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Stochastic Quasi-Newton

Methods

This article discusses recent developments to accelerate convergence of stochastic
optimization through the exploitation of second-order information and shows
applications in the context of predicting the click-through rate of an advertisement
displayed in response to a specific search engine query.

By ARYAN MOKHTARI

ABSTRACT | Large-scale data science trains models for data
sets containing massive numbers of samples. Training is often
formulated as the solution of empirical risk minimization prob-
lems that are optimization programs whose complexity scales
with the number of elements in the data set. Stochastic opti-
mization methods overcome this challenge, but they come
with their own set of limitations. This article discusses recent
developments to accelerate the convergence of stochastic
optimization through the exploitation of second-order informa-
tion. This is achieved with stochastic variants of quasi-Newton
methods that approximate the curvature of the objective func-
tion using stochastic gradient information. The reasons for
why this leads to faster convergence are discussed along
with the introduction of an incremental method that exploits
memory to achieve a superlinear convergence rate. This is
the best-known convergence rate for a stochastic optimization
method. Stochastic quasi-Newton methods are applied to sev-
eral problems, including prediction of the click-through rate of
an advertisement displayed in response to a specific search
engine query by a specific visitor. Experimental evaluations
showcase reductions in overall computation time relative to
stochastic gradient descent algorithms.

KEYWORDS | Optimization algorithms; quasi-Newton methods;
stochastic optimization.

LINTRODUCTION
Convex statistical risk minimization (SRM) problems
involve determination of an optimal parameter w* € R”

Manuscript received January 29, 2020; revised April 14, 2020, August 17, 2020,
and September 8, 2020; accepted September 8, 2020. Date of publication
September 28, 2020; date of current version October 27, 2020. This work was
supported in part by the National Science Foundation (NSF) under Grant
CCF-2007668. The work of Alejandro Ribeiro was supported by NSF HDR
TRIPODS under Grant #1934960. (Corresponding author: Aryan Mokhtari.)
Aryan Mokhtari is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX 78712 USA (e-mail:
mokhtari@austin.utexas.edu).

Alejandro Ribeiro is with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
aribeiro@seas.upenn.edu).

Digital Object Identifier 10.1109/JPROC.2020.3023660

, Member IEEE, AND ALEJANDRO RIBEIRO

, Member IEEE

relative to a convex cost f(w, ®) that is averaged over the
probability distribution of the random variable ©:

W := argmin F'(w) = argmin Ee[f(w, ©)]. (1)
WERP WERP

The problem in (1) is statistical in that we are minimizing
a cost averaged over a distribution. A close relative of (1) is
empirical risk minimization (ERM), in which we are given
N samples 6; and the goal is to find the minimum cost
averaged over the given samples:

N
1

Ww" ;= argmin f(W) := argmin — w,0;). 2

gmin f(w) WgERPN;f( ). @

wERP

The statistical problem in (1) can be interpreted as an
alternative writing of (2) if we consider the samples 6, to
be drawn uniformly at random with probability 1/N. More
common and more interesting is to think of the samples 6;
as drawn from the random variable ©. In this case, (2) is
an approximation of (1) if N is sufficiently large and the
cost functions satisfy mild regularity conditions.

Solving (1) or (2) comes with a unique challenge
that is the difficulty of computing descent directions.
For instance, computing gradients of f(w) in the ERM
problem in (2) requires that we compute individual
gradients of each of the N functions f(w, €;), an operation
with prohibitive cost when N is large. In the SRM problem
in (1), the cost of computing gradients is compounded
with the cost of acquiring the probability distribution of
the data set. Yet, it is clear that the acquisition of this
distribution, as well as the large computational costs of
evaluating gradients, is unnecessary. Both the gradients
of F(w) in (1) and f(w) in (2) can be approximated by
(sub)sampling a batch of data points ;. In fact, any batch
(sub)sampling of data points 6; yields stochastic gradients
characterized by the fact that their expected values are
either a gradient of F(w) or f(w), depending on the
problem that we are considering.
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This unbiasedness of stochastic gradients indicates that,
on average, they point in the right direction. It is, there-
fore, reasonable to expect convergence toward the optimal
argument of a stochastic gradient descent (SGD) method
in which we iterate through variable updates in directions
determined by corresponding stochastic gradients. This
reasonable expectation turns out correct as can be formally
established with simple martingale arguments.

At this point, it is important to remark that the interest
in SGD has grown in the last decade because of the central
role it plays in machine learning. Within this context,
the objective is to learn the parameter w that minimizes
the loss f(w,®) over the probability distribution of data
entries ©. This is the SRM problem in (1). The assumption
in machine learning is that the probability distribution
of the data is unknown, but that we can access samples
from the data distribution. This can lead directly to the
formulation of an SGD algorithm. Alternatively, we can
group available samples to write the ERM problem in (2).
This also leads to the formulation of an SGD method. The
interest in SGD, therefore, stems from its use in SRM,
in general, and ERM, in particular. It is not exaggerated
to say that SGD is the workhorse of machine learning.

Such widespread use of SGD is in spite of its slow
convergence. It takes large numbers of iterations to
approximate w*. This is not a surprise to any reader
familiar with optimization methods or statistical methods.
Indeed, deterministic gradient descent converges slowly
when the level sets of the objective function are not
close to spherical, and in the case of stochastic gradient
descent, this is compounded with the need to average
out the randomness in gradient computations. Two of the
most active research areas of the last decade are con-
cerned with methods to overcome both these limitations
(see Section I-A for a review of existing literature).

The goal of this article is to survey the stochastic
quasi-Newton methods that have been shown in theory
and practice to mitigate the effects of challenging curva-
ture in stochastic optimization. The methods that we will
describe are inspired by the Broyden-Fletcher—Goldfarb—
Shanno (BFGS) method [1]-[4] that is used in deter-
ministic optimization when computing Newton steps is
impossible or undesirable. In particular, we will cover the
following methods.

Online BFGS and regularized stochastic BFGS: Wherever
BFGS uses a gradient, online (o) BFGS replaces it with
a stochastic gradient. This simple modification creates an
algorithm that is experimentally observed to outperform
SGD [5]. A drawback of oBFGS is that, in some situations,
it generates divergent sequences. This happens because the
noise of stochastic gradients can be catastrophically ampli-
fied in curvature estimation. Regularized stochastic BFGS
(RES) [6] resolves this issue with the incorporation of reg-
ularization. We point out that regularizing a quasi-Newton
method is not straightforward because the simple addition
of a regularizer would eliminate the benefits of curvature
estimation. RES chooses a regularizer that is guaranteed to
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keep the benefits of o BFGS while avoiding the possibility of
divergent steps (see Section III).

Online limited memory BFGS: Stochastic BFGS inherits
from BFGS an iteration cost of order O(p?), in which
RES further scales to order O(p®). The online limited
memory (oL) BFGS algorithm reduces this computational
cost [7], [8]. The fundamental idea in stochastic BFGS,
RES, and oLBFGS is to continuously estimate the objec-
tive’s curvature using past stochastic gradients. They differ
in that stochastic BFGS and RES use all past stochastic gra-
dients to do so, while oLBFGS uses a fixed moving window
of 7 past gradients. This modification, along with careful
algebraic manipulations, yields the computational cost of
order O(7p). Using oLBFGS extends the applicability of
stochastic quasi-Newton methods to problems where w is
of high dimension (see Section IV).

Linearly convergent stochastic LBFGS algorithm: RES and
oLBFGS are successful in expanding the application of
quasi-Newton methods to stochastic settings, but their
convergence rate is sublinear. This is not better than the
convergence rate of SGD and, as is also the case in SGD,
is a consequence of the stochastic approximation noise that
necessitates the use of diminishing stepsizes. To resolve
this issue, there has been a recent line of work on variance
reduction techniques for the first-order methods that allow
achieving linear rate while using a fixed stepsize [9]-[17].
The stochastic LBFGS (SLBFGS) method proposed in [18]
leverages this idea to reduce the noise of gradient esti-
mation in stochastic quasi-Newton methods, leading to a
linearly convergent method (see Section V).

Incremental quasi-Newton: The use of variance reduc-
tion techniques in SGD recovers the linear convergence
rate of GD [12]. On the other hand, the use of variance
reduction in stochastic quasi-Newton methods leads to
a linear convergence rate [18] but does not recover a
superlinear rate. Hence, there exists an interesting mis-
match, and a natural question that arises is the possibility
of a stochastic (incremental) quasi-Newton method that
recovers the superlinear convergence rate of deterministic
quasi-Newton algorithms. The incremental quasi-Newton
(IQN) method proposed in [19] uses variance reduction
techniques as well as a consistent Taylor’s expansion to
attain superlinear convergence. IQN is the only stochastic
quasi-Newton method that is known to achieve superlinear
convergence (see Section VI).

The methods that we survey in this article offer a set
of choices of broad applicability. For problems where the
variable dimension is small, RES is a workable alternative.
For a larger dimension, oLBGS offers some of the advan-
tages of curvature estimation along with a computational
cost that is not significantly larger than the computational
cost of regular SGD. For the finite-sum setting, in which it
is possible to compute the exact objective gradient once in
a while, SL-BFGS is the method of choice as it converges
linearly. IQN is the best-performing algorithm in theory
and practice. However, the implementation of the variance
reduction technique in IQN requires maintaining a history
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of past gradients, which may be challenging to store when
the number of samples N is large. SLBFGS and IQN are
also unworkable for large p as they have a computational
cost per iteration that is of order O(p?). We compare the
performance of these methods versus stochastic first-order
methods in detail (see Section VII). Future research on sto-
chastic quasi-Newton methods must further contend with
the issues of computational cost, memory, and convergence
rates. Investigation of applications to nonconvex problems
is also of interest (see Section VIII).

A. Related Literature

Recent studies on stochastic first-order methods include,
for example, [9], [10], and [20]-[23]. Hybrid approaches
that use both gradients and stochastic gradients or update
descent directions so that they become progressively closer
to gradients have been proposed recently [10], [14], [15].
The incremental aggregated methods, which use memory
to aggregate the gradients of functions, are successful in
reducing the noise of gradient approximation to achieve
linear convergence rate [9]-[12]. The work in [9] suggests
a random selection of functions, which leads to a sto-
chastic average gradient (SAG) method, while the studies
in [13], [16], and [17] use a cyclic scheme.

Deterministic quasi-Newton methods (where we
have access to the exact gradient) have been studied
extensively over the last 50 years. The main promise of
quasi-Newton methods is to approximate the curvature of
the function without computing the Hessian or its inverse,
and indeed, there are several different approaches to
accomplish this goal leading to different algorithms, but,
perhaps, the most popular quasi-Newton algorithms are
the symmetric rank-one (SR1) method [24], Broyden’s
method [25]-[27], the Davidon-Fletcher—Powell (DFP)
method [28], [29], the BFGS method [1]-[4], and the
limited-memory BFGS (L-BFGS) method [30], [31].
As mentioned earlier, the main advantage of quasi-Newton
methods is that, while they only use the first-order
information in their update, most of them converge to
the optimal solution at a superlinear rate. This result
has been established for a large group of quasi-Newton
algorithms, including Broyden’s method [1], [26], [32],
the DFP method [26], [33], [34], the BFGS method
[26], [34]-[36], and several other variants of these
methods [37]-[43]. For introduction into the topic, refer
[44, Ch. 6].

Stochastic quasi-Newton methods appear first in [5]
and [7], and their convergence is first proved in [6]
and [8]. An alternative provably convergent stochastic
quasi-Newton method is proposed in [45]. It differs from
those in [6]-[8] in which it collects the (stochastic)
second-order information to estimate the objective’s cur-
vature. This is in contrast to estimating curvature using
the difference of two consecutive stochastic gradients;
we briefly discuss this method in Section V-A. Combin-
ing the ideas of randomness reduction and quasi-Newton
methods is first proposed in [18] and [46], which leads

to linearly convergent methods. Another linearly conver-
gent stochastic quasi-Newton method is proposed in [47]
in which the estimate of the inverse Hessian matrix is
updated at each iteration using a sketch of the Hessian.
Generalizing the theory of stochastic quasi-Newton meth-
ods to the nonstrong convex setting is studied in [48] and
the nonsmooth convex setting is shown in [49]. Distrib-
uted extension of stochastic quasi-Newton is also studied
in [50] and [51]. Also, several studies analyze stochastic
quasi-Newton methods for nonconvex losses [52]-[54].

I. DETERMINISTIC QUASI-NEWTON
OPTIMIZATION

For the function f(w) in (2), we denote the gradient at
w as s(w) := V f(w). Although exact computation of the
gradient is impractical (see Section III), let us set aside
this concern for a moment and use s(w) to implement
a descent method. We do so with the introduction of a
discrete index t, step sizes 7:, and positive-definite (PD)
matrices B; to define the iteration

Wit = Wi — 1 B[ls(wt). (3)

If the Hessian H(w) := V? f(w) has eigenvalues uniformly
bounded away from 0 and uniformly bounded from above,
then the variable iterates w; converge to the optimal argu-
ment w* if the step size sequence 7 is properly chosen, and
the matrices B; also have eigenvalues uniformly bounded
away from 0 and uniformly bounded from above.

Convergence holds irrespective of the specific choice
of the B; matrices, but different selections have dramatic
effects in convergence rates. For instance, we can expe-
rience the linear convergence rate of gradient descent if
we choose identity matrices by setting B, = I, or we
can experience the (local) quadratic convergence rate of
Newton’s method if we choose B; = H(w;). The idea of
quasi-Newton methods is to use matrices B; that attain
superlinear convergence toward the optimal argument w*.
This is characterized by a sequence of iterates that satisfy
the limit property

Wi —w*||

li =0. 4
im sup Twe =W (@)

t—oo

This is not as good as the quadratic rate of Newton’s
method, but it is much better than the linear convergence
rate of gradient descent—the limit in (4) would be a
number in the interval (0, 1).

To attain superlinear convergence, the quasi-Newton
methods select matrices that satisfy the secant condition

Biy1(Wip1 —Wy) = 8(Wep1) — S(We). (5)

Observe that, per (5), the matrix B;;, satisfies the secant
condition for the pair of iterates w; and w1, but, con-
sistent with (3), this matrix is used to generate the iterate
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W;+2. To streamline upcoming discussions, define the vari-
able and gradient variations at time ¢ as

Vi =Wy — Wy, andr:=s(Wepi) —s(wy)  (6)

so that (5) can be more succinctly written as B;+1v; = 1.

A simple rationale for the secant condition in (5) is that
the Hessian H(w;) satisfies this condition for vanishing
distance ||w¢+1 — W¢||. We can, therefore, think of (5) as
an attempt to choose a matrix that would render (3) close
to Newton’s method. A perhaps more insightful rationale
is discussed in Remark 2, but, regardless of interpretation,
it is important to note that the specification of B;y; in (5)
is indeterminate. To resolve this indeterminacy, the quasi-
Newton methods require the matrix B¢+ to be close to the
matrix B;. Exactly what close the entails varies for different
quasi-Newton methods, but, over the years, the use of the
BFGS method has become standard. In BGFS, the matrix
B:: is chosen as the one that satisfies the secant condition
while been closest to B; in terms of the Gaussian differen-
tial entropy

B;y1 = argmin tr[B;lz] — log det [B;lz] —p
z

s.t. Zvy = I, Z >~ 0. (7)

The problem in (7) is a convex semidefinite program that
can be solved in the closed form [44]. At this point,
however, it is more important to remark that the condition
Z > 0 does not bound the eigenvalues of B;; away from
zero. It is ready to see that, because of the log determinant
function in the objective of (7), we will have B;41 > 0
if B; > 0. In fact, for strongly convex functions, it can be
verified that the eigenvalues of B; are larger than a positive
constant [44, Ch. 6].

However, in general settings, it is not impossible for the
smallest eigenvalue of B, to approach 0 as time progresses.
A simple solution to avoid this issue is to require a lower
bound on the smallest eigenvalue of B:;1 by replacing (7)
with

B.+1 =argmin tr[B; '(Z — dI)] — logdet [B, ' (Z — I)]
Z

st. Zvi =1y, Z*» 0. ®)

Using the sequence of matrices defined by the proximity
condition in (8) yields the regularized BFGS method [6].
It is a method that still abides to the secant condition in (5)
but comes with a guarantee that the smallest eigenvalue of
B, is at least § > O for all iterations.

As is the case with (7), the semidefinite program in (8)
also has an analytic solution. To write it down, we define
the corrected gradient variation as

i't =1 — 6Vt (9)

Mokhtari and Ribeiro: Stochastic Quasi-Newton Methods

and use it to write the solution of (8) as

f't f'z BtVtszt

Biy1 =Bt + —=
V?rt V?Btvt

+ 41 (10)

Incidentally, this expression is also a solution to (8) if we
make 6 = 0 in (9) and (10). An interesting observation
about the regularized BFGS matrix in (10) is that it is
the term 41 that makes the smallest eigenvalue of B;y;
larger than §. However, this regularization is not equivalent
to just adding a JI term to the solution of (8). Doing
so would guarantee that the smallest eigenvalue of the
resulting matrix is at least 6 but would yield a matrix
that violates the secant condition. To maintain validity
of the secant condition, we need to modify the gradient
variation r; of (6) as specified in (9). The (regularized)
BFGS method is defined by the descent iteration in (3)
where the curvature estimation matrix B; is as given by the
recursion in (10). The stochastic quasi-Newton methods
replace the gradients that appear in the descent iteration
and those that appear in the curvature estimation in (10)
with stochastic gradients. We explain this in Section III
after a few remarks.

Remark 1: A solution to the problem in (8) need not
exist, that is, the problem may be infeasible. A sufficient
condition for a solution to exist is for the inner prod-
uct of the modified gradient variation ¥; and the vari-
able variation v; to satisfy ;v = (r; — ov¢)"vy > 0
[6, Proposition 1]. In turn, this is guaranteed to hold
for all variable pairs (w:, w:i1) if the smallest eigen-
value of the Hessians of f is larger than or equal
to § [6, Lemma 1]. This is an intuitive condition because
requiring B;1 > JI means that it is impossible to satisfy
secant conditions where the curvature of f is shallower
than 6.

Remark 2: To gain further insights into the value of the
secant condition in (5), set ; = 1 in (3) and reorder the
terms to write W41 — w; = —B; 's(w;). Substituting this
expression into the secant condition and reordering terms
lead to

S(Wt+1) = (I — Bt+1B;1)S(Wt). (11)

If we had B;;1 = By, the term B,;1B; ! would cancel out
the identity matrix I, and we would have s(w;;1) = 0,
which would, in turn, imply that w;+1 = w*. This does
not happen exactly, but, as iterations grow, the secant
conditions for the pair of iterates (w¢, Wi11) and (W¢—1, Wy)
become similar, and the matrices B; and B:;; become
close. According to (11), this closeness results in a rapid
decrease of the gradient w; and explains the superlinear
convergence of BFGS.

II. STOCHASTIC BFGS ALGORITHMS

Recall the definition of f(w) := (1/N) Zf\r:l f(w,8;) and
assume that all component functions f(w, 6;) are differen-
tiable. Hence, the computation of gradient s(w) := V f(w)
is infeasible if the number of component functions N is
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large and motivates the use of stochastic gradients. These
are defined as follows:

b
$(w,0) = 2 > Vf(w,0) (12)
=1

where 8 = [61;. .. ;8] isaset of b < N realizations chosen
independently and uniformly at random from the training
set. Note that the stochastic gradient §(w, 8) is an unbiased
estimate of the gradient, namely E[s(w, 8)] = s(w).
Paralleling (3), we can build a stochastic descent
method if we replace the gradient s(w,) with a stochastic
gradient §(w¢, 8;). Doing so results in the iteration

N1, ~
Wil = W — ¢ Bt S(W,g7 075) (13)

where we replaced B, with B, to emphasize that they
are chosen according to different criteria. As is the case
of (3), the SGD iterates generated by (13) can be shown to
converge to w* under the same eigenvalue restrictions for
B: and the Hessians H(w), along with some further mild
restrictions on the step sizes n; and the second moment of
the stochastic gradient norm.

SGD is the method that results from making B, = I
in (13). SGD is the most used method to solve ERM
problems. Its common use, notwithstanding, is that SGD
inherits the slow converge of gradient descent. The sto-
chastic quasi-Newton methods utilize different criteria to
select matrices B, that will result in faster convergence.
For instance, the online (0)BFGS [7] method is obtained
if B, ! satisfies a stochastic version of the secant condition
in (5). That is, we seek a sequence of matrices such that

Biit (Wit — W) = 8(Wig1,0:) —8(We, 0;). (14

As we have already seen in the case of deterministic
quasi-Newton methods, the condition in (14) is underde-
termined, but this is something we resolve with a proximity
condition. If we adopt the proximity condition in (7),
we know that (10) with 6 = 0 provides a closed-form
expression for the evolution of B:. We can, therefore,
define oBFGS as a method, where w; evolves per (13) with
the matrix sequence B, evolving as

~ ~ i‘ti‘? Btvtszt
Biy1=Bt+ 7 — ——
V; Iy

= (15)
v;thvt

where we have defined the stochastic gradient variation t;
as

i‘t = §(Wt+1,ét) — é(Wt,ét). (16)

The oBFGS method is handicapped by the fact that the
largest eigenvalue of B, is not guaranteed to stay bounded
and the smallest eigenvalue of B, is not guaranteed to
stay bounded away from 0. The RES algorithm introduces

respective regularizations to overcome these problems [6].
To explicitly explain RES, begin by modifying the descent
iteration in (13) by introducing a (small) constant I" and
adding I'I to B, ! 5o that the iterates w are given by

~—1 . ~
Wit1 = We — 0t (Bt + FI)S(Wt, 0:). 17)

If some eigenvalues of B, grow unbounded, progress along
the associated eigenvector stalls because the corresponding
eigenvalue of B, ! approaches 0. The addition of the factor
T'I guarantees progress toward the minimum in all direc-
tions and, therefore, regularizes with respect to possible
large eigenvalues of B,. The more significant problem with
0BFGS stems from eigenvalues of B; that may approach 0.
As was the case in Section II, the matrix B, is guaranteed
to stay PD, but there is no guarantee that its smallest
eigenvalue stays bounded away from 0. In a stochastic
optimization method, this is a fatal flaw. One can think of
the stochastic gradients §(w, é) of (12) as noisy versions of
the true gradients s(w). An eigenvalue of B, close to 0 is a
very large eigenvalue in the inverse matrix B, Yin (13).
This large eigenvalue amplifies the stochastic gradient
noise drawing w; away from convergence.

The resolution to this problem is the use of the matrices
that follow from the regularized proximity condition in (8).
Then, redefine the modified variation r; in (10) so that it
stands for the modified stochastic gradient variation

ft = f't —6Vt. (18)

We further redefine the Hessian approximation B, for
the next iteration as the matrix that satisfies the stochastic
secant condition in (14) but is closest to B; in the sense
of (8)—as opposed to being closest in the sense of (7).
Per (10), we can compute B, explicitly as

FFL Bevevi By
— — —— +
V; Iy

Biy1 =B + oL (19)

V;Btvt

By construction, the matrices B; generated through (19)
have eigenvalues that are not smaller than §. This implies
that the stochastic gradient noise is controlled at all iter-
ations because no eigenvalue of B, ' can exceed 1 /0.
This regularization is fundamental in avoiding catastrophic
noise amplification.

A block diagram for RES is shown in Fig. 1. The inputs to
each iteration are the current variable iterate w;, the cur-
rent Hessian approximation B;, and a random selection
of realizations ;. The variable w; and the random selec-
tion of realizations 6, generate the stochastic gradient
$(w, 8;), which is fed along with the variable w; and the
matrix B, into a block that implements (17) to produce the
next variable iterate w;, ;. For the variable w;;, we com-
pute the stochastic gradient §(w;,1,6;) corresponding to
the same choice of functions 6; used to compute the
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Vi=Wip1— Wi = 8(wi1,0:) —8(W,0:)

Vi T =1t — 0ve

i‘t f'? Btvt V?Bt

Bit1 =Bt + + 61

Vt f‘t v?Btvt
! |
B: Bit1

|

Wi —| Wil = Wi —1; (B;l—&-FI) é(wt,ét) — Wit

I = l

8(we, 0r) 0, $(Wet1,6¢)

Fig. 1. Regularized stochastic BFGS.

stochastic gradient §(wy, #;). The variable pair (w;, w;1)
and the stochastic gradient pair (§(wy,8:),8(Wii1,6:))
feed a block whose outputs are the variable variation v; :=
w11 — W, [see (6)] and the stochastic gradient variation
in (16). These variations are used to update the curvature
approximation per (19). A block diagram for oBFGS is
obtained if we make § = 0 and I" = 0 in Fig. 1.

Remark 3: One may think that the natural substitu-
tion of the gradient variation r; = s(wiy1) — S(Wy) is
the stochastic gradient variation §(w;1,0:11) — $(w, 0;)
instead of the variation # = 8(Wiy1,0:) — $(We,0;)
in (16). This would have the advantage that §(w;1,0:.1)
is the stochastic gradient used to descend in iteration
t + 1, whereas §(w;,1,0;) is not and is just computed
for the purposes of updating B;. Therefore, using the
variation t; = 8§(Wiy1,0:) — 8(wy, 0;) requires twice as
many stochastic gradient evaluations as using the variation
§(Wii1,0:41)—8(wWe, 0;). However, the use of the variation
¥ = 8§(Wi11,0:) — §(Wt,0;) is necessary to ensure that
(F — ov)Tv, = ¥/ v > 0, which, in turn, is required
for (15) and (19) to be true. This cannot be guaranteed
if we use the variation §(W;1,0;11) — §(W:0;).

Remark 4: RES achieves a convergence rate of O(1/t)
in expectation, when the objective function is strongly
convexity and smooth, and the second moment of the
stochastic gradient is bounded [6]. It can be shown that
the same convergence rate can also be achieved when
the last condition on the second moment of the stochastic
gradient norm is relaxed to assuming that the variance of
stochastic gradients is bounded. For more details regarding
the convergence of RES, refer [6].

IV.ONLINE LIMITED MEMORY BFGS
ALGORITHM

The stochastic BFGS methods introduced in Section III
speed up the convergence because they provide a means
for estimating the curvature of a function in stochastic
settings. It must be noted that this comes at the cost

Mokhtari and Ribeiro: Stochastic Quasi-Newton Methods

of increased computational cost per iteration. Instead of
incurring the O(p) cost of SGD, the BFGS methods incur
the O(p?) cost of multiplying stochastic gradients with the
matrix B, ! [see (13)] and the O(p®) cost of computing this
inverse. The latter is incurred because the updates in (15)
a}nc} (19) are for the matrices B, but we need their inverses
B, in (13). Whether this increased cost per iteration is
justified depends on the balance between p and the cur-
vature of the function f(w). In general, as the dimension
of the variable w € R” grows, oBFGS and RES become
less appealing. Limited memory methods have been devel-
oped in deterministic [30], [31] and stochastic [7], [8]
settings to extend the reach of quasi-Newton methods to
problems with large dimension p. This section describes
the online (o) limited memory (L) BFGS algorithm.

A. Alternative Form for the oBFGS Method

Before we introduce oLBFGS, consider the update of the
oBFGS curvature approximation matrix in (14). We see
that the matrix B, is derived from the matrix B; though
a pair of rank-1 updates. Saved for constant scalar fac-
tors, the first update is determined by the outer product
#:#7 of the variable variation with itself, and the sec-
ond rank-1 update is characterized by the outer product
(Bv;)(B:v:)T of the vector B.v; with itself. Since this
is true, we can use the Sherman-Morrison formula to
relate the inverse ]3;11 with the inverse B, ! without going
through the intermediate computation of the matrix B, 1.
The implementation of these computations requires some
cumbersome algebra, but the final result is that we can
compute ]3,;11 from B, ' using the update

T D T
~—1 Vil ~—1 | A ViVy
B,y =(I-- B I— - + = (20)
s ( rtTvt ) ' ( rtTvt > r;‘FVt
In Section III, oBFGS is the method defined by the

recursion in (13) with matrices B evolving as deter-
mined by (15). In light of (20), oBFGS is equivalent to
recursive application of (13) with matrices B, ! evolving
per (20). This alternative definition bypasses computa-
tion and inversion of B,. Doing so, the computational
cost per iteration is reduced to O(p?) because all the
matrices involved other than B, ' are rank-1 matrices.
It is important to remark that an analogous reduction in
computational cost is not known to hold for RES.

0BFGS can be implemented with a computational cost
of order O(p?), which itself is interesting. A perhaps more
interesting conclusion can be drawn if we consider the first
iteration of (20) assuming that the initial condition is the
identity matrix. To make matters clear, make ¢ = 0 in (20)
a}rlc} initialize the curvature approximatiAoin1 matrix to
B, = I Doing so results in the matrix B, taking the

form
~T ~ T T
~—1 Vorg ToVy VoVp
B, =[1I-+ I- = + .
Iy Vo Iy Vo

- 2D
rgV()
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The important point to make about (21) is that ﬁ;l is given
by a sum of outer products. Thus, if we want to compute
the product of B1 s(wi, 01) in order to 1mplement (13),
the computational cost is of order O(p), not O(p?). If we
now consider the second iteration with ¢ = 1, we have
that ﬁ;l is a sum of outer products and that we, therefore,
are able to compute B, " as per (20) and still end up
with a sum of outer products. Thus, to compute the inner
product B, 1§(W2792), the computational cost is still of
O(p), not O(p?). Arguing recursively, this can be proven
true for any time index ¢. Of course, as the iteration index
grows, the number of outer product summands that define
B, also grows. At some point, it is cheaper to use (20)
dlrectly and incur the O(p?) cost of computing the product
B; §(w;, 6;) than it is to compute the inner product of
each separate summand with §(w¢, 8;). As we will explain
in Section IV-C, the number of summands that define B, !
grows linearly with the time iteration index ¢. Thus, when
t <1< p, it is computationally more efﬁc1ent to evaluate
B, (wt,()t) using the fact that Bt is a sum of outer
products than it is to use (20) directly and compute the
product Bt §(wy, 0;). Since the computational advantage
of writing B, as a sum of outer products disappears
and the iteration index grows, the idea of the oLBFGS
method is to reset the curvature approximation matrix at
all iterations. We explain this in Section IV-B.

B. oLBFGS Algorithm

To simplify the notation, introduce the scalar p; and the
matrix Z; given by the expressions

pi = 1/(F1 Vi), Zi:=1— piipvy. (22)

Usilng these definitions, the oBFGS update for the matrix
B, in (20) can be simplified to
N1 A1
Bt+1 = Z? B,

Zi+ pt vivi . (23)

oLBFGS uses (23) not as a recursion to produce the
sequence of matrices B, used in (13) but as an inner loop
of 7 recursive iterations that start from a given initializa-
tion to produce a matrix B, " to be used in (13). Suppose
that the current outer iteration index is ¢, and consider
a window made up of the last 7 variable and stochastic
gradient variations

Vi = {(Vu, 1), for t:=t—7<u<t—1}. (24)

The set V; registers the history of past variable and sto-
chastic gradient variations starting at ¢ := ¢ — 7 and ending
at t — 1. Now, introduce an inner iteration index u to

. L . S -1
write curvature approximation matrices of the form B, ,,.
LA Sl . . .
Matrices B, ,, and B, ,,.; with subsequent inner indexes are

related by [see (23)]

A1

-1
Bt u+1 — Zz;u Bt,u Zt~+u + prru Vf+u vg+u' (25)

The initial matrix E; é is given, and the time index is
u =0,...,7—1. For inner iteration index u = 1, the inverse
curvature approximation matrix ﬁ; 11 updates ﬁ; é using
the variable and stochastic gradient variations (vi—,, #:—-)
corresponding to iteration u = t — 7 := ¢. In the second
iteration leith u =2, }Ilel inverse curvature approximation
matrix B, , updates B, ; using the variable and stochas-
tic gradient variations (V;—,41,f—-+1) corresponding to
iteration v = t — 7 + 1 = t + 1. As the iteration index
u advances, we use more recent elements of the set V;
defined in (24). The last update corresponds to iteration
=t — 1 in which the matrix B,, i is obtained from the
matrix ]3,: i,l using the variable and stochastic gradient
variations (v¢—1,f:—1) corresponding to iteration u = ¢ —
1 = {4+ 7 — 1. The oLBFGS algorithm is defined by the
stochastic descent iteration in (26) in which we use this
latter matrix as a curvature estimate. We do that by making
B, =B,,in(13)
—mde. (26)

Wit = Wg — 1)t Bt T (Wtaet)

Observe that, in the second equality, we have defined the
oLBFGS step d, = Bt §(w¢, 0;) to simplify upcoming dis-
cussions. Notice that the inverse curvature approximation
B, ' in (25) is a function of the initial approximation B;
and the T most recent curvature information pairs recorded
in the set V; of (24). When ¢ < 7, there are not enough
pairs (v, t.) to perform 7 updates. In such a case, we just
redefine 7 = ¢ and proceed to use the ¢ = 7 available pairs
(Vu,Bu) with0 <u <t — 1.

oLBFGS is defined by (26) with each of the matrices ﬁ; i
computed by the 7 inner loop iterations defined by (25).
As we explained in Section IV-A, the implementation of
the product B, 's(w;) in (3) for matrices B;' = B,
obtained from the recursion in (25) does not need
explicit computation of the matrix B;!. Rather, we can
instead compute O(7) inner products (see Section IV-C
for the details of this computation). Consequently,
the implementation of the recursion in (25) does not need
computation and storage of prior matrices B, },. Rather,
it suffices to keep T most recent curvature information
pairs (Vu,r.) € Vi, thus reducing storage requirements
from O(p?) to O(rp). Furthermore, each of these inner
products can be computed at a cost of p operations,
yielding a total computational cost of O(7p) per oLBFGS
iteration. Hence, oLBFGS decreases both the memory
requirements and the computational cost of each iteration
from O(p?) required by regular oBFGS to O(7p).

C. Limiting the Computation Cost of oLBFGS
The equations in (25) and (26) are used conceptu-
ally but not in practical implementations. For the latter,
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Algorithm 1 Computation of oLBFGS Step q = ﬁ; 1p
When Called With p = §(wy, 0;)

t—1
)
u=t

7—1 do [Loop to compute o, and

1: function q=0LBFGS Step(}A};S, P = Pg, {Vu, Ty
2. foru=0,1,...,
P,

3:  Compute and store scalar o, = p¢—u—1Vi_ 1Py

4. Compute p,,; =P, — Qult_y 1.

5: end for .

6: Multiply p, by initial matrix: q;, = B, (p,

7: for u=20,1,...,7 — 1 do [Loop to cempute (B, and
q,]

8:  Compute scalar 3, = p; +uf';:r+uqu

9:  Compute q, | = q, + (Qr—u—1—u)Viq,

10: end for {return q = q. }

we exploit the structure of (25) to rearrange the terms in
the computation of the product B, §(wy, 8;). To see how
this is done, consider the recursive update for the Hessian
inverse approximation B, Yin (25) and make u =7 —1to
write

L1

A1 A1
B, =B,,=Z{_ B, 1 Zi1+p1viaVii, (27
Equation (27) shows the relation between the Hessian
. . . ~—1

inverse approximation B, and the (r — 1)th updated
version of the initial Hessian inverse approxnnatlon Bt o1

at step ¢. We can proceed, recursively, to show that Bt can
be written as
B, = (21,.. . 20)Bio(Z;.. 2o 1)
+pp(Ziy T WiV (Zyy - L)
+- ptfz(ZtTfl>Vt72V£2(Zt*1)
+ pt71Vt71V£1- (28)

Note that the matrix Z;_; and its transpose Z{_; are the
first and last product terms of all summands except the
last, the matrix Z;_» and its transpose Z7_, are second and
penultimate in all terms but the last two, and so on. Thus,
when computing the oLBFGS step d, == B, 1§(wt,ét),
the operations needed to compute the product with the
next to last summand of (28) can be reused to compute
the product with the second to last summand, which,
in turn, can be reused in determining the product with
the third to last summand and so on. This observation
compounded with the fact that multiplications with the
identity plus rank 1 matrices Z;_ require O(p) operations
yields an algorithm that can compute the oLBFGS step
d, = Bt $(wt, ;) in O(7p) operatlons

The computation of the product B, 1p is summarized
in algorithmic form in the function in Algorithm 1. The
function receives as arguments the initial matrix ﬁ; ; , the
sequence of variable and stochastic gradient variations

Algorithm 2 oLBFGS

Require: Initial iterate wy and Hessian approx. parameter
Y = 1.

1: for t =0,1,2,... do

2:  Acquire b independent samples 0, = [0i1,...,0.]
3:  Compute S(w, Bt 7 Z Vwf(we,04)
VT
t 1 1
4:  Find Bt o =Y I with 4y = ———— fort >0
rt 1Fi—1

5: Compute the descent direction d, with Algorithm 1:
d, = oLBFGS Step (Bt oy 8w, 0,), {va, f'u}f:{)
i

Z Vw f Wit1, th)

6: Descend along direction dt wt+1 = W; —

7. Compute S(Wyy1, 0,5

8:  Update ~ _ Vi = W1 — Wy,
Iy = §(Wt+l7 at) - §(Wt, 9t)
9: end for

(Vu,Tu) € t and the vector p to produce the outcome
q=q, = ]§ p- When called with the stochastic gradient
pP= =5 S(wy, ét) the function outputs the oLBFGS step d, .=
B, $(w:,0;) needed to implement the oLBFGS descent
step in (26). The core of Algorithm 1 is given by the loop
in steps 2-5 that compute the constants «,, and sequence
elements p, and the loop in steps 7-10 that compute the
constants 3, and sequence elements q,,. The two loops are
linked by the initialization of the second sequence with the
outcome of the first, which is performed in step 6. To imple-
ment the first loop, we require 7 inner products in step
4 and 7 vector summations in step 5, which yields a total
of 27p multiplications. Likewise, the second loop requires
inner products and 7 vector summations in steps 9 and 10,
respectively, which yields a total cost of also 27p multi-
phcatlons 1Sln(:e the initial Hessian inverse approximation
matrix B, o is diagonal, the cost of computation B, oP.
in step 6 is p multiplications. Thus, Algorithm 1 requires
a total of (47 + 1)p multiplications, which affirms the
complexity cost of order O(7p) for oLBFGS.

Remark 5: Under the same conditions required for RES,
as mentioned in Remark 5, the oLBFGS method converges
to the optimal solution at a rate of O(1/t) in expecta-
tion [8], while its computation cost per iteration is O(7p)
instead of the O(p®) computation cost per iteration of RES.
For more details regarding the convergence properties of
oLBFGS, refer [8].

V.LINEARLY CONVERGENT

SLBFGS METHOD

In Sections III and IV, we discussed RES and oLBFGS as
two provably convergent stochastic quasi-Newton methods
that accelerate the convergence of the stochastic first-order
methods by properly approximating the objective func-
tion curvature. Although these methods are successful in
expanding the application of quasi-Newton methods to
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stochastic settings, their convergence rate is sublinear.
This is not better than the convergence rate of SGD
and, as is also the case in SGD, is a consequence of
the stochastic approximation noise that necessitates the
use of diminishing stepsizes. The stochastic quasi-Newton
methods in [18] and [46] resolve this issue and achieve
a linear convergence rate by using the variance reduction
technique proposed in [12]. The fundamental idea of [12]
is to reduce the noise of stochastic gradient approximation
by computing the exact gradient in an outer loop to use it
in an inner loop for gradient approximation. In this section,
we focus on the variance-reduced stochastic variant of
LBFGS proposed in [18]. This method can be considered
as a combination of the stochastic quasi-Newton method
proposed in [45] and the variance reduction technique
studied in [12]. Next, we briefly mention the main ideas
of [12] and [45] and then present the variance-reduced
SLBEGS algorithm proposed in [18].

A. Stochastic LBFGS With Access to
Hessian-Vector Products

In the classic BFGS method, the gradient variation
r: := $(W¢41) — S(Wy), required for the update of Hessian
approximation, is computed by subtracting two consecu-
tive gradients. Hence, a natural choice for the stochas-
tic setting, as mentioned in Sections III and IV for RES
and oLBFGS, respectively, is to replace the gradients with
stochastic gradients evaluated with respect to the same
set of random variables (see Remark 3). However, if the
size of the minibatch used for the stochastic gradient
evaluation is small, and as a result, the gradient estimates
are very noisy, the resulted Hessian approximation could
be negatively affected. To resolve this issue, as suggested
in [45], one can use different batch sizes for gradient esti-
mation required for the descent direction and the gradient
variation required for the update of Hessian approximation
to decouple the stochastic gradient and curvature estimate
calculations. Since the batch size for curvature estimate
calculations is larger than the stochastic gradient estima-
tion for the update, it can be computed every K iterations.

Especially, consider ¢ as time index of the iterates and
k as the time index for the iterates that we update the
curvature estimate. In the stochastic quasi-Newton method
proposed in [45], at each iteration ¢, we choose a batch
of samples 6; = [0;1,...,0,] with size b to compute
the stochastic gradient §(w,#;), and use this stochastic
gradient to update the iterates according to the update

N1, ~
Wit1 = Wi — 1 B (Wi, 0:) (29)

where ]3;1 corresponds to the last Hessian approximation
computed before the current iterate. Again, note that we
use a different index for the Hessian approximation By, as
it is updated every K iterations, that is, it is updated when
mod (¢, K) = 0.

At the iterations that we update the Hessian approxi-
mation, the main idea of the curvature update is similar
to the one for oLBFGS except the fact that we use average
iterates for computing variable variation and a larger batch
of samples for computing gradient variation. To be more
precise, if we define wy, := % Zf;tlf Wi, as the average
iterates from time ¢ — 1 to ¢t — k, then the variable variation
at time k is given by

Vi = V_Vk — kal. (30)

Furthermore, by approximating differences in gradients
via the first-order Taylor’s expansion, the approximate
gradient variation can be computed via the following
Hessian-vector product:

Iy = V2F(Wk7ék)vk (31

where V2F(wy, 8y) is a subsampled Hessian defined as
Yzﬁ(wkzék) = (1/bn) Ypea, V2 f(w,8), where the set
0r = [0ka,...,0kp,] has size by. Since the gradient
variation t; and, consequently, the Hessian approximation
By, are updated every K iterations, we can afford to choose
by larger than the minibatch for stochastic gradient b.
Note that performing the update in (31) requires access
to the Hessian of f(w, #) and computing a Hessian-vector
product every K iterations, unlike RES and oLBFGS that
are fully gradient-based. Note that when the variable vari-
ation vy, and gradient variation ff‘ ellre computed, then the
Hessian inverse approximation B, "~ is updated according
the update of LBFGS.

B. SVRG Variance Reduction Technique

Though stochastic methods often make rapid progress
early on, the variance of the estimates of the gradient slows
their convergence near the optimum. Convergence guaran-
tees typically require diminishing step sizes. One promising
line of work involves speeding up the convergence of
stochastic first-order methods by reducing the variance of
the gradient estimates. A popular approach for reducing
the variance of the gradient estimates is the one proposed
in [12], which leads to a linearly convergent stochastic
variance-reduced gradient method, known as SVRG. The
SVRG method succeeds in reducing the computational cost
of deterministic first-order methods by computing a single
gradient per iteration and using a delayed version of the
average gradient to update the iterates.

The variance reduction scheme in SVRG can be decom-
posed into two steps: the outer loop and the inner loop.
In the outer loop, which happens every m iterations,
we evaluate the full gradient at the current point, that
is, if w = w is the current iterate, then we compute the
exact (full) gradient as

N
VI = V). G2
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Then, in the inner loop, we update the iterates according
to

Wt+1 =W — 77t(§(Wh ét) - §(V~V7 ét) + Vf(VV)) (33)

where the stochastic gradients §(w;,8;) and §(w, ;) are
evaluated based on the same set of random set 8, but at
two different points, that is, the current iterate w, and
the iterate that, last time, we computed the full gradient
V f(w). Note that we only perform the update, in (32),
every m iterations where the optimal choice of this para-
meter is well studied in [12]. It can also be easily checked
that the descent direction in (33) is an unbiased estimator
of the exact gradient V f(W,) at the current iterate. More
importantly, it can be shown that the variance of gradient
estimation in (33) approaches 0 as the iterates approach
the optimal solution [12].

C. Linearly Convergent Stochastic LBFGS

Now, we are at the right point to introduce the linearly
convergent SLBFGS proposed in [18], which is constructed
based on two blocks: 1) the stochastic quasi-Newton
scheme discussed in Section V-A and 2) the variance
reduction technique studied in Section V-B. To be more
specific, in SLBFGS, for estimating the gradient required
for the descent direction, we use the variance reduction
of SVRG defined in (33) and, for the Hessian approxima-
tion, we follow the update of LBFGS where the variable
variation is the difference of averages iterates as defined
in (30), and the gradient variation is computed according
to the update in (31). The steps of SLBFGS are summarized
in Algorithm 3. Steps 2-8 are similar to the SVRG update
except step 8 in which we premultiply the gradient esti-
mation g, by the Hessian inverse approximation B,"*. The
operations in steps 9-15 correspond to the Hessian approx-
imation update according to the quasi-Newton scheme
discussed in Section V-A.

VI. SUPERLINEARLY CONVERGENT
INCREMENTAL QUASI-NEWTON
METHOD

At this point, we must remark on an interesting mis-
match. The convergence rate of SGD is sublinear, and the
convergence rate of deterministic GD is linear. The use of
variance reduction techniques in SGD recovers the linear
convergence rate of GD [12]. On the other hand, the con-
vergence rate of the stochastic quasi-Newton methods is
sublinear, and the convergence rate of the deterministic
quasi-Newton methods is superlinear. The use of variance
reduction in the stochastic quasi-Newton methods achieves
linear convergence but does not recover a superlinear
rate. Hence, a fundamental question remains unanswered:
Is it possible to design an IQN method that recovers
the superlinear convergence of deterministic quasi-Newton
algorithms? Next, we show that the answer to this question
is positive as the IQN method introduced in [19] achieves

Mokhtari and Ribeiro: Stochastic Quasi-Newton Methods

Algorithm 3 SLBFGS

Require: Initial iterate wy and Hessian approx. parameter
jo = 1.

1: for t =0,1,2,... do

2:  Compute a full gradient p; := V f(Wy)

3 Set wg = Wy

4. for k=0,1,...,m do

5.

6

Acquire 6, = [0k1,-..,0k]
Compute stochastic gradients §(wy, 0;) and
S(wy, 0y) y 3
7: Compute g, := §(Wyg, O1) — S(W¢, Or) + 1
8: Set W1 = wy, — nB;lgk
9: if mod (k,K) =0 then
10: Setr —r+1
11 Setu, = £ Y00 ow;
12: Acquire 6, = [6:1,...,0,,] for
V2E (u,, 6;)
13: Compute v, = uw, — u,_; and ¥, =
V2F (u,,0;)v,
14: Compute B, * based on LBFGS
15: end if

16: end for
17: Set WL+1 = Wpm
18: end for

this goal. The IQN method is the first quasi-Newton
method to achieve superlinear convergence while having a
per iteration cost independent of the number of functions
N—the cost per iteration is of order O(p?).

A. IQN: Incremental Aggregated BFGS

Next, we present the IQN method to solve the finite
sum problem in (2). IQN is incremental in which, at each
iteration, only the information associated with a single
function f; is updated. The particular function is chosen
by cyclically iterating through the N functions. The IQN
method is aggregated in which the aggregate of the most
recently observed information of all N functions is used to
compute the updated variable w'**.

In IQN, we consider z!, ..., z} as the copies of the vari-
able w at time ¢ associated with the functions fi,..., fn,
respectively. Likewise, define V f;(z!) as the gradient cor-
responding to the ith function. Furthermore, consider B}
as a PD matrix that approximates the ith component
Hessian V? f;(w'). We refer to z!, Vfi(z!), and B! as
the information corresponding to the ith function f; at
step t. Note that the functions’ information is stored in a
shared memory, as shown in Fig. 2. To introduce the IQN
method, we first explain the mechanism for computing
the updated variable w'*! using the stored information
{zt, V fi(z}), Bt} ;. Then, we elaborate on the scheme for
updating the information of the functions.

Note that the second-order approximation of each indi-
vidual function f;(w) centered around its current iterate z!
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U t 1 t t t t t 13
LA [ [ [ = | [t | [ | e | [wn | [V | [
xt+1 BFGS Vfi ()
t+1 t+1 t41 t+1 t+1 t41 t4+1 rt 41 t4+1
L= [ e | ] [ee ]| e ] [ | [vant] [vaf] Jest
Fig. 2. Updating scheme for variabl gradients, and H approximation matrices of function fit at step t. The red arrows indicate the

terms used in the update of B;‘Ll using the BFGS update in (40). The black arrows show the updates of all variables and gradients. The terms

3
it

z'*1 and Vf’f:rl are updated as wtt1 and Vf,-t(w”l), respectively. All others zjt+1 and Vf]'.tJrl are set as z}' and Vf]?, respectively.

is

fi(w) = fi(zi) + V fil2z)" (W — 2))

+ %(w -z fi(zh)(w —zb). (34)

If, for each function f;, we replace the Hessian V? f;(z!)
in (34) by its Hessian approximation Bf, then the aggregate
function f(w) can be approximated with

L
N

=1

F(w) ~ [fz-(zb V) (w2

(w—z)"Bi(w—2z})|. (35)

N~

+

Indeed, the right-hand side of (35) is a valid approximation
of the aggregate loss f, and since it is a quadratic function
with respect to w, the right-hand side can be easily opti-
mized. In IQN, the updated variable w'*! is the solution of
the quadratic program in (35), which is

-1
N R T I R W I W
wo = NZ i NZ izi_ﬁz fi(zi)| -
i=1 i=1 i=1

(36)

First, note that the update in (36) shows that the updated
variable w'™" is a function of the stored information of all
functions fi,..., fn. Furthermore, we use the aggregated
information of variables, gradients, and the quasi-Newton
Hessian approximations to evaluate the updated variable.
This is done to vanish the noise in approximating both
gradients and Hessians as the sequence approaches the
optimal argument.

Next, we discuss how the individual gradients and
Hessian approximations are updated in IQN once the new
variable w'™! is computed. In each iteration of the IQN
method, we update the local information of only a single
function, chosen in a cyclic manner. Let i; be the index of
the function selected at time ¢. The variables z; are updated

according to

t+1 — wt+1

t+1 t
it ) 7 ]

b4 z," =1z; foralli# .. (37

The variable corresponding to the updated function f;,
is replaced by the new iterate w'*! while the remaining
variables are simply kept as their previous value. Likewise,
we update the table of gradients accordingly with the
gradient of f;, evaluated at the new variable w'*!. The
rest of gradients stored in the memory will stay unchanged,
that is,

Vi (2 = Vi, (W), V(2™ = Vfi(z), fori# i
(38)

To the update curvature approximation matrix BI,
associated with the function f;,, we use the steps of
BFGS. To do so, we define variable and gradient variations
associated with each function f; as

t t+1 t
i —

st =z z;, ¥y, =V -Vfi(z) (39

respectively. The Hessian approximation B, correspond-

ing to f;, can be computed using the update of
BFGS as
to, tT tototT Rt
t+1 t, YiYs B;sisi" B; o
B! :Bi+yt.TS¢ ~ B for i =i,  (40)

The Hessian approximation matrices for all other functions
remain unchanged, that is, B{*' = B! for i # 4;. The
system of updates in (37)-(40) explains the mechanism
of updating the information of the function f;, at step t.
Notice that, to update the Hessian approximation matrix
for the i;th function, there is no need to store the variations
in (39) since the old variable z! and gradient V f;(z!) are
available in memory, and the updated versions z!™!
w't! and Vf;(ziT') = Vf;(w't!) are evaluated at step ¢
(see Fig. 2).
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It is worth noting that, due to the cyclic update rule,
the set of iterates {z!,z5,...,z.} is equal to the set
{wt,wt=t . w11 and hence, the set of variables
used in the update of IQN is the set of the last IV iterates.
This observation shows that the update of IQN in (36)
incorporates the information of all the functions f1, ..., f»
to compute the updated variable w'*!; however, it uses
delayed variables, gradients, and Hessian approximations
rather than the updated variable w'™* for all functions as
in classic quasi-Newton methods. The use of delay allows
IQN to update the information of a single function at each
iteration, which reduces the computational cost relative to
standard quasi-Newton methods.

The update in (36) explains the main logic behind
the update of IQN, but it cannot be implemented at a
low computational cost, as it requires computation of the
sums >N B, N Blz!, and 3V | Vfi(z!), as well as
the inversion (3. , B!)~'. Next, we discuss an efficient
implementation of IQN that has a cost of O(p?).

B. Efficient Implementation of IQN

In this section, we show that (36) can be implemented
by computing a single gradient and Hessian approxi-
mation per iteration. Begin by defining the aggregate
Hessian approximation B = Ef\; . B, the aggregate
Hessian-variable product u’ := YV | B!z!, and the aggre-
gate gradient g' := >V Vf;(z!). With these definitions,
(36) can be written as

witl — (Et)fl(ut . gt)_ (41)

Furthermore, it can be easily verified that the updates for
these vectors and matrices can be written as

St+l =

B =B+ (B - Bl @
Wt = (B2 - B2 “3)
gt =g + (V@) - V@) @

Given these recursions, it follows that we can keep track of
the quantities that are needed in (41) by evaluating only
B{*' and V;, (z/') at time step ¢. We can, furthermore,
avoid the cost of computing (lj”t)’1 required in (41) by
simplifying the update in (42) to

t AT t ot TRt
Vi Yi,  Bi,s;Si, Bi,

tT gt tTRpt ot
yi S’it Si: Bitsit

ﬁt+1 _ Et +

(45)

To derive the expression in (45), we substituted the differ-
ence Bf:rl — B}, by its rank 2 expression in (40). Given the
matrix (Et)’l, by applying the Sherman—Morrison formula

. . ~t+4+1
twice to the update in (45), we can compute (B * )~ as

U' (B}, s!,) (Bf,s:,)"U'
st "Bl,st — (Bl,s! )TU(BY,st))

1t 91t 1t 21t 1t V¢

BT =+ 46)
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where the matrix U’ is evaluated as
]~3t —1 gt AT ]~3t -1
(B) Y. Yi, (B)
virst, +yi (),

~t

U' =B

)7t - 47)

The computational complexity of the updates in (46)
and (47) is of the order O(p?) rather than the O(p?) cost
of computing the inverse directly. Hence, the overall cost
of IQN is of O(p?).

Remark 6: The goal of BFGS is to approximate the
descent direction of Newton’s method using the first-order
information. Likewise, in IQN, the goal is to show that the
descent directions for all functions fi,..., fy are close to
the ones for the incremental Newton method. In fact, it has
been shown that, in IQN, for each function f;, the Dennis—
Moré condition holds [19, Proposition 4]. By exploiting
this result, one can show that the sequence of iterates
generated by IQN converges to the optimal solution at a
superlinear rate [19, Th. 7].

VI. NUMERICAL EXPERIMENTS

In this section, we numerically compare the convergence
properties of RES, oLBFGS, and IQN with the first-order
methods and illustrate their advantages in ill-conditioned
problems. For problems that the number of samples N is
not massive and we can store all gradients and Hessian
approximations, we use IQN as it has the best theoretical
guarantees among these three methods. For problems that
N is large but the number of parameters p is moderate,
we use RES as it performs better than oLBFGS that uses a
limited memory version of RES. Finally, for problems that
both N and p are very large, we use oLBFGS as its memory
requirement, and the computational cost per iteration is
less than the ones for IQN and RES.

A. IQN Versus Variance-Reduced First-Order
Methods

In this section, we compare the superlinearly convergent
IQN method with linearly convergent first-order methods
as, similar to IQN, they also use memory to reduce the
noise of gradient estimation. In particular, we compare IQN
with the SAG algorithm proposed in [10] and its unbi-
ased variant SAGA proposed in [11]. To do so, we focus
on quadratic programming. Note that, often, the bene-
fits of second-order methods and quasi-Newton methods
are more significant when the objective function behaves
similarly to a quadratic function. This is, indeed, not
surprising as the main idea of the second-order methods
is to approximate the objective function with its quadratic
approximation. Consider the following quadratic objective
function:

N
W* ;= argmin % ; (%WTAZ-W + bfw) . (48)

weRP
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Fig. 3. Comparison of IQN, SAG, and SAGA for a quadratic problem with a small condition number.

The random matrices A; € R”*? are generated such that
all of them are PD. Moreover, the vectors b; € RP are
random vectors for all i = 1,..., N. Indeed, when {A;}}",
are all PD, the objective function in (48) is strongly convex.
To control the condition number of the problem, we focus
on the case that the matrices {A;}Y, are diagonal. To be
more precise, consider the case that A, := diag{a;}, where
a; are random vectors such that the first p/2 elements are
chosen from [1,10¢] and the remaining p/2 elements are
selected from [10~¢, 1]. By choosing different values for ¢,
we can change the condition number of the problem. For
instance, if we set £ = 1, then the condition number & of
the problem is relatively small, that is, x = 10%, and if we
set & = 2, then the condition number becomes larger; in
this case, k = 10*. To ensure that each individual function
has a different optimal solution, we choose different values
for vectors b;. These vectors are randomly selected from
the box [0,10°]P. We set p = 10 and N = 1000. When
we solve a quadratic problem, for any initial point, we are
always in the local superlinear convergence neighborhood
of IQN, and therefore, its stepsize can be as large asn = 1.

We first focus on the problem with a small condition
number of x = 10? with ¢ = 1. In this case, the best
choices of stepsize for SAG and SAGA are n = 5 x 10~° and
n = 107* respectively, These stepsizes are hand-
tuned to obtain the best performance of these first-order

variance-reduced methods. The left plot in Fig. 3 show-
cases the convergence paths of these algorithms’ normal-
ized optimal distance error |[w’ —w*||/||[w® — w*|| in terms
of number of effective passes over data. As we observe, all
the first-order methods converge linearly but at a slower
rate compared with IQN. Since the computational com-
plexity of IQN per iteration is higher than these methods,
we also compare these algorithms in terms of their runtime
(second). This comparison is illustrated in the right plot
of Fig. 3. As we observe, the gain of IQN in terms of
the runtime is not significant when the problem condition
number is small.

Next, we study a problem with a larger condition
number. We set £ = 2 that leads to the condition
number x = 10*. In this case, the best performance
for SAG and SAGA is achieved when the stepsize is
n = 2x 107" and n = 107%, respectively. For this
case, we also include the linearly convergent SLBFGS
method proposed in [18] and discussed in Section V-C.
The results are presented in Fig. 4. As we observe in
the left plot of Fig. 4, the gap between IQN and the
considered variance-reduced first-order methods, that is,
SAG and SAGA, in terms of the number of passes over
the data set is even more significant. It is also worth
noting that the performance of IQN does not change
with the change of condition number. Hence, at least
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Fig. 4. Comparison of IQN, SLBFGS, SAG, and SAGA for a quadratic problem with a large condition number.
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for the quadratic problem, the IQN method performs
independent of the condition number. Indeed, as we
expected, the performance of SAG and SAGA substantially
degrades compared with the case that the problem has
a smaller condition number. The right plot in Fig. 4 also
showcases the convergence paths of these methods in
terms of runtime. As we observe, in ill-conditioned prob-
lems, even in terms of runtime, IQN is significantly faster
than the variance-reduced first-order methods. Moreover,
note that, both in terms of number passes over data and
runtime, IQN outperforms the linearly convergent SLBFGS
quasi-Newton method.

B. RES Versus Stochastic Gradient-Type Methods

In Section VII-A, we focused on the problems that have
a reasonable number of samples N so that the cost of
storing N matrices for IQN is manageable. However, since
the memory required for IQN is O(Np?), when the number
of samples N and features p are large, IQN requires large
memory. In this section, we focus on problems where the
number of samples N is large, but the problem dimension
p is relatively moderate. In this case, RES is the method
of choice as its complexity does not scale with N and its
Hessian approximation is more accurate than the one for
oLBFGS.

In particular, we study a support vector machine (SVM)
problem. In SVM, we aim to find the best hyperplane that
separates data points with different labels while achieving
the maximum margins. Suppose that we have access to N
data points S = {(x;,y:)}/L,, where x; € R? is the ith
feature vector and y; € {—1,1} is its corresponding label.
The SVM problem can be written as

N
S ] )\ 2 1 . L)
w’ i= argmin 3 |[w]* + N;é((xz,yz),w) (49)

where A > 0 is the regularization parameter, and the loss
functions ¢ measures how well the classifier w classifies
sample (x;,y;). In this experiment, we use the squared
hinge loss £((x, y); W) = max (0, 1—y(x” w))2. We use a syn-
thetic data set for our experiment. We generate N = 10*
samples of size p = 400, where half of them have label 1
and the other half have label —1. The components of the
samples with label —1 are chosen uniformly at random
from the interval [—0.8, 0.2], and the elements of those with
label 1 are chosen uniformly at random from the interval
[-0.2,0.8]. We intentionally enforce an overlap between
the two classes so that the data set is not linearly separable.
In this experiment, we set the regularization parameter as
A=10""

We compare RES with the standard SGD algorithm and
three other variants of SGD: 1) the SAG algorithm [10]
that uses a memory of size N to reduce the noise of
gradient estimation; 2) the semi-SGD (S2GD) [14] method
that is a hybrid method, meaning that it computes the full

Mokhtari and Ribeiro: Stochastic Quasi-Newton Methods
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Fig. 5. Comparison of RES, SGD, the SGD accelerations SAA, SAG,
and S2GD for an SVM problem.

gradient once in a while; and 3) the stochastic approxi-
mation by averaging (SAA) algorithm [55] that uses the
average of all the observed iterates over time.

In this experiment, we use different batch sizes for
different algorithms. Hence, to have a fair comparison,
we compare the algorithms in terms of the number of
processed feature vectors bt, which is equal to the product
of batch size and the number of iterations. For RES, we set
the batch size as b = 20, and the stepsize is selected as
ne = noTo/(To + t), where o = 107 and Tp = 10.
For SGD, S2GD, and SAA, we select the parameters that
achieve optimal performance after processing 10* feature
vectors. Fig. 5 demonstrates the convergence paths of
these algorithms in terms of the number of processed
feature vectors. As we observe, RES converges significantly
faster than the other studied methods as the problem is
ill-conditioned. Note that since the computation cost per
iteration of RES is higher than the considered first-order
methods, we also compare their CPU runtime for achieving
a specific accuracy. In Table 1, we report the CPU runtime
of these algorithms to achieve the objective function value
of 107%. Indeed, the advantage of RES with respect to
SGD, S2GD, and SAA is more significant when we compare
them in terms of the number of processed samples and it
downgrades when we compare their CPU runtimes.

C. oLBFGS Versus SGD

Next, we focus on a large-scale learning problem where
both the number of samples N and problem dimension p
are extremely large. In this setting, IQN and RES become
impractical since their computational cost per iteration is
not linear in p. Also, methods such as SAG, SAGA, and
S2GD are not practical as they either require memory of
size Np or computation of the full gradient once in a
while. Hence, the only affordable choices for this setting

Table 1 CPU Runtimes of RES, SGD, the SGD Accelerations SAA, SAG,
and S2GD to Achieve the Cost F(w;) = 107

| RES | SGD | SAG | 526D |  sAA
CPU runtime ‘ 0.8 s ‘ >15s ‘ 1.3 s ‘ 12s ‘ >17s
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Fig. 6. Comparison of oLBFGS and SGD for a large-scale CTR

prediction problem.

are the standard SGD method and the oLBFGS algorithm
that requires a memory of O(p) (independent of N), and
its computation cost per iteration is also O(p) as in SGD.

We focus on a click-through rate (CTR) prediction prob-
lem that appears in online advertising. In this case, the fea-
ture vectors are created based on the information of users,
the query that they have searched, and the advertisements
that have been shown to the users. The goal is to use
this information to predict the advertisement that has the
highest probability to be clicked for a given user and a
specific query. More details on how the feature vectors are
generated can be found in [8]. The data set that we use is
the Tencent search engine data set [56] that contains the
outcomes of 236 million searches. Each feature vector has
174026 elements, and the label of each feature vector is
1 if the search instance corresponds to a case that the user
has clicked on the ad and it is —1 otherwise. Note that
we expect this problem to be highly ill-conditioned as the
feature vector components are significantly different from
each other in terms of value and range. Hence, the gain
by using stochastic quasi-Newton methods should be sub-
stantial. We solve this problem using a logistic regression
model. To do so, we assume that the CTR that is the
probability of observing y = 1 is given by

CTR(x;w) :=P [y =1 |x; W] = (50

1+ exp ( — XTW)

and we have P[y = —1|x;w] = 1 — P[y =1|x;w]. The
problem of finding the best predictor w* can be written as

*

N
Ao ] T
W := argmin §||W|| + N ;:1 log (1 +exp (— yix; W)).

Out of the 236 x 10° samples in the data set, we randomly
choose 10° samples to use as the training set. We also set
the regualrization parameter X as A = 10~°. The stepsizes
for both algorithms are of the form n: = noTo/(To + t).
We select the stepsize parameters for oLBFGS as np = 1072
and T, = 10* and SGD as 1o = 107! and Ty =
Moreover, the batch size for SGD is b = 20, while the

batch size for oLBFGS is b = 100. These parameters are
handtuned to observe the best performance. We further set
the memory size for the oLBFGS method as 7 = 10.

The convergence paths of these methods in terms of
objective function value versus the number of processed
features are illustrated in Fig. 6. As we observe, in this
case, oLBFGS converges significantly faster than SGD.
This example again showcases the advantage of stochastic
quasi-Newton methods against stochastic first-order meth-
ods when we deal with large-scale problems that often
have a large condition number.

VIII. CONCLUSION

In this article, we reviewed four quasi-Newton methods
for solving stochastic optimization problems. We started
by reviewing RES that uses stochastic gradients instead
of gradients and modifies the update of BFGS to ensure
that the eigenvalues of the Hessian approximation matrices
stay bounded. Then, we discussed oLBFGS that aims at
reducing the computational cost of RES by using a limited
memory scheme that only uses the curvature information
of a small number of recent iterates. We further mentioned
that both RES and oLBFGS obtain a sublinear rate in
stochastic settings as they need to use diminishing step-
sizes to control the noise of gradient estimation. We then
discussed SLBFGS that achieves a linear convergence rate
by reducing the noise of gradient estimation. Finally,
we studied IQN that in finite-sum settings converges super-
linearly by using variance reduction techniques and a
proper quadratic approximation of individual functions.
Next, we briefly mention a few future research directions
on stochastic quasi-Newton methods.

A. Memory Efficiency

As shown in Fig. 2, IQN requires access to the most
recent version of variables, gradients, and the Hessian
approximations for all N individual functions to reduce
the noise of gradient and the Hessian approximations. As a
result, the memory required for running IQN is O(Np?) as
we need to store N matrices of size p2. Indeed, this could
be a crucial issue when we plan to use IQN for solving
problems with many parameters (large p) or many samples
(large N). Therefore, a memory-efficient implementation
of the IQN method could be an interesting research prob-
lem to explore.

B. Nonconvex Setting

A vast majority of theories for quasi-Newton methods
and their stochastic (incremental) variants are developed
for convex functions. A fundamental challenge in design-
ing quasi-Newton methods for nonconvex settings is that
the objective function Hessian is not PD in nonconvex
problems, and as a result, the Hessian approximations of
quasi-Newton methods may have nonnegative eigenvalues
and, in some cases, may not be invertible. To resolve this
issue state-of-the-art methods, ensure that the direction
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B;'VF(w;) is a valid descent direction by preserving
the positive definiteness of the Hessian approximations
[52], [57]. However, a proper approximation of curva-
ture while enforcing PD-ness of Hessian approximations
is not possible as, in nonconvex settings, the Hessian may
not be PD. Hence, developing a convergent quasi-Newton
method for nonconvex settings that properly approximate
the curvature is of interest.

C. Adaptive Sample Size Learning

Stochastic methods are suitable for the setting in which
storing data is infeasible due to memory limitations.
Advances in cloud computing, however, allow for storing
and fetching large data sets for offline problems. Hence,
an alternative approach for solving ERM problems is the
adaptive sample size strategy in which we do not use a
partition of the training set as in the case of stochastic
methods but a nested collection of subsets that we grow
geometrically [58]-[60]. The main idea here is to increase
the size of the training set such that the approximate
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