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 1 

ABSTRACT 1 

Message diffusion and message persuasion are two important aspects of success for 2 

official risk messages about hazards. Message diffusion enables more people to 3 

receive lifesaving messages, and message persuasion motivates them to take 4 

protective actions. This study helps to identify win-win message strategies by 5 

investigating how an under-examined factor, message content that is theoretically 6 

important to message persuasion, influences message diffusion for official risk 7 

messages about heat hazards on Twitter. Using multilevel negative binomial 8 

regression models, the respective and cumulative effects of four persuasive message 9 

factors, hazard intensity, health risk susceptibility, health impact, and response 10 

instruction on retweet counts were analyzed using a dataset of heat-related tweets 11 

issued by U.S. National Weather Service accounts. Two subsets of heat-related tweets 12 

were also analyzed: 1) heat warning tweets about current or anticipated extreme heat 13 

events and 2) tweets about non-extreme heat events. This study found that heat-14 

related tweets that mentioned more types of persuasive message factors were 15 

retweeted more frequently, and so were two subtypes of heat-related tweets. Mentions 16 

of hazard intensity also consistently predicted increased retweet counts. Mentions of 17 

health impacts positively influenced message diffusion for heat-related tweets and 18 

tweets about non-extreme heat events. Mentions of health risk susceptibility and 19 

response instructions positively predicted retweet counts for tweets about non-20 

extreme heat events and tweets about official extreme heat warnings respectively. In 21 

the context of natural hazards, this research informs practitioners with evidence-based 22 

message strategies to increase message diffusion on social media. Such strategies also 23 

have the potential to improve message persuasion. 24 
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Keywords: message diffusion, persuasion, risk communication, natural hazards, 1 

social media   2 

 3 

1. Introduction 4 

Risk communication is a vital element in risk management and a promising way to 5 

protect public health and safety across a range of domains, including environmental 6 

hazards and health (Leiss 1996; Demeritt and Nobert 2014). As a component of risk 7 

communication, public risk messages issued by government agencies in the context of 8 

natural hazards are important because such messages inform affected populations 9 

about hazardous situations and may stimulate protective actions. In recent years, 10 

social media have been increasingly used by agencies and organizations to 11 

communicate with the public about natural hazards and disasters (Hughes and Palen 12 

2012; Palen and Hughes 2018; Sutton and Kuligowski 2019). Federal, state, and local 13 

governments, via emergency management agencies, meteorological departments, and 14 

health departments have used social media like Twitter and Facebook to share and 15 

collect timely information before, during, and after a variety of hazardous events 16 

(Hughes et al. 2014; St. Denis et al. 2014; Li et al. 2018; Scott and Errett 2018). 17 

 18 

Message diffusion in the context of natural hazards enables people who are beyond  19 

the direct contacts of the initial sender to receive lifesaving messages. Receiving 20 

public risk messages enhances the likelihood of taking protective actions (Mileti and 21 

Sorensen 1990), although barriers exist between the point of receiving messages and 22 

the point of taking actions. Public risk messages disseminated via social media can be 23 

retransmitted more easily, to more individuals, and with higher fidelity than via mass 24 

media channels such as radio and television (Sutton et al. 2014, 2015). This highlights 25 
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the need to understand what factors facilitate or suppress retransmission of official 1 

risk messages in social media. The present research investigates how an under-2 

examined factor, persuasive message content, influences message diffusion on Twitter 3 

in the context of heat hazards. In this study, persuasive message content refers to 4 

specific message content that, suggested by theories or empirical studies, has the 5 

potential to influence receivers’ attitudes, intentions, or behaviors. This research can 6 

benefit public officials especially communication practitioners by identifying 7 

evidence-based strategies about risk messaging to increase message diffusion on 8 

Twitter. Such strategies also have the potential to motivate people to take protective 9 

actions, since these strategies are persuasive message content whose persuasiveness 10 

has been suggested by previous studies.   11 

 12 

2. Background 13 

a. Message Diffusion on Social Media 14 

Social media sites such as Twitter and Facebook enable message retransmission via 15 

functions such as “retweeting” on Twitter and “sharing” on Facebook. Using these 16 

functions, people who consume information can also actively promote information to 17 

the broader public on social media (Lin et al. 2016b). The number of times the 18 

original message was retransmitted is recorded on social media sites, which allows 19 

investigation of factors predicting message retransmission with precision 20 

unachievable by traditional data sources (Sutton et al. 2015). There is a growing body 21 

of research investigating predictors of message retransmission on social media across 22 

contexts such as natural hazards (Sutton et al. 2015; Lin et al. 2016a), emerging 23 

infectious disease (Vos et al., 2018), software vulnerability (Syed et al. 2018), and 24 

marketing (Cvijikj and Michahelles 2013; Walker et al. 2017). Due to limited data 25 
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availability through other social media platforms (such as Facebook), previous studies 1 

have heavily relied on Twitter to investigate retransmission mechanisms. Twitter is a 2 

microblogging service, and around a fifth U.S. adults (22%) use Twitter (Wojcik and 3 

Hughes 2019).   4 

 5 

Across research domains, factors related to message retransmission on Twitter can be 6 

categorized into two main groups: intrinsic message features and extrinsic factors 7 

beyond the messages themselves. For intrinsic message features, previous studies 8 

have examined how message retransmission on Twitter is affected by thematic 9 

content (Sutton et al. 2014, 2015), message style such as the use of imperative 10 

sentence style (Sutton et al. 2015; Vos et al. 2018; Lachlan et al. 2019), message 11 

structure such as inclusion of images and URLs (Sutton et al. 2015; Lachlan et al. 12 

2019), and message sentiment (Walker et al. 2017; Yang et al. 2018). Extrinsic 13 

message retransmission factors include network features such as the number of 14 

followers of the sending account (Vos et al. 2018), authorship of Twitter messages 15 

(tweets, Wang et al. 2020), and the created time of tweets (Zhu et al. 2011).  16 

 17 

b. A Knowledge Gap about Win-win Message Strategies 18 

Some of the factors related to message diffusion also influence message persuasion, 19 

or the message’s ability to influence recipients’ attitudes, behavioral intentions, and 20 

behaviors. For example, images in health communication can not only predict 21 

increased message diffusion on Twitter (Vos et al. 2018), but also increase intentions 22 

to adopt suggested behaviors (Anderson 1983). Message sources also matter for both 23 

message diffusion and message persuasion (Wilson and Sherrell 1993; Wang et al. 24 

2020). Investigating message factors which may influence both message diffusion and 25 
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message persuasion is important, because it helps identify message strategies that 1 

achieve two kinds of message success (persuasion and diffusion). When it comes to 2 

message content, limited research attention has been paid to identifying such win-win 3 

message content. When investigating message content as a potential factor of message 4 

diffusion, researchers across a variety of domains typically inductively categorize 5 

message content into thematic content (Sutton et al. 2014; Syed et al. 2018), rather 6 

than deductively coding messages into persuasive message content. As a result, much 7 

less is known about what persuasive message content enhances message diffusion 8 

than what informative themes enhance message diffusion.  9 

 10 

Thematic content is usually different from persuasive message content because it is 11 

identified based on different considerations. Thematic content is identified based on 12 

patterns of meaning within messages, but persuasive message content is identified 13 

based on what has been found by previous theories and empirical studies to increase 14 

persuasion. Nuanced message content that is persuasive may not be distinguished as 15 

separate content themes using an inductive coding method, and thus data-driven 16 

thematic content is usually overrepresented relative to concept-driven persuasive 17 

message content. For example, hazard information is one type of thematic content that 18 

has been positively related to retweet counts across four types of natural hazards 19 

(Sutton et al. 2014, 2015). The theme of hazard information includes descriptions 20 

about physical characteristics of the hazard itself and/or hazard impacts (Sutton et al. 21 

2015). There is little doubt that risk messages need information about the hazard itself 22 

and hazard impacts (Mileti and Sorensen 1990). However, we hesitate to say that the 23 

theme of hazard information is persuasive message content. This is because past 24 

studies typically disaggregated the hazard information theme into several components 25 
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and examined the persuasive effects of its components (Morss et al. 2015; Lebel et al. 1 

2018; Potter et al. 2018), instead of examining the persuasive effects of the hazard 2 

information theme itself. A possible reason is that studies comparing the presence and 3 

absence of the hazard information theme would not provide useful suggestions for 4 

risk messaging since risk messages would include hazard information anyway. The 5 

hazard information theme may be too broad to be a meaningful unit of persuasive 6 

message content. According to previous theoretical and empirical studies about 7 

persuasion, what components of the hazard information theme are persuasive message 8 

content will be described in the next subsection. 9 

 10 

To our knowledge, no study has investigated how persuasive message content 11 

influences message diffusion in the context of natural hazards, and the present study is 12 

the first study to do so. In the related field of health communication, only one study 13 

(Vos et al. 2018) deductively identified specific persuasive message content based on 14 

a persuasion theory, the Extended Parallel Process Model (Witte 1992). The study 15 

found that depicted severity (the depicted magnitude of harm that could happen from 16 

Zika virus) and efficacy (information about protective actions recommended for 17 

individuals) enhanced retransmission of official risk messages on Twitter, but no 18 

effect was observed regarding depicted susceptibility (who is at risk for negative 19 

consequences from Zika virus) (Vos et al. 2018). The present study was designed in a 20 

different context, heat hazards, and used persuasive message content that is suitable to 21 

natural hazards. 22 

 23 

c. Persuasive Message Content about Natural Hazards 24 
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Previous studies have suggested some persuasive message content about natural 1 

hazards. In recent years, experimental studies disaggregated the theme of hazard 2 

information into two components, hazard-based messages and impact-based 3 

messages, and compared their persuasive effects (Morss et al. 2015, 2018; Potter et al. 4 

2018). For example, impact-based messages that only contain descriptions about 5 

hazard impacts (e.g., potential damage posed to infrastructure) increased risk 6 

perceptions of the hazardous event relative to hazard-based messages that only 7 

contain descriptions about characteristics of the hazard itself (e.g., wind speed) (Potter 8 

et al. 2018). Drawing on fear appeal theories, commonly used in the health 9 

communication literature (Witte 1992; Tannenbaum et al. 2015), our prior work (Li et 10 

al. 2018) further disaggregated the theme of hazard information into four types of 11 

persuasive message content applicable for natural hazards: hazard uncertainty, hazard 12 

intensity, health risk susceptibility, and health impact. Our work also identified a fifth 13 

type of persuasive message content that was about guidance, termed response 14 

instruction (see details in Table 1). We called these five types of persuasive message 15 

content persuasive message factors (PMFs) (Li et al. 2018). The present study builds 16 

on this prior study and investigates how these PMFs respectively and cumulatively 17 

predict the retweet counts of official risk messages about heat hazards.  18 

 19 

The persuasive effects of these five PMFs have been suggested by previous studies. 20 

With respect to the four PMFs that belong to the broad hazard information theme, 21 

meta-analyses of fear appeal studies have found that the independent and joint 22 

inclusion of depicted susceptibility (descriptions emphasizing how likely message 23 

recipients will be adversely impacted) and depicted severity (descriptions 24 

emphasizing negative consequences) in risk messages were persuasive (De Hoog et 25 
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al. 2007; Tannenbaum et al. 2015). For example, health messages emphasizing the 1 

recipient’s personal risk and serious consequences of maladaptation positively 2 

influence people’s behavioral intentions and behaviors compared to messages 3 

depicting lower susceptibility and lower severity of the negative consequences 4 

(Tannenbaum et al. 2015). Li et al. (2018) adapted depicted susceptibility and severity 5 

to natural hazards. Hazard uncertainty and health risk susceptibility respectively 6 

indicate depicted susceptibility of the hazard itself and depicted susceptibility of 7 

hazard impacts, and hazard intensity and health impact respectively indicate depicted 8 

severity of the hazard itself and depicted severity of hazard impacts. Definitions of 9 

these terms are provided in the Table 1. With respect to the PMF of response 10 

instruction, meta-analyses of fear appeal studies also suggested the persuasive effects 11 

of such efficacy statements (Tannenbaum et al. 2015). Compared to risk messages 12 

without efficacy statements, risk messages with efficacy statements improve people’s 13 

behavioral intentions and tendency to engage in behaviors through increased 14 

perceived self-efficacy (belief in one’s capacity of performing recommended actions) 15 

and/or increased perceived response-efficacy (belief that the recommended actions 16 

will achieve desirable outcomes) (Floyd et al. 2000; Milne et al. 2000; Witte and 17 

Allen 2000; Tannenbaum et al. 2015).    18 

 19 

Previous empirical studies in the context of natural hazards also suggested the 20 

persuasive effects of some PMFs investigated in the present study. These previous 21 

studies may not use the exact terms as we used to describe their manipulation. 22 

However, we found these previous studies manipulated a certain PMF described in 23 

the present study after comparing their control messages and treatment messages 24 

using the definitions of PMFs. These previous studies have found that intentions to 25 
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take recommended actions can be elevated by each mention of hazard uncertainty 1 

(Lebel et al. 2018), hazard intensity (Casteel 2016), impact severity (e.g., negative 2 

consequences on health and property, Casteel 2016), and response instructions 3 

(Wong-Parodi et al. 2018). In addition, mentions of health risk susceptibility have the 4 

potential to address issues that have been identified from previous studies. Failure to 5 

personalize heat-health risks has been identified as a main reason why people did not 6 

take recommended actions in heat risk messages (Kalkstein and Sheridan 2007; 7 

Sheridan 2007; Bassil and Cole 2010). Health risk susceptibility has the potential to 8 

avoid the misperception of “it can’t happen to me” by clarifying who and/or which 9 

behavior are at risk for negative impacts from heat events (Li et al. 2018). However, 10 

the persuasive effects of health risk susceptibility need future research about natural 11 

hazards to provide empirical evidence. 12 

 13 

In addition to identifying these five PMFs, our prior work also content-analyzed 904 14 

tweets related to heat hazards issued by a sample of eighteen U.S. NWS Weather 15 

Forecast Offices (WFOs) in 2016 (Li et al. 2018). We examined the degree to which 16 

the five PMFs were mentioned in these official heat risk tweets (Li et al. 2018). The 17 

present study expands on this prior study and investigates how four of the five PMFs 18 

respectively and cumulatively predict the retweet counts of the official risk messages 19 

for heat hazards. The PMF that we removed from the analyses was hazard 20 

uncertainty, since heat-related tweets mentioning hazard uncertainty were too rare 21 

(only 5 of 904 tweets) to reliably estimate its effects. Our models also controlled for 22 

some extrinsic factors of message retransmission such as network features, which will 23 

be described in detail in the method section.  24 

 25 
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d. Different Message Types 1 

To analyze the respective and cumulative effects of PMFs, this study built models 2 

predicting retweet counts for all heat-related tweets. In addition, this study also built 3 

separate models for a subset of heat-related tweets that alerted about extreme heat 4 

events (heat warning tweets) and for another subset of heat-related tweets that alerted 5 

about non-extreme heat events (non-warning tweets). In this study, extreme and non-6 

extreme heat events were mainly distinguished by whether heat events are 7 

accompanied by NWS’s heat watch, warning, and advisory (WWA) products. If a 8 

heat-related tweet alerted about a heat event that was accompanied by any of the heat 9 

WWAs and also mentioned active heat WWAs in the tweet, this heat-related tweet 10 

was categorized as a “heat warning tweet.” If a heat-related tweet alerted about a heat 11 

event whose conditions were not hot enough and/or long enough in duration to issue 12 

heat WWAs, this tweet was categorized as a “non-warning tweet.”  13 

 14 

Heat hazards pose a serious threat to people in the United States, causing more deaths 15 

than floods, hurricanes, and tornadoes combined during 2009 to 2018 (Centers for 16 

Disease Control and Prevention 2020). Widespread heat-health impacts affect people 17 

across age groups and geographic areas (Hess et al. 2014; Mora et al. 2017). Both heat 18 

warning tweets and non-warning tweets are important to protect the public from 19 

negative health impacts from heat. Although local WFOs have highly variable criteria 20 

regarding conditions favorable to issue heat WWAs for their forecast areas, conditions 21 

that warrant heat WWAs in each WFO indicate that, in general, such conditions are 22 

dangerous for the local population within the WFO’s forecast area (Hawkins et al. 23 

2017). Extreme heat events can harm anyone without appropriate actions (Mora et al. 24 

2017), and heat warning tweets communicate such dangerous conditions with the 25 
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general public in order to motivate protective actions. Non-warning tweets alert about 1 

non-extreme heat events during which negative heat effects are still likely for 2 

vulnerable populations such as the elderly, those exercising or working outdoors, and 3 

those without adequate hydration (Kovats and Hajat 2008; Mora et al. 2017). 4 

Investigating the PMF effects separately for heat warning tweets and non-warning 5 

tweets allows targeted messaging suggestions for risk communicators to create 6 

different message types for different heat conditions. Investigating the PMF effects 7 

for all heat-related tweets allows description of effects at an aggregate level for all 8 

tweets that aim to protect the public from heat-health risks. 9 

 10 

We propose two research questions in this study: 11 

1) How does the inclusion of the persuasive message factors of hazard intensity, 12 

health risk susceptibility, health impact, and response instruction influence message 13 

retransmission respectively for heat-related tweets, heat warning tweets, and non-14 

warning tweets posted by U.S. NWS WFOs?   15 

2) What are the cumulative impacts of the inclusion of the persuasive message factors 16 

of hazard intensity, health risk susceptibility, health impact, and response instruction 17 

on message retransmission for heat-related tweets, heat warning tweets, and non-18 

warning tweets posted by U.S. NWS WFOs?   19 

 20 

3. Method 21 

a. Data 22 

Official heat-related tweets (N=904) were collected by our prior work (Li et al. 2018). 23 

Using the Twitter Search application programming interface (API), tweets and their 24 

retweet counts were collected if tweets were posted between June 1 and August 31, 25 
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2016 by each official Twitter account of the eighteen sampled NWS WFOs. These 1 

sampled offices (see Fig. 1) were chosen using theoretical sampling (Singleton and 2 

Straits 2010) and these offices demonstrate important variations among the total of 3 

123 U.S. WFOs in terms of local climate and NWS regions. Our prior study (Li et al. 4 

2018) extracted original tweets that contained the English words “hot” or “heat” in the 5 

displayed text, and further manually coded the extracted tweets as “heat-related 6 

tweets” if the extracted tweets (including the displayed text and text in attached 7 

images) indicated that specific heat events either were occurring or upcoming in the 8 

forecast areas (intercoder reliability coefficients, Cohen’s Kappa = 0.83). This human 9 

coding process removed some extracted tweets which, although containing the words 10 

“hot” or “heat”, were not heat-related tweets, for example, tweets only stating an 11 

expired heat warning. In addition, each of the five PMFs were deductively coded in 12 

our prior work (Li et al. 2018). All heat-related tweets (N=904) were coded based on 13 

not only the displayed text but also textual information in attached images. For each 14 

heat-related tweet, the five PMFs (hazard uncertainty, hazard intensity, health risk 15 

susceptibility, health impact, and response instruction) had its own code (1: presence 16 

versus 0: absence). Each tweet could contain one or more PMFs. With respect to 17 

intercoder reliability, the Cohen’s Kappa of the five PMFs were all above 0.93 (Li et 18 

al. 2018).  19 

 20 

b. Operationalization  21 

The dependent variable of retweet counts is the number of times a tweet was 22 

retransmitted. The respective effects of the PMFs were operationalized as four 23 

variables indicating the presence or absence of each PMF (hazard intensity, health 24 

risk susceptibility, health impact, and response instruction). As mentioned earlier, we 25 
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removed the PMF of hazard uncertainty when modeling the respective and 1 

cumulative effects of PMFs because the tweets containing the PMF of hazard 2 

uncertainty were rare (only 5 of 904 tweets). The cumulative effect of the PMFs was 3 

operationalized as the number of PMFs (hazard intensity, health risk susceptibility, 4 

health impact, or response instruction) mentioned in a risk message, which ranged 5 

from zero to four. 6 

 7 

In additional to heat-related tweets overall (N=904), the other two message types were 8 

two subsets of heat-related tweets: heat warning tweets (N=223) and non-warning 9 

tweets (N=436). First, as mentioned earlier, heat warning tweets alerted about current 10 

or anticipated extreme heat events that warrant heat WWAs, and non-warning tweets 11 

alerted about current or anticipated non-extreme heat events that did not warrant heat 12 

WWAs. For the present study, to be considered a heat warning tweet, a heat-related 13 

tweet must 1) be posted within at least one heat WWA’s active period (from issuance 14 

time to expiration time) in its respective WFO, and 2) mention at least one heat WWA 15 

that has been issued, is currently in effect, or will be in effect in the displayed text or 16 

text in attached images. About a quarter of heat-related tweets (N=223) met the two 17 

criteria and were categorized as heat warning tweets. Second, some of the heat-related 18 

tweets (N=245) only met the first criterion which means they were posted when at 19 

least one heat WWA was issued in their respective WFOs but these tweets did not 20 

mention the co-occurring heat WWAs. On the one hand, some of these 245 tweets 21 

may alert about non-extreme heat events. For example, consider a case in which a 22 

heat warning product is issued this morning and indicates that the start time of an 23 

extreme heat event is tomorrow. An official tweet may be posted at noon and only 24 

mention today’s non-extreme heat situation that does not warrant a watch, warning, or 25 
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advisory product. On the other hand, some of these 245 tweets may alert about 1 

extreme heat events, but they did not mention co-occurring heat WWAs. In this 2 

situation, the diffusion mechanism of the tweets may be different from those that met 3 

both criteria to be considered heat warning tweets. As a result, we did not identify 4 

these 245 heat-related tweets as either heat warning or non-warning tweets. In other 5 

words, although the 245 heat-related tweets were included when we built models 6 

using all heat-related tweets, the 245 heat-related tweets were excluded when we built 7 

models using the subsets of heat-related tweets: heat warning tweets and non-warning 8 

tweets, because they could not be definitively included in either category. Third, to be 9 

considered a non-warning tweet, a heat-related tweet must have been posted prior to 10 

the issuance time of heat WWAs and after the expiration time of heat WWAs in 11 

respective WFOs. Data about the issuance/expiration time of archived heat WWAs 12 

were collected from the Iowa Environmental Mesonet (n.d.). About half of heat-13 

related tweets (N=436) were categorized as non-warning tweets, and there is no 14 

overlap between heat warning tweets and non-warning tweets.  15 

 16 

We also considered control variables (Table 2) to help isolate the relationship between 17 

mentions of PMFs and message diffusion. These include the time of day, day of week, 18 

and the month the tweet was issued, the sending account and its number of followers, 19 

the region of origin, the population of the office’s jurisdiction, and environmental 20 

variables (monthly normal temperature and temperature anomaly). The created time 21 

of tweets (except created month), network features, and authorship have each been 22 

found to have an influence on message retransmission (Zhu et al. 2011; Sutton et al. 23 

2015; Hu et al. 2019; Wang et al. 2020). Seasonality (created month) and 24 

environmental variables (monthly normal temperature and monthly temperature 25 
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anomaly) could influence the sharing behavior of local Twitter users through a 1 

mediator, heat risk perception. Early in the warm season, higher mean temperature, 2 

and increased temperature anomaly have been associated with higher heat risk 3 

perception (Schoessow 2018), and the higher heat risk perception among local Twitter 4 

users could motivate more message sharing behaviors regardless of the mention of 5 

PMFs among such messages. Aligned with previous studies (Howe et al. 2019), we 6 

used mean temperatures (instead of maximum and minimum temperatures) to 7 

calculate monthly normal temperatures and temperature anomalies. Mean 8 

temperatures were highly correlated with maximum and minimum temperatures in our 9 

data sets (Pearson correlation coefficient ranging from 0.88 to 0.97).      10 

 11 

c. Analytic Approach  12 

We modeled the effects of PMFs on message diffusion through a multilevel negative 13 

binomial regression model in the R statistical computing environment using the lme4 14 

package (Bates et al. 2015). Respective effects and cumulative effects were modeled 15 

separately. For each type of effect, we also modeled each of the three data sets which 16 

correspond to heat-related tweets, heat warning tweets, and non-warning tweets 17 

respectively. The two subsets of heat-related tweets were modeled separately to find 18 

out whether the effects of PMFs on message diffusion are different between heat 19 

warning tweets and non-warning tweets. We used negative binomial regression 20 

models (Gelman and Hill 2006) because retweet counts in our data sets were 21 

overdispersed count data (dispersion parameters ranging from 2.2 to 7.5). Our data 22 

were collected with multilevel structures (e.g., tweets within WFOs and WFO 23 

regions).  Multilevel modeling, compared to classical regression, provided more 24 

reasonable estimates because multilevel modeling accounts for group-level variability 25 
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by including indicators at different levels and also accounts for group-level 1 

dependency through partial pooling (Gelman and Hill 2006).    2 

 3 

Each of the six multilevel negative binomial models was fit using a combination of 4 

individual-level predictors, grouping variables, and group-level predictors. The 5 

individual-level predictors were the variables regarding the respective or cumulative 6 

effects of the PMFs. These individual-level predictors were treated as fixed effects, 7 

which means that their coefficients were estimated using classical maximum 8 

likelihood methods (Gelman and Hill 2006). Individual tweets were also grouped 9 

according to their created time of day, created day of week, created month, sending 10 

WFO, and NWS region. In our study, these grouping variables were treated as random 11 

effects and multilevel regression models were restricted to a varying-intercept and 12 

constant-slope model. This means that each group within these grouping variables 13 

(e.g., each WFO within the grouping variable of sending WFO) could have different 14 

intercepts in the multilevel model, and the varying intercepts were estimated using 15 

partial pooling (Gelman and Hill 2006). Some of these grouping variables also have 16 

group-level predictors: follower counts and population size were two group-level 17 

predictors for the group of the sending WFO. Monthly normal temperature and 18 

monthly temperature anomaly were group-level predictors across the groups of 19 

sending WFO level and created month. These group-level predictors were treated as 20 

fixed effects in our models.           21 

 22 

The continuous predictors in this study were on different scales. To reduce their 23 

impact on parameter estimates, we multiplied the variable of monthly temperature 24 

anomaly (ºC) by a factor of 10, and transformed the variables of follower counts and 25 
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population size using the natural log function. For each of the six models, variables 1 

treated as fixed effects did not have serious multicollinearity problems, according to 2 

the generalized variance-inflation factor (GVIF, Fox and Monette 1992). The highest 3 

GVIF among fixed-effect variables in the six models was 2.4. Aligned with GVIF, the 4 

highest Pearson correlation between logged follower counts and logged population 5 

size was 0.61. All fixed effects were kept in all models regardless of their explanatory 6 

effects. For each model, we dropped the random effects which provided little 7 

explanatory effect (i.e., with an Intraclass-Correlation Coefficient less than 0.0001). 8 

 9 

For model diagnostics, we used the plot of Pearson residuals against fitted values on 10 

the scale of the linear predictor for our multilevel negative binomial models. This plot 11 

is the equivalent of the plot of residuals against fitted values for general linear models 12 

(Faraway 2016). For each of the six models, points in the plot of Pearson residuals 13 

against fitted values in the scale of the linear predictor were around the horizontal line 14 

of zero, with a roughly constant variance, which means that the assumptions of 15 

linearity (in the scale of linear predictors) and equal variance of errors (scaling out the 16 

variance function) were met for all multilevel negative binomial models.  17 

 18 

4. Results 19 

a. Distribution of PMFs 20 

Retweet counts of the heat-related tweets in our data set ranged from 0 to 217, with a 21 

mean of 13.6 (SD=14.9). For the two subsets of heat-related tweets, heat warning 22 

tweets had higher retweet counts (mean=15.5, SD=13.5) than non-warning tweets 23 

(mean=10.6, SD=7.2; t (289.3)=5, p <0.001) without controlling for other variables. 24 

Overall, the use of PMFs across message types was quite consistent. Across message 25 
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types, information about temperature or heat index (the PMF of hazard intensity) was 1 

by far the most used PMF and descriptions about the severity of health impacts from 2 

heat (the PMF of health impact) was the least frequently mentioned PMF (Fig. 2). 3 

About two-thirds of heat warning tweets (N=158, 70%) mentioned hazard intensity, 4 

as did more than four-fifths of heat-related tweets (N=760, 84%) and nearly 90% non-5 

warning tweets (N=392). However, less than one-fifth of tweets mentioned health 6 

impact in each category of tweet. The next most used PMF was response instruction 7 

across message types, followed by the PMF of health risk susceptibility that describes 8 

who, which behavior, or certain places that are at risk from heat.  9 

 10 

A majority of tweets used zero or only one PMF in each type of tweet. This was 11 

especially the case for non-warning tweets (N=314, 72%). For tweets that used one 12 

PMF, the percentage of each type of tweet that used the PMF of hazard intensity 13 

ranges from 96% to 97%.  For tweets that used two PMFs across message types, the 14 

percentage of each type of tweet that used the combination of hazard intensity and 15 

response instruction ranges from 73% to 85%. Less than 6% tweets used all of the 16 

four PMFs in each message type. Descriptive statistics of each type of tweet across 17 

grouping variables and group-level predictors can be found in appendix A. Across 18 

message types, the number of tweets posted by each sending WFO varied 19 

substantially (e.g., heat-related tweets: min.=13, max.=98, mean=50, SD=30). In 20 

contrast, the number of tweets was distributed almost evenly across days of the week. 21 

For other grouping variables, more tweets were posted in July but fewer in August. 22 

Fewer tweets were posted between 6 pm and 12 am relative to other times of day. 23 

WFOs in the NWS Eastern Region posted, on average, fewer tweets than WFOs in 24 

other regions.  25 
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 1 

b. Respective and Cumulative Effects of PMFs 2 

Regarding the respective effect of PMFs, hazard intensity was a consistently positive 3 

predictor of retransmission across all types of tweets (Table 3). The other three PMFs, 4 

health risk susceptibility, health impact, and response instruction, had statistically 5 

significant and positive influence on retweet counts for one or two message types. No 6 

PMFs showed negative respective effects on retweet counts. The mention of health 7 

risk susceptibility was a statistically significant and positive predictor of retweet 8 

counts for non-warning tweets. The inclusion of health impact had a statistically 9 

significant and positive effect on retweet counts in all heat-related tweets and the 10 

subset of non-warning tweets. The mention of response instruction had a statistically 11 

significant and positive effect on retweet counts for the heat warning tweets. The 12 

effect size of these statistically significant, respective effects was similar, ranging 13 

from a 21% increase to a 33% increase in retweets. Given the exploratory nature of 14 

this analysis, it is worth noting that, for heat-related tweets, the effect of mentioning 15 

health risk susceptibility, IRR=1.13 [95% CI: 1.00 -1.28], p = 0.055, and mentioning 16 

response instruction, IRR=1.10 [95% CI: 0.99-1.23], p = 0.087, approached statistical 17 

significance.  18 

 19 

Compared to the respective effects of individual PMFs, the cumulative effect of PMFs 20 

was a more consistent and precise predictor of retweet counts across message types. 21 

The number of PMFs was a statistically significant, positive predictor for all types of 22 

tweets, and its 95% confidence intervals were consistently narrower than those of the 23 

respective effects of separate PMFs (Table 4 and Fig. 3). Every additional type of 24 

PMF mentioned in official tweets increased the predicted retweet counts for each type 25 
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of tweet by a factor of about 1.15, controlling for other variables in the models. Heat-1 

related tweets mentioning four PMFs were estimated to have 48% more retweets than 2 

heat-related tweets mentioning one PMF, regardless of the PMF type. For heat 3 

warning tweets and non-warning tweets, tweets containing four PMFs were associated 4 

with 53% and 57% more predicted retweets respectively than tweets containing only 5 

one PMF. To check whether the effects of the number of PMFs were dependent on a 6 

single influential PMF, we conducted 12 additional models (for each PMF and tweet 7 

type) dropping tweets mentioning one of the four PMFs from one of three message 8 

types. Overall, the effects of the number of PMFs were not driven by a single PMF 9 

across message types (see appendix B for details of the statistical analysis). In 10 

addition, the cumulative effects of PMFs, as well as the respective effects of each 11 

individual PMF, were not statistically significantly different across message types. 12 

This is suggested by the overlapped confidence intervals of each predictor for the 13 

three data sets (see Fig. 3) and confirmed using a standard method of testing the 14 

significance of differences between point estimates (Schenker and Gentleman 2001). 15 

 16 

c. Effects of Control Variables 17 

With respect to the control variables included in the regression models, it is worth 18 

noting that population size in the forecast area of WFOs consistently had a positive 19 

influence on retweet counts across message types. After controlling for other variables 20 

including population size, the follower count of the sending account was not a 21 

statistically significant predictor of retweet counts for heat warning tweets and non-22 

warning tweets, but had positive effects on retweet counts for heat-related tweets. 23 

With respect to the two environmental variables, heat-related tweets posted in places 24 

and during months with a higher monthly temperature anomaly predicted slightly 25 
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increased retweet counts. Heat warning tweets posted in places and during months 1 

with higher monthly normal temperature predicted slightly decreased retweet counts. 2 

After controlling for other variables in the models, the NWS region, sending WFO, 3 

created month of the tweet, and created day of week played varying roles in affecting 4 

message diffusion for different message types. The time of day the tweet was posted 5 

had only a small influence on message diffusion across message types. 6 

 7 

5. Discussion & Conclusions 8 

Using official risk messages about heat hazards as a case study, this study investigated 9 

the respective and cumulative effects of four types of persuasive message content on 10 

message retransmission via social media. We found that official tweets containing 11 

more types of PMFs were retweeted more frequently. This finding held true for all 12 

heat-related tweets at an aggregate level, and was also observed separately among its 13 

subsets: heat warning tweets and non-warning tweets. In respect to the respective 14 

effects, the mention of hazard intensity was a positive predictor of retweet counts for 15 

heat-related tweets and its two subsets. The mention of health impact was a positive 16 

predictor for heat-related tweets and non-warning tweets. The mention of health risk 17 

susceptibility and the mention of response instruction were positive predictors of 18 

retweet counts for non-warning tweets and heat warning tweets respectively. While 19 

some PMFs, as indicated above, showed statistically significant influence for one or 20 

two types of tweets and showed statistically insignificance for the other type(s) of 21 

tweet(s), each PMF did not show statistically significant differences in its respective 22 

effects across three types of tweets.  23 

 24 

a. Contributions to Theory 25 
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Our findings provide insights into how specific message content that is theoretically 1 

important to message persuasion influenced message diffusion on social media in the 2 

context of natural hazards. To our best knowledge, this is the first study to identify 3 

persuasive message content as factors of message retransmission about natural 4 

hazards. In the context of health communication, as mentioned earlier, one study 5 

about Zika virus has suggested that depicted severity and efficacy statements were not 6 

only persuasive according to a persuasion theory but also effective in terms of 7 

message diffusion on Twitter (Vos et al. 2018). In addition, this previous study did 8 

not observe the effect of depicted susceptibility on message diffusion, although 9 

depicted susceptibility was also persuasive message content (Vos et al. 2018). Our 10 

findings about the respective effects of health risk susceptibility, health impact, and 11 

response instruction generally align with this previous study, although we did detect a 12 

positive effect of health risk susceptibility for tweets alerting non-extreme heat events.  13 

 14 

Our research also contributes to understanding the cumulative effects of message 15 

content. Previous studies have found that a combined theme of hazard information, 16 

which was the equivalent of mentioning at least one of the PMFs among hazard 17 

uncertainty, hazard intensity, health risk susceptibility, and health impact, was a 18 

positive predictor of message diffusion across four natural hazard events (Sutton et al. 19 

2015). Although this finding sheds some light on the overall effects of persuasive 20 

message content, little research attention has been paid specifically to the cumulative 21 

effects of message content. The cumulative effects of message content reflect an 22 

important message style: specificity. For risk messages, specificity refers to specific 23 

information regarding the hazard’s nature and possible consequences, time of impact, 24 

location, source, and instructions about protective actions (Mileti and Sorensen 1990). 25 
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This style of messaging has been found to be persuasive in the context of natural 1 

hazards (Mileti and Sorensen 1990; Sutton et al. 2018). Tweets containing a higher 2 

number of PMFs are more specific. The positive effects of the number of PMFs 3 

detected in the current study suggest that the persuasive message style, specificity, has 4 

the potential to enhance message diffusion as well.  5 

 6 

In addition to message factors, our study found that audience population size was also 7 

a consistent and positive factor of message diffusion, which is in line with one 8 

previous study (Hu et al. 2019). A possible explanation of the effect of population size 9 

is: when a WFO posts a tweet about hazardous weather in its forecast area and if more 10 

individuals live in the forecast area, any reader of the tweet would be more likely to 11 

have family members, friends, and co-workers living in the affected area, and thus it 12 

would be more likely for the reader to think of someone who needs this message and 13 

thus retweet it. However, the follower count of sending accounts was not a consistent 14 

predictor of message diffusion. Although positive effects of follower counts on 15 

message diffusion were found for all heat-related tweets, follower counts did not 16 

predict message diffusion for heat warning tweets and non-warning tweets. Previous 17 

studies have also found inconsistent effects of follower counts on message diffusion. 18 

Some studies have found positive effects of follower counts on message diffusion 19 

(Sutton et al. 2015; Vos et al. 2018; Hu et al. 2019), but some studies have found 20 

small negative effects of follower counts on message diffusion (Sutton et al. 2015; 21 

Wang et al. 2020). In addition, most previous studies have investigated the effects of 22 

follower counts without controlling for the factor of audience population size (Sutton 23 

et al. 2015; Vos et al. 2018; Wang et al. 2020). To better understand the effects of 24 

follower counts and population size on message diffusion, future research should 25 
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consider both factors—population size and follower counts—when modeling message 1 

diffusion.  2 

 3 

b. Contributions to Practice 4 

This research informs evidence-based strategies about official risk messaging to 5 

enhance message retransmission, thus allowing more people to receive lifesaving 6 

messages in the context of natural hazards. When designing official tweets alerting 7 

about heat events, no matter whether these events are technically extreme or not, our 8 

results about cumulative effects suggest that communicators should use all four PMFs 9 

(hazard intensity, health risk susceptibility, health impact, and response instruction) 10 

to maximize message diffusion. For official tweets alerting about extreme heat events 11 

that are accompanied by heat WWAs, it is especially important to mention the PMFs 12 

of hazard intensity and response instruction to enhance message retransmission. Such 13 

official tweets should also mention co-occurring heat WWAs in their messages. For 14 

official tweets alerting about non-extreme heat events, it is particularly important to 15 

mention the PMFs of hazard intensity, health risk susceptibility, and health impact to 16 

enhance message diffusion. In addition to contributions on message diffusion, the 17 

strategies suggested in our findings also have the potential to promote message 18 

persuasion since, in origin, such PMFs were deductively identified based on 19 

theoretical and empirical studies about persuasion.  20 

 21 

In our data sets, a majority of tweets used zero or only one PMF, and the use of 22 

hazard intensity was disproportionately high compared to other PMFs. This fact does 23 

not mean that it is infeasible to mention all four types of PMFs in content constrained 24 

messages like tweets. In contrast, 280 characters in the displayed text and text in 25 
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attached images provide ample room to describe each PMF. For example, the 1 

hypothetical statement below describes all four PMFs within 140 characters: 2 

“Excessive Heat Warning today! Respect the triple-digit heat by drinking enough 3 

water and keeping cool! Otherwise everyone is vulnerable to heat-related illnesses.” 4 

 5 

c. Limitations and Future Research 6 

This study had several limitations. First, when predicting the effects of PMFs on 7 

message diffusion, we controlled for some extrinsic factors such as network features 8 

and authorship of tweets, but our models did not include some intrinsic factors that 9 

have been related to message diffusion. For example, we did not consider factors of 10 

capitalization of words, inclusion of hashtags, and the imperative sentence style, 11 

which have been found to enhance message retransmission in the context of natural 12 

hazards (Sutton et al. 2015; Lachlan et al. 2019). These factors—especially the 13 

imperative sentence style—may also improve message clarity and message certainty, 14 

which are important message styles for risk messages (Mileti and Sorensen 1990; 15 

Lachlan et al. 2019). Although our models already explained 44% ~ 57% of the 16 

variance in the retweet counts, future research should consider more intrinsic factors 17 

to provide a more accurate estimation of the effects of persuasive message content on 18 

message diffusion.   19 

 20 

Second, our findings about the effects of PMFs were based on data from Twitter. In 21 

the U.S., Twitter users are younger compared with the general public and users of 22 

some other social media sites, such as Facebook (Perrin and Anderson 2019; Wojcik 23 

and Hughes 2019). For example, about three quarters (73%) of Twitter users are less 24 

than 50 years old (compared with 54% of all U.S. adults) (Wojcik and Hughes 2019). 25 
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Although Twitter users, in themselves, are an important audience of heat-related 1 

messages since even younger adults can be at risk of heat-related illnesses and deaths 2 

due to maladaptation (Hess et al. 2014; Mora et al. 2017), Twitter users are not 3 

representative of the elderly who are at greater risk from heat hazards. To benefit 4 

those who are less reachable via Twitter messages, especially the elderly, future 5 

research should examine the relationship between message diffusion on Twitter and 6 

message diffusion via other communication channels. For example, it is important to 7 

understand whether messaging strategies that improve message diffusion on Twitter 8 

also improve message diffusion via other channels, such as Facebook and word-of-9 

mouth. It is also important to understand to what degree those who retweet a message 10 

on Twitter further share the information with non-Twitter users via other channels. 11 

 12 

Although this study examined the effects of PMFs on message diffusion in the context 13 

of heat hazards, the five PMFs were originally designed for natural hazards in general, 14 

not limited to heat hazards. To be more applicable to different types of natural hazards 15 

beyond those that are primarily health threats, further studies could rename health risk 16 

susceptibility and health impact as impact susceptibility and impact severity. These 17 

two PMFs could then refer to not only the susceptibility and severity of health-related 18 

consequences but also the susceptibility and severity of other aspects of hazard 19 

impacts such as infrastructure impacts. Future studies should examine how these five 20 

PMFs influence message diffusion for other types natural hazards such as floods and 21 

winter storms. In addition, scholars should continue research to understand the 22 

relationship between message persuasion and message diffusion in order to identify 23 

win-win communication practices in the context of natural hazards.  24 

 25 
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A wide variety of natural hazard events will continue to happen due to natural climate 1 

variability, with certain hazards like extreme heat being particularly exacerbated by 2 

anthropogenic climate changes (Intergovernmental Panel on Climate Change 2012). 3 

Effective risk communication about natural hazards is important to stimulate 4 

individual protective actions and thus reduce adverse impact on public health and 5 

property. To improve official risk messaging, this research empirically tested the 6 

influence of persuasive message content on message retransmission on Twitter in the 7 

context of heat hazards. We found that official tweets mentioning more types of 8 

persuasive message factors and mentioning hazard intensity were respectively 9 

associated with higher rates of message retransmission for heat-related tweets and its 10 

two subtypes, heat warning tweets and non-warning tweets. Mentions of health risk 11 

susceptibility, health impact, and response instruction respectively demonstrated 12 

positive effects on message diffusion for some message types about heat hazards. Our 13 

findings could have implications for official risk messages about other types of 14 

natural hazards and for those disseminated through other channels such as Facebook 15 

and television to maximize message diffusion.  16 

 17 
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Perceptions of Heat Wave Risk.” 1 

 2 

8. Appendix A  3 

Descriptive Statistics of Predictors 4 

Table A1 here 5 

 6 

9. Appendix B 7 

Checks about the Validity of Cumulative Effects  8 

 9 
We checked whether the effects of the number of PMFs were dependent on a single 10 

influential PMF by conducting 12 additional models (for each PMF and tweet type) 11 

dropping tweets mentioning one of the four PMFs from one of three message types. 12 

The effects of the number of PMFs remained statistically significant, positive 13 

predictors for eight models, and the other four models were overfitted and not found 14 

to have statistically significant, cumulative effects. One of the four models used heat 15 

warning tweets removing those containing the PMF of response instruction, in which 16 

the cumulative effect approached significance, IRR=1.25 [95% CI: 0.97-1.60], p = 17 

0.08. The other three models that did not pass the check used data sets dropping 18 

tweets containing the PMF of hazard intensity. Because tweets containing mentions of 19 

hazard intensity were disproportionately high in each original data set, the remaining 20 

data sets after removing tweets mentioning hazard intensity did not have enough cases 21 

to check the cumulative effects. As an alternative, we modeled the number of PMFs 22 

for each original data set without dropping any tweets and controlled for the variable 23 

of hazard intensity in addition to other control variables. For each of the alterative 24 

models, the number of PMFs was a statistically significant and positive predictor of 25 
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retweet counts. Overall, we concluded that the effects of the number of PMFs were 1 

not driven by a single PMF across message types.  2 

 3 
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 6 

11. Tables  7 

TABLE 1. Definition, Coding Scheme, and Examples for Persuasive Message Factors. Adapted from (Li 8 

et al. 2018) 9 

PMF Definition Coding Scheme for Heat Tweet Example 

Hazard 
Uncertainty 

 

Probability information 
about a hazardous 
event occurring 

Descriptions about the 
degree of forecast 
uncertainty with the 
temperature or Heat Index 
(HI) for the upcoming 
weather. 

“6-10 DAY OUTLOOK 
TEMPERATURE 
PROBABILITY. (With 
color ramps showing) 
Probability of Below 
(Normal) and Probability of 
Above (Normal).” 

Hazard 
Intensity 

Descriptions about the 
physical severity of a 
hazardous event itself 

Information about HI 
and/or the temperature of 
current and/or upcoming 
heat events 

“The #heatwave continues 
w/ heat indices of 105-111 
expected today!” 

Health Risk 
Susceptibility 

Message content 
depicting susceptibility 
to health-related 
consequences of a 
hazardous event 

Message content signaling 
who, which behaviors 
and/or which places (e.g., 
outdoor, on the beach) 
that are vulnerable to 
heat-health impacts. 

“Who’s At High Risk? 
Much of the population, 
especially those who are 
heat sensitive and anyone 
without effective cooling 
and hydration.” 

Health 
Impact 

Mentions about the 
severity of health-
related consequences 
of a hazardous event 

At least one word 
indicating heat-related 
illnesses and/or deaths. 

“Take frequent breaks, stay 
hydrated and wear light-
weight clothing to avoid 
heat-related illnesses.” 

Response 
Instruction 

Descriptions about 
recommended actions 

Information about generic 
and/or specific heat safety 
tips. 

“Stay cool! – Use air 
conditioning if possible; 
fans alone DO NOT provide 
enough cooling when it is 
very hot outside.” 

 10 

 11 
 12 
 13 
 14 
 15 
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TABLE 2.  Description of Control Variables 1 

Variable Description Data source 

Created time 
of day 

The local time of day when the tweet was posted, 
which was classified into four categories: 0am - 6am, 
6am - 12pm, 12pm - 6pm, and 6pm - 12am.  

Collected using 
Twitter Search API  

Created day of 
week 

The local time of week when the tweet was posted, 
which was classified into seven categories: Monday, 
Tuesday, …Saturday, and Sunday.  

Collected using 
Twitter Search API  

Created month The local time in month when the tweet was posted, 
which had three categories: June, July, and August. 

Collected using 
Twitter Search API  

Sending WFO The WFO which is the sending account. The eighteen 
WFO names can be found in appendix A.  

Collected using 
Twitter Search API  

NWS region The NWS regional office to which the sending WFO 
belongs, which had four categories: Western Region, 
Central Region, Southern Region, and Eastern Region.  

Collected using 
Twitter Search API  

Monthly 
normal 
temperature 

The average monthly long-term mean temperature 
(1981-2010) in the forecast area of each sampled 
WFO. 

PRISM Climate 
Group (n.d.) 

Monthly 
temperature 
anomaly 

Subtracting monthly normal temperature from the 
average monthly mean temperature of the study year 
2016 for the forecast area of each sampled WFO. This 
variable was rescaled by multiplying by ten when 
fitting in models.  

PRISM Climate 
Group (n.d.) 

Follower count The number of followers in the sending account on 
September 1st,  2016. This variable was rescaled by 
taking natural log when fitting in models.    
  

Provided by NWS 
Social Media and 
Digital Strategy 
Lead via an email 
on February 11, 
2020  

Population size  The number of individuals living within the forecast 
area of each sampled WFO in 2016. This variable was 
rescaled by taking natural log when fitting in models.  

U.S. Census 
Bureau (2017) 
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TABLE 3. Multilevel Negative Binomial Regression Predicting the Respective Effect of PMFs on Retweet Counts for Each Type of Tweet 

  Heat-related tweets    Heat warning tweets    Non-warning tweets  

Individual-level Predictor b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value 

(Intercept) -4.81 (0.83) 0.01 [0.00, 0.04] <0.001  -3.55 (1.30) 0.03 [0.00, 0.37] 0.006  -3.18 (1.23) 0.04 [0.00, 0.47] 0.010 

Hazard intensity 0.20 (0.06) 1.22 [1.09, 1.37] <0.001  0.23 (0.09) 1.26 [1.04, 1.51] 0.016  0.24 (0.08) 1.28 [1.10, 1.49] 0.002 

Health risk susceptibility 0.12 (0.06) 1.13 [1.00, 1.28] 0.055  0.01 (0.12) 1.01 [0.81, 1.27] 0.929  0.22 (0.08) 1.25 [1.07, 1.46] 0.006 

Health impact 0.19 (0.07) 1.21 [1.05,1.39] 0.007  0.05 (0.12) 1.05 [0.83, 1.33] 0.694  0.28 (0.09) 1.33 [1.10, 1.60] 0.003 

Response instruction 0.10 (0.06) 1.10 [0.99, 1.23] 0.087  0.24 (0.12) 1.27 [1.01, 1.60] 0.043  0.04 (0.06) 1.04 [0.92, 1.18] 0.513 

Group-level predictor b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value 

Monthly normal 
temperature  -0.01 (0.01) 0.99 [0.96, 1.02] 0.524  -0.05 (0.02) 0.95[0.92, 0.99] 0.011  -0.01 (0.02) 0.99 [0.95, 1.02] 0.435 

Monthly temperature 
anomaly (multiplied by ten) 0.01 (0.00) 1.01 [1.00, 1.02] 0.008  0.00 (0.01) 1.00 [0.99, 1.02] 0.794  0.00 (0.00) 1.00 [0.99, 1.00] 0.388 

Follower count (logged) 0.38 (0.12) 1.46 [1.15, 1.85] 0.002  0.24 (0.17) 1.27 [0.91, 1.77] 0.165  0.21 (0.19) 1.24 [0.86, 1.78] 0.250 

Population size (logged) 0.23 (0.06) 1.26 [1.11, 1.43] <0.001  0.31 (0.09) 1.37 [1.14, 1.63] 0.001  0.23 (0.10) 1.26 [1.04, 1.53] 0.020 

Grouping variable N σ2 ICC  N σ2 ICC  N σ2 ICC 

Created time of day ⎯ ⎯ ⎯  ⎯ ⎯ ⎯  4 0.003 0.008 

Created day of week 7 0.008 0.019  7 0.013 0.034  ⎯ ⎯ ⎯ 

Created month 3 0.016 0.038  3 0.054 0.141  3 0.002 0.007 

Sending WFO 18 0.029 0.069  15 0.025 0.064  18 0.078 0.241 

NWS region 4 0.075 0.180  4 0.076 0.198  4 0.053 0.165 

Number of observations 904  223  436 

Marginal R2 0.261  0.298  0.250 

Conditional R2 0.443   0.570   0.537 

Note: b, unstandardized regression coefficient; S.E., standard error; IRR, incidence rate ratio; CI, confidence interval; N, number of groups within a grouping variable; σ2, variance components; ICC, intra-
class correlation coefficient; p values less than 0.05 were marked in bold. 
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TABLE 4. Multilevel Negative Binomial Regression Predicting the Cumulative Effect of PMFs on Retweet Counts for Each Type of Tweet 

  Heat-related tweets    Heat warning tweets    Non-warning tweets  

Individual-level Predictor b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value 

(Intercept) -4.72 (0.81) 0.01 [0.00, 0.04] <0.001  -3.95 (1.36) 0.02 [0.00, 0.27] 0.004  -3.10 (1.24) 0.04 [0.00, 0.51] 0.013 

Number of PMFs 0.13 (0.02) 1.14 [1.10, 1.18]     <0.001  0.14 (0.03) 1.15 [1.08, 1.23] <0.001  0.15 (0.03) 1.16 [1.11, 1.22] <0.001 

Group-level predictor b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value  b (S.E.) IRR [95%CI] p value 

Monthly normal 
temperature  -0.01 (0.01) 0.99 [0.97, 1.02] 0.547  -0.05 (0.02) 0.95 [0.92, 0.99] 0.022  -0.01 (0.02) 0.99 [0.95, 1.03] 0.542 

Monthly temperature 
anomaly (multiplied by ten) 0.01 (0.00) 1.01 [1.00, 1.02] 0.005  0.00 (0.01) 1.00 [0.99, 1.02] 0.656  0.00 (0.00) 1.00 [0.99, 1.00] 0.428 

Follower count (logged) 0.38 (0.12) 1.46 [1.16, 1.84] 0.001  0.27 (0.18) 1.31 [0.92, 1.86] 0.136  0.21 (0.19) 1.24 [0.86, 1.79] 0.259 

Population size (logged) 0.23 (0.06) 1.25 [1.11, 1.42] <0.001  0.32 (0.09) 1.37 [1.14,1.65] 0.001  0.23 (0.10) 1.25 [1.03, 1.53] 0.024 

Grouping variable N σ2 ICC  N σ2 ICC  N σ2 ICC 

Created time of day ⎯ ⎯ ⎯  ⎯ ⎯ ⎯  4 0.003 0.010 

Created day of week 7 0.008 0.021  7 0.011 0.028  ⎯ ⎯ ⎯ 

Created month 3 0.015 0.036  3 0.052 0.134  3 0.002 0.006 

Sending WFO 18 0.027 0.066  15 0.031 0.079  18 0.080 0.248 

NWS region 4 0.073 0.178  4 0.072 0.187  4 0.049 0.150 

Number of observations 904  223  436 

Marginal R2 0.260  0.304  0.243 

Conditional R2 0.439   0.568   0.528 

Note: b, unstandardized regression coefficient; S.E., standard error; IRR, incidence rate ratio; CI, confidence interval; N, number of groups within a grouping variable; σ2, variance components; ICC, intra-
class correlation coefficient; p values less than 0.05 were marked in bold. 
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 1 

TABLE A1. Descriptive Statistics of Predictors 

  
Heat-related tweets 
(N=904) 

Heat warning tweets 
(N=223) 

Non-warning tweets 
(N=436) 

Individual-level Predictor Count (Percentage) Count (Percentage) Count (Percentage) 

Hazard intensity    
   0: absence 144 (15.9%) 66 (29.6%) 44 (10.1%) 

   1: presence 760 (84.1%) 157 (70.4%) 392 (89.9%) 

Health risk susceptibility   
   0: absence 725 (80.2%) 158 (70.9%) 375 (86.0%) 

   1: presence 179 (19.8%) 65 (29.1%) 61 (14.0%) 

Health impact    
   0: absence 805 (89.0%) 186 (83.4%) 407 (93.3%) 

   1: presence 99 (11.0%) 37 (16.6%) 29 (6.7%) 

Response instruction    
   0: absence 569 (62.9%) 120 (53.8%) 308 (70.6%) 

   1: presence 335 (37.1%) 103 (46.2%) 128 (29.4%) 

PMF count    
   0 77 (8.5%) 53 (23.8%) 19 (4.4%) 

   1 504 (55.8%) 67 (30.0%) 295 (67.7%) 

   2 132 (14.6%) 26 (11.7%) 61 (14.0%) 

   3 159 (17.6%) 65 (29.1%) 51 (11.7%) 

   4 32 (3.5%) 12 (5.4%) 10 (2.3%) 

Grouping variable Count (Percentage) Count (Percentage) Count (Percentage) 

Created time of day    
   0am - 6am 242 (26.8%) 72 (32.3%) 129 (29.6%) 

   6am - 12pm 224 (24.8%) 65 (29.1%) 103 (23.6%) 

   12pm - 6pm 280 (31.0%) 58 (26.0%) 121 (27.8%) 

   6pm - 12am 158 (17.5%) 28 (12.6%) 83 (19.0%) 

Created day of week    
   Monday 104 (11.5%) 19 (8.5%) 67 (15.4%) 

   Tuesday 128 (14.2%) 26 (11.7%) 73 (16.7%) 

   Wednesday 148 (16.4%) 44 (19.7%) 59 (13.5%) 

   Thursday 146 (16.2%) 40 (17.9%) 53 (12.2%) 

   Friday 157 (17.4%) 47 (21.1%) 59 (13.5%) 

   Saturday 104 (11.5%) 27 (12.1%) 58 (13.3%) 

   Sunday 117 (12.9%) 20 (9.0%) 67 (15.4%) 

Created month    
   June 290 (32.1%) 61 (27.4%) 142 (32.6%) 

   July 403 (44.6%) 105 (47.1%) 196 (45.0%) 
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   August 211 (23.3%) 57 (25.6%) 98 (22.5%) 

     Sending WFO    
   NWS Phoenix 98 (10.8%) 20 (9.0%) 36 (8.3%) 

   NWS Chicago 97 (10.7%) 41 (18.4%) 45 (10.3%) 

   NWS Fort Worth 89 (9.8%) 25 (11.2%) 46 (10.6%) 

   NWS Wichita 88 (9.7%) 6 (2.7%) 28 (6.4%) 

   NWS New Orleans 79 (8.7%) 11 (4.9%) 56 (12.8%) 

   NWS Tulsa 75 (8.3%) 47 (21.1%) 14 (3.2%) 

   NWS Louisville 66 (7.3%) 10 (4.5%) 47 (10.8%) 

   NWS Columbia 49 (5.4%) 2 (0.9%) 46 (10.6%) 

   NWS Las Vegas 43 (4.8%) 14 (6.3%) 18 (4.1%) 

   NWS Seattle 40 (4.4%) 3 (1.3%) 11 (2.5%) 

   NWS Mount Holly 32 (3.5%) 11 (4.9%) 10 (2.3%) 

   NWS Flagstaff 27 (3.0%) 16 (7.2%) 2 (0.5%) 

   NWS Bismarck 25 (2.8%) 0 (0.0%) 17 (3.9%) 

   NWS San Angelo 24 (2.7%) 6 (2.7%) 13 (3.0%) 

   NWS New York NY 24 (2.7%) 10 (4.5%) 3 (0.7%) 

   NWS Miami 21 (2.3%) 1 (0.4%) 18 (4.1%) 

   NWS Atlanta 14 (1.5%) 0 (0.0%) 13 (3.0%) 

   NWS Burlington 13 (1.4%) 0 (0.0%) 13 (3.0%) 

NWS region    
   Southern Region 302 (33.4%) 90 (40.4%) 160 (36.7%) 

   Central Region 276 (30.5%) 57 (25.6%) 137 (31.4%) 

   Western Region 208 (23.0%) 53 (23.8%) 67 (15.4%) 

   Eastern Region 118 (13.1%) 23 (10.3%) 72 (16.5%) 

Group-level predictor * Mean (SD) Mean (SD) Mean (SD) 

Monthly normal temperature 
(in °C) 24.51 (4.11) 25.37 (4.02) 24.54 (4.15) 

Monthly temperature anomaly 
(in °C) 1.01 (0.85) 1.08 (0.91) 1.02 (0.85) 
Follower count (in thousand) 17.90 (13.75) 19.73 (14.35) 17.90 (13.75) 
Population size (in million) 5.84 (6.79) 6.38 (7.16) 5.84 (6.79) 

* The descriptive statistics of group-level predictors were calculated across groups, instead of across 
individual tweets. For example, follower count was a group-level predictor for the grouping variable of 
sending WFO, and there were 15 sending WFOs which posted heat warning tweets. Then the mean of 
follower count for heat warning tweets was the average of these 15 follower counts responding to each of the 
15 sending WFOs. 
 
 
 

 12. Figures 1 
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 1 

FIG. 1. A map showing the distribution of the sampled NWS WFOs, and the NWS regional offices’ operational 2 

boundaries. White lines separate adjacent WFOs. No WFOs are across NWS regional boundaries. After (Li et al. 3 

2018). 4 

 5 

 6 

FIG. 2. The percentage of each type of tweet containing a certain PMF and containing varying numbers of different 7 

PMFs. Heat-related tweets refer to official tweets alerting about any heat events, and heat warning tweets and non-8 

warning tweets are subsets of heat-related tweets which alert about extreme heat events and non-extreme heat events 9 

respectively.   10 
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1 

FIG. 3. Estimated respective and cumulative effects of PMFs for each type of tweet. Points, squares, and diamonds 2 

indicate the estimated effect; lines indicate 95% confidence intervals with the 90% confidence interval in bold. 3 
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