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Abstract—The electric network frequency (ENF) is a signature
of power distribution networks that can be captured by multime-
dia signals recorded near electrical activity. This has led to the
emergence of multiple forensic applications based on the use of
ENF signals. Examples of such applications include validating the
time of recording of an ENF-containingmultimedia signal or infer-
ring the grid in which it was recorded. In this letter, we explore a
novel ENF-based application that seeks to characterize the cam-
era that has produced a given video. Inspired by recent work on
exploiting flicker for pirate device identification, we investigate
the use of ENF captured in a video to characterize the camera
that has produced the video through a nonintrusive procedure
that estimates the camera’s read-out time. The proposed technique
has achieved a high accuracy in estimating this discriminating
parameter with a relative estimation error within 1.5%.

Index Terms—Electric network frequency (ENF), read-out time,
rolling shutter, video camera forensics.

I. INTRODUCTION

T HE electric network frequency (ENF) is the frequency
of power distribution networks. It has a nominal value

of 60 Hz in North America and 50 Hz in most other parts
of the world. The ENF typically fluctuates around its nomi-
nal value due to changing loads across the grid. We define the
ENF signal as the changing value of the ENF over time. As
ENF variations are often inherently captured in audio and video
recordings made in areas where there is electrical activity, these
traces have shown promise in recent years for a number of mul-
timedia forensics applications. The ENF signal embedded in
such media recordings can be used to time stamp the recording,
locate its grid of origin, or determine whether or not it has been
tampered with, among other applications [1]–[6].
In this letter, we explore a novel application of the ENF

signal that is targeted at characterizing the camera that has
produced an ENF-containing video. This can be particularly
useful in scenarios where there is a need to verify that a sus-
pect owns a camera that produced a suspicious video. Our
focus is on the widely used cameras with complementary metal-
oxide semiconductor (CMOS) image sensors that employ a
rolling shutter. Unlike a camera employing a global shutter
that acquires all the pixels of a video frame at the same time, a
camera employing a rolling shutter acquires a video frame one
row at a time. Although this sequential read-out mechanism of
rolling shutter has traditionally been considered detrimental to
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Fig. 1. Timing of rolling shutter sampling: the L rows of a frame are sequen-
tially exposed, followed by an idle period before proceeding to the rows of the
next frame.

image/video quality due to its accompanying artifacts, recent
work has shown that it can be exploited with computer vision
and computational photography techniques to produce interest-
ing results [7], [8]. Recent work on ENF, for instance, has made
use of the rolling shutter toward improved ENF extraction from
videos [4], [9], [10].
Fig. 1 illustrates the timing for image acquisition with rolling

shutter. Each row of the frame is sequentially exposed to light
followed possibly by an idle period before proceeding to the
next frame [9]. The amount of time during which a camera
acquires the rows of a video frame, which we denote by the
read-out time Tro is specific to the camera and is a value that is
not typically mentioned in its user manual or specifications list.
In this letter, we characterize the camera that has produced an
ENF-containing video by estimating its Tro value.
The work discussed in this letter is inspired by recent work

on flicker-based video forensics that addresses issues in the
entertainment industry pertaining to movie piracy related inves-
tigations [11], [12]. The focus of that work was on pirated
videos that are produced by camcording video content dis-
played on an LCD screen. Such pirated videos commonly
exhibit an artifact called the flicker signal, which results from
the interplay between the back light of the LCD screen and the
recording mechanism of the video camera. In [12], this flicker
signal is exploited to characterize the LCD screen and camera
that have produced the pirated video, through estimating the
frequency of the screen’s back-light signal and the camera’s
read-out time Tro value.

Both flicker signals and ENF signals are signatures that
can be intrinsically embedded in a video due to the cam-
era’s recording mechanism, and the presence of a signal in
the recording environment. For the flicker signal, the envi-
ronmental signal is the back-light signal of the LCD screen
while for the ENF signal, it is the electric lighting signal in
the recording environment. Here, we leverage the similarities
between the two signals to adapt the flicker-based approach
to an ENF-based approach targeted at characterizing the cam-
era producing the ENF-containing video. Due to the ease of
detecting the nominal value of an embedded ENF signal, the
ENF-based approach works in a completely nonintrusive sce-
nario, whereas the previous flicker-based approach works in a
semi-nonintrusive scenario.
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The rest of this letter is organized as follows. Section II
explains our model for signal capture and the proposed
approach for estimating the read-out time of the camera that
has produced an ENF-containing video; Section III discusses
the experimental setup and results; and Section IV summarizes
this work.

II. MODEL AND PROPOSED APPROACH

ENF traces are embedded in the visual track of video record-
ings through the changing intensity of electric lighting captured
by the camera. The electric light intensity relates to the sup-
plied electric current via a power law thus making its nominal
frequency twice the nominal ENF value, i.e., 120 Hz in North
America and 100 Hz in most other parts of the world. Following
this, the electric light signal can be modeled as a sinusoid

x(t) = Ae sin
(
2πf̃et+ φ

)
(1)

where f̃e := fe(t) represents a variable frequency, correspond-
ing to the ENF component that fluctuates around 100/120 Hz,
and Ae and φ are the magnitude and phase, respectively.

In what follows, we model the light intensity signal captured
in a video by a camera [13]. Then, we describe our proposed
approach to estimate the camera’s read-out time.

A. Modeling the Captured Signal

The process in which a camera acquires a video can be seen
as a two-step process. First, integration of photons happens over
a duration ΔT , which refers to the camera’s shutter speed.
Second, the camera samples the resulting integration signal.
The integration phase can be modeled as a convolution

of the light signal x(t) with a rectangular integration win-
dow h(t) whose Fourier transform can be written as H(f) =
ΔT sinc (fΔT ). The Fourier transform of the signal obtained
is then

Y (f) = X(f) ·H(f) (2)

=
Ae

2

[
e−jφδ

(
f − f̃e

)
+ ejφδ

(
f + f̃e

)]
·H(f) (3)

=
AeΔT

2
sinc

(
f̃eΔT

) [
e−jφδ

(
f − f̃e

)
+ ejφδ(f + f̃e)

]
.

(4)

This allows us to write y(t) as Ã sin(2πf̃et+ φ), where Ã =
AeΔT

2 sinc(f̃eΔT ).
To model the sampling phase of the camera’s acquisition of

the light intensity signal, we first need to define the camera’s
sampling rate. To begin with, we write the camera’s frame rate
fc as fc = 1/Tc, where Tc is the frame period. Tc includes the
period of time Tro required to sample the L rows of a frame
and possibly an additional idle time period. Since the camera
being considered in this letter employs a rolling shutter, each
row is sampled at a different time, so the sampling rate that
we are interested in is not fc, but rather fs = 1/Ts, where Ts

is the time between subsequent row read-outs. For modeling
purposes, we assume that if the camera read-out is performed
continuously at a rate of fs for the entire frame period Tc, i.e.,
in a case where there is no idle time, then the camera would
in principle be able to read out M rows for the duration of Tc

where M ≥ L, with L being the actual number of rows in a
frame. Following this, we can express the camera’s sampling
rate fs as

fs =
1

Ts
=

M

Tc
=

L

Tro
. (5)

In this setting,M is unknown, but L can be found by examining
the video height in the video’s metadata.
We denote the sampled signal by s[n] = y(nTs) for n ∈ N.

This can be written as

s[n] = Ã sin
(
2πf̃eTsn+ φ

)
forn ∈ N. (6)

The intensity value s[n] is the light intensity captured by all
the pixels in the nth row. To make the relation clearer, we
write n as n = kM + l, where k and l are the frame and row
indices, respectively, such that k ∈ {0, 1, 2, . . . , F − 1} and
l ∈ {0, 1, 2, . . . ,M − 1}, with F being the number of frames
in the video.
Replacing n by kM + l in (6), and using (5), we obtain

s[k, l] = Ã sin

(
2πf̃e

Tc

M
kM + 2πf̃eTsl + φ

)
(7)

= Ã sin

(
2π

f̃e
fc

k + 2π
f̃e
fs

l + φ

)
. (8)

Since a video camera’s frame rate fc typically falls in the
range of 24–60 Hz, we would have f̃e > fc. To account for
aliasing, we write f̃e as

f̃e = f̃a +mfc, where m ∈ N and f̃a ∈ [−fc/2, fc/2]. (9)

We can now write s[k, l] as

s[k, l] = Ã sin

(
2π

f̃a
fc

k + 2πmk + 2π
f̃e
fs

l + φ

)
(10)

= Ã sin

(
2π

f̃a
fc

k + 2π
f̃e
fs

l + φ

)
(11)

= Ã sin (ω̃ak + ω̃bl + φ) (12)

where ω̃a = 2πf̃a/fc is expressed in radians/frame and ω̃b =
2πf̃e/fs is expressed in radians/row.

B. Proposed Approach

In this section, we first describe the vertical phase method,
which was inspired by the related flicker forensics work [12]
and on which we based our proposed approach. We then explain
how we adapt the vertical phase method to our ENF-based
approach in a practical setting.
1) Vertical Phase Method: This method examines the evo-

lution of the embedded intensity signal, s[k, l], over frames,
and computes the vertical radial frequency ω̃b to aid the esti-
mation of the read-out time Tro. By exploiting ω̃b’s relation to
the delay between ENF traces in adjacent rows, we can estimate
it through analyzing the phase shift in the discrete-time Fourier
transforms (DTFTs) of the row intensity signals.
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Fig. 2. Results of applying the vertical phase method on a video taken by the
back camera of an iPhone 5.

For simplicity, we first assume that the time-varying param-
eters involved, namely, ω̃a, ω̃b, f̃a, and f̃e, are all constant at
their respective nominal values. We will relax this assumption
in Section II-B(2).
The first step is obtaining an estimate for the aliased fre-

quency ω̃a. To do that, we examine the following modification
of (12):

sl∗ [k] = Ã sin (ω̃ak + ω̃bl
∗ + φ) . (13)

Here, we fix the row index l to a certain value l∗, and the result-
ing signal sl∗ [k] as a function of the frame index k is a sinusoid
of frequency ω̃a. An estimate of ω̃a can then be obtained by
finding the frequency that shows a peak in the Fourier trans-
form of sl∗ [k]. We can equivalently find an estimate of f̃a using
f̃a = ω̃afc/2π and the known frame rate fc. An example can
be seen in Fig. 2(a), where a peak of the Fourier transform is
visible close to the expected f̃a.
The next step is to obtain an estimate of ω̃b. To do that, we

compute the value of the DTFT of sl[k] at ω̃ = ω̃a for each
case of l ∈ {0, 1, . . . , L− 1}. We compile the values into a vec-
tor of size L, resulting in Sω̃a

[l] that we denote as the vertical
Fourier transform. The phase component Φω̃a

[l] of Sω̃a
[l] can

be written as

Φω̃a
[l] = ω̃bl + φ. (14)

An example of this vertical phase can be seen in Fig. 2(b),
wrapped between [−π, π]. After unwrapping this vertical
phase, ω̃b can be estimated from the slope using linear
regression.
Now that we have an estimate of ω̃b, we can compute the Tro

estimate. Examining the definition of ω̃b, and using (5), we can
write it as

ω̃b = 2π · f̃e
fs

= 2π · f̃e
L/Tro

. (15)

Thus, we can use the known values of the frame height and the
nominal ENF value to estimate the read-out time Tro via

Tro =
L · ω̃b

2πf̃e
. (16)

2) Adapting to a Practical Setting: We now discuss how
to modify the above method to obtain the Tro value from the
embedded ENF in a practical setting. We first need to account

Algorithm 1. Proposed approach to compute Tro estimate

1: Pre-process the video for analysis.
2: Find if the nominal frequency f̄e is 100 or 120 Hz.
3: Assign the origin frequency fo := kf̄e, where k := 1.
4: Compute the aliased frequency of fo as: fa,o = fo −mfc,

such that m ∈ N and fa,o ∈ [−fc/2, fc/2].
5: Find the frequency in fa,o’s vicinity with the most linear

vertical phase, and estimate the corresponding slope ω̂b.
6: if the vertical phase is sufficiently linear,
7: Compute Tro as: Tro = (L · ω̂b) /

(
2πkf̄e

)
.

8: else
9: Assign fo := kf̄e, where k := k + 1.
10: Go to Line 4.

for the time-varying nature of the parameters that were assumed
constant in the previous discussion. We also need to account
for the fact that the embedded ENF traces may not always be
strong enough around the nominal 100/120 Hz value. In prac-
tice, it is not uncommon for the ENF traces to be more strongly
captured at higher harmonics of the nominal frequency than at
the nominal value [14], [15].
The steps of our proposed approach are outlined in

Algorithm 1. The first step is to prepare the ENF-containing
video for analysis. The preprocessing operations involved here
can vary depending on the video at hand, with the goal of mak-
ing the embedded ENF detectable with high signal-to-noise
ratio. A number of these enhancement operations have been
discussed in [10]. Examples of such operations include iden-
tifying static regions in the video that are more favorable for
ENF extraction, compensating for camera motion, and com-
pensating for brightness changes that are caused by a camera’s
automatic brightness control mechanism. After preprocessing,
for each frame of the video, we obtain a 1-D vector of size
L, a frame signal, where the the lth entry corresponds to the
contents of the frame’s lth row.
Next, we must ascertain whether the nominal ENF value, f̄e,

is 100 or 120 Hz. This can be done by examining the time–
frequency content in the recorded video. To do so, we connect
the frame signals from consecutive frames and compute the
Fourier transform of the resulting signal. We use the nominal
row sampling rate, defined as the product of the video’s frame
rate fc and the frame height L, as a unit of reference corre-
sponding to the Fourier transform’s frequency axis. Plotting the
Fourier transform would then reveal peaks at the frequency val-
ues of f̃e shifted by multiples of fc [9]. If these peaks appear
close to 120 + n · fc, then f̄e = 120Hz, and if they appear
close to 100 + n · fc, then f̄e = 100Hz (n ∈ N).

Assigning fo := f̄e and via Line 4 of Algorithm 1, we com-
pute the aliased frequency fa,o where we expect to find the ENF
traces. If the ENF values were constant at the nominal value, we
would proceed to compute the vertical phase at fa,o and the cor-
responding slope. As the time-varying ENF is likely not to be at
its nominal value during the recording of the video, the corre-
sponding aliased frequency might not lie at the calculated fa,o.
To account for this, we sample frequencies in the vicinity of fa,o
and compute their corresponding vertical phases. Among the
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TABLE I
CAMERAS USED IN OUR EXPERIMENTS

candidates, we select the most linear vertical phase, where lin-
earity is assessed based on the root-mean-squared (RMS) error
of the linear regression.
Ideally, the estimated slope of the vertical phase can reveal

the read-out time using (16). However, if the vertical phase is
not linear enough and the regression RMS error is not small
enough, the final estimate will be incorrect. We have empir-
ically found that a threshold of 0.04 for the regression RMS
error is a good cut-off value to avoid obtaining erroneous esti-
mates. This may happen when the ENF is not strongly captured
at the nominal value. In such a case, the ENF, if present, may be
more reliably captured at higher frequencies than at the nomi-
nal value, so we assign fo to be the next harmonic of the f̄e and
repeat the procedure.
If a low RMS error cannot be achieved for several itera-

tions, it may become necessary to improve the preprocessing
operations [10].

III. EXPERIMENT AND RESULTS

In this section, we describe the experiment carried out to test
the proposed approach and discuss the results obtained.

A. Experimental Setup

We have recorded short videos (30–75 s long each) using five
different cameras in environments where there is electric light-
ing in Maryland, USA. The aim of the experiment is to analyze
each of the videos using the proposed approach of Section II-B
and estimate the read-out time Tro of the video’s camera.

In order to evaluate the accuracy of our ENF-based Tro esti-
mates, we need to compute ground-truth values for the Tro

values of the cameras at hand. We have employed a proto-
col described in [12] for this purpose. We build a photodiode
equipped circuit that takes as an input a light signal and records
it as a digital signal. We use the circuit to record the back-light
signal of an LCD screen, and then analyze the Fourier transform
of the recorded digital signal to estimate the screen’s back-light
frequency fbl. Afterward, using a video camera that we wish to
characterize, we take a short video, of about one minute long,
by camcording a uniform gray screen displayed on the LCD
screen with the now known fbl. In this controlled setting, the
recorded video will exhibit a strong flicker signal. Using the
vertical phase method of Section II-B(1) and replacing f̃e by
the obtained fbl, we can obtain a confident estimate for the
camera’s Tro value and use it as ground truth for subsequent
experimental evaluations.
We have carried out this protocol using two LCD screens on

the five cameras at our disposal. Table I shows the full details
for the cameras.

TABLE II
ESTIMATED Tro VALUES OF CONSIDERED VIDEOS USING OUR

PROPOSED APPROACH

B. Results and Discussions

We have applied the proposed approach of Section II-B(2) on
the videos taken by the five cameras in Table I. For the videos of
Cameras 1 and 2, we have found good Tro estimates based on
the ENF traces of the second harmonic, while for Cameras 3–5,
we have found good Tro estimates based on the ENF traces of
the base nominal frequency.
Table II shows the results obtained for the five videos. We

can see that we have obtained excellent Tro estimates for all the
cases, with the relative error being within 1.5%.
We have clearly benefited from having short videos in this

experiment, as the U.S. ENF generally remains well controlled
and does not vary much within such a short time window. In the
case where longer videos are to be analyzed, it would be advis-
able to divide the videos into shorter segments and analyze each
separately so as not to be affected negatively by the changing
ENF value over time.

IV. CONCLUSION AND FUTURE WORK

In this letter, we have adapted an approach in flicker-based
forensics for pirate screen and/or camera characterization to an
ENF-based forensic application, whereby we are able to ana-
lyze an ENF-containing video to characterize the camera that
has produced the video. This is done by estimating the cam-
era’s read-out time, or the time needed to read one frame, which
is typically less than the frame period for the commonly used
cameras equipped with rolling shutter. We have tested our pro-
posed nonintrusive approach on short ENF-containing videos
taken using five different cameras, where we have seen high
performance in estimating read-out times.
This work shows the potential for the ENF captured in a

video to characterize the camera that has produced the video.
It can provide corroborating evidence in cases where a video
is linked to a suspect owning a certain camera. In future work,
we plan to examine a wider range of cameras to investigate the
variability in read-out time values and thus better understand
the broad applicability and performance of this approach. We
also plan to investigate further video camera characteristics that
can be extracted based on analyzing the captured ENF.
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