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ABSTRACT: Because of the vital role of temperature in many
biological processes studied in microfluidic devices, there is a need
to develop improved temperature sensors and data analysis
algorithms. The photoluminescence (PL) of nanocrystals (quan-
tum dots) has been successfully used in microfluidic temperature
devices, but the accuracy of the reconstructed temperature has
been limited to about 1 K over a temperature range of tens of
degrees. A machine learning algorithm consisting of a fully
connected network of seven layers with decreasing numbers of
nodes was developed and applied to a combination of normalized
spectral and time-resolved PL data of CdTe quantum dot emission
in a microfluidic device. The data used by the algorithm were
collected over two temperature ranges: 10−300 K and 298−319 K. The accuracy of each neural network was assessed via a mean
absolute error of a holdout set of data. For the low-temperature regime, the accuracy was 7.7 K, or 0.4 K when the holdout set is
restricted to temperatures above 100 K. For the high-temperature regime, the accuracy was 0.1 K. This method provides
demonstrates a potential machine learning approach to accurately sense temperature in microfluidic (and potentially nanofluidic)
devices when the data analysis is based on normalized PL data when it is stable over time.
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■ INTRODUCTION

Accurate temperature sensing at the micro- and nanoscale is
necessary for a broad range of biologically relevant processes
including organ-on-chip operation,1 hypo- and hyperther-
mia,2,3 biomolecular kinetics,4 activation of temperature-
sensitive mutations,5 cryopreservation,6 and DNA analysis
such as melt curve analysis.7 Microfluidic analysis of these
biological processes has the added benefits of reduced sample
and reagent use, parallelized analysis of multiple samples, and
full automation of the analysis process. However, the number
of temperature measurement methods that can be integrated
into a microfluidic chip with the desired accuracy and spatial
resolution is limited. As an example, in DNA melt curve
analysis, a single nucleotide polymorphism is predicted to
cause a difference in unwinding (i.e., “melting”) temperature as
small as 0.1 °C.8 Existing sensors and data analysis algorithms
cannot detect changes this small in a microfluidic device at the
necessary temperature ranges, and so a new approach to
temperature measurement should be investigated.
The requirements for a biothermal sensor are limiting9,10

because the sensor has to meet some of the following

requirements: biocompatibility, small probe size (nanoscale),
rapid sensor response, and the ability to provide spatial11

information about temperature. Typical biothermal sensing
devices used in microfluidic devices include10 IR and Raman
thermography, thermocouples and platinum RTDs, liquid
crystals, nano and bulk diamonds, and fluorescent dyes,
proteins, and quantum dots,12 with ref 13 providing an
excellent review of shortcomings of the various sensors. In
addition to the inherent uncertainties in the sensor, the data
analysis algorithm (i.e., functional fitting to relate the sensor
output to temperature) can introduce additional error. In a
previous work,14 we demonstrated that improved data analysis
of nanocrystals (quantum dot, QD) fluorescence by machine
learning improved the temperature prediction accuracy from
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±1.0 to ±0.3 K over a range of 300−312 K. To accomplish
this, several spectral features of QDs such as the absolute
intensity of the fluorescent peak, the wavelength of peak
emission, and the normalized intensity of the fluorescent
spectra at several spectral bands were used as inputs to a neural
network. The network was then trained to relate the spectral
features to the temperatures measured with a calibrated
platinum RTD. We have also achieved accuracies near ±0.6 K
at times as short as 10 ns15 using a stroboscopic technique.
These approaches required the use of absolute values of peak
intensity, so the accuracy of the approach was only applicable
to that particular application. A more generalized approach is
needed, particularly one that can be applied over a larger range
of temperatures for biothermal sensing in microfluidic and
nanofluidic devices. As an example application where improved
thermal sensing could be used in microfluidic devices, there is
evidence that changes as small as ±0.2 K can perturb biological
processes and proteins in some cells, which is of interest for
radio-frequency radiation interactions with human cells during
cell phone use.16

Previously, the focus of machine learning via neural
networks for thermal application has historically been on
image recognition in thermal images.17−19 A limited number of
studies have used feed forward or convolution neural networks
to predict temperature based on another signal. These include
measuring atmospheric temperatures as a function of
altitude,20 determining temperature during combustion,21

hyperspectral imaging trained on temperature at a single
point,22 and determining temperature distributions based on
time-of-flight of ultrasound through tissue.23 Based on these
few instances with temperature and other sensors benefiting
from machine learning use,24 there is the potential to improve
temperature sensing in biological system through the use of
neural networks to interpret temperature sensitive signals.
The present study details the results of CdTe quantum dot

fluorescence thermometry by means of an improved neural
network. Fluorescent spectra and fluorescent lifetime data were
acquired from a 3D printed microfluidic device over a
temperature range from cryogenic (10 K) to several degrees
above human physiological temperature25 (319 K). The
uniqueness of the approach is the use of normalized
photoluminescence (PL) spectra data and time-resolved PL
data instead of the total fluorescent intensity. Because of the
nanoscopic size of fluorescent materials used, the results of this
research present a data analysis method that can provide
improved accuracy in measuring thermal transport at small
scales.

■ EXPERIMENTAL METHODS
A microfluidic device was created to hold the CdTe quantum dots
(Figure 1, PlasmaChem, λmax = 650 nm) in place. This device was
designed by using an open source CAD software (OpenSCAD) and
printed on an Asiga 3D printer (Asiga Pico Plus 27, Asiga) with PR48
resin (Autodesk, Inc.). The Asiga was used because it has a 27 μm x−
y resolution and a 10 μm z resolution27 that was sufficient for the
channel dimensions of the microfluidic device. The printed device was
12 mm × 12 mm × 4 mm with two parallel 1 mm × 1 mm channels
for housing the quantum dots and a heating material. The PR48 resin
was impregnated with CdTe quantum dots via sonication, injected
into the device, and cured in place through an optical process (Figure
1). Previous work showed that this process does not affect the
quantum dots’ fluorescent thermal properties.28 The device also had
other channels, one of which is to get a thermocouple (TC, Type K,
OMEGA Engineering) as close as possible to the embedded CdTe

quantum dots during the high-temperature measurements. The
heating material was selected to be galinstan, a gallium-based liquid
metal. This metal has a low enough viscosity to fill the channel and a
high enough resistivity to provide heating when a current is passed
through. Copper wires were placed in the external openings of the
heating channel, and the channel was sealed off to protect the
galinstan from oxidation. These copper wires were the access points
for the DC power source used for the heating (BK Precision 1696). A
schematic of the microfluidic device is shown in Figure 2b.

Photoluminescence (PL) spectral data and time-resolved PL data
were taken using the optical setup shown in Figure 2a for
temperatures between 10 and 319 K in two regimes: a low-
temperature regime from 10 to 300 K in increments of 10 K and a
high-temperature regime from 298 to 319 K in increments of 1 K. The
CdTe quantum dot samples were sealed into PR48 resin chips and
brought to the desired temperature points via (for low temperatures)
a commercial cryostat or (for high temperatures) a custom PID
controller which measures temperature with a thermocouple and
drives a galinstan heating element embedded into the PR48 chip. We
used differentbut very similarQDs for the low- and high-
temperature regimes, each encapsulated in their own resin chip; the
galinstan element was only present in the high-temperature regime
chip. Representative PL spectra and time-resolved PL data are shown
in Figure 3. Both wavelength and delay time curves display changes
with temperature; therefore, optical data calibrated for temperature
can be used to create an optical temperature probe.

The time-resolved PL was measured by using the technique of
time-correlated single photon counting (TCSPC).29 TCSPC involves
measuring the time delay between PL excitation and PL emission. A
timing module starts when it receives a trigger from a laser pulse and
stops upon the detection of a photon from PL. This measurement is
repeated many times, and the time values obtained are used to create
a histogram. As per Figure 3b, the histogram shows a rise in photons
incident on the detector as the laser pulse turns on and a decay in
photons after the laser pulse shuts off. If the time scale of the decay
approaches the time limitations of the system, then this measured data
is not immediately representative of the sample’s actual PL lifetime
decay; instead, an instrument response function (IRF) must be
obtained, and the measured TCSPC data will be the convolution of
the IRF with the actual TRPL. In such cases the standard method of
characterizing the decay is to assume a functional form for the actual
decay using one or more parameters and then do an iterative
reconvolution fit where the difference between the measured data and
the convolution is minimized as the parameters are varied.30

However, this type of reconvolution fit requires knowing the
precise functional form of the decay. In the simplest cases the optical
decay may be a single exponential with a characteristic decay time
describing the process. In more complicated situations, multiple
discrete decay times can exist where each decay may have its own
amplitude, or there could be a continuum of decay times that exist.31

By doing convolution fits to our TCSPC data, we have found the
CdTe quantum dots have at least two separate decay mechanisms,
and possibly more, requiring several parameters to accurately model.
The increased number of fitting parameters leads to large

Figure 1. Schematic of COOH-functionalized CdTe nanoparticle
inside open source PR48 resin. QDs were purchased as a powder from
PlasmaChem and mixed into PR48 resin26 as described in the text.
Some of the key compounds in PR48 resin include Genomer 1122,
Ebecryl 8210, and Sartomer SR 494.
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uncertainties in their values: a wide range of parameter values can lead
to fits with approximately the same errors.32 Therefore, in theory the
PL lifetimes could be characterized as a function of temperature, and
that function could be used to predict temperatures given newly
measured time-resolved PL, but in practice that method proved
extremely unreliable. This motivates our approach of using the
measured TCSPC data itself, without any sort of decay model or
reconvolution fit, as an input to a machine learning model. Instrument
response function-less fitting of the data by Kalman filter has also
been done with some success,33 but the use of neural networks is
expected to provide improved results.
To take the optical data, a 520 nm laser (Thorlabs TCLDM9 diode

laser, 500 MHz bandwidth) is focused onto the sample (see Figure
2a). The laser is modulated via an external pulse generator (Agilent
81110A) to provide 5 ns pulses every 60 ns and has an average power
of 0.2 mW. The PL emission is collimated and filtered with a 550 nm
long pass filter to remove stray laser light. The filter cuts off
wavelengths below 550 nm in Figure 3a, producing a sharp shoulder.
Because the PL emission is roughly 10 times weaker for high

temperatures compared to low temperatures, the shoulder is more
pronounced in the normalized spectra plotted. The filtered emission is
then focused onto a spectrometer (JY Horiba Triax 550). For each
temperature, the sample’s PL spectrum is first measured; we used a
cooled photomultiplier tube (PMT) detector with photon counter for
the low-temperature regime (Hamamatsu R3896 PMT; Stanford
Research Systems SR400 photon counter) and a cooled CCD
detector for the high-temperature regime (JY Horiba Synapse
354010). Then, for the TCSPC measurements, the spectrometer is
set to the peak of the spectrum with a spectral bandwidth of 0.3 nm.
The time-resolved PL in both regimes is detected with the PMT, with
timing provided by a Picoquant TimeHarp 260 pico TCSPC board.

To ensure the photostability of the PL, spectral data were collected
for three consecutive days under 100 mW illumination, with multiple
tests performed on the third day. The results are shown in Figure 4
and demonstrate that the CdTe emission is reasonably stable over
multiple days. Additionally, each test in represented in Figure 4 lasted
about 50 min where the laser was continuously irradiating the QDs.

Figure 2. Optical experimental setup (a). The laser diode excites photoluminescence (PL) from the sample, which is placed in a cryostat or on a
heating stage. The PL is collected and focused onto a spectrometer. For spectral scans the spectrometer analyzes the PL for wavelength dependence
using a photomultiplier tube (PMT) detector or CCD detector (not shown). For time-resolved PL, the laser is controlled by a pulse generator
which also sends the start signal to the TCSPC module, the spectrometer is set to the peak wavelength, and the PMT signal triggers the TCSPC
module to stop. Microfluidic samples (b). CAD model sent to printer27 and PR48-resin printed device with CdTe impregnated PR48 resin filling
channels. Empty channels for the thermocouple (TC) and heating (galinstan) are shown.

Figure 3. Representative normalized data from 10 to 300 K. (a) Spectral data (wavelength-resolved photoluminescence). (b) Time-resolved
photoluminescence obtained via time-correlated single photon counting (TCSPC).
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This QD stability was also observed during our previous work with
CdSe/ZnS QDs not in a polymer matrix.34

With regard to the TCSPC measurement, start triggers occur every
60 ns. An overall delay is present so the response to the laser pulse
does not occur at zero time, as can be seen in Figure 3b. The PL is
dimmed with neutral density (ND) filters to reach a rate of 450000
photons per second. The rate was selected so that PL photons are
collected in fewer than 5% of the trigger periods to minimize the
chance of two photons being collected by our optical system during a
given trigger periodotherwise, the data would be skewed to shorter
times as the second photon would go undetected.35 Because the PL
emission strength depends on temperature, the amount of added ND
filtering required to achieve that rate also depends on temperature,
typically ranging from ND0 (i.e., no added filter) for high
temperatures to ND1 for low temperatures.
The spectral data and the TCSPC data were used jointly as the

machine learning inputs.
Machine Learning Setup. The data for machine learning were

preprocessed in two ways. First, we calculated the logarithm of our
TCSPC data prior to inputting the data into the neural network. This
is analogous to the case of a single-exponential decay fit where a
researcher might take the log of a decay function and do a linear least-
squares fit to the log data rather than doing an exponential decay
least-squares fit on the raw data. Roughly speaking, taking the log first
gives more weight to points on the decay at later times than they
otherwise would have.
Second, even though the PL intensity correlates quite strongly with

temperature, we used a (0, 1) min−max normalization36 on each data
set to deliberately cause that potential learning feature to be lost. This
was done because the absolute intensity, while temperature
dependent, is also heavily dependent on factors such as specific
detectors, optical alignment, and geometry (i.e., solid angle collected),
which will vary heavily from one laboratory to another. Machine
learning results obtained with the normalization in place should
therefore provide a more representative idea of what can be achieved
with training data obtained in one laboratory and later optical
measurements, i.e., the inputs for the trained machine learning model,
being performed in a different place.
As mentioned above, the low-temperature regime contained data

from 30 temperatures (from 10 to 300 K in steps of 10 K) and the
high-temperature regime contained data from 22 temperatures (from
298 to 319 K in steps of 1 K). Details on the optical data files are
provided in Table 1.
Three distinct sets of data were used in the machine learning

process and are defined as follows. The training set refers to the set of
data that was used to train the neural network. The testing/validation
set refers to the set of data that was used to test the neural network
during its development, for example, to guard against overfitting. The
holdout set refers to the set of data that was withheld completely

during the training process and used to establish the validity of the
final neural network.

Our basic machine learning methodology was to do the following
for each of the two temperature regimes. We first withheld data from
five randomly selected temperatures for later use. This is the holdout
set. We then interpolated between the remaining temperatures to
generate additional samples which were then used as the inputs to
train the neural network. Interpolation is a form of data set
augmentation, which is especially useful for smaller data sets when
it is difficult or untimely to find or create new data and has been used
in contexts such as the visualization of sinusoids, the classification of
pen characters, and the classification of spoken Arabic words.37 It is
somewhat similar to image recognition machine learning routines
which create new training images by performing rotations or
reflections of the original images, zooming in and out, changing the
color palette, and so forth.38 After creating the interpolated files, we
used a random 80/20 “training/testing split” to create the training set
and the testing/validation set. The neural network was trained using
only points from the training set. Hyperparameters were varied and
tuned to obtain the best neural network (more details below). Finally,
the mean absolute error of the holdout set was used to assess and
report on the quality of the neural network.

The temperatures for the holdout set in the low-temperature
regime were as follows: 70, 90, 120, 180, and 250 K. The interpolation
was done in steps of 1 K using the remainder of the temperatures,
creating data from 10 to 300 K. The final set of 291 pairs of
normalized spectral and TCSPC data for the low-temperature regime,
10 to 300 K in steps of 1 K, which were used for machine learning
training are plotted in Figure 5.

The temperatures for the holdout set in the high-temperature
regime were as follows: 301, 305, 310, 313, and 316 K. The
interpolation was done in steps of 0.1 K using the remainder of the
temperatures, creating data from 298 to 319 K. The final set of 211
pairs of spectral and TCSPC data which were used for machine
learning training are plotted in Figure 6.

Neural Network Optimization. We pursued various architec-
tures for an artificial neural network to be able to accept optical
spectral and TCSPC data and predict temperature. These include a
convolutional neural network (CNN) with the spectral and TCSPC
data feeding into separate branches (merging them together in a later
layer), a CNN with the spectral and TCSPC data feeding in as a single
input vector, a dense fully connected neural network (DNN) with the
spectral and TCSPC data feeding in separately, a DNN using only the
spectral data, a DNN using only the TCSPC data, and a DNN with
the spectral and TCSPC data feeding in as a single vector. Within
each of these architectures, we tested network parameters such as
number of hidden layers and number of nodes per layer. We also
tested k-fold cross validation (with k = 5) for the “input together”
DNN as an alternative to the 80−20 training/testing split technique.
These were all tested for the low-temperature regime; results are
presented in Table 2.

The optimal architecture proved to be an “input together” DNN in
which the spectral and TCSPC data were merged into a single vector
of length 2613 as the input layer. Additional hyperparameters such as
numbers of layers and nodes per layer, activation functions (relu, tanh,
sigmoid, and linear), learning rate (multiple values), and optimizer
(adam, adagrad, adadelta, and sgd) were tuned using standard
practices.39,40 Batch normalization was also explored as a hyper-
parameter. Principal component analysis using feature elimination was
also investigated as a preprocessing technique to simplify the data and
reduce unnecessary information; however, it was not used in the final
machine learning model because none of the models performed better

Figure 4. Peak intensity of CdTe dots embedded in a polymer matrix,
showing stability of the PL signal over 3 days (D1−D3), and multiple
tests on the same day (T1−T3).

Table 1. Optical Data File Details

optical measurement scan range step size no. of points

low-temperature spectrum 500−700 nm 1.000 nm 201
high-temperature spectrum 500−700 nm 1.041 nm 193
TCSPC 0−60.275 ns 0.025 ns 2412
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with the reduced dimensionality. The optimal network was obtained
with ReLU activation functions, a learning rate of 0.001, the adam
optimizer, no batch normalization, and a seven-layer DNN with
decreasing numbers of nodes as follows: 512, 256, 128, 64, 32, 16, and
1. The output layer gives the temperature prediction for the given
optical spectral and TCSPC data inputs.
The high-temperature regime neural network was created using the

same architecture and hyperparameters as the low-temperature
regime, albeit with an input vector length of 2605 due to the slightly
different spectral data file size.
For all of our neural network training, we used the Keras API in

Python with TensorFlow backend. The training used a mean-squared
error loss function and proceeded for 6.000 epochs. Because of
substantial loss function fluctuations during trainingundoubtedly a

result of a combination of factors such as choice of learning rate, loss
function, and limited number of training samples41we employed
the “restore_best_weights = true” option to the EarlyStopping
function to preserve the best neural network weights from epoch to
epoch despite the fluctuations.40 A plot of the loss function during the
training process is shown in Figure 7, with the light gray values being
the loss function at each epoch and the dark black values being the
loss function for the current best weights. The loss function of the

Figure 5. Complete set of training data with interpolations for the low-temperature regime. (a) Spectral data. (b) TCSPC data. Aside from the
logarithm preprocessing step for the TCSPC data mentioned in the text, the plots shown in Figure 2 are horizontal slices of these images at 10, 100,
200, and 300 K.

Figure 6. Complete set of training data with interpolations for the high-temperature regime: (a) spectral data; (b) TCSPC data.

Table 2. Results for Various Architectures in the Low-
Temperature Regime

architecture
mean absolute error of holdout data set

(in K)

two input CNN 13.6
input together CNN 9.9
two input DNN 8.4
spectra only DNN 9.2
TCSPC only DNN 11.3
input together DNN 7.7
DNN (k-fold cross validation,
k = 5)

7.9

Figure 7. Plot of loss functions of training and testing sets during
neural network training for the low-temperature regime.
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testing/validation set is displayed in red for selected points, namely,
the points at which the best weights changed.
Neural Network Results. The performance of the neural

networks is presented in Figure 8, where the predicted temperatures
are plotted vs the actual measured temperatures. The line y = x would
indicate perfect predictions. Despite the wiggles apparent in the high-
temperature regime, due to the magnified temperature scale, that
regime is actually more accurate than the low-temperature regime.
Within the low-temperature regime, it is all quite accurate except for
two of the red points (holdout set) which are at 70 and 90 K and are
discussed more below.
The reason for the large error at the holdout points of 70 and 90 K

is likely due to two factors. First, as can be seen in the plots of Figure
3, the optical properties change less per unit temperature at low
temperatures than they do at higher temperatures. Both spectral and
TCSPC data change much more going from 200 to 300 K than they
do going from 10 to 100 K. This is a result of how the semiconductor
band gap shifts with temperature, mainly arising due to thermal
expansion. As temperature increases, the atoms get farther and farther
apart. This increase in lattice constant decreases the potential seen by
the electrons in the material, which in turn reduces the size of the
energy band gap (increasing the PL peak wavelength). The thermal
expansion is nonlinear, with greater expansion per unit temperature at
higher temperatures;42 the corresponding temperature dependence of
the band gap is often modeled with Varshni’s.43 As a second factor,
because of time constraints and the wide range of temperatures
involved in the low-temperature regime, we only took data every 10 K
(and interpolated to 1 K) as compared with 1 K (interpolated to 0.1
K) for the high-temperature regime. While the neural network was
still able to perform well for the training and the testing/validation
sets even for temperatures below 100 K, these limitations for low
temperatures were clearly manifest in the errors of the holdout set
data of 70 and 90 K.

The holdout set results are summarized as follows. For the low-
temperature regime, using all five holdout temperatures, the mean
absolute error (MAE) was 7.7 K. For the low-temperature regime,
restricting the holdout set to temperatures over 100 K only, the MAE
was 0.4 K. For the high-temperature regime, the MAE of the holdout
set was 0.1 K.

Neural Network Additional Testing. To investigate the
performance of the neural networks further, we performed several
types of additional testing. First, as was mentioned above, the PL is
filtered with a 550 nm long pass filter, which creates abrupt shoulders
in the spectra as can be seen in Figure 3. To determine the
dependence of the neural networks on this particular type of optical
filter, we artificially smoothed the PL spectral data at the location of
the shoulders for the 10 holdout points and ran the smoothed data
through the neural network again. Relative to the neural network
predictions with the abrupt shoulders, the predictions for the
smoothed shoulders changed by 5.0 K MAE and 1.2 K MAE for
the low- and high-temperature regimes, respectively.

To test the effects of added noise on optical measurements, we
artificially added random noise to the data from the holdout points
and ran the noisy data through the neural network again. The noise
was added just prior to the neural network input. The noise for a
given “percent noise added” value was sampled from a uniform
distribution between negative and positive values of the percentage
added (as a percentage of the maximum value). This was done 40
times for each “percent noise added” value, and means and standard
deviations of the MAE for the holdout points relative to the neural
network predictions with no added noise were computed. The results
are displayed in Figure 9. For both regimes, the neural networks were
tolerant of noise to some degree, and they displayed a larger tolerance
for noise added to the spectral data than noise added to the TCSPC
data.

Figure 8. Performance of the neural networks on training, testing/validation, and holdout sets for (a) the low-temperature regime and (b) the high-
temperature regime.

Figure 9. Performance of neural network predictions with noise artificially added to the optical data for (a) the low-temperature regime and (b) the
high-temperature regime.
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However, some types of variations to the data are undoubtedly
more pernicious than others. For example, using a different optical
detector with a slightly different spectral response (e.g., CCD vs
PMT) caused the predicted temperature in one example to shift by 7
K. Any shifts in the optical properties as a result of laser exposure or
long-term changes to the QDs can cause substantial changes to the
temperature predictions, depending on the amount of change and the
temperature regime. For example, measurements done several months
after the ones used to train the neural network displayed substantial
changes to both spectral and TCSPC data presumably due to changes
in QD composition and/or size and gave rise to meaningless
predictions. Even measurements done in the same day at the same
temperature (e.g., start of day vs end of day after having been
illuminated by laser for several hours) could result in temperature
predictions which differed by 5−10 K. Therefore, for real-world
applications care should be taken to find QDs that are extremely
stable against both short- and long-term changes, and these specific
results should be considered only to be a proof of principle of our
machine learning technique.

■ DISCUSSION
The holdout set results are summarized as follows. For the low-
temperature regime (the 10−300 K range), by using all five
holdout temperatures, the mean absolute error (MAE) was 7.7
K. For the low-temperature regime, restricting the holdout set
to temperatures over 100 K only, the MAE was 0.4 K. For the
high-temperature regime (the 298−319 K range), the MAE of
the holdout set was 0.1 K. It is useful to compare these results
to previous work34 for PL behavior of QDs under different
conditions, namely on- and off-chip. In ref 34, we investigated
the temperature-dependent spectrum of CdSe−ZnS QDs that
had been deposited onto a surface from a toluene solution,
rather than being embedded in a polymer resin. Although the
shape of the CdSe/ZnS spectrum is different than the CdTe
QDs used in this study, the general spectral response to
temperature changes is similar. The previous work used a very
narrow temperature range (300−312 K) and obtained an
accuracy of ±0.3 K through the use of a simply connected
neural network trained on bands of the normalized intensity.
By modification of the structure of the neural network to the
one presented in this work and by incorporation of data on the
lifetime of the PL, the error in the temperature reconstruction
was reduced and the temperature range was increased.
When considering the limitations of applying our approach

to luminescent materials, one has to consider how well the
network would be able to reconstruct the temperature using
nanoparticles that undergo structural changes such as perov-
skites.44 The interpolation scheme could not be used around
the transition temperature; instead, additional measurements
near this temperature would be required, which warrants
further study. However, machine learning techniques have
been able to account for interactions with the fluorophore and
the surrounding matrix going through a glass transition
(Rhodamine B in glycerol).15 The neural network was able
to still capture the temperature behavior of the PL where the
intensity decreased as temperature decreased (which is the
inverse of what typically happens). They reasoned that the
fluorophore interacting with the surrounding material resulted
in electron transfer or thermal activation from a long-lived dark
state. The neural network was able to incorporate this behavior
in its model. An additional consideration is how the variation
in nanoparticle size distribution between different batches of
QD production will cause a slight variation in the PL spectra.
To account for this variation and generalize the presented
methods, we would propose that PL and lifetime measure-

ments are taken at room temperature and compared to the
normalized values presented in this work. The difference can
then be considered as a bias to be applied at other
temperatures, but this approach as well as investigations into
the use of rare-earth-doped inorganic nanoparticles (NPs) with
long lifetimes45 (from 1 to 100 μs for Nd-based46 and Eu47- or
Er46-based NPs, respectively, to several milliseconds for
Tb3+48,49 and some Yb NPs45) would require additional
investigation as well.
As an example of the applicability of the proposed approach

to biomedical sensing, there is a need to accurately measure
the temperature during the melt curve analysis of DNA. The
change in the temperature at which DNA strand unwinds (or
“melts,” Tm) for either a wild-type DNA sequence or a
homozygous mutation varies depending on the number of
SNPs (single nucleotide polymorphisms) and the length of the
amplicon. This detection is limited by the absolute temper-
ature accuracy of the real-time PCR device. This type of SNP
(homozygous mutant vs wild type7) is important to detect
because in several genetic conditions having two mutant alleles
increases the severity of the disease. Heterogeneous mutant
melt curves are easier to distinguish because they have a
distinctive shape, while the homozygous and wild-type curves
can look almost identical except for a slight change in Tm.
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Because typical accuracies for fluorescent thermometry are
near ±1 K,10 they are incapable of seeing the slight change in
melting temperature (0.2 K for Factor V Leiden G>A
mutation51) observed with a homozygous mutant. However,
the proposed work can obtain that level of accuracy.

■ CONCLUSION

A robust and reliable machine learning model for thermometry
using nanoparticles (QDs) was obtained by using a
combination of raw spectral and time-resolved PL data as
the inputs. The inputs were normalized, so intensity was not
present as a learning feature, to be representative of what may
occur when using different experimental systems for the
training samples and the later use of the model. Data
augmentation vis interpolation was employed to increase the
number of training samples by a factor of 10. The accuracy of
each neural network was assessed via mean absolute error of a
holdout set of data. For the low-temperature regime, the
accuracy (mean absolute error of a holdout set) was 7.7 K, or
0.4 K when the holdout set was restricted to temperatures
above 100 K. For the high-temperature regime, the accuracy
was 0.1 K. The implementation of this method can impact
nanoscale sensing accuracy and resolution of microfluidic,
biothermal sensors and expand the number of temperature-
sensitive analyses possible without having to calibrate each
microfluidic device individually, although care needs to be
taken in the selection of quantum dots to guard against short-
and long-term changes to the optical emission.
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