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1. Introduction

In this paper we propose a new notion of nonlinear conditional expectation under probability distortion. Such a
nonlinear expectation is by nature not subadditive; thus, it is different from Peng’s well-studied nonlinear
expectations (see, e.g., [18], [19]). Our goal is to find an appropriate definition of conditional nonlinear
expectations such that it is time consistent in the sense that the usual “tower property” holds.

Probability distortion has been largely motivated by empirical findings in behavioral economics and finance
(see, e.g., Kahneman-Tversky [13], [23], Zhou [26], and the references therein). It describes the natural human
tendency to exaggerate small probabilities for certain events, contradicting the classical axiom of rationality.
Mathematically, this can be characterized by a nonlinear expectation where the underlying probability scale is
modified by a distortion function. More precisely, let & be a nonnegative random variable representing the
outcome of an uncertain event. The usual (linear) expectation of £ can be written in the form

E[&] = / P(E > x) dx. 1
0
Probability distortion, on the other hand, considers a “distorted” version of the expectation
s1eli= [ otbe = ) dx, @
0

where the distortion function ¢ : [0,1] — [0, 1] is continuous, is strictly increasing, and satisfies ¢(0) = 0 and
(1) = 1. Economically the most interesting case is that ¢ is reverse S-shaped, that is, ¢ is concave when p = 0
and is convex when p = 1. In the special case ¢(p) = p, (2) reduces to (1). In general, the distorted expectation
&[] is nonlinear, that is, neither subadditive nor superadditive.

Although (2) is useful in many contexts, a major difficulty occurs when one tries to define the “conditional,”
or “dynamic,” version of the distorted expectation. Consider, for example, a “naively” defined distorted
conditional expectation given the information F; at time t:

£ilE] = /0 " oB(E > A FY) dx. 3)
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Then it is easy to check that in general &;[&:[&]] # &[] for s < t, that is, the “tower property” or the flow
property fails. This is often referred to as a type of “time inconsistency” and is studied extensively in stochastic
optimal control (see Section 1.1 for more discussion).

Motivated by the work of Karnam et al. [15], which provides a new perspective for time-inconsistent
optimization problems, in this paper we find a different way to define the distorted conditional expectation so
that it remains time consistent in terms of preserving the tower property. To be specific, let (Q, F,F,P) be a
filtered probability space, where F := {F;}o 7. We look for a family of operators {&}}o<<r such that, for a
given Fr-measurable random variable &, it holds that &y[&] = &[&] as in (2), and for 0 <s <t < T, the tower
property holds: &[&[E]] = &5[E]. More generally, we shall construct operators &, for 0 <s <t < T such that
Ers[EstE]] = &14[E] for Fi-measurable & and r < s < f. We shall argue that this is possible at least for a large
class of random variables: & = g(X;), where ¢ : R — [0, o0) is increasing, and X is either a binomial tree or a one-
dimensional diffusion

dX; = b(t, X,)dt + o(t, X;)dB;, t> 0. (4)

It is worth noting that, although the aforementioned class of random variables are somewhat restricted,
especially the monotonicity of g, which plays a crucial role in our approach, it contains a large class of
practically useful random variables considered in most publications about probability distortion, where X is
the state process and g is a utility function, whence monotone.

The main idea of our approach is based on the following belief: in a dynamic distorted expectation the form
of the distortion function should depend on the prospective time horizon. Simply put, the distortion function
over [0, T] such as that in (2) is very likely to be different from that in (3), which is applied only to subintervals
of [0, T]. We believe this is why (3) becomes time inconsistent. Similar to the idea of “dynamic utility” in [15],
we propose to localize the distortion function as follows: given a collection of initial distortion functions ¢,
corresponding to intervals of the form [0, ], we look for a dynamic distortion function ®(s, t,x; p) such that
D(0,t, Xo;-) = @, (e.g., ¢, = @) and that the resulting distorted conditional expectation

Esil&] = /000 O(s, t, X P(E > YIFs))dy, 0<s<t<T, (5)

is time consistent for all £ = ¢(X;) with g increasing. Intuitively, the dependence of the distortion function ® on
(s, t,x) could be thought of as the agent’s (distorted) view toward the prospective random events at future time
t at current time s and state x.

We shall first illustrate this idea in discrete time using a binomial tree model to present all the main el-
ements. The diffusion case is conceptually similar, but the analysis is much more involved. In both cases,
however, the dynamic distortion function has an interesting interpretation: there exists a probability Q
(equivalent to P and independent of the increasing function g) such that

(s, t,x; P(X; > yIX; = x)) = Q(X; > y|X; = x)

(see Theorems 1 and 2 as well as Remark 2). We shall refer to Q as the distorted probability, so that (5) renders
the distorted conditional expectation as a usual linear conditional expectation under Q. We should note that
such a hidden linear structure, because of the restriction & = g(X;), has not been explored in previous works. In
particular, in the continuous time setting, this enables us to show that the conditional expectation &;[£] in (5)
can be written as &5[&] = u(s, X;), where the function u satisfies a linear parabolic partial differential
equation (PDE) whose coefficients depend on the distortion function ¢ and the density of the underlying
diffusion X defined by (4).

We would like to emphasize that although this paper considers only the conditional expectations, it is the
first step toward a long-term goal of investigating stochastic optimization problems under probability dis-
tortion, as well as other time-inconsistent problems. In fact, in a very recent paper He et al. [10] studied an
optimal investment problem under probability distortion and showed that a time-consistent dynamic dis-
tortion function of the form ® = (s, t;p) exists if and only if it belongs to the family introduced in Wang [24]
or the agent does not invest in the risky assets. This result in part validates our general framework, which aims
at a large class of optimization problems of similar type in a general setting, by allowing @ to depend on the
state X;, and even its law.

The rest of the paper is organized as follows. In Section 1.1 we review some approaches in the literature
for time-inconsistent stochastic optimization problems, which will put this paper in the proper perspective.
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In Section 2 we recall the notion of probability distortion and introduce our dynamic distortion function. In
Section 3 we construct a time-consistent dynamic distortion function in a discrete time binomial tree
framework. In Section 4 we consider the diffusion case (4) with constant ¢, and the results are extended to the
case with general ¢ in Section 5. Finally, in Section 6 we study the density of the underlying state process X,
which is crucial for constructing our dynamic distortion function ®.

1.1. Discussion: Time-Inconsistency in Stochastic Control

We begin by recalling the usual meaning of “time inconsistency” in a stochastic optimization problem.
Consider a stochastic control problem over time horizon [0, T], denote it by Pg ), and assume 1 ; is an optimal
control. Now for any t < T we consider the same problem over time horizon [t, T] and denote it by P, 1. The
dynamic problems {P(; 1)} is said to be time consistent if ug |, r) remains optimal for each Py, 7} and time
inconsistent if it is not.

Following Strotz [21], there are two main approaches for dealing with time-inconsistent problems: pre-
commitment strategy and consistent planning. The former approach essentially ignores the inconsistency issue
and studies only the problem Pjg 1}, so it can be viewed as a static problem. The consistent planning approach,
also known as the game approach, assumes that the agent plays with future selves and tries to find an
equilibrium. This approach is by nature dynamic, backward in time, and time consistent; and the solution is
subgame optimal. Since Ekeland andLazrak [7], the game approach has gained strong traction in the math
finance community (see, e.g., Bjork andMurgoci [3], Bjork et al. [4], Hu et al. [11], and Yong [25], to mention a
few). We remark, however, that mathematically the two approaches actually produce different values.

In Karnam et al. [15] the authors suggested a different perspective. Instead of using a predetermined
“utility” function for all problems P}, 1) as in the game approach (in the context of probability distortion this
means using the same ¢ in (3) for all 0 <s <t < T), in [15] a dynamic utility is introduced, in the spirit of the
predictable forward utility in Musiela and Zariphopoulou [16], [17] and Angoshtar et al. [1], to formulate a new
dynamic problem Py, 1}, t € [0, T]. This new dynamic problem is time consistent, and in the meantime, Pj 1
coincides with the precommitment Pjy7;. We should note that similar idea also appeared in the works Cui
et al. [6] and Feinstein andRudloff [8], [9]. In [15] it is also proposed to use the dynamic programing
principle (DPP) to characterize the time consistency, rather than the aforementioned original definition using
optimal control. Such a modification is particularly important in situations where the optimal control does not
exist. Noting that the DPP is nothing but the “tower property” in the absence of control; we thus consider this
paper the first step toward a more general goal.

2. Static and Dynamic Probability Distortions
In this section we define probability distortion and introduce the notion of a time-consistent dynamic dis-
tortion function.

2.1. Nonlinear Expectation Under Probability Distortion

Let (QQ, F,P) be a probability space, and let LY(F) be the set of F-measurable random variables & > 0. The
notion of probability distortion (see, e.g., Zhou [26]) consists of two elements: (i) a “distortion function”
and (ii) a Choquet-type integral that defines the “distorted expectation.” More precisely, we have the fol-
lowing definition.

Definition 1.

(i) A mapping ¢ : [0,1] — [0, 1] is called a distortion function if it is continuous, is strictly increasing, and
satisfies @(0) =0 and ¢(1) = 1.

(ii) For any random variable & € L.9(F), the distorted expectation operator (with respect to the distortion
function ¢) is defined by (2). We denote IL}p(}') ={E € LY(F) : &[&] < oo}

Remark 1.
(i) The requirement & > 0 is imposed mainly for convenience.
(ii) If p(p) = p, then &[&] = EF[£] is the standard expectation under P.
(iii) The operator &[] is law invariant, namely, &[] depends only on the law of &.

The following example shows that & is in general neither subadditive nor superadditive. In particular, it is
beyond the scope of Peng [19], which studies subadditive nonlinear expectations.
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Example 1. Assume ¢&; is a Bernoulli random variable: P({; =0) =p, P(§1 =1)=1-p, and & :=1-&;. Then
clearly &[&1 + &2] = &[[1]] = 1. However, by (8), we have

&l =l -p), El&l=¢(p), andthus &[&]+E[&] = @(p) + @(1-p).
Depending on ¢ and p, &[&1] + &[&2] can be greater than or less than 1.

Proposition 1. Assume all the random wvariables below are in 1LO(F). Let ¢,c; > 0 be constants.
(i) &[c] =c and E[c&] = cE[E].
(ii) If &1 < &, then &[&1] < &[&2]. In particular, if ¢1 < & < ¢y, then ¢ < &[E] < co.
(iii) Assume & converges to & in distribution, and & := sup, & € IL}P(]-'). Then &[&] — &[E]

Proof. Since ¢ is increasing, (i) and (ii) can be verified straightforwardly. To see (iii), note that limy_,. P(& >
x) = P(& > x) for all but countably many values of x € (0, c0). By the continuity of ¢, we have limy_,. @(P(& >
x)) = p(P(& > x)) for Lebesgue-a.e. x € [0, o). Moreover, since ¢ is increasing, p(P(&, > x)) < p(P(E* > x)) for all k.
By (2) and the dominated convergence theorem we have &[&] — &[&]. O

We now present two special cases that will play a crucial role in our analysis. In particular, they will lead
naturally to the concept of distorted probability. Let

T :={g:R —[0,0): g is bounded, continuous, and increasing}. (6)

Proposition 2.
(i) Assume 1 € IL}p(]-') takes only finitely many walues x1,---,x,. Then

&ln] = Z X [p(P(n = xw)) = @(P(n = xgs))], (7)

where xq) < -+ < X(y) are the ordered values of x1,+ -+, Xx,, and X(, 1y := 0.
In particular, if x1 < --- <x, and g € I, then

£lsn)] = kZi}g(Xk)[(P(P(n > %)) = p(B(1 > ¥e01)) ®)

(i) Assume 1 € LO(F) has density p, and g € Z, ¢ € C'([0,1]). Then
W= [ s@pte (n > )z ©)

Proof.
(i) Denote x() := 0. It is clear that P(n > x) = P(n > x()) for x € (x(-1), X(@]- Then

n

éln] = /0 " p(B(7 2 0)dx = X[ - xaen |0 (B0 > x))-

k=1

which implies (8) by using a simple Abel rearrangement as well as the fact that ¢(P(1 > x(,41))) = 0.

(i) We proceed in four steps.

Step 1. Assume g is bounded, strictly increasing, and differentiable. Let 4 := g(—0c0),b:= g(c0). Then,
e(P(g) =zx) =1, x<a; (P(g(n) =x)) =0, x = b; and integration by parts yields

(o)

Agtill =a+ [ olElgtn) = )ax=a+ [ <o< (1> )g )
—a+ (el > @i~ [ 8005 (oBln > 1))
= [ stopto’(Bln > ). (10)
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Step 2. Assume g is bounded, increasing, and continuous. One can easily construct g, such that each g,
satisfies the requirements in Step 1 and g, converges to ¢ uniformly. By Step 1, (9) holds for each g,. Sending
n — oo and applying Proposition 1(iii), we prove (9) for g.

Step 3. Assume g is increasing and bounded by a constant C. For any ¢ > 0, one can construct a continuous
and increasing function g, and an open set O, such that |g,| < C, |g.(x) — g(x)| < ¢ for x ¢ O,, and the Lebesgue
measure |O,| < €. Then (9) holds for each g.. Note that

Ellg:(n) —g(n)l] < e +2CP(n € O,) = ¢ + ZC/ p(x)dx >0 ase— 0.
(X

Then g.(n) — g(n) in distribution, and thus, &[g.(n)] — &[g(n)] by Proposition 1(iii). Similarly,

/m g (x) — g()lp(x)@’ (P(n > x))dx < e + ZC/O p(x)¢’ (P(n = x))dx — 0.

Then we obtain (9) for g.
Step 4. In the general case, denote g, := g An. Then (9) holds for each g, and g, T g. By the monotone
convergence theorem,

tim [ 5,p(e)g!(B(n = )dx = [~ goip(e)e! (Pl = ).

If g(n) € L} (.7-" ), then by Proposition 1(iii) we obtain (9) for g. Now assume &[g(n)] = co. Following the ar-
guments 1n Proposition 1(iii), note that P(g,(n) > x) T P(g(n) > x) for Lebesgue-almost everywhere (a.e.)
x €[0,00), as n— co. Then by the monotone convergence theorem one can verify that &[g.(n)] =
I @®(ga(n) = x)dx T [7 pP(g(n) = x)dx = &[g(n)], proving (9) again. o

Remark 2.
(i) In the discrete case, Equation (8) can be interpreted as follows. For each k, define the distorted probability

qx by
g = @(P(n = xx)) —p(P(n = x¢11)), k=1,2,...,n (11)

Then g, > 0, 3}_, g« = 1, and &[g(n)] = =}, §(xx)qk. So {gx} plays the role of a “probability distribution,” and &
is the usual linear expectation under the (distorted) probability {gx}. This observation will be the foundation of
our analysis below.

(ii) In the continuous case, the situation is similar. Indeed, denote p(x) := p(x)¢’(P(n > x)). Then p is also a
density function, and by (9), &[g(n)] = /_ * 8(x)p(x)dx is the usual expectation under the distorted density p
of 1.

(iii) Although the operator & : I ¢(F) — [0, ) is nonlinear in general, for fixed 7, the restricted mapping
g €I &[g(n)] is linear under nonnegatlve linear combinations.

(iv) Actually, for any & € L. o(F), note that Fe(x):=1- (p(P(cE >x)), x>0, is a Cumulatlve distribution
function (cdf) and thus defines a distorted probability measure Q¢ such that &[&] = [cf] However, this Q¢
depends on &. The main feature in (8) and (9) is that, for a given 1, we find a common distorted probability
measure for all £ e {g(n):9€Z}.

2.2. Time Inconsistency

Let 0 € T C [0, o) be the set of possible times, and let X = {X;},.; be a Markov process with deterministic Xj.
Denoting F = {F;},c; = FX as the filtration generated by X, we want to define an F;-measurable conditional
expectation &;[£] such that each &[] is F;-measurable, and the following “tower property” (or “flow
property”) holds (we will consider &, later on):

Es[&1E]] = &6[&], forall s, t €T such thats < t. (12)

We note that the tower property (12) is standard for the usual (linear) expectation as well as the sublinear
G-expectation of Peng [19]. It is also a basic requirement of the so-called dynamic risk measures (see, e.g.,
Bieleckl et al.[2]). However, under probability distortion, the simple-minded definition of the conditional
expectation given by (3) could very well be time inconsistent. Here is a simple explicit example.
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Example 2. Consider a two-period binomial tree model: X; = Zle Ci, te T :={0,1,2}, where {; and (; are in-
dependent Rademacher random variables with P((; = +1) = 1,i = 1/2. Let @(p) := p?, let & := g(X;) for some strictly
increasing function g, and let &1[&] be defined by (3). Then

glénlell # €1l (13)

Proof. By (8), we have

E1[E]xyemr= g<—2)[1 ) (P(%)

e500p(3), ilelho=s0)[1-(3)| +s0(3)

Note that &1[&]lx,-—1 < &1[&]lx,=1 since g is strictly increasing. Then, by (8) again, we have

S16EN = el |1~ o3

+ 51[5“)(1:1(!7(%)

= g(—Z)[l - @(%) 2+ 23(0)p (%) [1 - fpe) +8(2) [cp (%)]Z %g(—2) + %g(o) + 11—6g(2)- (14)
On the other hand, by (8) we also have
5161 = 52| = o3) | +s0[p(3] - o(3]| + 520 (f) = 2 + 350+ S (15)

Comparing (14) and (15) and noting that g(-2) < g(0), we obtain &[&1[&]] < &[], O

2.3. Time-Consistent Dynamic Distortion Function

As mentioned in the Introduction, an apparent reason for the time inconsistency of the “naive” distorted
conditional expectation (3) is that the distortion function ¢ is time invariant. Motivated by the idea of dynamic
utility in Karnam et al. [15], we introduce the notion of a time-consistent dynamic distortion function which forms
the framework of this paper. Denote

Tr={(st)eT xT :s<t}.

Definition 2.

(i) A mapping @ : T, xR x[0,1] = [0,1] is called a dynamic distortion function if it is jointly Lebesgue
measurable in (x,p) for any (s,t) € 7, and, for each (s, f,x) € T, X R, the mapping p € [0,1] — D(s,t,x;p) is a
distortion function in the sense of Definition 1.

(if) Given a dynamic distortion function ®, for any (s,t) € T, we define &, as follows:

Esi[&] = ‘/000 D(s, t, X; P(E = x| Fs))dx, & e Lo(a(Xy)). (16)

(iif) We say a dynamic distortion function @ is time consistent if the tower property holds:

Eri|§(X)] = Ers|Esh|g(X)]], 15, t€T, 0<r<s<t<T, gel. (17)

Remark 3.

(i) Compared with the naive definition (3), the dynamic distortion function in (16) depends also on the
current time s, the “terminal” time f, and the current state x. This enables us to describe different (distorted)
perceptions of future events at different times and states. For example, people may feel very differently
toward a catastrophic event that might happen tomorrow as opposed to ten years later with the same
probability.

(ii) In this paper we apply &s; only on & = g(X;) for some g € Z. As we saw in Remark 2, in this case the
operator &’s; will be linear in g. The general case with nonmonotone g (or even path-dependent &) seems to be
very challenging and will be left to future research (see Remark 4). It is worth noting, however, that in many
applications g is a utility function, which is indeed increasing.

(iii) Given g € Z, one can easily show that &[] g(X;)] = u(s, Xs) for some function u(s, -) € Z. This justifies the
right-hand side of (17).
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Now, for each 0 < t € T, we assume that an initial distortion function ¢,(-) is given (a possible choice is ¢, = ¢) as
the perspective at time 0 toward the future events at ¢ > 0. Our goal is to construct a time-consistent dynamic
distortion function @ such that ®(0, f, Xo; -) = ¢,(-) forall 0 < t € 7. We shall consider models both in discrete time
and in continuous time.

3. The Binomial Tree Case
In this section we consider a binomial tree model which contains all the main ideas of our approach. Let
{®:}er\ 0 be a given family of initial distortion functions.

3.1. The Two-Period Binomial Tree Case
To illustrate our main idea, let us first consider the simplest case when X follows a two-period binomial tree as
in Example 2 (see the left graph in Figure 1). Let & = g(X), where g € Z. We shall construct ®(1,2,x;p)
and &12[&].

Note that ®(0,,0;-) = ¢,(-) for t =1,2. By (8) we have

w0l o}

Here we write ¢,(0) and ¢,(1), although their values are 0 and 1, so that Equation (22) will be more in-
formative when extending it to multiperiod models. Assume &1,[&] = u(1,X;). Then by definition we
should have

Sopl&] = g(-2)

P2(1) =~y (Z) +8(2) [qoz (31) - @2(0)]- (18)

u(1,-1) = g(—Z)[l - @(1,2, —1;%) + g(O)(I)(l,Z, —1;%), (19)
u(1,1) = g(O)[l - (D(l, 2, 1;%) + g(2)CD(1,2, 1;%). (20)

Assume now that u(1,-) is also increasing. Then by (8) again we have

Eoa[612[E]] = Eoalu(l, X1)] = u(l, —1)[(/31(1) — P (;_)

+ut, Do f5) -0 @y

Plugging (19) into (21) gives

+ g(Z)CD(L 2, 1;%) [(pl (%) - <P1(0)]

ool -vo

Recall from (17) that we want the above to be equal to (18) for all g€ Z. This leads to a natural and
unique choice:

Eoa|1218]] = g(_z)[l - CD(l,Z, —1;%)] [(pl(l) iz (%)

+

s

T P23 — 1) A P2(3) = ¢1(0)
@(1,2, 1,2) = e () @(1,2, 1,2) = o0 (22)

Figure 1. Two-period binomial tree: left for X and right for &[], with (q;j, ‘71_1) in (26).

2

@
1 = i S 1/
0 1//27 \ 0 &l / \ 9(0)

9(2)
1/2
1/2
(
! 7 ©o T gleg-1)
% 2 9(-2)
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Consequently, (19) now reads

u(1,-1) = g(—Z)[l = (13(1,2, —1;%)

+ g(O)CD(l, 2,-1; %) (23)

1
u(1,1) = g(O)[l - CD(l,Z, 1,-2)

+ g(Z)CD(l, 2, 1;;). (24)

Note that ¢,(-) is strictly increasing. Assuming further ¢,(1/4) < ¢,(1/2) < ¢,(3/4) and using (22), we have

0<CD(1,2,—1;%) <1, 0<®(1,2,1;%) <1 (25)

Note that (23) and (25) imply that u(1,-1) < g(0) < u(1,1); thus, u(1,-) is indeed increasing.

Finally, we note that the distorted expectations &g1[u(1, X1)] and &p»[ g(X2)] and the distorted conditional
expectation &1,[ g(X2)] can be viewed as a standard expectation and conditional expectation, but under a new
distorted probability measure described in the right graph in Figure 1, where

+ 1 + QDZ@_(Pl(O) + @2(%)_(/)1(%)
oo = %1 (2) T o =00 ™o —e )

This procedure resembles finding the risk-neutral measure in option pricing theory, whereas the arguments of
@, in (26) represent the quantiles of the simple random walk.

qj=1- ql*] (26)

Remark 4.
(i) We now explain why it is crucial to assume g € Z. Indeed, assume instead that g is decreasing. Then
by (7) and following similar arguments we can see that

q)(l’ 2’ 1,1) — (PZ(%) ~— P (%) , q)(l’ 2, _1’1) — (PZ(%) — (Pl(o) .

2} () =i (3) 2/ 1) -9 (0)

This is in general different from (22). That is, we cannot find a common time-consistent dynamic distortion
function which works for both increasing and decreasing functions g.

(if) For a fixed (possibly nonmonotone) function g:R — [0,00), it is possible to construct @ such that
02l 8(X2)] = 01[&12[8(X2)]]. However, this @ may depend on g. It seems to us that this is too specific and,
thus, is not desirable.

(iii) Another challenging case is when X has crossing edges. This destroys the crucial monotonicity in a
different way and ® may not exist, as we shall see in Example 3. There are two ways to understand the main
difficulty here: for the binary tree in Figure 2 and for g € 7.

e 4(1,-1) is the weighted average of g(—2) and g(1), and u(1, 1) is the weighted average of g(—1) and g(2).
Since g(—1) < g(1), for any given @, there exists some ¢ € Z such that u(1,-1) > u(1,1), namely, u(1,-) is not
increasing in Xx.

e In &1,[g(X>)] the conditional probability p, = P(X> = 1|X; = —1) would contribute to the weight of g(1),
but not to that of g(—1). However, since g(—1) < g(1), in &op[ g(X2)] the p» will contribute to the weight of g(1)

Figure 2. A two-period binary tree with crossing edges.
=
1/2 1 1
/ 1
0
\ 2
1/2 1 1
P2~

T
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as well. This discrepancy destroys the tower property. The same issue also arises in continuous time when the
diffusion coefficient is nonconstant.

The following example shows that it is essential to require that the tree is recombining.

Example 3. Assume X follows the binary tree in Figure 2 and g € T is strictly increasing. Then in general there is no
time-consistent dynamic distortion function ®.

Proof. By (7) we have

+ 1-p1 +
PZ) %( P; Pz)

1+
ualsa)] =521 =r (5 |+ 5D
+ g(l)[% (szﬂ) - fpz( pl)
Assume &12[g(X2)] = u(1,X;). Then by definition we should have

u(1,-1) = g(-2)[1 - (1,2, ~1;p2) | + g(1)D(1,2,~1; pa),
u(1,1) = g(-1)[1 = (1,2, 1;1 - p1)] + g2)(1,2,1;1 - py).

+g(2)%( Pl)-

Assume without loss of generality that u(1,-1) <u(1,1), and the case u(1,1) <u(1,-1) can be analyzed
similarly. Then

E01[€12[8(X2)]] = g(=2)[1 - @(1,2, —1;}?2)][1 — ¢ (%) +e(M)P(1,2, —1;;92)[1 ~ (%)}
+g(-D[1-0(1,2,1;1-p1)]e, (%) +8(2)0(1,2,1;1 - p1)e, (%)

If the tower property &op[ g(X2)] = &01[&€1,2[g(X2)]] holds for all g € Z, then comparing the weights of g(-1)
and g(2) we have

1 1+ 1—p; +
[1-0(1,2,1:1 - i), (E) _ %( 2P2) . (pz( n ?72),
1 -
o) -nf )
Adding the two terms above, we have
1 1+ 1—p + 1-—
R R e e e @

This equality does not always hold. In other words, unless ¢ satisfies (27), there is no time-consistent ® for the
model in Figure 2. O

—_

3.2. The General Binomial Tree Case

We now extend our idea to a general binomial tree model. Let 7 consist of the points 0 = fy < --- < ty, and let
X = {X4,}o<i<y be a finite-state Markov process such that, for each i =0,...,N, X, takes values x;9 <--- < x;;
and has the following transition probabilities:

P(Xty = Xis1 1 [ Xy = %) = 055, P(Xoy = XX = x35) = pi = 1= pf, (28)

where pii >0 (see Figure 3 for the case N =3). We also assume that for each f; € 7\ {0} we are given a
distortion function Py, -
Motivated by the analy31s in Section 3.1, we shall find a distorted probability measure Q so that

Esi|g(X0)] = EYg(X)lo(Xs)] forallg e Z. (29)
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Figure 3. Three-period binomial tree for X.
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/

p2,0 T3,0

This implies that the tower property of &; immediately and naturally leads to a time-consistent dynamic
distortion function. Keeping (26) in mind, we define the following distorted probabilities for the binomial tree
model: for 0 <j<i<N,
o= @, (Girjs1) = ¢, (Giju1)
7 04(Gi) = 04 (Gi)

We assume further that Gj;41 := 0 and ¢,(p) := p. From (30), in order to have 0 < q:r] < 1, it suffices to (and we
will) assume that

ql_,] =1- q:]’ where Gi,j = ]P(Xt,- > Xi,]'). (30)

¢4(Gijr1) < @, (Givijua) <@ (Gij),  for all (). (31)

Intuitively, (31) is a technical condition which states that ¢. cannot change too quickly in time. Clearly this
condition is satisfied when ¢, = ¢. Now let Q be the (equivalent) probability measure under which X is
Markov with transition probabilities given by

Q(Xt, = Xirrj1|[Xp = xi5) = qf,j, QX = xi41,j| X5, = x5) = ;- (32)
We first have the following simple lemma.
Lemma 1. Assume (31) holds and g € Z. For 0 < n < N, define u,(x) := g(x), and fori=n-1,...,0,
wi(xij) = g i (Xivrjar) + i (Xivr ), =0, 0 (33)
Then u; is increasing and E[ ¢(X; )| F+] = ui(Xy,).
Proof. It is obvious from the binomial tree structure that E¢[ ¢(X;,)|.F1,] = ui(X;,). We prove the monotonicity of u;

by backward induction. First, u, = gis increasing. Assume u;,1 is increasing. Then, noting that x;;’s are increasing in
jand qf; +q;; =1 for all i,j, by (33) we have

ui(xz’,j) < q;fjui+1(xi+1,j+1) + qi_,]'ui+1(xi+1,j+1) = ui+1(xi+1,j+1)
< q:]'+1ui+1 (xir1ja2) + q;j+1ui+l(xi+l,j+l) = ui(Xij41)-
Thus, u; is also increasing. O

We remark that (33) can be viewed as a “discrete PDE.” This idea motivates our treatment of the continuous
time model in the next section.
The following is our main result of this section.

Theorem 1. Assume (31). Then there exists a unique time-consistent dynamic distortion function @ such that ®(ty, t,, xo0; p) =
(pt”(p)forn =1,...,N,and forall 0 <i<n<N,0<j<i, and 0 <k <n, we have

(D(t,', tr,,xl-,]-; P{Xt,, > xn,k|X,g,. = xi,j}) = Q{th > xn,k|Xt,- = x;',]‘}. (34)
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Here uniqueness is only at the conditional survival probabilities for all k in the left-hand side of (34). Moreover, the
corresponding conditional nonlinear expectation satisfies (29).

Proof. We first show that (34) has a solution satisfying the desired initial conditon. Note that both P{X; > x,,(|X;, =
xi;} and Q{X;, > x,x|X;, = x;;} are strictly decreasing in k, for fixed 0 <i<n < N and x;;. Then one can easily
define a function ®, depending on t;, t,,, x;;, so that (34) holds for all x,,x, 0 < k < n. Moreover, the initial condition
D(ty, tn, X005 p) = @, (p) is equivalent to

@, (P{Xs, 2 xup}) = QfXi, 2 x4}, 0<n<N, 0<k<n (35)

We shall prove (35) by induction on n. First recall ¢, (p) = p and that P{X;, = x00} = Q{X}, = x00} = 1; thus, (35)
obviously holds for n = 0. Assume now it holds for n < N. Then
QX = Xnrrk} = QfXe, = Xupa}apy + Q{Xe, = Xuic}ns
= [QX, = xua} = QX 2 xui s +[QfX, > 2} = QfXi, 2 2},

= [ﬁof”( n,k—l) - (Ptn( n,k)]qn/k_l + [(Pin( n,k) — (Pt,,( n,k+1)][1 _ q;,k]
- [(pt"” (Gn+l,k) - (Ptn (Gn,k)] + [(ptn (G”rk) - (pty,ﬂ (Gn+1,k+1)]
= Phn (G”H/k) ~Pha (Gn+1,k+1)-

This leads to (35) for n + 1 immediately and, thus, completes the induction step.

We next show that the above-constructed ® is indeed a time-consistent dynamic distortion function. We first
remark that, for this discrete model, only the values of ® on the left-hand side of (34) are relevant, and one may
extend @ to all p € [0, 1] by linear interpolation. Then by (34) it is straightforward to show that ®(t;, t,, x;;; -) satisfies
Definition 1(i). Moreover, by (16), (8), and (34), for any g € Z we have

Z g(xn k) [q)(tl/ tn, Xij; ]P{Xt,, 2 xn,k|Xt,' = xi,j})
_cD(ti/ tn/ xl']'/ P{th = x",k+1|Xti = xirj})]

- Zg(xn k)[Q{th X k|Xt - xz]} Q{Xt,, X k+1|Xt - xl]}]

Eunl8(Xi)llx,

=Xij

= EQ[g(XtM)|Xti = xi,j]-
That is, (29) holds. Moreover, fix n and g, and let u; be as in Lemma 1. Since u,, is increasing, we have
gti/tm [éotm,tn [g(Xt”)]] = éat,-,tm [”m (Xtm)] = ui(Xt,-) = éat,-,ty, [g(Xt,z)]/ 0<i<m<n.

This verifies (17). Thus, @ is a time-consistent dynamic distortion function.
It remains to prove the uniqueness of ®. Assume @ is an arbitrary time-consistent dynamic distortion function.
For any appropriate i, j, and g € Z, following the arguments of Lemma 1 we see that

u(t,', xi,]-) = gtz‘rl‘m [g (Xfm )] |th =x;;
= g(xi+1) [1 - q’(fi, Fiv1, Xij; P,Jr])] + g(xi+1,j+1)q)(ti/ tiv1, Xij; P;r,)
is increasing in x;;. Then by (8) and the tower property we have
Z g(xi+1/k)[(Pti+1 (Gi+1,k) - (pfiﬂ (Gi+1'k+1)] = goltiﬂ [g(XtiH )] = gorti [(gtirti+1 [g(XtiH )]]
k
= Suull %0)] = St )[4 (G1) = 2, (G|
j
= Z[g(xi+1,j)[1 - q’(ti, Fiv1, Xij; P:r])] + g(xi+1,j+1)q3(ti/ tiv1, Xij; P:})]
i

X [@ti (Girf) - @t,-(Gir]’H)]'
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By the arbitrariness of g € Z, this implies that
1-¢, (Giig) =[1-D(t, ti+1,xi,o;r7:fo)][1 - @ti(Gi,l)]F
91 (Giers) = @utist Gisn o) = [1 = @(t tr, 14575 || @, (Gur) = @1 (o)
+O(t, tiH,xi,k_l;pzk_l)[goti(Gi,k_l) -, (Gi,k)], k=1,...,i+1.
This is equivalent to, denoting ai := ®(t;, tis1, Xik; PP, (Gik) — @, (Giks1)],
a0 = ¢y, (Girr1) — ¢, (Gin);
g1 — ax = [(Pm1 (Gis1x) — ®;., (Gi+1,k+1)] - [(Pt,. (Gix) - @ (Gi,k+1)]~

Clearly the above equations have a unique solution, so we must have ®(f;, ti1, xix; p;jk) = q;/’k. This implies
further that &, [g(X:,,)] = E¢[¢(X;,,,)|Fs-]. Now both &, and EQ[-|] satisfy the tower property. Then
Ennl9(Xs,)] = EQg(X,,)|Fy.] for all t; <t, and all g€ Z. So &, is unique, which implies immediately the
uniqueness of ®. O

Remark 5.

(i) We should note that the dynamic distortion function @ that we constructed actually depends on the
survival function of X under both P and Q (see also (57)).

(if) Our construction of @ is local in time. In particular, all the results can be easily extended to the case with
infinite times: 0 =ty <# <---.

(iii) Our construction of ® is also local in state, in the sense that ®(t;,t,,x;;;-) involves only the subtree
rooted at (t;, x; ).

4. The Constant-Diffusion Case
In this section we set 7 =[0,T] and consider the case where the underlying state process X is a one-
dimensional Markov process satisfying the following SDE with constant-diffusion coefficient:

t
X = x0 + / b(s, Xs)ds + By, (36)
0

where B is a one-dimensional standard Brownian motion on a given filtered probability space (Q, F, {F}o<s<1, P).
Again we are given initial distortion functions {¢, = ¢(t,)}o<;<r and @,(p) = p. Our goal is to construct a time-
consistent dynamic distortion function ® and the corresponding time-consistent distorted conditional ex-
pectations &, for (s,t) € T,. We shall impose the following technical conditions.

Assumption 1. The function b is sufficiently smooth, and both b and the required derivatives are bounded.

Clearly, under the assumption the SDE (36) is well posed. The further regularity of b is used to derive some
tail estimates for the density of X;, which are required for our construction of the time-consistent dynamic
distortion function ® and the distorted probability measure Q. By investigating our arguments more carefully,
we can figure out the precise technical conditions we will need. However, since our main focus is the dynamic
distortion function ®, we prefer not to carry out these details for the sake of the readability of the paper.

4.1. Binomial Tree Approximation

Our idea is to approximate X by a sequence of binomial trees and then apply the results from the previous
section. To this end, for fixed N, denote h:=T/N and t;:=ih, i=0,---,N. Then (36) may be discretized
as follows:

sz‘+1 X th. + b(ti, Xt,.)]’l + Btm —B;.

i

(37)

We first construct the binomial tree on Ty :={t;,i=0,...,N} as in Section 3.2 with

1 1
X0,0 = Xo, Xz',]' = Xp + (2] — 1)\/5, bj/]' = b(ti, xl-,,»), p:] = z + Ebl,]\/E (38)
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Since b is bounded, we shall assume / is small enough so that 0 < p;; <1. Let XN denote the Markov chain
corresponding to this binomial tree under the probability Py specified by (38). Then our choice of p;; en-
sures that

EFv [X XN|XN = xi,j] = P;r]‘/ﬁ — pl_]‘/ﬁ = bijh;

V= x, J] (Vi - b,-,jh)2 +pyy(Vi+ bi,jh)2= h— B,

tiv1

EPY [(xg’ = XN = bgh) [ %)

Clearly, as a standard Euler approximation, X matches the conditional expectation and conditional variance
of X in (37), up to terms of order o(h).
Next we define the other terms in Section 3.2:

N N N+ (P“Hl (th'\il/ﬁl) th ( 1]+1) N,— N+
Gi,j = PN{Xt, 2 xi,/‘)/ qij = N i = 1- qij 7
Py (Gx‘,j) Py (Gi,j+l)

N — . L — N+ o AXN = 4 L= N
Xy —xw} =4dij QN{ b = Xi+1,j| X —xw} =dij s

XN = xi,j}) QN{ N> lXY = x,-,]»}.

(40)

N _
QN{XtM = Xit1,j+1

Dy (ti/ tn, Xij; IP’N{Xij > Xk

We shall send N — oo and analyze the limits of the above terms. In this section we evaluate the limits
heuristically, by assuming all functions involved exist and are smooth.
Define the survival probability function and density function of the X in (36), respectively:

G(t,x) =P(X; =2 x), p(tx):=-0,G(tx), 0<t<T. (41)
Note that, as the survival function of the diffusion process (36), G satisfies the following PDE:
1 1
2,G = —8xxG - bd,G = ——8xp + bp. (42)
It is reasonable to assume G i = G(t;, x;j). Note that ti,1 =t +h, xjj01 = x;; + 2+, Xit1,j+1 = Xij + Vh. Rewrite
@(t,p) := ¢,(p). Then, for (t,x) = - (1, x; j), by (42) and applying Taylor expansion we have (suppressing variables
when the context is clear):

(p(t +h,G(t R+ «/12)) — o(t, G(t, 1))

= diph + dp

9,Gh + 9,.GVh + %8xxGh + %3pp(p[&xG]2h +o(h)

= —~d,ppVh + h+ o(h);

1
9p + Ippbp = Ippdsp + 5 pppp’

(p(t, G(t,x + zx/ﬁ)) — p(t, G(t, %)) = 9,0| 2. G2V + %axxczlh 4 %8pp[8xG]24h +o(h)

= ~20,0pVh = 2[0,9dxp — dpppp? |t + 0(h).
Thus, we have an approximation for the qzﬁr in (40):
N (p(t + h,G(t +h,x+ \/ﬁ)) - (p(t,G(t,x + 2\@))
qij =
o(t, G(t,x)) - (p(t, G(t, X+ 2\/%))

~3ppp VI + [0 + Bppbp — Dy pdp + 1 Dppipp® |t + 0(h)
20,pVh + 2|9 pdyp — dpppp?]h + o(h)

=%+%lu(t,x)\/l;+o(\/ﬁ), (43)

=1+
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where

ip(t, G(t,x)) — 1 9ppe(t, G(t, X)) p*(t, x) ‘

t, ) = bt x) + 3,0, Git, x)p(t,0)

(44)

Next, note that
EQN {)(,{:I+1 - X{?’|X€I = Xj/]'} = \/E[ZCIZ'+ - 1] = [.l(i'i, x,-,]')h + O(I’l);

E@N{(Xﬁ = XY = palty xig)h)

X{?’ = Xi,]‘} =h+ O(h)

In other words, as N — oo, we expect that Qy would converge to a probability measure Q such that, for some
Q-Brownian motion B, it holds that

t ~
X = xg + / u(s, Xs)ds + By, Q-as. (45)
0
Moreover, formally one should be able to find a dynamic distortion function @ satisfying:

Os, £, GP{X; > ylXs =x}) =Q{X; 2 yIXs =x}, 0<s<t<T. (46)

We shall note that, however, since X, = xy is degenerate, p(0,-) and hence u(0,-) do not exist, so the above
convergence will hold only for 0 <s <t < T. It is also worth noting that asymptotically (33) should read:

u(t, x) z%[l +y(t,x)\/ﬁ+o<\/ﬁ)][u(t+h,x+ \/ﬁ) —u(t+h,x—\/ﬁ>] +u(t+h,x— \/ﬁ)

=u(t,x)+ |du + %axxu + udyu|h + o(h).

That is,

Lu(t, x) = du + %8xxu + pdyu = 0. (47)

4.2. Rigorous Results for the Continuous Time Model

We now substantiate the heuristic arguments in the previous section and derive the time-consistent dynamic
distortion function and the distorted conditional expectation for the continuous time model. We first have the
following tail estimates for the density of the diffusion (36). Since our main focus is the dynamic distortion
function, we postpone the proof to Section 6.

Proposition 3. Under Assumption 1, X; has a density function p(t, x) which is strictly positive and sufficiently smooth on
(0, T] x R. Moreover, for any 0 < ty < T, there exists a constant C, possibly depending on to, such that

9xp(t, %) 1 G(tx)[1 = G(t x)]
p(t, x) =0 o+ ] = p(t, ) <Co, (tx)€[to, T]xR. (48)

We next assume the following technical conditions on ¢.

Assumption 2. ¢ is continuous on [0, T] x [0,1] and is sufficiently smooth in (0, T] x (0, 1) with dp¢p > 0. Moreover, for
any 0 <ty < T, there exists a constant Cy > 0 such that for (t,p) € [to, T] % (0, 1) we have the following bounds:

PPP(P(t/ P) Co ‘appp(P(tr P)‘ Co 49
0(t0)| = p-9)" [ dplep) |~ p2(1-p “9)
pbp)| oo el “
) I Fware) (50)

We note that, given the existence of G(t,x) and p(t, x) as well as the regularity of ¢, the function u(t, x) in (44) is
well defined.
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Remark 6.

(i) Note that in (43) and (44) only the composition @(t, G(t, x)) is used, and obviously 0 < G(t,x) < 1 for all
(t,x) € (0, T] x R. Therefore, we do not require the differentiability of ¢ at p = 0, 1. Moreover, since d,¢ > 0, the
condition (49) involves only the singularities around p = 0 and p =~ 1.

(ii) The first line in (49) is not restrictive. For example, by straightforward calculation one can verify that all
the following distortion functions commonly used in the literature (see, e.g., Huang et al. [12, section 4.2])
satisfy it: recalling that in the literature typically ¢(t,p) = @(p) does not depend on f.

e Tversky and Kahneman [23]: ¢(p) = p/[p” + (1 —p)’1Y7, y €[y, 1), where y,~0279 so that ¢
is increasing.
e Tversky and Fox [22]: ¢(p) = ap”/[ap” + (1 —p)’], a >0,y € (0,1).
e Prelec [20]: ¢(p) = exp(=y(=1Inp)*), ¥y >0, a € (0,1).
e Wang [24]: ¢(p) = F(F '(p) + a), a € R, where F is the cdf of the standard normal.
As an example, we check the last one, which is less trivial. Set g := F’l(p). Then

olE0) = Fla - a) = (6) = " = 0l () = n(F g+ ) <17 ).

Note that F'(q) = ¢"7/2/y2r. Then In(F'(q)) = —In V27 — g/2. Thus,

iy () = - 50§ — T ey -

This implies that, denoting by G(g) := 1 — F(g) the survival function of the standard normal,

"B 1 F@ = F@)] Gl = G(g)]
' (p) Pt =pl=lod F'(q) l F(q)

Then by applying (48) on the standard normal (namely, b = 0 and t = 1 there) we obtain the desired estimate

for %’ﬂ. Similarly we may estimate %””—p@.
4 rP

(iii) When ¢(t,p) = ¢(p) as in the standard literature, the second line in (49) is trivial. Another important

example is the separable case: ¢(t,p) = f(t)p,(p). Assume f’ is bounded. Then the second inequality here

becomes trivial, and a sufficient condition for the first inequality is 20 < S which holds true for all the

e Po(p) = p-py
examples in (ii).

To have a better understanding about u given by (44), we compute an example explicitly.
Example 4. Consider Wang’s [24] distortion function: ¢(t,p) = F(F"!(p) + a), as in Remark 6(ii). Set b= 0.
Then u(t, x) = a/2VE.
Proof. First it is clear that d,¢ = 0 and d,@(t,p) = F'(F(p) + a)/F'(F'(p)). Then

Ipppl(tp) _ _ 1 |F(F'(p)+a) F'(F'(p)
Gty = By ) v ) P(F-l(p»l'

One can easily check that F'(x) = e¥/2/42m and F”(x) = —xF'(x). Then

Ippltp) 1 (gt ) @
dp(ty)  F(F (p))[ [F7'(p) + a] + F'(p)] F(F1(p))
Note that
G(t,x) = P(B = x) = P(& > %) - P(B1 < —%) - F(—%).
Then
_apy  _ opty _ FCT
H(t,x) _F'(F—l(G(f,x))) F (—x/\/f) %e_ﬂ \/E,
27
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completing the proof.

We now give some technical preparations. Throughout the paper we shall use C to denote a generic constant
which may vary from line to line.

Lemma 2. Let Assumptions 1 and 2 hold.
(i) The function u defined by (44) is sufficiently smooth in (0,T] X R. Moreover, for any 0 < ty < T, there exists
Co > 0 such that

lut, %)l < Co[1 +Ix], [dxuu(t, )| < Co[1 + |xI*],  for all (t,x) € [to, T] X R. (51)

(ii) For any (s,x) € (0,T) X R, the following SDE on [s, T] has a unique strong solution:
~ t ~
Xt =x +/ u(r, X3*)dr + B, where B;:=B,—B;, te€l[s,T], Pas. (52)
S
Moreover, the following M** is a true P-martingale and P o (X**)™! = Q% o (X**)71, where

S,X S,X S,X
X =+ B, Mo oML R TET (53)

(iii) Recall the process X as in (36). Define
GHy) =PX:2yXs=x), G*y)=PX"*>y), 0<s<t<T, x,yeR (54)
Then G* and G are continuous, strictly decreasing in y, and enjoy the following properties:
Gi'(co) = im G*(y) =0, G(0) := lim GY'(y) = 0;
Grf(-e0):= lim G*(y) =1, G(-e0):= lim Gi*(y) = 1.
Furthermore, G} has a continuous inverse function (GY*)™' on (0,1), and by continuity we set (G7*)™!
(0) = —o0, (GF)1(1) := co.

(iv) For any g € T fixed, let u(t, x) := E¥[¢(X}")], (t,x) € (0, T] X R. Then u is bounded, is increasing in x, and is the
unique bounded viscosity solution of the following PDE:

Lu(t,x) = dwu + %8”14 +udu=0, 0<t<T, u(T, x)=_gx). (55)

(v) For the ty and Cy in (i), there exists 6 = 6(Co) > 0 such that if g € T is sufficiently smooth and g’ has compact
support, then u is sufficiently smooth on [T —0,T] X R and there exists a constant C > 0, which may depend on g,
satisfying, for (t,x) € [T -0, T] X R,

|u(t, x) — g(~o0)| < Ce™,x < 0; |u(t,x) — g(e0)| < Ce™,x > 0; deus(t, x) < Ce™ . (56)

Proof. (i) By our assumptions and Proposition 3, the regularity of y follows immediately. For any ¢ > ¢, by (49) and
then (48) we have

dp(t,G(t,x)) | _ CG(t,)[1 - G(t,x)]
Ipp(t, G(t, x))p(t, )| p(t, x)

Ipp(t, G(t, x))p(t, %) Cp(t, x)
B dpe(t, G(t, %)) | =GN -Gl > CI1 + Jx[]-

IN

<G

Then it follows from (44) that |u(t, x)| < C[1 + |x]].
Moreover, note that

Iy | Iy dipdip 1 Ippp PP’ _1dppdip 1 (app(P)ZPZ
d,b + . i - - L
Ip ()" P> 2 e 2 e 2 (d,p)

dp(t, x) =
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By (49) and (48) again one can easily verify that |d,u(t, x)| < Co[1 + [x[*].

(ii) Since p is locally uniform Lipschitz continuous in x, by a truncation argument X** exists locally. Now
the uniform linear growth (51) guarantees the global existence. Moreover, by [14, chapter 3, corollary 5.16] we see
that M'* is a true P-martingale and thus Q" is a probability measure.

(iif) Since the conditional law of X; under P given X; = x has a strictly positive density, the statements
concerning G;* are obvious. Similarly, since the law of Xj* under P has a density and dQ** < dP, the
statements concerning G are also obvious.

(v) We shall prove (v) before (iv). Let 6 > 0 be specified later, and let f € [T — 6, T]. Let R > 0 be such that
¢’(x) =0 for |x| > R. Note that u(t,x) = E[M¢(X%")]. For x > 2R, we have

e )~ g(eo)] = EIME[(X5) ~ g(e0)]]| < EIMFI(X5) ~ g(eo)]
< 2||8||wE[MtT'xl{xfTrgR}] _ 2||g||OOE[eftTydBr_%ﬂlypdreﬂlylzm1{X;X3R}]'
Then
ju(t, ) — g(eo)< gl E[e* o 20 W Je(xi < R).

By [14, chapter 3, corollary 5.16] again, we have ]E[eSﬁT”dB’_%ﬁTl“lzdy] =1. By (51), we have

Cob sup |Bs?

E[esﬁwdr] <]E[€c0 f[1+|x\2+|3:|2]dr] < €C06[1+|x|2]]E[e s < p2Co0[ 1+ ]
) —_ —_ 7

for 6 small enough. Fix such a 6 >0, and let t € [T — 6, T]. Note that we may choose 0 independent from g.
Henceforth, we let C > 0 be a generic constant. Moreover, since x > 2R,

P(X{ <R) < P(X <) = P(By < -7) < IF’(Bl < —;/5) < Ceh,

Putting these statements together, we have, for 6 small enough,
lu(t, x) — g(co)P< Ce i1 < cp3+*,

This implies that |u(f, x) — g(c0)| < Ce™. Similarly, |u(t, x) — g(—c0)| < Ce™ for x < 0.
The preceding estimates allows us to differentiate inside the expectation, and we have

duatt ) = Blg (VR
where VX' =1+ / Oepi(r, X)) VX dr  and thus VX}© = of; (X o
t

Then dyu > 0. Moreover, recalling (53) we have
~ T AN g ~ T Tt
Duu(t,x) = E|g/ (K)ol R = B| Mgy (Rip)els XN
o [Tou(s,X)ds
< CE|[Mytel X |

Then, by the estimate of d,u in (51), it follows from the same arguments as above that we can show
that [dyu(t, x)| < Ce™.

Finally, we may apply the arguments further to show that u is sufficiently smooth, and then it follows from the flow
property and the standard It6 formula that u satisfies PDE (55).

(iv) We shall only prove the results on [T — 6, T]. Since 6 > 0 depends only on Cy in (i), one may apply the
results backwardly in time and extend the results to [fo, T]. Then it follows from the arbitrariness of t; that the
results hold true on (0, TT.

We now fix § as in (v). The boundedness of u is obvious. Note that u(t, x) = EF[¢(X}*)M}'], and i and g are continuous.
Following similar arguments as in (v) one can show that u is continuous.

Next, for any ¢ € Z, there exist approximating sequences {g,} such that each g, satisfies the conditions in (v). Let
uy(t,x) = E[ g,(X%")]. Then u, is increasing in x and is a classical solution to PDE (55) on [T — &, T| with terminal condition g,.
It is clear that u,, — u. Then u is also increasing in x, and its viscosity property follows from the stability of viscosity solutions.
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The uniqueness of the viscosity solution follows from the standard comparison principle. We refer to the classical reference
Crandall et al.[5] for the details of the viscosity theory. O

We are now ready for the main result of this section. Recall (54), and define
(s, t,xp) = G((GH) (), s >o0. (57)
Theorem 2. Let Assumptions 1 and 2 hold. Then @ defined by (57) is a time-consistent dynamic distortion function which is
consistent with the initial conditions: ®(0,t,x;p) = ¢,(p).

Proof. First, by Lemma 2(iv) it is straightforward to check that ® satisfies Definition 2(i).
Next, for 0 <s <t < T, note that the definition (57) of @ implies the counterpart of (34):

(s, %G (y)) = G (). (58)

Recall (16) and Lemma 2. One can easily see that &,[g(X;)] = u(s, X;) for any g € Z, where u(s, x) := EP[g()N(f’x)]
is increasing in x and is the unique viscosity solution of the PDE (55) on [s,t] X R with terminal condition
u(t,x) = g(x). Then, either by the flow property of the solution to SDE (52) or the uniqueness of the PDE, we
obtain the tower property (17) immediately for 0 <r<s<t<T.

To verify the tower property at r = 0, let {p > 0 and 0 > 0 be as in Lemma 2(v). We first show that, for any g as in
Lemma 2(v) and the corresponding u, we have

Eonlu(ty, Xy )| = Eopfulte, Xp)], T-0<th <h<T. (59)

Clearly the set of such g is dense in Z. Then (59) holds true for all ¢ € Z, where u is the viscosity solution to the
PDE (55). Note that u(t, X;) = & r[ g(Xt)]. Then by setting t; =t and t, = T in (59) we obtain &[&r[g(X7)]] =
&orl§(Xr)] for T -6 <t <T. Similarly we can verify the tower property over any interval [f—0,t] C [t, T].
Since &5, is already time consistent for 0 < s < t, we see the time consistency for any ty < s <t < T. Now by the
arbitrariness of fo > 0, we obtain the tower property at r =0 for all 0 <s <t < T.

We now prove (59). Recall from (56) that u(t, —c0) = g(—o0) = 0. Then, for T — 6 < t < T, similar to (10), we have

Eolult, X)) = /0Do ot P(u(t, Xy) > x))dx = /R(p(t, G(t, x))du(t, x)dx.
Let ¢, : R — [0,1] be smooth with ¢,(x) =1, [x| <m, and Y,(x) =0, |x| > m + 1. Denote
St X0) = [ p(t, Gt )t .
R

Then, recalling (42) and (55) and suppressing the variables when the context is clear, we have

d
aéggf’t[u(t, X)) = /[[Qt(p + 0p0iGoxut + Ot |(hdx
R

= /R[[at(P + 0p0iG|oxuthy + [FppiPm — @Y, |9su|dx

-/
-/

1 ’ ”
+ 5 0xU[ 0PI pY = DyppPp* Y + 20, 0P, — Y]

-

= /R [[w + Opppl, - %w;

dx

1]
Ym0t — [p@pPm — | E&’mu + poyu

1
o + 3pfp[bp ~59xp

1 ,
o + 3pfp[bp - zaxp] - 8;@9#] YOt + @y, i0ut

dx

1 ’ 1 ”
9 + Ippbp = Dpppit =5 pppp® |t + [ + Dppply, §<P¢m]axudx

o udx, (60)
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where the last equality follows from (44). That is, for any T—0<t; <f, < T,

tz ’ 1 14
éao tz[ (tz’ th)] - éa(;tlfl [u(tl’th)] = [ ./Rl[[(p‘u + 3P(PP]‘/’m - E(plvbm axudth' (61)

It is clear that lim,, . &5 [u(t, Xi)] = &o4[u(t, X;)]. Note that, by (51) and (56), we have

Cp 2
<—r < <
1l CIL+ ], 9ypp < e < CIL+ ), 19wl < Ce
Then, by sending m — oo in (61) and applying the dominated convergence theorem, we obtain (59) and hence
the theorem. O

Remark 7. In the definition of @ (see (57)) we require that the initial time s is strictly positive. In fact, when s = 0 the
distribution of X; becomes degenerate, and thus, p may have singularities. For example, assume ¢(t, ) = ¢(-) is
independent of t and b = 0, xo = 0. Then

"Gl 1 e

2t

20/ (Gt ) 2l

It is not even clear if the following SDE is well posed in general:

p(t, x) =

~ t ~
X = / y(S,XS)dS + B;.
0
Correspondingly, if we consider the following PDE on (0, T] X R:
Zu(t,x)=0, (t,x) € (0, TI xR, w(T,x)=g(x),

then it is not clear whether lim; () #(t, x) exists.

Unlike Theorem 1 in the discrete case, surprisingly here the time-consistent dynamic distortion function is
not unique. Let @ be an arbitrary time-consistent dynamic distortion function for 0 < s < t < T (not necessarily
consistent with ¢, when s = 0 at this point). Fix 0 <t < T. For any s € (0,t] and g € Z, define

(s, x) := /R D(s, t, 2, P(g(Xr) > yIXs = x))ds. (62)

The corresponding {&;:} is time consistent, that is, the tower property holds. Suppose ® defines via (58) a
Q-diffusion X with coefficients i, &, that is,

O(s, £, P(X; > yIXs = x)) = P(X}* > y), where X" =x+ / [i(r, X3*)dB, + / 5(r, X;*)dB,, P-as., (63)
S S

and 1 satisfies the following PDE corresponding to the infinitesimal generator of X:
ol + %628,”51 + 001 =0, (s,x) € (0, ] xR; (t,x) = g(x). (64)

We have the following more general result.

Theorem 3. Let Assumptions 1 and 2 hold, and let ® be an arbitrary smooth time-consistent (for t > 0) dynamic distortion
function corresponding to (63). Suppose i and & are sufficiently smooth such that it is smooth and integration by parts in (66)
below goes through. Then ® is consistent with the initial condition ®(0,t,x;p) = @,(p) if and only if

]%4_ I _52&1717@?'

P dppp  20pp (©5)

y P T
y=b+o&xo+§[02—1

In particular, if we restrict to the case & =1, then [i = u and hence ® = @ is unique.
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Proof. The consistency of & with the initial condition ®(0, t, x; p) = ¢,(p) is equivalent to (59) for it, where i is the
solution to PDE (64) on (0, T] with terminal condition g. Similar to (60), we have

d . . .
Eé’o,t[u(t, X)) = /R[[at@ + 0pdiG|oxit + Iyt |dx

- '/R[[at(P + 0, 00i G0yl + 3, ppayit]dx

_ /R [
_ /R [
+2 0|3y + dypdp + 28p(pp5&x6]}dx
s, 0 Fypp 1 dxp ] N
= b+ 30,5+ g — — [1|d,@pdyitdx. (66)
/R dppp  20p¢p 5l ]P Hjover

Since d,pp >0 and since g (and hence i) is arbitrary, we get the equivalence of (59) and (65). O

52Ol + [0yu | [dx

1 . 1
arp + 8p(p[bp - Eaxp”(?xu —dppp 5

1 15
o + 9p¢[bp - EM] - 3p<PP#}8xu

Remark 8.

(i) When & # 1, the law of X{* can be singular to the conditional law of X; given X = x. That is, the agent
may distort the probability so dramatically that the distorted probability is singular to the original one. For
example, some event which is null under the original probability may be distorted into a positive or even full
measure, so the agent could be worrying too much on something which could never happen, which does not
seem to be reasonable in practice. Our result says that if we exclude this type of extreme distortion, then for
given {¢,}, the time-consistent dynamic distortion function ® is unique.

(if) In the discrete case in Section 3.2, because of the special structure of the binomial tree, we always have
X, — X4[* = h. Then for any possible Q, we always have E?[|X; , — X [*|X;, = x;;] = h. This, in the continuous
time model, means ¢ = 1. This is why we can obtain the uniqueness in Theorem 1.

4.3. Rigorous Proof of the Convergence
We note that Theorem 2 already gives the definition of the desired time-consistent conditional expectation for
the constant-diffusion case. Nevertheless, it is still worth asking whether the discrete system in Section 4.1
indeed converges to the continuous time system in Section 4.2, especially from the perspective of numerical
approximations. We therefore believe that a detailed convergence analysis, which we now describe, is in-
teresting in its own right.

For each N, denote I := hy := % and t; := tf-v :=ih,i=0,...,N, as in Section 4.1. Consider the notation in (38)

and (40), and denote
o =PV (XY = x;))/(2Vh). (67)

Proposition 4. Under Assumption 1, for any sequence (¥, ) — (t,x) € (0, T] X R, we have G — G(t,x) and p,]
p(t,x) as N — co.
Again we postpone this proof to Section 6.

Theorem 4. Let Assumptions 1 and 2 hold, and let g € Z. For each N, consider the notation in (38) and (40), and define by
backward induction as in (33):

ul(x) := g(x), u! (xlj) = qu ull, (xis1e) + qﬁ"uﬁl(xm,j), i=N-1,...,0. (68)
Then, for any (t,x) € (0, T] X R and any sequence (tN,xN i) = (t,x), we have
1\1]1_120 ul (x;) = u(t, x). (69)
Proof. Define
u(t,x):= limsup ul(x;), w(tx):= Lminf u}(x;).

N—oo,t; | t,x;;—x N—oo,ti|t,x;j—x
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We shall show that 1 is a viscosity subsolution and u a viscosity supersolution of PDE (55). By the comparison
principle of the PDE (55) we have # = u = u, which implies (69) immediately.

We shall only prove that % is a viscosity subsolution. The viscosity supersolution property of u can be proved
similarly. Fix (£, %) € (0, T] X R. Let w be a smooth test function at (£, ¥) such that [w — #](f, %) = 0 < [w — u](t, x) for
all (t,x) € [, T] x R satisfying t — < 6%, |x — x| < 6 for some 6 > 0. Introduce

W(t, x) == w(t, x) + 5|t — 1 + |x — xI*). (70)
Then

[@ - u](t,x) =0 < 1 < inf [@ —u](t, x).
0 2 fi+p-TP<s?

By the definition of 7(t, X), by otherwise choosing a subsequence of N, without loss of generality we assume
there exist (iy, jn) such that £, | £, x;,j, — ¥, and limy_,« u}) (%, j,) = %(t,%). Since # and u" are bounded, for 6
small, we have

[~ — N1, o - ; = N1t .
on = @ = uN(tiy, Xy ) < 2G5 = %gt,—%ﬁﬂfj-a@oz[w ul|(t, xi5).-
Denote
C;] = ) i%’lf [ﬁ] - MN] (t,', xi,]-) = [ﬁ] — MN] (ti;],xi;w,;v) < CN-
by SE<EHS =3P <6?

Then clearly [t; —# + |x;  — X < 6?/2. Moreover, by a compactness argument, by otherwise choosing a
subsequence, we may assume (ti;\l/xi;\l’j;\]) — (t., x.). Then

0= ]\1]1—I)IL}O CN = lll’l\l;ljzp[w - MN] (ti;],xi;],j;]) = ﬁ)(f*, X*) - lll\IfIl)lolgf MN (ti;,,xi;],j;])
> ﬁ](ta—, Xa(-) - ﬁ(t*, X*) > 675“1’* - E|2 + |X>{- - f|4].
That is, (tx, x+) = (f,X), namely,
Z\%i_r)r‘}o(t,v;\l,xi;l,];l) = (E, f) (71)

Note that

@t %1, ) = 0 (b ) +
= qgjf;qu (ti*N+1/ xi*N+1,j*N+1) + q%]l’}NMN (ti*N+1; Xz'*N+1,fN) +cy
< qgﬂfkﬁi(fi;ﬁl,xiwl,];ﬁl) + qg:};\,w(ti&+1/xi;\]+l,j;\])‘
Then, denoting (i,}) := (Y, j5,) for notational simplicity, we have
0< q%l+[7/~‘7(ti+1;xi+1,j+1) —w(t;, xi;) | + 6]%’_ [@(ti1, xi1,) — (i, %)

= q%’-'— [8@(1‘{, xi,j)h + Bxﬁ)(t,-, xi,]»)\/ﬁ + %83{3{&}([}', xi,j)h

+ qzﬁ [Qtzb(t,-, xi,j)h — 8,(?2)(1’1‘, Xj,]')\/ﬁ + %8”@(1‘1-, xi,]')h + O(h)
= &tﬁ)(t,’, x,',]') + %&xxﬁ)(ti/ xi,j) h+ [qz+ - qu"]&xzb(t,r, X,',]')‘/E + o(h). (72)
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Note that

) Pr (Girjn ) = 94 |Glj
T = =1+2 (pt,(( i,j) _)(Pti (Gf\f(ﬂ) ) ;
94 (GY) = 94 (Gr) = @, (GY) — 0, (Gl — 20} VR) = 9y (1, G )20 Vi + 0 VE);
Pro (1) = 04(G5) = 91, (G3 -2 Pu) (6)
= dp, (G%)h—ﬁpgoti( ,])Zp,]«f Pt & pgot( )[2p,]«/' p,]] +o(h)
= i, (GY) 1 = 9y, (G oy V|1 - b,-,]»xfﬁ] + Eappgoti (&) [pgj] I+ o).
Then, denoting G;; := G(t,x;;) and p;; == p(t;, x;;) and by Proposition 4, we have

N+ N~ at(Ptf(G%)h"’ap(Pt.( r])Pl;b'Jh aPP(Pt( )[pf}]zh+o(h)
9 — i = 2, (tl,GN)pl]\/‘_’_O(\/‘)

9, (GY) =395, (G )| PN

_ bi,]' N tqot,( ,]) 2 F’qut,( ,])[p ,]] . 0(1) \/ﬁ
8p(p(ti, Gf\j/) pfj

= by, + 194(Gij) =394 (Gif) [pis] +o() |V
Ipplti, Gij)pij

= [‘U(t,', x,‘,j) + 0(1)]\/%

Thus, by (72) and (71),
0< o"tzl)(ti, xi,j) + %8,5,560(@-, Xi/]') + [.l(ti, Xi,]')axﬁ](t,‘, X,',]') h+ O(h)
_ [a@(z, %) + 2 tfF, ) + ulE, 92,03 |+ o).

This implies Z@(t, %) > 0. By (70), it is clear that Lw(t,X) = Lw(t,%). Then Lw(t,x) > 0; thus, u is a viscosity
subsolution at (£,X) O

5. The General Diffusion Case
In this section we consider a general diffusion process given by the SDE:

t t
Xy =x0+ / b(s, Xs)ds + / o(s, Xs)dBs, P-almost surely (a.s.) (73)
0 0
Provided that ¢ is nondegenerate, this problem can be transformed back to (36):
X
Xi = 0(5Xp), 0= 1(0,x0), where (t,x):= / U (74)
0 a(ty)

Then, by a simple application of It6’s formula, we have

N NN A b 1
X, =%+ / b(s,X)ds + B;, where b(t,x) := [QH/J + o E&,(a
0

(t, 071t x)). (75)

Here 17! is the inverse mapping of x — (t,x). Denote

A

G(t,x) =P(X; 2x), p:=-0G, G(tx):=P(X;>2x), p:=-00G. (76)

To formulate a rigorous statement, we shall make the following assumption.
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Assumption 3. The functions b,o are sufficiently smooth, and both b,o and the required derivatives are bounded.
Moreover, 6 > ¢y > 0.

The following result is immediate and we omit the proof.
Lemma 3. Under Assumption 3, we have
(i) the b defined in (75) satisfies Assumption 1;
(ii) G(t,x) = G(t, Y(t,x)), p(t, x) = p(t, Y(t, x))/o(t, x) are sufficiently smooth and satisfy (48).
Here is the main result of this section.
Theorem 5. Assume Assumptions 3 and 2 hold. Let ® be a time-consistent dynamic distortion function determined by (63)

for 0 <s <t < T, where & and [ satisfy the same technical requirements as in Theorem 3. Then & is consistent with initial
condition ®(0,t,xo;p) = @,(p) if and only if

. U dp  hp(t,G(t,x))  F*pdpp(t, G(t,x))
=b =000 + 50,5 +=|5% = 62 + - PP . 77
H ol | p a0t GLx)p 20,9t Gt x)) @7
In particular, if we require & = o, then ® is unique with
rp(t, G(t, x)) = Ldpe(t, G(t, x))p?? (¢
[:l(t,x) — /.l(t,x) = b(t,x) + t(P( /G( /x)) 2 PP(P( /G( /x))p o ( /x) . (78)

aP(p(t/ G(tr x))p(tr x)

Proof. Let ¢ € Z, and let ii be the solution to PDE (64) on (0, T] x R with terminal condition g. Then @ is consistent
with initial condition ®(0,, xo;p) = ¢,(p) means the mapping t € (0, T] = &o,[ii(t, X;)] is a constant. Note that

Eoin(t, Xi)] = /R(pt(IP’(Xf > X))oy ii(t, x)dx = /R(pt(]P’()A(t > (t, x)))Ixli(t, x)dx.
Denote ¥ := ¢(t,x). Then
Eoli(t, X)) = / .(P(X: > 2))95ii(t, 2)dz, where a(t, ) = i(t, p\(t, 7). (79)
R

Note that 1(t, x) = ii(t, P(t,x)). Then

Ol = Dyil + O:110,, Dl = 03010,  Duxll = Dssll(Dx ) +I301D P,
and thus, PDE (64) implies

0= [0t + s8] + 3]st +Ositdy] + isiidy

1 X
=i+ (GAx)*Fssit +

O+ 3P0 + gaxqj]a,%a.

Recall (75) and (79), and note that G(t,x) = G(t, /(t,x)). Applying Theorem 3 we see that the required time
consistency is equivalent to

o + %52(9”1,1; + [10:

9p . dplt, G(t,%)) _ (30:9) Ipeplt, G(t,))p
P dpp(t,G(tx))p 20,¢(t, G(t, x)) ’

(80)

= b+ (60.9)9:(309) + 1| G0p-1]
Note that

. . 1 0x0
Ox03(50xY) = 03(30+Y), dx) = = Out) = -

Pt ¢(t,x)) = po(t,x), dzp =|dxpo + pdsalo.
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Then (80) is equivalent to

G505 §?0<0
-5
vy 2 ~2

N 1 [(a) _1] [axpa . 8xa] . dp(t, P(t,x))  F2pdype(t, G(t, x))

2[\o p Ipp(t, Gt x))po 20t G(E, X))o

This implies (77) immediately. O

Remark 9. In this remark we investigate possible discretization for the general SDE (73), in the spirit of Section 4.1.
Note that

Xti” x Xt1 + b(tz‘, th.)h + G(tz‘, Xti)[Bti+1 - Bti]‘

For a desired approximation X", we would expect

E[XN - xV (Xﬁf = x] = b(t;, x)h + o(h), E

tis1

_Xg)z

(x:

tis1

Xff = x] = o2(t;, x)h + o(h). (81)

However, for the binomial tree in Figure 3, at each node x;; there is only one parameter p;f]-, and in general, we
are not able to match both the drift and the volatility. To overcome this, we have three natural choices:
(i) The first one is to use trinomial tree approximation: assuming 0 < 0 < Cy, we have

. . . . N
Xij = CO]\/E, ]=—1...,1 P(Xtm = Xit+1,j+1

XY = x,) =i
]P’(XN

fis1

= xi+1,j—1)X2] = xi,j) = Pijs P(XN

tis1

= xi+1,j Xg:] = xi,j) = pg] =1 p:—] - pl_,]

See the left figure in Figure 4 for the case N = 2. Then, by choosing appropriate p;, p;;, one may achieve (81).
However, note that the trinomial tree has crossing edges, and they may destroy the crucial monotonicity
property we used in the previous section, as we saw in Remark 4(iii) and Example 3.

(ii) The second choice is to use the binary tree approximation (see the right figure in Figure 4 for the case
N =2), where x1 = xo — o(t, o)V, X2 = xo + 0(to, X0)Vh, 01 = o(t1,x1), and o, = o(t, x,). But again there are
crossing edges, and thus, the monotonicity property is violated.

(iii) The third choice, which indeed works well, is to utilize the transformation (74). Let XN be the dis-
cretization for X in (75), as introduced in Section 4.1. Then XV := 1/1;1 ()A(f?] ) will serve for our purpose. We skip
the details here.

6. Analysis of the Density

In this section we prove Propositions 3 and 4. The estimates rely on the following representation formula for p
by using the Brownian bridge. The result is a direct consequence of Karatzas-Shreve [14, section 5.6, exercise
6.17] and holds true in the multidimensional case as well.

Figure 4. Left: trinomial tree. Right: binary tree.
Ty + 09 \/E

€22

Ty —— 21

Zo,0 Z1,0 T2,0
\ >< " " +0—1\/E
ry,-1 ——— T2 1 $2—02\/E

~— 7

T2,—2 T —Ul\/E
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Proposition 5. Assume b is bounded. Then we have the following representation formula:

1 (x — x0)?
t = -+ (t t h
p(/x) \/ﬁexp( 2t (,JC) , >0’ wnere
YR * dB, tx . t ;
M, = O:, X =X+ [x - xO]t [t_S]M 0<s<t
(e E[ o Jo b5 X )dBot [ (=o)X ) =b(s, X )Mo (s X ) P ] s | 82)

Proof. Since we will use the arguments, in particular, that for (84), in the proof of Proposition 4, we provide a
detailed proof here. For notational simplicity, let us assume t = 1 and xo = 0. Then (82) becomes:

1 x?
p(l,x) = —\/_ exp (—— + I(x)), where
27 2
_ s dB, _ _
Ms::/—, X =xs+[1-5]M;,0<s<1;
0 1-7r
A0 = E[e [ib(s,X5) B+ [! [xb(s,f(g)—b(s,Xg)Ms—%\b(s,Xf)lz]dS]' (83)

We first show that the right-hand side of the last line in (83) is integrable. Since b is bounded, it suffices to
prove the following (stronger) claim: for any C >0 and «a € (0,2),

E[ecf(f"“s'“ds] < oo, (84)

we have /01 IM|*ds = f0°° IMy/1+6|*(1 + t)*dt. Since

_ ™ dr
EMt2:/1—:t,
| m|] 0 (1—1’)2

by Levy’s characterization we see that t — Mt/(1+t) is a Brownian motion. Then

C[Mfds| _ eBla| <o ¢ < Bt )"
ek ]_E &l w ]_ZW]E[(/O art |

n=0

Indeed, by time change s =

T+

Note that

Z-HY N

00 B a a 00 dt 4 B 2
|Bt| gt < |B| / su |Bi|
0

su +a @
(1 +1y it A+ )0 A+ 2-a mb (1405

Then, for a generic constant C,

C [Med = C" B[
]E[e [l s] < Z—‘E sup e

n=0 n: i >0 (1 + )
[Se) Cn [ B no

< Z—|E sup |Bi["* + Z sup _B™ T
n=0 n. 70<t<1 m=0 2m<t<m+l (1 + t)
>, C" mn(2+a)

< Z—|IE sup |Bi|™ + Z 2757 sup By
n=0 n. 70<t<1 m=0 0<t<2m+1

_ iC_TE Sup |B |1’ll¥ " Z 2 mn(2+u)+(m+1)mr sup |B |1’l(X
n=0 " |ost=1 =0 0<t<1
(o] Cn (o] (2_1) o0 Cn

< Z_'E sup |Bt|na Z 2Jm4 z < Z—'E sup |Bt|na
n=0 " |o=t<1 m=0 n=0 " |ost<1

3
_ E[eﬂ?;:z oy

This implies (84) immediately.
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We now prove (83). By [14, section 5.6.B], conditional on {B; = x}, B is a Brownian bridge and its conditional law
is equal to the law of X*. Then, by the Girsanov theorem,

G(1,x) = P(X; > x) = E[efo b(s,B.)dBo—3 [ b(s,B. )Istl{Blzx}]
= / _27_5 e‘?E[e‘[O b(S:Bs)st_j/(; |b(s/Bs)‘2d5 B1 — y]dy
X V
L 2T (s XY)AR <L (s, XY ds
= —¢ ZEB/O (s, 0) 52/(]'(’5) d
/x V21 [ ] Y

This, together with the fact that dX* = xds — Mds + dBs, implies (83) immediately. o

Proof of Proposition 3. Again we shall only prove the case that t = 1,x, = 0.
We first show that, for the I in (83),

II'(x)] < C. (85)

This, together with (82), implies immediately the first estimate in (48).
Indeed, denote b(t, x) := fox b(t,y)dy. Applying the It6 formula we have

- i _ _ 1 - _
B(1,%) = B(1, X3) - 5(0, X%) = /0 [atb(t,Xf)+%8xb(t,Xf) dt+ /O b(t, X)X

Then
) = ]E[ei’(lrx)‘f b [9f5(fr>?f)+%9xb(f5(?‘)]"“]. (86)
Differentiating with respect to x and noting that J, X} = t, we have
5 1 vx)_1 Y 1 — —
JOP () = E[ D00 [ [0(t %) +30:0(1. %) Jat [b(l,x) - / t[&tb(t, X7) + %&xxb(t, Xt)}dt”.
0
This implies
O (x)| < CE[J’M-/ 0 [3i’(f9’(?>+%3xb(fx)]df] =Ce'™, and thus |I'(x)| <C.

We next verify the second part of (48) for x > 0. The case x < 0 can be proved similarly. Clearly it suffices to
verify it for x large. Note that

G(l .X) / ‘0 1 X +y /00 I( +y)_l( +y)z+£_1( ) /‘oo I( IOy L2
oAl 3(x 194y, = exy) (x)xyzyd'
p(1,x) P(l x) 0 Y 0 Y

Then, for x > C+ 1, where C is the bound of I,

M</meCy*"ydy= ! <1
0 C

p(lrx) h X —

1 _ C
G(l,x) > / e—Cy—x/ e dy > 16— > E/
p(1,x) 0 x+C X

completing the proof. o

Proof of Proposition 4. The convergence of G is standard and is also implied by the convergence of p¥, so we shall
only prove the latter. Assume for simplicity that T = 1. Note that p is locally uniformly continuous in (0, T] X R.
Without loss of generality we shall only estimate [pN (1, x) — p(1, x)| for x in the range of X}. We remark that we shall
assume x| < R for some constant R > 0, and in the following proof, the generic constant C may depend on R.
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Let &N, i=1,...,N, be independent and identically distributed with P(&N = 1/4N) = P(EN = ~1/N) = 5
BY =0, and BY := B} + &}, and denote bY := b(t;, B). Introduce the conditional expectation:

E.[-]:= E[-|BY = x].

Then we see that

PN (1) = (XY = x)/ (2Vh) = BT [1+ 0N eN, 1 gy |/ (2 VA

N-1
= Ex|[ [[1+0YeX,][P(BY = )/ (2Vh)
i=0
N-1
=Ey Z[b?]‘fﬁl—%bfvlzh] P(Bll\l — x>/(2\/ﬁ)
e =0 [1+0(1)]

One can easily show that limy_ P(BY = x)/(2Vh) = e™*/2/27, by an elementary argument using Stirling’s
approximation. Then it remains to establish the limit

N-1
D leveN,deven]
e i=0

E, — el (87)

We proceed in three steps, and for simplicity we assume N =21 and x = 2k/2n.
Step 1. Fix t€(0,1), and assume t=1¢; for some even i=2m. (More rigorously we shall consider
tym < t < tas.) For any bounded and smooth test function f,

)P(ng = x;,BY - BY = x—xij)

P(BY = x;, BY =x
( ):Zf(xfj P(Bﬁ\]:x)

B f(8)] = St) gy — = 2
P(ng = 21\/E)IP>(B§V —BY =2(k- l)\/ﬁ)
P(BY = 2%V

= >f(21vh)

Note that m/n =t and k/n = xVh, and denote y := Z = 2[VJ. By Stirling’s formula we have

Nk
(2m)! (2n-2m)!
N\ | _ (m+D){(m=I)! (n—m+k=I)!(n—m—k+I)!
()] = (2R o

B 2m(n — m)(n? — k?)
= [l + O(l)] ;f(m‘/ﬁ) \/2711’1(7112 — lz)((l’l _ m)z_(k _ l)z)x

mZm(n _ m)Z(n—m)(n + k)n+k(n _ k)n—k
(m+ D™ m = 1" (n = m + k= 17" (g — = ke [k g2

= [1+0(1)] Zzl f(ZZ\/E)J

2t(1 - £)(1 — x2h) Ay
2mtn(f2 — yh) ((1 — 1) —(x - y)zh) Axds
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where

Ay = (1 + xx/ﬁ)"(“xw;) (1 - x«/ﬁ)"(l_m);

t+yVh t—yVh
o= (128 €D 1 -y,
._ x—y n(1-t+(x-y) Vi) _x-y n(1-t=(x-y) Vi)
A3._(1+1_t\/ﬁ) (1 l_t\/;'z) . (88)
Note that, for any 0 <z <1,
& < (1+2)%(1 - 2)i72< &5
Then, by noting that n = 1/2h,
X—y 2
Ay < en[XZh+z 3h2 yZh : 1/): h] =e (zt:(ly)t) +3x ‘/_
ArAz ~
x=y)°h 2lx —y)2 =y
R N )

A2A3
Then, by denoting x = y as x = y[1 + 0o(1)] for 1 — 0, we have
2Vh 1 (P
E.|f(BN)| ~ 2Vh 75@:/ R
"[f( f)] lef( )m f(y)\/zmT‘) v

That is, for #; = t, the conditional law of BN given BY = x asymptotically has density

1 _lx—y?
— {3} dy
V271 - )

which is exactly the density of the X* defined in (83).
Step 2. Again assume for simplicity that i = 2m is even. Note that, for each I,

P(el, = VB = 21V, BY = x)
= P(im = VhiBY = 21vh, BY — BY = 2(k - z)\/ﬁ)
_P(BY =21V &), = VR BY - B, = (k- 21- 1)V
P(Bi-v = 21V, BY - BY = (2k - 21)\/5)
(51+1 = VR)B(BY - BY, = (2k— 21— 1)V

P(BY - B = (2k - 21)Vh)
@n-2m-In-m+k-1-1) n-m+k-I

2n—-2mn—-m+k-1) ~ 2(n—-m)
Note further that, given BY, (BY,...,BY ) and (&}, BY) are conditionally independent. Then
n—-m+k——=- BN _ y
- N BN = x) = 2\/_ L h
( i = VL, ) 2(n —m) 2 21-t) Vi,
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where .7-'2] = U(B{Z[,...,By). This implies
1 BN-x 1 BN-x BN —x
Eo|ENJFN| = Vh|s - n| - Vh|= + h|=-—1—"h.
"[él“l}—fi] Vi 2 2(1- ti)\/_ \Z 2 2(1- ti)\/_ 1-¢
Now denote, for i < N —1,
h
éH—l éH—l [ z+1|‘7:N] 1-— Et,u 1-— ti+1 [BI[Y - x]' (90)
Then FN = o(&y,..., &), and
1+1| < \/- E [51+1|f2]] = (91)
By induction one can easily verify
- - = _Z‘\J]rl
BN =xt; + (1 -t)MY, where MY := AR (92)
i i i ]=0 1 — t]
By (91) we see that MV is a martingale under the conditional expectation E,, and thus,
z 1E I(S | i-1 ti .
j+1 dt t
B F] = 3 o], fo == (93)

=0 (1_t ]:O (1_t)2 1_ti'

Clearly M = (BY —xt;)/(1 —t;). For any C > 0, by setting f(y) = ¢“v=)/(1~t) and applying the first inequality

in (89), we have
i —xt; 1 (i * V) \/z Cl;
K. |e“Ma <[1+o0(1 /ecyl?i (i) dy =[1+o0(1)]e™.
Je™ ] < 11+ o) Ty y=[1+0(1)]

Similarly,

Ex[e_cmf] <[1+ o(l)]e%.

Applying the Doob’s maximum inequality on the martingale M" we have that, for any [ >2,

E| > My l'| <

( ) VT < cE. B |

0<j<i
This implies
Csup [M, | © I C! o
i< _ 1 Nl
Ee 5= | = DB, |sup [ < Z - ]Ex[lMtil]
=0 " 0<j<i

N r Ct;
= Ex[ecleil] < E, i e_CM’f] < Ce™i.

Now following the arguments for (84), one can show that

cny | < C.

Moreover, note that

N-1 N-2 N-1
>y, bN,lgg+Zb[gﬁl ~hiY. +xh] Zb &Y, Ch Y Y]
i=1

e i=0 =e i=0 < Cei=0 e
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By (91) one can easily show that E,[e¢ Z5'bEL] < C. Then we have

N-1
E.| ¢ [o¥ey,~ipn]
e i=0

<C. (94)

Step 3. Fix m, and set s; = j/m. Similar to Step 1, we see that the conditional law of (BY,..., Bl ) given BY =
is asymptotically equal to the law of (XZ,..., XY ). Assume for simplicity that N = nm. (More rigorously we
shall consider nm < N < (n+ 1)m.) Then

E, ;Zl vy (BY, - BY) ‘—Ib ~E ’”Zj[ (50 %5) (X5, - X5) _%w(sj,}'(;)lz] ' .

Send m — oo. Clearly the right-hand side of (95) converges to e/,
It remains to estimate the difference between the left-hand side of (87) and that of (95). Denote

[[ t"i” t”/]( 211]4-141 - Bg\n]jﬂ)]H (96)

For any R > [x|, note that b is uniformly continuous on [0, T] X [-R,R] with some modulus of continuity
function pg. Then, for j=0,...,m-1,i=0,...,n-1,

,_.

m—1n-1 m—=1n-1

l’l

= — 6N =K

1¢ X 7 2 X
m :0 2 m

N |2
tn]-H |btrzj| l

j=0 =0 i=0

o 8 s ~ ¥ )|
< CE.||[B;,, Byl +p R(;) +l{|sx.|>’<} +1{IBZ.+,.>R}H
< Con{2) - S |« o s, - ). 0

Recalling (93), we have

Ex[usy |2: < Clet? +C(1 - ti)zEx[|M§j |2] < Cxb)*+Ch(1 — 1) < C;

Ex[|Bi\y,]]+,v - Blfi] 2] [l[tn]+z - ][x MZX#] ( a tn])[Mgf“ - Ma]’hz]

Cr B i—1 1
< |+ m MY ||+ crt P S ——
m=l 1=0 (1 - tnj+l)
< lpps L Cloby . C
m? | 1=ty ml—ty m[l - tnj+i]
Then
Oy < ch(l) +9+ ¢ (98)
m| R
m[l - tnjH]
Thus,
m—1n-1 C N-1 Ch 1 1
oN. < Ch oN..<cC R(—)+—+ [ R(—)+—+—. (99)
! j=0 i=0 " P R iz ym(1 —t;) . m R \/_}/ﬁ
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Moreover,
N m—1n-1 N N
67”/2 = Ex [ tn/+x - btn/][ [x Mtn]+z+1] é”]‘H"'1:|
j=0 i=0
1
m—1n-1 N N m—1n-1 27\ 2
< OB 35 L, = Y+ OB 0[ A
j= i= J= =l
m—1n-1 2 m=1n-1 %
< Ch (5,,,,]) (Eaf - M| ]) C|h oN
j=0 i=0 j=0 i=0
5
m=1n-1 1 1 3
<Ch PR (x2 + 1 )
j=0 =0 (1= t) tnjrivt
1
m—=1n-1 1 1 z
)y pR( ) T
j=0 i= m(1 — ty)

1

st kel

We now estimate the desired difference between (87) and (95). Denote

NI 1. 5o T N (N N 1 oo
51 ; b €z+1_§|bi | h]/ 52 ]Zo[b (BS,+1 BSj) _%lb”] ]

Then, by (96), (99), and (100), we have

1y 1 112
Ex[l&1 — &1 < C[op 1 + 6] < C(pR (E) et _m) ,
Moreover, similar to (94), we have

E,[e“ + e + 652 + 2] < C.
One can easily check that |¢* — 1| < C/[z[[¢** + e7*]. Then

|Ex[ef§1] _ Ex[eéz“ — Ex[ev52|e<§1—<§z _ 1|] < CEx[eéz & — 52|[62[51—<§z] + 62[52—51]]
1 ) 1\ 1, 1\
< QB = &) 25 + s o) + g+ o)

By first sending m — oo and then R — oo, we obtain the desired convergence. O
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