special interest in medical learning, however, is the combin-

ation of AL with PL interventions, since many domains of

medical practice involve complex displays (e.g. areas such

as radiology, dermatology, pathology, electrocardiography,

ultrasound, surgery), that involve extracting key features or

pattern recognition. In recent work, we have developed

and tested online PALMs in a number of challenging areas

of medical learning. These PALMs apply ARTS to perceptual

category learning, using categories relevant to interpreta-

tions of medical classifications such as clinical tests (e.g.

electrocardiograms, pathologic processes, fetal heart rate

tracings), identification of anatomical structures (e.g. in CT

images and ultrasound recordings), and characterization of

lesions (e.g. dermatology). Each category is comprised of a

large enough number of exemplars that repetition of a spe-

cific exemplar is uncommon. These PALMs have consist-

ently produced remarkable acceleration in learning, which

required relatively short interventions and was durable.

Details on several of these interventions have been pub-

lished (Krasne et al. 2013; Rimoin et al. 2015; Thai et al.

2015; Romito et al. 2016).

Integration of ARTS and PL into a PALM and the out-

comes one can observe can be best understood from a

concrete example, the ECG Morphology PALM (Krasne et al.

under review). This PALM aims to train interpretation of 15

categories (diagnoses), 12 of which are manifested as

changes in the shapes of traces within 12-lead electrocar-

diograms (acute or old/indeterminant myocardial infarc-

tions, bundle branch blocks, axis deviations, atrial

enlargements, ventricular hypertrophies), the other three

being related to heart rate (sinus bradycardia, tachycardia,

or a normal sinus rhythm). Within each category, there are

typically 30–40 ECGs (i.e. exemplars), all from different

patients but having the same diagnostic interpretation. The

PALM, itself, unfolds as a sequence of trials, each displaying

a 12-lead ECG image along with four answer choices, only

one being correct. The trainee is allowed 30 s to choose an

answer, after which feedback is given in the form of the

correct answer, a text description of the category’s key fea-

tures, and indicators of these features on the ECG tracing

itself. For correct answers, the response time is also shown.

Sequencing and spacing of exemplar presentation from

each category is determined based on the ARTS priority

system with the minimum spacing for category repetition

set to three intervening trials. The objective mastery criteria

set for retiring each category are three consecutive, accur-

ate answer choices for the category, each within a target

response time of 15 s (fluent responses). The PALM effect-

iveness and durability are assessed via a pretest, posttest,

and delayed test. Each test consists of two unique exem-

plars per category and provides no feedback or adaptive

spacing and sequencing.

54% 58%

76%
86% 85%

90%

MS3 MS4 EM

R2&3

AAccccuurraaccyy
Pre-test Post-test

(A)

30% 33%

46%

66% 68%
78%

MS3 MS4 EM

R2&3

FFllluueennccyy
Pre-test Post-test

(B)

58%

33%

67%

50%

AAccccuurraaccyy FFllluueennccyy

No previous PALM

N=143

PALM 1 yr previously

N=113

(C)

Figure 2. The ECG Morphology PALM significantly improved accuracy (A) and fluency (B) in 12-lead ECG interpretation. A pretest (black bars) taken by MS3&4
students and R2&3 emergency medicine residents shows a progression in performance with increased educational level. A posttest after ECG PALM training
(grey bars) shows all groups reaching approximately the same high level of accuracy and their fluency roughly doubling. p< 0.0001 for each pre- and posttest
comparison. Improvement persisted at least 1 year following training (C). Error bars are one standard error.
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This ECG Morphology PALM was used in training third

and fourth year medical students (MS3 and MS4), and

second and third year emergency medicine residents (R2

and R3). Figure 2 illustrates the effectiveness and durability

of the PALM, with “accuracy” reflecting the percentage of

trials correctly identified within the allotted 30-s window

per trial, and “fluency” reflecting the subset of accurate

answers made within the target response time of 15 s.

Although the medical students started at much lower levels

than the residents, they reached close to the same levels of

accuracy and fluency following PALM training. In addition,

a substantial proportion of their improvement was main-

tained over at least 1 year, and the learning was efficient;

training times averaged between 1.5 h (MS3s) and

40min (residents).

Conclusions

Incorporating approaches that enhance PL and developing

a flexible, user-centric approach to sequencing and spacing

material to be learned, based on the combination of an

individual’s accuracy and response time (fluency) are two

new approaches to enhance medical training, each based

on the knowledge gained from research in cognitive sci-

ence. Their combination in the form of PALMs, along with

the ability to set competency requirements for determining

when a learning category has been sufficiently mastered,

can provide a pathway for training each individual up to a

desired level of proficiency and can serve to maintain that

level of competency as well. Recent reports by others have

also recognized the value and potential of combining PL

and AL. Evered (in press) reviewed the basic concepts and

scientific bases of PALMs and argued that the use of PALM

technology would improve training in cytology. Following

the publication of data from tests of a PALM in transeso-

phageal echocardiography (Romito et al. 2016), an unsoli-

cited editorial in the British Journal of Anaesthesia

commented that perceptual–adaptive learning in PALMs

has “… the potential to revolutionize our traditional

approaches to learning in anesthesia” (Weller 2016). Based

on our own experiences in using PALMs to train medical

students and residents in a variety of areas ranging from

characterizing skin lesions and discriminating histopatho-

logic processes to categorizing fetal heart rate tracings,

interpreting electrocardiograms, and classifying heart func-

tions based on echocardiograms, we, too, think that these

tools can have a significant impact in medical education.
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