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Outdoor ambient acoustical environments may be predicted through machine learning using geospatial
features as inputs. However, collecting sufficient training data is an expensive process, particularly when
attempting to improve the accuracy of models based on supervised learning methods over large, geospatially
diverse regions. Unsupervised machine learning methods, such as K-Means clustering analysis, enable a
statistical comparison between the geospatial diversity represented in the current training dataset versus the
predictor locations. In this case, 117 geospatial features that represent the contiguous United States have
been clustered using K-Means clustering. Results show that most geospatial clusters group themselves
according to a relatively small number of prominent geospatial features. It is shown that the available
acoustic training dataset has a relatively low geospatial diversity because most training data sites reside in a
few clusters. This analysis informs the selection of new site locations for data collection that improve the
statistical similarity of the training and input datasets.
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1. INTRODUCTION

Ambient noise, and its effects, have been the focus of study across many disciplines including psychology!=,
medicine*®, urban planning’, and ecology®. One method for predicting outdoor ambient noise—developed by Mennitt
et al>'"—utilizes machine learning on sampled ambient acoustic data from across the contiguous United States
(CONUS). This method can be described in two parts: (1) The collection of outdoor acoustic data and geospatial
features (e.g., roads, nighttime lights, etc.) across CONUS, and (2) training a machine learning model to learn the
relationship between outdoor acoustic environments and geospatial features, enabling predictions across a larger
geographic area. Details on creating a machine learning model for predicting ambient acoustic soundscapes have been
published by Pedersen et al.!!

The focus of this paper is the optimal experimental design (OED) of part (1), informed by part (2); namely, the
optimal collection of new acoustic data at targeted locations such that the uncertainty of predictions made is
minimized. OED can also be classified as a type of active learning in the field of machine learning and data
acquisition'>'?, The goal of OED is to use the output of a given learned model to inform where additional data is
required to optimize model performance'#'°,

The challenge posed by our acoustic dataset is a low ratio of available training data when compared with the size
and geospatial diversity of acoustically unmeasured areas across CONUS. The effect of this sparse training set is a
high amount of uncertainty in predictions made at locations where little to no training data at geospatially similar
locations is available. This uncertainty in our model predictions can be a guide to where more training data is needed.
However, for a more complete understanding of where our training data struggles to represent areas geospatially, we
performed a comparative analysis to measure the overall geospatial similarity between our training data set and the
entire CONUS area using a joint k-means clustering analysis.!”!® The clustering analysis identified where our training
data lacked enough data points in certain geospatial clusters and that these under-sampled clusters correlate with arecas
of high uncertainty in our model predictions. Using this clustering analysis as a guide, we simulate adding new acoustic
data and attempt acoustic measurements in areas labeled as under-sampled geospatial clusters in Utah. We find the
addition of this data helps to reduce the uncertainty of our model significantly in other areas across CONUS that are
geospatially similar. As such, this targeted data acquisition and implementation of OED should significantly improve
the ability of our model to make predictions with far fewer additional data points and for a fraction of the cost of
random data sampling.

2. GEOSPATIAL DATA

We compile geospatial data from the National Parks Service (NPS) Natural Sounds and Night Skies and Inventory
and Monitoring Divisions. The data consists of 117 geospatial feature layers, with each geospatial layer representing
a different physical metric across the CONUS defined by latitude and longitude coordinates. These values are
measured in a variety of units such as proportions of land cover, ratios, area densities, frequency of flight observations,
distances, measured light intensity from satellite imagery, etc. More generally, our geospatial layers can be sorted into
six categories: topography, climate, land cover, hydrology, anthropogenic, and position. An example for each category
of geospatial layer can be seen in Figure 1. For more details on the collection of feature data see Pedersen et al.!!

To account for numerical range differences which are inherent in a variety of physical units, we apply a standard
scaling method to ensure equal weighting for each feature layer. This process performs an affine transformation such
that each geospatial layer has a mean of zero and a standard deviation of one. For simplicity, this is the only scaling
method we use for our data. However, other scaling methods may prove useful in future research.
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Topography Climate

] 500 1000 1500 2000 20 40 60 80 100 120 140 160

Digital elevation, height above sea level, meters 10 year average winter precipitation, mm
Land Cover Hydrology

0 0.1 0.2 0.3 0.4 0.5 0 1000 2000 3000 4000 5000

Proportion of forest landcover, percentage Distance to nearest stream with Strahler order greater than 1, meters
Anthropogenic Position

0.1 0 0.1 0.2 03 0.4 0:5 -120 -110 -100 -80 -80 -70
Mean upward radiance at night, nano-Watts/(cm2"sr) Longitude, degrees

Figure 1. Examples of the six categories of geospatial data layers found in our input data set.

3. CLUSTERING ANALYSIS

Clustering is a form of unsupervised machine learning that attempts to sort data into groups, or clusters, by
measuring the geometric similarity of data groups'”'®. Clustering analyses are also useful in other acoustic data
applications such speech analysis'® and room acoustics®’. However, in the case of geospatial acoustics, we performed
clustering on the geospatial components of our data to locate sites where new ambient acoustic data should be taken.

We use a k-means clustering analysis on our geospatial layer data in hopes of objectively identifying which
geospatial sites are unique from one another according to the values of their geospatial features. The goal of k-means
clustering is to partition data into K clusters based on geometric proximity of data objects to each other, where K is a
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predetermined number of how many clusters we expect to see in the data. Each cluster is assigned a centroid, defined
as the center point of each cluster, which is then moved iteratively until all centroids have reached a certain threshold
of stability.?!??

While it is easier to visually discern possible cluster groupings in two or even three-dimensional data, higher
dimensional data—such as our 117 geospatial feature layers—can prove difficult to intuitively visualize. There are,
however, computational methods for determining the optimal number of clusters K. One such method is called an
"Elbow analysis"?? which is done by calculating the average distortion (d) for each number of clusters K,

1w ,
dK=N E (X; —cx)
i=1

where N is the number of data points and (X; — cx)? is the squared distance between the data X; and its nearest cluster
center cg. Plotting the average distortion value for each number of clusters K creates a distortion curve, which
monotonically decreases until K > N. We can use this curve to determine at which point we begin to see diminishing
returns in the descriptive power of adding more clusters to the analysis.

We determine that a reasonable number for geospatial clusters occurs around K = 12, being around the
inflection point of the distortion curve as shown in Figure 2. While we do not believe that only 12 discrete unique
geospatial clusters exist across the Contiguous United States, we do believe 12 clusters sufficiently generalize the
different types of geographic regions that should also be observed in our training data set. However, future research
may explore finer resolution clustering by performing a hierarchical clustering analysis.>*
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Figure 2. Elbow analysis performed on geospatial data set, showing the average distortion calculated for each
number of clusters K. The red dot at K= 12 represents approximately the point of diminishing returns where adding
more clusters does not significantly further describe the data set.

Geospatial clusters are most easily observed when projected onto the two-dimensional space of latitude and
longitude, effectively creating a “cluster map” of the CONUS area. This cluster map using 12 clusters for CONUS is
shown in Figure 3, with cluster colors being arbitrarily assigned to cluster numbers for maximum contrast. A more
zoomed in map of the Utah area is shown in Figure 4. By performing a cross correlation analysis of each geospatial
feature compared with each predicted cluster, we can gain some insight into which features contribute the most to the
assignment of each cluster. The top five correlated features for each cluster are show in Table 1.
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Figure 3. Cluster map of the contiguous United States for K=12 clusters. Each color represents a different cluster
label and is assigned arbitrarily.
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Figure 4. An enlarged section of the cluster map showing Utah and the Wasatch Front. Black lines indicate major

roads and highways while white lines indicate state boundaries. Each color represents a different cluster label and
is assigned arbitrarily.
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These correlations motivate our human interpretation of geospatial cluster assignments. For example, we see that
cluster 2 correlates most with areas relating to cropland, cultivated land, and land used for grazing; all of which are
related to land used for farming in more rural areas. Additionally, clusters 5 and 6 correlate most with features related
to concentrated population and land modified for human use. These correlation results lead us to believe that a 12-
cluster model is a good generalization for determining significantly different geospatial areas.

Table 1. The top 5 correlated features for geospatial clusters according to the absolute value of the calculated correlation
coefficients, where a value of 1 represents perfect correlation and a value of -1 perfect negative correlation.

Cluster # Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

1 Institutional Built Extractive Shrubland Summer Max Temp
(0.89) (0.32) (-0.16) (0.15) (0.10)

2 Cropland Cultivated Grazing Distance to Coast Winter Max Temp
(0.86) (0.80) (-0.32) (0.31) (-0.27)

3 Shrubland TdewAvgSummer Elevation Summer Grazing
(0.64) (-0.52) (0.51) Precipitation (0.42)

(-0.44)

4 Deciduous Exurban High Timber Forest Annual Precipitation
(0.70) (0.61) (0.55) (0.52) (0.39)

5 Suburban Exurban Low Developed Built RddAll
(0.63) (0.63) (0.52) (0.50) (0.43)

6 Urban Low VIIRSMean VIIRSMinimum Major Roads Developed
(0.76) (0.72) (0.71) (0.69) (0.67)

7 Wet Wetlands TdewAvgAnnual Annual Min Temp Summer Precipitation
(0.62) (0.58) (0.49) (0.44) (0.42)

8 Natural Water Water Extractive Barren TdewAvgWinter
(0.70) (0.64) (-0.28) (0.15) (0.14)

9 Evergreen Slope Forest Elevation Summer Min Temp
(0.79) (0.52) (0.51) (0.51) (-0.48)

10 Herbaceous Grazing Distance to Coast Winter Precipitation Winter Min Temp
(0.81) (0.42) (0.34) (-0.31) (-0.29)

11 Shrubland Annual Max Temp Annual Min Temp Grazing MilitarySum
(0.50) (0.47) (0.36) (0.34) (0.29)

12 Mixed Forest Winter Max Temp Annual Max Temp Forest Deciduous
(0.53) (-0.32) (0.31) (0.30) (0.29)

4. TARGETED ACOUSTIC DATA COLLECTION

By comparing the occurrence of cluster assignment across the CONUS area with the occurrences in our training
data we see that several geospatial clusters are significantly under-represented in our training set of acoustic data, as
shown in Figure 5. The goal of our data acquisition approach is to maximize the benefit of adding the fewest possible
data points to our training data set. In our case, we quantify the benefit added by data through the reduction of
uncertainty in model predictions, where uncertainty is measured by the standard deviation of predictions made by an
ensemble of machine learning models as described by Pedersen et al.!! Instead of sampling data randomly to reduce
the overall uncertainty of acoustic predictions, we hypothesize that a more targeted approach to adding data will yield
targeted reductions in model uncertainty.
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Figure 5. The occurrence of cluster assignment across the contiguous United States (A), and in our training data
set (B).

We took acoustic data in two rural locations along the Wasatch Front metropolitan region in the north-central part
of Utah and ran a series of tests to measure uncertainty reduction in predictions made across each geospatial cluster.
Because of the discrete nature of data clustering, it is possible to take data in regions that lay near the border of several
clusters when considering the values of their geospatial features, making it sometimes difficult to precisely identify
geospatial cluster regions while taking field measurements. Consequently, while our intention was to take data in
under-sampled cluster regions, the actual data taken in this study ended being narrowly located in Cluster 3. However,
when measuring the distance of each site in the feature space to each cluster centroid, as shown in Figure 6, we see
that the next closest cluster centers are Clusters 9, 10 and 11. The effect of these data, and proximity to multiple
clusters, are discussed further in our results.

30 A Eureka
Jericho
25 1
20 A
15 A

104

Distance to Centroid

0 r 1 1+ T Ir r 1+r 1T T’ 1T 1T —1
1 2 3 4 5 6 7 8 9 10 11 12
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Figure 6. The calculated distance in feature space of the two added sites to our dataset, named the Eureka (Blue)
and Jericho (Orange) sites.

The measurements were made using a Larson Davis 824 sound level meter with Type-1 half-inch free-field
microphone. The meter was kept inside weather resistant casing to protect against heat and moisture. The microphone
was placed on a stake approximately 5 ft above the ground and covered with a wind screen to prevent wind noise
contamination. An example of a typical data acquisition setup is shown in Figure 7. Additionally, we chose
microphone placement to be sufficiently far from potential sound sources (e.g., immediately adjacent to a road) to
hopefully prevent measurements from being influenced by individual sound events. We collected measurements for
several days at each site to provide enough averaging for both daytime and nighttime ambient sound levels
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.-“-.:‘_‘i.-'- 5 & e )
Figure 7. Data acquisition setup for collecting
measurements of outdoor ambient sound.

S. RESULTS

To measure the effect of these new data on our model predictions, we incorporate the summer daytime L50
measured levels from each location into the training dataset. A script is generated to load in the training dataset of 502
measurement sites, not including the two new locations, and randomly leave out ten sites. After the ten random sites
are removed, the remaining data is scaled using a standard scaler and the six ensemble models are trained on the data.
Predictions are made for a low-resolution map of CONUS sound level predictions, and the standard deviation of
ensemble model predictions is calculated. Then, two sites from the ten removed sites are added back into the training
data before scaling was applied. The data is then scaled, and predictions and uncertainties are calculated again. The
two sites that were added from the original removed ten sites are then removed again, and this entire process is repeated
by sampling without replacement from the remaining eight sites until no sites remain. Lastly, data from our two new
targeted locations are added to the set of 492 sites and predictions and uncertainties calculated. This process is
performed 100 times, randomly ordering the 502 sites each time.

For each run, the mean uncertainty of predictions from each cluster is calculated. Histograms are generated to
show changes in the mean uncertainty by adding two random sites from the training dataset or by adding the new
targeted data sites. Our results show that adding only two data sites, when targeted for specific geospatial clusters,
measurably reduced the uncertainty of predictions made in their related clusters while leaving the uncertainty of
predictions made in other clusters unaffected. We show this in Figure 8, where the uncertainty in clusters 3, 10, and
11 is reduced while cluster 9 is unaffected, which is characteristic of all other clusters. It should be noted that even
though the cluster label for both sites is Cluster 3, the proximity of each site to the cluster centers of Clusters 10 and
11 is enough to reduce the uncertainty model predictions for those regions. Additionally, even though the data are also
close in the feature space to Cluster 9, we see no effect due to the already large proportion of data in Cluster 9 already
present in our dataset.

Proceedings of Meetings on Acoustics, Vol. 35, 055008 (2020) Page 8



B. A. Butler et al. Clustering of inputs for geospatial model to optimize data collection

Cluster 10 Cluster 11
0.2‘ — — T 0.2‘ —— — T
[ mnitial Sites [ nitial sites
i [ ]2 Random Additions § [""12 Random Additions
0.15 I [__|BYU Additions ] 0.15 - 1 [ |BYU Additions ]

0.1 H

Occurrence
=]
-
T
1
Occurrence

0.05 -

0 i 0
2 25 3.5 2 25 3.5
Mean Standard Deviation Mean Standard Deviation
Cluster 3 Cluster 9
0.2 L e e e B e e 0.2 — T T T T T T T T T
I [ initial Sites I [ initial Sites
M "1 2 Random Additions r ["]2 Random Additions
015 [__]BYU Additions ] 0.15 0 [___]BYU Additions ]

0.1 0.1+

Occurrence
1
Occurrence

0.05

3 3.5 2 2.5 3 3.5
Mean Standard Deviation Mean Standard Deviation

Figure 8. Histograms showing the uncertainty of predictions made using three different data sets over multiple
trials. The first set of predictions (blue) consist of our initial data with two random sites left out of the model. The
second set of prediction (red) add the two random sites back into the model, while the third set of predictions
(yellow) add instead the two sites in Utah labeled as Cluster 3. We see the uncertainty of model predictions are
reduced in locations labeled as clusters 3, 10, and 11, while predictions in Cluster 9 is unaffected (which is
characteristic of all other clusters).

6. CONCLUSION AND FUTURE WORK

Although this work is preliminary, we have shown a framework for using a targeted data collection approach that
can reduce uncertainty of machine-learned acoustic predictions in specific geospatial clusters across all of CONUS.
Additionally, this combination of using both supervised and unsupervised methods to drive the optimal experimental
design of our model adds another layer of validation which may prove valuable in validating predictions made by
future acoustic models. For future work, we can use this same method to guide data collection efforts in under-
represented geospatial clusters to reduce model uncertainty while minimizing the number of data points needed to our
total training dataset. This targeted data collection will also help to reduce the cost of taking data because data taken
in one cluster has an apparent effect on predictions made in that cluster across CONUS, i.e. data taken in Cluster 2 in
Utah likely affects predictions made in Cluster 2 across CONUS. Thus, the need to travel to specific locations of
model uncertainty in order to collect data may be reduced. Rather, we need only to travel to the nearest location of a
cluster where there is a high prediction of uncertainty. The hypothesized benefits of this data collection methodology
is the subject of ongoing work.
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