
Remote Sensing of Environment 253 (2021) 112223

Available online 8 December 2020
0034-4257/Published by Elsevier Inc.

Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV 
hyperspectral-LiDAR, UAV multispectral-photogrammetry, and 
ground-based LiDAR-digital photography in a shrub-encroached 
desert grassland 
Joel B. Sankey a,*,1, Temuulen T. Sankey b,1, Junran Li c, Sujith Ravi d, Guan Wang c, 
Joshua Caster a, Alan Kasprak a,e 

a Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, U.S. Geological Survey, Flagstaff, AZ 86004, USA 
b School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S. Knoles Driver, Flagstaff, AZ 86011, USA 
c Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, USA 
d Department of Earth and Environmental Science, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA 
e Geosciences Department and Four Corners Water Center, Fort Lewis College, Durango, CO 81301, USA   

A R T I C L E  I N F O   

Keywords: 
Airborne data 
Drone 
Unmanned aerial system (UAS) 
Unmanned aerial vehicle (UAV) 
Terrestrial laser scanning 
Photogrammetry 
Structure from motion (SFM) 
Lidar 
Hyperspectral 
Machine learning 
Digital elevation model (DEM) 
Digital elevation model of difference (DOD) 
Change detection 
Rangeland 
Shrub 
Grass 
Soil 
Nutrient 
Fire 
Islands of fertility 

A B S T R A C T   

Rangelands cover 70% of the world’s land surface, and provide critical ecosystem services of primary production, 
soil carbon storage, and nutrient cycling. These ecosystem services are governed by very fine-scale spatial 
patterning of soil carbon, nutrients, and plant species at the centimeter-to-meter scales, a phenomenon known as 
“islands of fertility”. Such fine-scale dynamics are challenging to detect with most satellite and manned airborne 
platforms. Remote sensing from unmanned aerial vehicles (UAVs) provides an alternative option for detecting 
fine-scale soil nutrient and plant species changes in rangelands tn0020 smaller extents. We demonstrate that a 
model incorporating the fusion of UAV multispectral and structure-from-motion photogrammetry classifies plant 
functional types and bare soil cover with an overall accuracy of 95% in rangelands degraded by shrub 
encroachment and disturbed by fire. We further demonstrate that employing UAV hyperspectral and LiDAR 
fusion greatly improves upon these results by classifying 9 different plant species and soil fertility microsite types 
(SFMT) with an overall accuracy of 87%. Among them, creosote bush and black grama, the most important 
native species in the rangeland, have the highest producer’s accuracies at 98% and 94%, respectively. The 
integration of UAV LiDAR-derived plant height differences was critical in these improvements. Finally, we use 
synthesis of the UAV datasets with ground-based LiDAR surveys and lab characterization of soils to estimate that 
the burned rangeland potentially lost 1474 kg/ha of C and 113 kg/ha of N owing to soil erosion processes during 
the first year after a prescribed fire. However, during the second-year post-fire, grass and plant-interspace SFMT 
functioned as net sinks for sediment and nutrients and gained approximately 175 kg/ha C and 14 kg/ha N, 
combined. These results provide important site-specific insight that is relevant to the 423 Mha of grasslands and 
shrublands that are burned globally each year. While fire, and specifically post-fire erosion, can degrade some 
rangelands, post-fire plant-soil-nutrient dynamics might provide a competitive advantage to grasses in range-
lands degraded by shrub encroachment. These novel UAV and ground-based LiDAR remote sensing approaches 
thus provide important details towards more accurate accounting of the carbon and nutrients in the soil surface 
of rangelands.   

1. Introduction 

Rangelands cover approximately 70% of the global terrestrial land 

surface (Holechek et al., 2011) and provide critical ecosystem services 
for 2 billion people (Briske, 2017). Rangelands also provide forage and 
water for 50% of the global livestock population, but are rapidly 
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degrading due to changing climate, wildfire regimes, and economic 
policies that encourage land-use conversions (Briske, 2017). Monitoring 
rangeland biodiversity, health, and vegetation cover changes continues 
to be a high priority for resource managers around the world (Bradford 
et al., 2019; Millennium Ecosystem Assessment, 2005; UNCCD, 1994). 
However, rangeland monitoring can be expensive, time-consuming, and 
limited in spatial extent, since it is largely based on field measurements. 
Although field-based measurements provide detailed species-level in-
formation, extrapolating the species information over larger spatial ex-
tents with remote sensing data is challenging (Turner, 2014). 

Rangelands around the world are commonly undergoing two major 
changes that alter the health and functioning of the ecosystems: shrub 
encroachment and fire disturbance (Archer et al., 2017; Barger et al., 
2011; Van Auken, 2000). Several interacting climatic and anthropogenic 
factors are thought to contribute to shrub encroachment at local and 
regional scales including increase in aridity, fire intensity and frequency, 
grazing and browsing animals, and atmospheric CO2 (Archer et al., 
2017). Shrub encroachment reduces the herbaceous plant cover, forage, 
and diversity (Allred, 1996; Archer, 1996 ; Archer et al., 2017 Grover 
and Musick, 1990; Van Auken, 2000). Shrub encroachment can increase 
soil erosion and soil nutrient loss, and reduce soil carbon (C) and ni-
trogen (N) (Cunliffe et al., 2016b; Li et al., 2007, 2008; Miller et al., 
2000; Puttock et al., 2014; Rau et al., 2009, 2011; Ravi et al., 2010; 
Schlesinger et al., 1990; Throop et al., 2013), because there is often not a 
1:1 replacement of herbaceous cover by shrub cover, and because the 
erosive forces of wind and water are greater owing to fluid flow that is 
more channelized between shrubs compared to grasses and other her-
baceous plants (Breshears et al., 2003; Lee et al., 1991a,b; Okin and 
Gillette, 2001; Okin, 2008; Ravi et al., 2010). In shrub-encroached 
grasslands, soil erosion occurs on unvegetated bare soil surfaces, while 
shrub and grass plant canopies intercept soil particles and adsorbed 
nutrients and accumulate them beneath the canopy (Cunliffe et al., 
2016b; Dukes et al., 2018; Gonzales et al., 2018; Li et al., 2007, 2008; 
Ravi et al., 2019; Wang et al., 2019a, 2019b). Sub-canopy soil and 
nutrient accumulation lead to the formation of small “islands of fertility” 

that support plant growth, which in turn reinforces the fertile islands, 
while the unvegetated bare soil surfaces in the interspaces are further 
exposed to soil erosion and nutrient loss (Schlesinger et al., 1990, 1996). 

To reduce these effects, intensive land treatments including pre-
scribed burning, browsing, and mechanical and chemical removal of 
shrubs are commonly performed (Ravi et al., 2009; Ravi and D’Odorico, 
2009; Van Wilgen and Trollope, 2003; White et al., 2006; White, 2011). 
Detecting shrub encroachment in grasslands with repeat images ac-
quired from satellite sensors has not been widely feasible due to coarse 
spatial resolution (Huang et al., 2009; McGlynn and Okin, 2006; Strand 
et al., 2008; Washington Allen et al., 2006; Xian et al., 2015). Moreover, 
identifying the small islands of fertility (henceforth “soil fertility 
microsite types” or “SFMT”) based on spectral variability in soil texture, 
organic C, or nutrients, is complex and requires ground-based spec-
troradiometer data or airborne hyperspectral images (Angelopoulou 
et al., 2019; Crucil et al., 2019; Nocita et al., 2015; Van Cleemput et al., 
2018; Waiser et al., 2007), which can be expensive to acquire. Tracking 
changes in erosion and deposition of soil, as well as the nutrients and 
organic C that are adsorbed to soil particles, requires highly accurate 
and precise topographic surveys (e.g., ground-based LiDAR; Eitel et al., 
2011). 

Newly available hyperspectral sensors aboard unmanned aerial ve-
hicles (UAVs) provide a viable option to monitor rangelands at a local 
scale and at the individual plant canopy level (Kattenborn et al., 2019; 
Sankey et al., 2017a,b; Zhang et al., 2019). UAV hyperspectral remote 
sensing capabilities in rangeland SFMT mapping have not been tested 
and need to be evaluated given the widespread distribution of global 
rangelands thought to be a large terrestrial C pool (Abreu et al., 2017; 
Houghton, 2003; Pacala and Hurtt, 2001). Here we demonstrate UAV 
hyperspectral and LiDAR fusion in detecting the spatial patterning of 
shrubs, grasses, and soils associated with the small SFMT in burned and 

unburned rangelands (Fig. 1). 
Fire disturbance is common in rangelands, and fire regimes can 

change due to changing climate drivers and land use policies (Andela 
et al., 2019; Giglio et al., 2018; Hawbaker and Zhu, 2012). Both wild and 
prescribed fires provide a major disturbance that alters the plant species 
composition, biomass, aboveground and belowground C, and soil nu-
trients in rangelands (Wang et al., 2019a, 2019b). Post-fire C and 
nutrient pools are not commonly quantified with remote sensing 
methods in rangelands, especially compared to forested ecosystems (e. 
g., Kokaly et al., 2007; Miesel et al., 2018), despite their common 
occurrence and large impacts on the global terrestrial C and nutrient 
distribution. In shrub-encroached grasslands, post-fire soil erosion can 
occur on all bare soil surfaces but is especially pronounced on the SFMT 
that develop on raised microtopographic mounds of soil and plant litter 
beneath shrub and grass plant canopies (Dukes et al., 2018; Ravi et al., 
2019; Sankey et al., 2012b; Wang et al., 2019a, 2019b). Owing to the 
post-fire erosion, the nutrient-rich soil patches are spatially re- 
distributed, which resets the self-reinforcing feedbacks of shrub 
encroachment (Dukes et al., 2018; Wang et al., 2019a, 2019b). As a 
result, SFMT become more spatially homogenous after fire, and 
competitive advantages are hypothesized to become more evenly 
distributed for all plant functional cover types of shrubs and herbaceous 
species of grasses and forbs. 

Plant-soil-nutrient dynamics in rangelands associated with ecolog-
ical disturbance and changes in species composition are uniquely chal-
lenging for remote sensing (Cunliffe et al., 2016a; Duniway et al., 2012; 
Gillan et al., 2014; Lopatin et al., 2017; Solazzo et al., 2018; Sankey 
et al., 2019). First, rangeland plant species have low biomass and can be 
spectrally similar at wavelengths and bandwidths commonly employed 
in multispectral sensors (Okin et al., 2001), making it difficult to identify 
individual species within herbaceous or shrub functional cover types 
(Hunt, 2003; Ramsey et al., 2004; Sivanpillai and Booth, 2008). Multi-
spectral satellite and airborne remote sensing applications in rangelands 
have, therefore, focused on separating grasslands from other common 
land cover types or on calculating vegetation indices as indicators of 
rangeland biomass and productivity. Species identification and biodi-
versity estimates are often accomplished with a handheld spectroradi-
ometer at the leaf (Schweiger et al., 2018) and plot levels (Lopatin et al., 
2017; Gholizadeh et al., 2019). 

Second, rangeland plants and soils are often distributed in small 
patches (e.g., SFMT) that are less than a few square meters in dimension 
and are produced by fine-scale ecological and geomorphic processes. 
The small patches are difficult to identify, for example, in commonly 
available Landsat and MODIS satellite images with 900 m2 and 2500 m2 

pixels, respectively, even with sub-pixel analysis (Sankey and Germino, 
2008; Sankey et al., 2008b; Thomas and Ustin, 1987). In comparison, 
UAV images provide orders of magnitude finer spatial resolution at 
reasonable cost (Shin et al., 2018; Sankey et al., 2019). However, UAV 
multispectral images have not been widely applied in rangeland moni-
toring due to the challenges associated with distinguishing many spec-
trally similar species with a few spectral bands commonly available in 
UAV multispectral images (Colomina and Molina, 2014; Laliberte et al., 
2011; Sankey et al., 2019). 

Third, plant- and soil-nutrient dynamics are challenging and, in some 
cases, not currently feasible to estimate with remote sensing. While 
plant foliar nutrient content (Mitchell et al., 2012) and soil particle size, 
organic matter and nutrient content can be inferred from hyperspectral 
data, this is much more common via laboratory or in-situ spectroradi-
ometer data (Angelopoulou et al., 2019; Brown et al., 2006; Nocita et al., 
2015; Sankey et al., 2008; Waiser et al., 2007). Fourth, multispectral 
imagery often requires additional information about the relative height 
of plant canopies to accurately classify vegetation and soil. However, 
rangeland vegetation height only ranges between 20 cm and 5 m, which 
makes the application of airborne photogrammetry or LiDAR remote 
sensing challenging (Bork and Su, 2007; Cunliffe et al., 2016a; Gillan 
et al., 2014). Moreover, soil erosion and deposition in rangelands can 
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produce very small elevation changes of only 1–2 cm (White, 2011). The 
small cm-scale changes that can occur as a result of ecological distur-
bance in rangelands specifically require tools such as survey-grade 
ground-based LiDAR or other land-surveying tools that can come with 
a high financial cost and learning curve for users (Eitel et al., 2011; 
Sankey et al., 2012a; Gillan et al., 2016; Kasprak et al., 2019). 

Owing to those remote sensing challenges, it is not logistically 
feasible to implement a comprehensive rangeland monitoring protocol 
over large spatial extents that encompasses soil texture, water, nutrients, 
and plant species structure, function, and competitive interactions in 
many management scenarios. However, it is possible to track many of 
the key dynamics and feedbacks that shape rangeland ecosystems via 
high spatial and spectral resolution remote sensing. 

1.1. Objectives 

We use UAV hyperspectral, LiDAR, and multispectral sensors with 
ground-based LiDAR and real-time kinematic global positioning system 
(RTK-GPS) surveys to estimate changes in rangeland plant functional 
groups, plant species, and soil composition (Fig. 1) at the fine spatial 
extent of SFMT where nutrients and C accumulate at the soil surface, 
following fire disturbance in a grassland degraded by shrub encroach-
ment. Such changes and dynamics have not been well-quantified pre-
viously via manned airborne or satellite data due to their coarse spatial 
resolution despite the widespread distribution of global rangelands. 

Specifically, our objectives are to:  

1. Map plant functional cover types, plant species composition, and 
SFMT in adjacent burned and unburned shrub-encroached grass-
lands and determine whether changes in source and sink dynamics of 
sediment and nutrients can be accurately monitored annually by 
quantifying soil erosion and deposition within the burned SFMT;  

2. Determine the added value of using height information about SFMT 
and plants in combination with spectral data, specifically investi-
gating the strengths and weaknesses of UAV hyperspectral-LiDAR 
fusion at relatively higher spatial resolution vs. UAV multispectral- 
photogrammetry fusion at comparatively lower spatial resolution 
available at a more affordable cost. 

2. Methods 

2.1. Rangeland site description 

This study was conducted at the Sevilleta Long-Term Ecological 
Research (LTER) rangeland located 42 km NE of Socorro, New Mexico, 
USA (Fig. 2). The Sevilleta LTER is operated by the University of New 
Mexico and is located within the Sevilleta National Wildlife Refuge 
(SNWR), which is managed by the US Fish and Wildlife Service 
(USFWS). The climate consists of hot summers (ranging on average from 
16 to 35 ◦C) and cool winters (−3 to 16 ◦C), with 260 mm of annual 
rainfall on average that predominantly falls during the June–September 
summer Monsoon season. Within the LTER and SNWR, our study focuses 
on an ecotone of black grama (Bouteloua eriopoda)-dominated grassland 
encroached by creosote bush (Larrea tridentata) shrubs in the northern 
Chihuahuan Desert biome. The geomorphic setting of the shrub- 
grassland ecotone is a nearly flat piedmont in the Rio Grande river 
valley at an average elevation of 1595 m. Soils are generally sandy loam 
texture. However, texture, nutrient, C, and moisture characteristics of 
the soil surface vary spatially at the patch scale of shrub, grass (herba-
ceous), and plant-interspace (i.e., unvegetated or mostly bare) SFMT 
(Cunliffe et al., 2016b). This spatial variability comprises “islands of 
fertility” that are similarly found in desert, grass, and shrub rangelands 
around the world (Schlesinger et al., 1996). The shrub and grass SFMT 
are microtopographic mounds that are 0.1–1 m higher in elevation, and 
accumulate and store soil C and N in concentrations 2–3 times greater, 
relative to adjacent unvegetated, interspace SFMT (Sankey et al., 2012a; 
Wang et al., 2019a, 2019b). In contrast, the interspace SFMT are 
unvegetated microtopographic depressions that are continuously 
exposed to water and wind erosion and, therefore, contain lesser 
amounts of soil C, N, and other nutrients. 

The USFWS uses prescribed fires on a sub-decadal reburn interval to 
counter shrub-encroachment and maintain the health of this grassland 
ecosystem, which is used by pronghorn antelope and other wild un-
gulates for grazing and forage. On March 10, 2016, the USFWS con-
ducted a 1-ha prescribed fire and a multi-year study ensued to monitor 
the plant-soil-nutrient feedbacks in the intentionally disturbed shrub- 
encroached grassland (Fig. 2). Published results from field- and lab- 

Fig. 1. UAV hyperspectral, multispectral, photogrammetry, and LiDAR as well as ground-based LiDAR remote sensing tools used in this study to examine the spatial 
patterning of shrubs, grasses, and soil associated with small “islands of fertility” ubiquitous in burned and unburned rangelands (sensu Schlesinger et al., 1996; 
termed “soil fertility microsite types” or “SFMT” in this paper). 
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Fig. 2. Location of the study site within (A) Sevilleta National Wildlife Refuge, and (B) North America. A prescribed fire (C) was conducted in 2016 and study plots 
and equipment were installed (D, E; (Dukes et al., 2018; Wang et al., 2019a,b)) to examine the effects of burning for plant-soil-nutrient feedbacks at the scale of soil 
fertility microsite types (SFMT) in the shrub-encroached grassland. (F) Ground-based LiDAR surveys were repeatedly conducted one week, one year, and two years 
after the prescribed fire. (F) UAV data were acquired six months after the fire. In (F) the background imagery is from the National Agriculture Imagery Pro-
gram (NAIP). 
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based monitoring during the study indicated significantly different soil C 
and N storage in the undisturbed compared to intentionally disturbed 
rangeland (Dukes et al., 2018; Gonzales et al., 2018; Ravi et al., 2019; 
Wang et al., 2019a, 2019b). Specifically, the undisturbed shrub SFMT 
contained significantly greater C, N and other nutrients compared to the 
grass SFMT, which in turn maintained greater concentrations relative to 
the interspace SFMT. The shrub SFMT also maintained coarser soil 
textures and higher soil water content after rainstorms compared to the 
grass and interspace SFMT (Gonzales et al., 2018). However, distur-
bance by fire and subsequent accelerated sediment transport redis-
tributed soil particles and adsorbed nutrients, resulting in a more 
spatially homogeneous and equal distribution of these properties among 
the three SFMT types and resulting in lower soil water content following 
rainstorms on the shrub SFMT. These changes suggest that the inten-
tional disturbance by burning lessened the competitive advantages of 
shrubs relative to grasses (Dukes et al., 2018; Gonzales et al., 2018; 
Wang et al., 2019a, 2019b). At the beginning of the experiment in 2016, 
we initiated acquisition of high-resolution remote sensing data of the 
fine-scale plant and soil variables. Ground-based lidar surveys were 
repeatedly conducted one week, one year, and two years after the pre-
scribed fire. All UAV data were acquired six months after the prescribed 
fire. 

2.2. Data acquisition 

2.2.1. Ground-based observations to guide training pixel selection 
On September 2 and 3, 2016, we mapped the locations of individual 

plants and SFMT on the ground across our image extents and within 
study plots in burned and unburned areas shown in Fig. 2 (E&F) to guide 
our selection of training and validation pixels for image analyses. We 
used a TOPCON GR3 RTK-GPS rover and base station located on a 
recorded monument. The estimated survey precision based on repeat 
survey of control points on fixed monuments was 0.010, 0.007, and 
0.005 m in the Easting, Northing, and elevation dimensions, respec-
tively. Point coordinates were recorded in UTM NAD83 (2011) Zone 13 
N. Using the rover on a fixed-height rod to survey the coordinates of the 
center of individual shrubs, forbs, bunches of grasses, and SFMT, we 
mapped locations of the dominant plant species and SFMT as 9 target 
cover types (Table 1). These included the following dominant plant 
species: creosote bush (Larrea tridentata), four-wing saltbush (Atriplex 
canescens), ephedra (Ephedra species), and black grama (Bouteloua 
eriopoda). Another grass species, Muhlenbergia arenicola, was less abun-
dant and was grouped with additional, even less common undifferenti-
ated grass species in a single class termed “other grasses”. Similarly, we 
mapped forb species as a single, combined class termed “common forbs”, 
which included various genera and species from the Asteraceae family 

Table 1 
Cover types and number of individuals mapped in the field. These individuals were used to guide the selection of pixels from the imagery to develop training and 
validation sample sets detailed in Tables 3 and 4. Figs. 1 and 3 show examples and spectral reflectance of these cover types, respectively.  

ID# Cover Type Functional Cover Type Individuals Mapped 
(total N = 38) 

Example 
Photo 

1 Interspace soil SFMT Bare Soil 3 See Fig. 1 
2 Grass soil SFMT Bare Soil 3 See Fig. 1 
3 Shrub soil SFMT Bare Soil 4 See Fig. 1 
4 Black grama 

(Bouteloua eriopoda) 
Herbaceous 3 

5 

Other grasses 
(e.g. Muhlenbergia arenicola) 

Herbaceous 2 

6 

Common forbs 
(e.g., Asteraceae species) 

Herbaceous 8 

7 

Four-wing saltbush (Atriplex canescens) Shrub 6 

8 

Creosote bush 
(Larrea tridentata) 

Shrub 6 

9 

Ephedra 
(Ephedra species) 

Shrub 3 

10 

Shadow – – –  
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with green leaves and white, yellow, or purple flowers at the time of the 
image acquisition. We also mapped locations of the three SFMT types 
where they were bare and not covered by a plant canopy: 1) nutrient- 
rich shrub SFMT, 2) nutrient-rich grass SFMT, and 3) nutrient-poor 
interspace SFMT. The study plots located within the burned and un-
burned areas were 5 m × 5 m (Fig. 2) and had been installed immedi-
ately prior to the fire by Dukes et al. (2018) and Wang et al. (2019a, 
2019b) to monitor changes in the spatial distribution of plants, soil, 
nutrients, and water. 

In the various image datasets used in this study, each individual 
mapped plant or SFMT is represented by numerous pixels (e.g., 10s to 
100 s of pixels). Thus, we used the mapped individuals to guide the 
selection of pixels from the imagery to develop training and validation 
sample sets described in later sections of the methods below. Specifically 
owing to the high spatial resolution of the hyperspectral UAV data, we 
added shadow as a 10th class as described below, which we did not map 
on the ground. 

2.2.2. Ground-based LiDAR surveys 
On March 11, 2016, we conducted ground-based LiDAR surveys of 

the entire 1-ha burned area and adjacent unburned rangeland (Fig. 2). 
We used a Riegl VZ-1000 scanner to measure the horizontal coordinates, 
elevation, and near-infrared intensity of each LiDAR return (RIEGL, 
2017). We used a calibrated Nikon D810 digital camera mounted on the 
scanner to assign red-green-blue (RGB) DN values to each LiDAR return 
from co-registered photos (RIEGL, 2017). The scanner has a beam 
divergence of 0.3 mrad, yielding laser pulse footprints of <2 mm at 3 m 
range. The manufacturer-quoted one-sigma precision and accuracy of 
the laser are 5 mm and 8 mm, respectively, at 100 m range. We collected 
data at a pulse repetition rate of 300 kHz using a 360 degree horizontal 
field of view and a 100 degree vertical field of view (30–130 degrees), 
with 90 degrees representing the central plane and 0 degrees repre-
senting the zenith. We performed scans at an angular resolution of 0.04 
× 0.04 degrees from six scan positions adjacent to three study plots 
within the burned area, and from six scan positions adjacent to 3 study 
plots within the unburned rangeland. At each plot, one scan position was 
located on the NE edge and one was located on the SW edge (Fig. 2F). An 
additional detailed higher-resolution scan was acquired of the plot 
extent from each scan position, at an angular resolution of 0.02 × 0.02 
degrees, constrained to a narrow field of view that only encompassed the 
study plot. 

The data were registered between scans and scan positions using six 
reflective targets located on survey tripods and six reflective targets 
located on rebar points in the burned rangeland that did not change 
position throughout the study; the same approach was used in the un-
burned rangeland. The geolocation of each reflective target was deter-
mined with an RTK-GPS survey with a TOPCON GR3 rover and a base 
station located on a recorded monument. Reflective target coordinates 
were recorded in UTM NAD83 (2011) Zone 13 N and used to georefer-
ence two datasets: one coregistered dataset for the burned rangeland 
and another for the unburned rangeland. In March of 2017 and 2018, 
ground-based LiDAR surveys were conducted using identical methods as 
described for 2016. However, instead of georeferencing the 2017 and 
2018 LiDAR datasets with RTK-GPS surveys, we directly registered each 

of the later datasets to the georeferenced 2016 dataset using the 
reflective targets located on the rebar points that did not change position 
throughout the study (Table 2). The final coregistered and georefer-
enced dataset in the burned rangeland had a mean (standard deviation) 
point density within the small study plots of 10 (4) points/cm2. All the 
above data processing steps were conducted in Riegl RiscanPro software 
v. 2.6.2. 

2.2.3. Fixed-wing UAV flight 
We flew a Sensefly eBee AG fixed-wing UAV platform (Sensefly, 

Lausanne, Switzerland) on September 3, 2016. We used a multispectral 
(multiSPEC4C) sensor (maximum f/# = 1.8) with four spectral bands: 
green (550 nm band center), red (660 nm), red edge (735 nm), and near- 
infrared (790 nm). A single flight was performed close to solar noon at 
80 m altitude above ground with 80% and 90% latitudinal and longi-
tudinal overlap, respectively, which resulted in image pixel resolution of 
13 cm. The flight lasted ~32 min covering 4.15 ha of burned and un-
burned rangeland (Fig. 2) with a total of 288 images in each of the four 
spectral bands. The flight mission planning, execution, and control via a 
wireless transmitter were implemented in Sensefly eMotion software 
(Sensefly, Lausanne, Switzerland). During the flight, each image was 
tagged with GPS coordinates (Easting, Northing, and elevation) recor-
ded by the onboard gyroscopic sensor as well as the roll, pitch, and yaw 
of the aircraft relative to the coordinates. 

2.2.4. Octocopter UAV flights 
We performed three flights with a multirotor UAV platform on 

September 2, 2016 over targeted sections totaling 0.54 ha (Fig. 2) of the 
extent imaged by the fixed-wing UAV multispectral sensor that con-
tained the burned and unburned rangeland and the experimental study 
plots surveyed with ground-based LiDAR. Each flight lasted for ~6 min. 
Developed to carry a heavy sensor payload, the octocopter UAV weighs 
5.5 kg (Service-Drone, Germany) and flies for a maximum of ~9 min, a 
shorter period compared to the fixed-wing UAV, owing to the limitations 
in the current battery capabilities. The octocopter UAV is controlled via 
a hand-held remote transmitter and a ground control station, which 
sends waypoint navigation information to the aircraft from a laptop 
computer and the GroundStation software (Service-Drone, Germany), in 
which the flight path, direction, altitude, and speed are defined by the 
user and then transmitted to the UAV. We flew the octocopter UAV at 50 
m altitude above ground for all three flights close to solar noon with 
wind speed of <3 m/s. The platform is stable in windy conditions up to 
15 m/s. 

The octocopter UAV carries aboard an inertial navigation system 
(INS), a LiDAR scanner, a hyperspectral sensor, and a data storage unit, 
all integrated on a single 3-axis gimbal. The INS has an integrated 
survey-grade Global Navigation Satellite System (GNSS) receiver and an 
inertial motion unit (IMU) that correct for errors associated with pitch, 
roll, and heading (0.05◦, 0.05◦ and 0.5◦ RMS, respectively; SBG Systems 
North America, Inc., Chicago, IL). The hyperspectral pushbroom sensor 
(f/# = 2.5) covers the 400–1000 nm spectral range in 272 bands and is 
radiometrically calibrated by the manufacturer (Nano-Hyperspec 
sensor, Headwall Photonics Inc., Fitchburg, MA). Our flight speed and 
altitude at 50 m above ground resulted in the targeted image spatial 

Table 2 
Registration statistics for georeferencing of ground-based LiDAR datasets.  

Treatment Year Registration reference Registration RMSE (m)    
Overall Easting (X) Northing (Y) Elevation (Z) 

Burned 1 (2016) Targets georeferenced w/ RTK-GPS to UTM NAD83 (2011) Zone 13 N 0.0094 0.0003 0.0087 0.0025  
2 (2017) Targets georeferenced to 2016 dataset 0.0107 0.0052 0.0001 0.0025  
3 (2018) Targets georeferenced to 2016 dataset 0.0094 0.0042 0.0002 0.0027 

Unburned 1 (2016) Targets georeferenced w/ RTK-GPS to UTM NAD83 (2011) Zone 13 N 0.0100 0.0003 0.0103 0.0001  
2 (2017) Targets georeferenced to 2016 dataset 0.0019 0.0005 0.0001 0.0002  
3 (2018) Targets georeferenced to 2016 dataset 0.0032 0.0009 0.0001 0.0008  
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extent of 15 m × 120 m (1,800 m2) per flight and a spatial resolution of 
6 cm for the 272 spectral bands. 

The LiDAR on the octocopter UAV is a Velodyne HDL-32E LiDAR 
scanner integrated with the onboard data storage and GNSS INS/IMU. 
The LiDAR scanner employs 32 laser beams and 40◦ field of view as it 
rotates 360◦ at a 100◦ angle on the gimbal (Sankey et al., 2017a, 2017b) 
with +/− 2 cm accuracy (Velodyne Acoustics, Inc., Morgan Hill, CA). 
The lasers have a wavelength of 903 nm and a max range of 80–100 m. 
The sensor has a 10 Hz frame rate, horizontal angular resolution of 0.16 
degrees at 600 rpm, and a vertical angular resolution of 1.33 degrees. 
The resulting point density is dependent on flight speed. At an average 
flight speed of 3 m/s, the three flights with the octocopter UAV produced 
a mean LiDAR point density of 200 points/m2. When the sensors are 
operated simultaneously, as in this study, the returned LiDAR data 
extent is slightly smaller than the hyperspectral. 

2.3. Data pre-processing 

2.3.1. 3D point cloud generation 

2.3.1.1. Ground-based LiDAR point cloud data pre-processing. The 
georeferenced and co-registered ground-based LiDAR point cloud 
datasets were classified into vegetation and bare earth returns using the 
height-filtering methods of the BCAL LiDAR toolkit (http://bcal.geolo 
gy.isu.edu/tools-2/envi-tools) which are described in detail by Glenn 
et al. (2006) and Streutker and Glenn (2006) and were previously 
evaluated at our study site by Sankey et al. (2012a). In brief, the height 
filtering process employs an initial estimate of canopy spacing to iden-
tify high-confidence ground points which are interpolated to generate a 
representation of the ground surface upon which all points are classified 
as either ground or vegetation. For the height filtering we specified 
required user-defined parameters of: 100 iterations, linear interpolation, 
0.01 m vertical threshold, and 0.02 m canopy spacing. We visually 
inspected the classification output and repeated the process as necessary 
to ensure, for example, that short vegetation was not mistaken for the 
soil surface in the final classification. DEMs of the bare soil surface were 
generated at 0.01-m pixel resolution from the classified ground returns 
for 2016 2017, and 2018, respectively. In the DEMs, elevation values for 
pixels that lacked one or more corresponding classified ground returns 
were not interpolated from surrounding pixels and were instead coded 
as “no data”. In the DEMs of the burned but vegetated plots (i.e., not 
including those acquired one-week post-fire) pixels coded as no data 
accounted for 28–58% of the total DEM cells. The 2016 and 2017, as 
well as the 2017 and 2018 DEMs were differenced to produce two 
Digital Elevation Models of Difference (DODs) that quantify topographic 
changes within the study area due to soil erosion and deposition. The 
above processing steps were conducted for the burned and unburned 
control plots of the study area. For the control plots, however, owing to 
the greater vegetation cover and very high 0.01-m pixel resolution of the 
DEMs, we only evaluated topographic changes in unvegetated, and thus 
interspace SFMT portions of the DODs. All the above data processing 
steps were conducted in ENVI 5.0. software (Harris Geospatial, Boulder, 
CO). 

2.3.1.2. Fixed-wing UAV photogrammetry point cloud data pre-proc-
essing. Post flight, we used the eMotion software to integrate each geo- 
tagged image with the GPS coordinates. We photogrammetrically 
generated 3-D point cloud data using all the individual images (a 
methodology that is also commonly termed structure-from-motion or 
SfM) in the Pix4D software, which used the GPS coordinates and 3710 
tie-points within the images to georeference and co-register the 3D data. 
A separate 3D point cloud was generated for each spectral band and we 
merged the four datasets to create a single, dense point cloud. The 
resulting average point density was >115 points/m2. The final merged 
and orthomosaicked images from the fixed-wing UAV had a root mean 

squared error (RMSE) of 1.8 m, 1.6 m, and 2.9 m, respectively, for the 
geolocation errors (calculated as the difference between camera initial 
geolocations and their computed positions) in the Easting, Northing, and 
elevation dimensions. Comparison of 212,000 tie points (e.g., from un-
changing objects such as rock, signs and other science infrastructure at 
the LTER; see Fig. 2) using the Cloud-to-Cloud registration tool in 
CloudCompare software, indicated that this point cloud can be directly 
registered (via translation and rotation in each dimension) to the 2016 
ground-based LiDAR survey with a resulting total RMSE of 0.04 m 
among the Easting, Northing, and elevation. 

Using the 3-D point cloud data in ENVI 5.2 software with the BCAL 
LiDAR toolkit (http://bcal.geology.isu.edu/tools-2/envi-tools; Glenn 
et al., 2006; Streutker and Glenn, 2006); we classified ground versus 
vegetation returns in the same way as described above for ground-based 
lidar data but using different parameters of: 15 iterations, linear inter-
polation, 0.01 m vertical threshold, and 5 m canopy spacing. In the 
resulting vegetation point cloud, the mean and maximum plant heights 
were calculated and summarized in 13 cm cells, consistent with the pixel 
size of the multispectral data (described below). 

2.3.1.3. Octocopter UAV LiDAR point cloud data pre-processing. The 
octocopter UAV LiDAR data were pre-processed in the HyperspecIII 
software (Headwall Photonics Inc., Fitchburg, MA), which geometrically 
corrects the LiDAR data using GPS and IMU measurements and associ-
ated offsets (in degrees) for roll, pitch, heading, timing, and altitude. 
Next, the UAV LiDAR point cloud from each flight was directly regis-
tered to the georeferenced ground-based Riegl VZ-1000 LiDAR point 
cloud acquired in 2016. We performed the registration for each point 
cloud from the three flights using 21,000–27,000 tie points (e.g., from 
unchanging objects such as rock, signs and other science infrastructure 
at the LTER; see Fig. 2) and the Cloud-to-Cloud registration tool in 
CloudCompare software with resulting total RMSE of 0.015–0.018 m 
among the Easting, Northing, and elevation dimensions. 

We classified the LiDAR point cloud into ground versus vegetation 
returns using ENVI 5.2 software with the BCAL LiDAR toolkit with a 
natural neighbor interpolation, which replaces empty cells with the 
neighboring classified returns. We summarized the classified point cloud 
in 6 cm raster cells, consistent with the hyperspectral image spatial 
resolution. Specifically, we summarized: 1) minimum, 2) mean, and 3) 
maximum ground surface elevation values; 4) minimum, 5) mean, and 
6) maximum plant height values; and (7) standard deviation of plant 
height values inside each 6 cm cell. All pixels were classified in each 
raster, and those pixels that lack vegetation have values of 0 in the plant 
height rasters. 

2.3.2. Generation of multispectral and hyperspectral images 

2.3.2.1. Generation of multispectral images. We used Pix4D software to 
co-register all images to create a single orthomosaicked image for each 
spectral band based on the median spectral values per pixel for all 
calibrated images used in the mosaic. In the production of the ortho-
mosaic, filtering based on image sharpness was used to exclude motion- 
blurred images. The resulting four spectral bands were layer stacked to 
create a single, multispectral image covering the entire 4.15 ha extent. 

2.3.2.2. Generation of hyperspectral images. The hyperspectral images 
were acquired in individual tiles, which were georeferenced using the 
SpectralView software (Headwall Photonics Inc., Fitchburg, MA) with 
the GPS and IMU data for roll, pitch, and heading as well as altitude, 
flight direction, and timestamps acquired from the flight log and met-
adata (Sankey et al., 2017a, 2017b). In the SpectralView software, the 
hyperspectral images were also orthorectified using a US Geological 
Survey (USGS) digital elevation model (DEM) at 10 m spatial resolution 
as a baseline elevation dataset. The hyperspectral image tiles were then 
mosaicked in ENVI 5.2 and registered to the georeferenced UAV LiDAR 
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data (which had been registered to the ground-based LiDAR data ac-
quired in 2016 as described above). The final hyperspectral image 
nominal registration errors relative to the UAV LiDAR were 0.001 m and 
0.180 m in the Easting and Northing dimensions. We converted the 
orthomosaicked hyperspectral image from calibrated radiance to 
reflectance using the maximum radiance values in the UAV hyper-
spectral data from ground-based, black-and-white checkerboard cali-
bration reflectance targets (Sankey et al., 2017a) and by dividing each 
calibrated radiance value for each pixel by the maximum radiance 
values in the respective spectral band. 

2.4. Image classification 

2.4.1. Classification of digital photos acquired during ground-based LiDAR 
surveys 

The co-registered digital photos acquired during the ground-based 
LiDAR survey in 2016 were mosaicked into a single image for each of 
three 5 m × 5 m monitoring plots burned by the prescribed fire using 
Riegl RiscanPro software v. 2.6.2. The three mosaics were then classified 
into the three soil SFMT types of burned shrub, burned grass, or inter-
space soil, using the deep convolutional neural network method pub-
lished by Buscombe and Ritchie (2018) and implemented in Python. In 
brief, the machine learning method uses fully-connected conditional 
random fields to probabilistically predict pixel classes based on super-
vision derived from training images that are visually inspected by the 
image analyst and labelled by landcover class. For this application, an 
independent set of 3 images (one of each plot and different photos than 
those used to generate the mosaics that were classified) were labelled 
and used for training; we heuristically adjusted the model parameters 
until the training classification output was visually satisfactory; then we 
applied the model to the three mosaics to produce the final classifica-
tions for each plot. The machine learning approach was methodologi-
cally useful for automating an otherwise more laborious process of 
manually delineating (i.e., digitizing) the boundaries between individ-
ual SFMT cover types in the images. We evaluated the accuracy of the 
classifications in two ways: 1) we quantitatively compared them to the 
ground-based observation locations of individual SFMT acquired for 
image analyses (Table 1) and determined that they correctly identified 
all individual SFMT surveyed within the plots (i.e., total classification 
accuracy = 100%); 2) we qualitatively assessed the classifications 
visually and determined that they were extremely consistent with 
photos in which we manually delineated (digitized) the boundaries 
between individuals of the three SFMT cover types. The classified mo-
saics were then imported into the 2016 ground-based LiDAR project in 
RiscanPro and used to classify the bare earth points by SFMT. The 
classified point cloud for each plot was then gridded in ENVI 5.0 to 
produce a 1-cm resolution raster classification map of the distribution of 
SFMT within each plot in 2016, one day after the prescribed fire. 

2.4.2. Classification of imagery acquired from UAVs 

2.4.2.1. Fixed-wing UAV multispectral and photogrammetry data classi-
fication. We layer-stacked the mean and maximum plant height raster 
bands derived from the fixed-wing photogrammetry point cloud with 
the four spectral bands of the multispectral orthomosaic to create a final 
image with six bands for classification. Since the fixed-wing UAV mul-
tispectral data included only four spectral bands, we added the plant 
height information to aid in classifying the rangeland cover types. 
Shrubs in the burned and unburned rangeland had an average canopy 
height of >40 cm, which was important in distinguishing them from 
considerably shorter herbaceous plant cover types and bare ground. The 
final 6-band multispectral and canopy height image was classified using 
classification and regression tree (CART) analysis (Breiman, 1984; 
Lawrence and Wright, 2001) in ENVI 5.2 software (Harris Geospatial, 
Boulder, CO, USA). Predictive CART models with recursive binary 

splitting were developed in R software (version 3.5.3; ‘rpart’ package). 
CART was chosen due to its simplicity, widespread use, the automated 
weighing of the importance of the input variables, and flexibility with 
non-linear and non-parametric data (Breiman, 1984; Lawrence and 
Wright, 2001). Our preliminary analyses also indicated that CART 
produced much more accurate results than other common supervised 
classification models that integrated all available bands with equal 
weights of importance. Once the final predictive models were devel-
oped, they were implemented in ENVI 5.2 using the decision tree clas-
sifier to classify the image. 

We evaluated two separate classifications developed with CART, 
namely a functional cover type classification and a species level classi-
fication that also included SFMT. The cover types classified in each 
classification are listed in Table 1. The functional cover type classifica-
tion mapped total shrub, herbaceous, and bare soil cover. We addi-
tionally implemented the classification at the species level to determine 
if the fixed-wing UAV multispectral image with 13 cm resolution can be 
used to accurately map the more detailed cover types. Our goal was to 
determine if the more affordable fixed-wing UAV dataset could be used 
to classify the functional cover types as well as the rangeland species and 
SFMT in burned and unburned rangelands, or if the multispectral image 
had detection limits in rangeland applications that can be quantified 
despite its very high spatial resolution. 

Independent sets of training and validation pixels were used to 
produce and assess the functional cover classification; the sample sizes 
are listed in Table 3. The same training and validation pixels (Table 3) 
were also used to produce and assess the species-level classification. 
Given the additional detail of plant species or SFMT identified, the 
species-level classification included 21–212 individual pixels for each 
cover type in the training and validation datasets. We assessed the user’s 
(corresponding to errors of commission), producer’s (corresponding to 
errors of omission), and overall accuracies of each classification (Con-
galton and Green, 2002; Olofsson et al., 2014). Rather than the kappa 
statistic, we calculated these accuracies using a full confusion matrix 
with the validation pixels (Table 3) to directly compare the accuracies of 
the two classifications (Congalton and Green, 2002; Foody, 2002; 
Olofsson et al., 2014). 

Based on the importance values of the input data, the final CART 
models for plant species and functional cover types used 5 of the 6 
bands: red, red edge, NIR spectral bands, and the mean and maximum 
plant height bands. Importantly, a mean plant height threshold of 42 cm 
was selected in the functional cover type model as a critical binary split 
between shrubs versus other cover types. The maximum plant height 
band was selected to separate some of the plant species from others in 
the species level model. 

2.4.2.2. Octocopter UAV hyperspectral and lidar data classification. We 
performed two separate species-level classifications using the octocopter 
UAV data: 1) classification using the hyperspectral data alone, and 2) 
classification using both hyperspectral and LiDAR data. Both classifi-
cations were produced and assessed with the same independent sets of 
training and validation pixels (Table 4). Thus, the classifications could 
be directly compared to one another for their accuracies (Foody, 2002; 
Olofsson et al., 2014). We assessed the user’s, producer’s, and overall 
accuracies of each classification using a full confusion matrix with the 
validation pixels (Table 4) (Congalton and Green, 2002; Foody, 2002). 

Table 3 
Training and validation samples used in the UAV multispectral-photogrammetry 
fusion for functional cover type classification.  

Functional Cover Types Training sample size 
(N = 886) 

Validation sample size 
(N = 594) 

Shrub 291 143 
Herbaceous 202 142 
Bare soil 393 309  
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First, we classified the octocopter UAV hyperspectral image. Using 
the training samples and all 272 hyperspectral bands (400–1000 nm, 
Fig. 3) at the corresponding pixel locations, we developed a CART model 
(Breiman, 1984) in R software (version 3.5.3) using the ‘rpart’ package 
(Therneau and Atkinson, 2019). In addition to the rationale described 
above, we chose the CART approach because it offers an efficient 
method to reduce the 272 spectral bands to a smaller number deemed 
most important for classification. The binary recursive CART model 
included 11 spectral bands centered at the following wavelengths 
distributed across the entire range available among the 272 spectral 
bands: 402 nm, 408 nm, 428 nm, 502 nm, 506 nm, 513 nm, 531 nm, 546 
nm, 660 nm, 725 nm, and 999 nm. We implemented the resulting 
classification model via the decision tree classifier in ENVI 5.2. 

Second, we combined the octocopter UAV hyperspectral data with 
the corresponding UAV LiDAR data to produce a hyperspectral-LiDAR 
fusion model. We layer stacked the 7 LiDAR-derived bands with the 
272 spectral bands, which resulted in a 279-band image. We developed a 
predictive CART model using the training samples. Notably, the final 
hyperspectral-LiDAR classification model included the maximum plant 
height as an input band along with 10 hyperspectral bands centered at 
the following wavelengths: 402 nm, 408 nm, 444 nm, 502 nm, 513 nm, 
531 nm, 546 nm, 660 nm, 725 nm, and 761 nm. We implemented the 
final classification tree model in ENVI 5.2 using the decision tree clas-
sifier with the input data bands in their native resolution of 6 cm. We 
additionally implemented the model a second time with the input data 
resampled to 13 cm resolution via nearest neighbor resampling tech-
nique to enable a comparison to the multispectral-photogrammetry 
fusion species classification at the same spatial resolution. 

Table 4 
Training and validation samples used in the UAV hyperspectral and 
hyperspectral-LiDAR data classifications. Figs. 1 and 3 show examples and 
spectral reflectance of these cover types.  

ID# Cover type Hyperspectral and 
Hyperspectral-LiDAR 
CART Training Samples 
(total N = 695) 

Hyperspectral and 
Hyperspectral-LiDAR 
CART Validation 
Samples 
(total N = 1242) 

1 Interspace soil 
SFMT 

173 342 

2 Grass soil SFMT 28 149 
3 Shrub soil SFMT 241 227 
4 Black grama 

(Bouteloua 
eriopoda) 

41 120 

5 Other grasses (e.g. 
Muhlenbergia 
arenicola) 

32 53 

6 Common forbs (e. 
g. Asteraceae 
species) 

40 22 

7 Four-wing saltbush 
(Atriplex canescens) 

40 93 

8 Creosote bush 
(Larrea tridentata) 

52 168 

9 Ephedra (Ephedra 
species) 

13 68 

10 Shadow 35 –  

Fig. 3. An octocopter UAV hyperspectral image from the prescribed burn rangeland, in which the northeastern edge also illustrates the transition into unburned 
vegetation for comparison. The hyperspectral image insets illustrate the three studied functional cover types of bare soil, herbaceous plants, and shrubs. We show 3 
typical spectra for individual SFMT and plant species. These reflectance data were used as training spectra to produce the hyperspectral image classification outputs 
shown in Figs. 5 and 6. 
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2.5. Quantifying rangeland soil fertility dynamics 

The error of the elevation changes in each ground-based LiDAR DOD 
was estimated as the sum of squares in quadrature of the georeferencing 
and registration RMSEs for the z dimension reported in Table 2 for the 
respective DEMs. For example, this vertical error was estimated for each 
DOD derived from differencing the 2017 and 2016 DEMs in the burned 
plots as (0.00252 

+ 0.00252)1/2 
= 0.0035 m. The vertical error similarly 

estimated for each 2018–2017 DOD in the burned plots was 0.0037 m. 
The DODs were summarized among the burned plots using the machine 
learning classification map to determine the mean soil surface elevation 
change (m) among SFMT and by SFMT, during the first- and second-year 
post-fire, respectively. Individual pixels in each 2017-2016 DOD 
exhibiting topographic changes of −0.0035 to 0.0035 m were excluded 
from the summarizations by SFMT as they potentially represented sur-
vey registration errors and not actual geomorphic change. Individual 
pixels in each 2018–2017 DOD exhibiting topographic changes of 
−0.0037 to 0.0037 m were similarly excluded from the summarizations 
by SFMT. 

We quantified nutrient budgets related to post-fire soil erosion and 
deposition for the burned area using two approaches: first using the 
functional cover classification derived from the UAV multispectral- 
photogrammetry fusion, and then using the SFMT classification 
derived from the hyperspectral-LiDAR fusion. Both approaches also 
leveraged the ground-based LiDAR change detection results and the soil 
C and N concentrations measured by Wang et al. (2019a). To estimate 
the amount of C and N potentially lost or gained due to soil erosion or 
deposition in the 1 ha burned area during the first and second years post- 
fire, we used eqs. 1 and 2, respectively. 
Ckg = Cfraction*Abs*D*bd (1)  

Nkg = Nfraction*Abs*D*bd (2)  

Ckg and Nkg are the mass (kg) of C and N potentially lost or gained. 
Cfraction and Nfraction are the soil fractional C and N contents (Wang et al., 
2019a). Abs is the total area (m2) covered by the single class “bare soil” 

(i.e., not differentiated by SFMT) determined within the fixed-wing UAV 
multispectral-photogrammetry functional cover classification. D is the 
depth (m) of soil erosion or deposition determined with ground-based 
LiDAR, and bd is soil bulk density of 1500 kg/m3. 

To estimate the amount of C and N potentially lost or gained on the 
three different SFMT, we used eqs. 3 and 4, respectively. 
Csfmt kg = Csfmt fraction*Asfmt*Dsfmt*bd (3)  

Nsfmt kg = Csfmt fraction*Asfmt*Dsfmt*bd (4)  

Csfmt_kg and Nsfmt_kg are the mass (kg) of C and N potentially lost or 
gained by SFMT. Csfmt_fraction and Nsfmt_fraction are the SFMT fractional C 
and N contents (Wang et al., 2019a). Asfmt is the area (m2) covered by 
each SFMT determined with the octocopter UAV hyperspectral-LiDAR 
classification. Dsfmt is the depth (m) of soil erosion or deposition deter-
mined by SFMT with ground-based LiDAR. 

3. Results 

3.1. UAV multispectral-photogrammetry fusion classification 

The classification of the fixed-wing UAV multispectral- 
photogrammetry fusion imagery had an overall accuracy of 95% in 
separating the three functional cover types of shrub, herbaceous, and 
bare soil cover (Table 5; Fig. 4). Among the three classes, bare soil cover 
had the highest producer’s accuracy of 96% with a user’s accuracy of 
95%. Shrub cover type had a producer’s accuracy of 93% and user’s 
accuracy of 96%, while herbaceous cover type had 94% and 96% pro-
ducer’s and user’s accuracies, respectively. Despite these accuracies, 

herbaceous cover type in small patches appears underclassified (Fig. 4) 
and often combined into bare soil likely due to the low reflectance in the 
NIR band. Of the entire 4.15 ha of burned and unburned rangeland that 
were classified in the fixed-wing UAV image extent, 0.85 ha or 20% were 
classified as shrub cover type, 28% as herbaceous cover type, and 52% as 
bare soil. Within the 0.7 ha portion of the data that was burned range-
land, 7% were classified as shrub cover type, whereas the adjacent un-
burned rangeland had 23% of the area classified as shrub cover type. The 
burned portion of the study area had 78% bare soil compared to the 
unburned area, which had 47% of its total area classified as bare soil. 
Within the burned portion of the classified study area, herbaceous cover 
comprised 15%, compared to 30% in the unburned rangeland. Thus, the 
unburned rangeland had 3-times greater shrub cover area compared to 
the burned rangeland. Conversely, the burned rangeland included much 
greater bare soil cover compared to the unburned rangeland indicating 
many of the small, carbon- and nutrient-rich, shrub and grass SFMT that 
developed beneath the former plant canopies had become exposed to 
soil erosion processes. 

The fixed-wing UAV multispectral-photogrammetry image with 6 
bands did not produce an accurate classification model for the 9 plant 
species and SFMT; the overall accuracy was only 36%. All producer’s 
accuracies were lower than 68%, which was observed for the interspace 
SFMT class, but with a user’s accuracy of 40%. As a result, the fixed- 
wing UAV multispectral-photogrammetry image classification output 
was not used for further comparison between burned and unburned 
rangelands or area estimates for the 9 different plant species and SFMT, 
and the octocopter UAV hyperspectral-LiDAR methods were pursued for 
those purposes instead (below). 

3.2. UAV hyperspectral image classification 

Classification of the octocopter UAV hyperspectral image excluding 
LiDAR produced an overall accuracy of 71% for the 9 rangeland plant 
species and SFMT (Table 6). Among the 9 classes, interspace SFMT had 
the highest producer’s accuracy of 95% with a user’s accuracy of 90% 
likely due to its high reflectance across most of the spectral bands. Shrub 
SFMT class had 67% producer’s accuracy, whereas grass SFMT was 
largely misclassified as shrub SFMT. One particularly advantageous 
result from the hyperspectral image classification was that none of the 
SFMT types were misclassified as the overlying cover of any of the plant 
species. Creosote bush had a 100% producer’s accuracy and 93% user’s 
accuracy (Table 6). Despite their low abundance, both ephedra and four- 
wing saltbush were well classified with 85% and 78% producer’s ac-
curacies and 73% and 100% user’s accuracies, respectively (Table 6). 
Black grama also had a high producer’s accuracy of 83% in the hyper-
spectral image classification with a user’s accuracy of 71% (Table 6). 
However, common forbs and other grass species were rarely detected, 
likely due to their very low abundance. 

The hyperspectral image classification indicated widespread unve-
getated, bare soil cover across both the burned and unburned range-
lands. Specifically, SFMT cover types collectively covered 89% of the 
burned area. Among them, the shrub SFMT was dominant, covering 61% 
of the total burned area. Interspace SFMT was the second most common 
cover type and comprised 28% of the burned study area. In comparison, 

Table 5 
Accuracies and mapped area in the UAV multispectral-photogrammetry fusion 
for functional cover type classification.  

Functional 
Cover Types 

Producer’s 
Accuracy (%) 

User’s 
Accuracy 
(%) 

Cover (%) in 
Burned 
Rangeland 
(0.7 ha) 

Cover (%) in 
Unburned 
Rangeland 
(3.45 ha) 

Shrub 93 96 7 23 
Herbaceous 94 96 15 30 
Bare soil 96 95 78 47  

Overall Accuracy = 95%    
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total bare soil cover at the unburned rangeland was lower, where shrub 
SFMT comprised 44% of the total area. Another important difference 
observed between the burned and unburned rangelands was the distri-
bution of black grama grass: it comprised nearly three times greater 
cover in the unburned rangeland compared to the burned rangeland. In 
addition, ephedra and four-wing saltbush, which were relatively well 
classified compared to creosote bush, covered only 1% of the burned 
rangeland, but collectively covered 7% of the entire unburned 
rangeland. 

3.3. UAV hyperspectral-LiDAR fusion classification 

Classification of the hyperspectral-LiDAR fusion image produced an 
overall accuracy of 87% for the 9 plant species and SFMT (Table 6). 
Among the 9 classes (Fig. 5), creosote bush had the highest producer’s 
accuracy of 98% with a similarly high user’s accuracy of 98% (Table 6). 
Interspace SFMT had a high producer’s accuracy of 93% and a user’s 
accuracy of 97% (Table 6). Black grama grass also had a high producer’s 
accuracy of 94%, but a lower user’s accuracy of 66% (Table 6). Among 
the 9 classes, shrub SFMT were sometimes confused with black grama 

Fig. 4. A fixed-wing UAV multispectral image with 13-cm spatial resolution, displayed in false color composite (left panel), and resulting classification (right panel) 
of the primary rangeland functional cover types: shrub cover, herbaceous cover, and bare soil. The multispectral image example is from an area along the boundary of 
burned and unburned rangelands. In both rangelands, small patches of plants and bare soil are clearly visible and can be classified by functional cover type to make 
inferences about the primary plant cover and SFMT, where distinct spatial patterns of soil nutrients and carbon occur in the unburned rangeland and are altered due 
to fire disturbance in the burned rangeland. 

Table 6 
Accuracies using the UAV hyperspectral data alone and the UAV hyperspectral-LiDAR fusion to classify plant species and SFMT at 6 cm resolution. “Common forbs” and 
“Other grasses” with low accuracies covered <1% of the rangeland. “Shadow” class is not assessed.  

ID# Cover Type Hyperspectral Producer’s 
accuracy (%) 

Hyper-spectral User’s 
accuracy (%) 

Hyperspectral-LiDAR fusion 
Producer’s accuracy (%) 

Hyperspectral-LiDAR fusion 
User’s accuracy (%) 

Overall 
accuracy 

1 Interspace soil SFMT 95 90 93 97  
2 Grass soil SFMT 0 0 93 83  
3 Shrub soil SFMT 67 41 73 95  
4 Black grama (Bouteloua 

eriopoda) 
83 71 94 66  

5 Other grasses (e.g. 
Muhlenbergia arenicola) 

9 16 81 49  

6 Common forbs (e.g. 
Asteraceae species) 

0 0 72 100  

7 Four-wing saltbush 
(Atriplex canescens) 

78 100 77 100  

8 Creosote bush (Larrea 
tridentata) 

100 93 98 98  

9 Ephedra (Ephedra species) 85 73 81 96  
10 Shadow – – – –  

Hyperspectral 71% 
Hyperspectral-LiDAR fusion 87%  
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grass, likely due to their similar spectra in the green and near-infrared 
bands (Fig. 3) and similar height above the neighboring interspace 
SFMT. This resulted in producer’s accuracy of 73% for the shrub SFMT, 
but a high user’s accuracy of 95%, which is much greater than its user’s 
accuracy in the hyperspectral image classification (Table 6). Similar to 
the hyperspectral image classification, the ephedra and four-wing salt-
bush both had high producer’s accuracies of 81% and 77%, respectively, 
with 96% and 100% user’s accuracies (Table 6). Compared to the 
hyperspectral image alone, the hyperspectral-LiDAR fusion substantially 
increased the detection accuracies for common forbs (72% producer’s 
accuracy), which was often confused with shrub SFMT in the hyper-
spectral image classification. Producer’s accuracy for other grass species 
improved from 9% to 81% with the fusion classification, whereas black 
grama producer’s accuracy increased from 83% to 94%. Another large 
improvement was observed for grass SFMT, which increased from no 
detection in the hyperspectral data to 93% producer’s accuracy with 
83% user’s accuracy in the fusion-based classification (Table 6). 

The hyperspectral-LiDAR fusion classification indicated that the 
overall distribution of total vegetation and SFMT cover types were 
similar between the burned versus the unburned portions of the study 
area. However, the detailed species classification revealed several 
unique patterns: a) the burned area included only 4% creosote bush 
cover, whereas the unburned area had more than twice as much creosote 
bush at 11% cover, b) although the total herbaceous cover was similar 

between burned and unburned rangelands, black grama covered only 
2% of the burned area, whereas its cover was three times greater and 
covered 6% of the unburned rangeland, and c) the common forb cover at 
the burned rangeland was twice as high compared to the unburned, 
although its total cover was low at 1.2%. Interestingly, overall bare soil 
cover (i.e., of all SFMT types combined) was similar (79%) between the 
burned and unburned rangelands. We expected that the area classified 
as shrub SFMT might be much higher in the burned area owing to the 
removal of the overlying shrub (e.g., creosote) plant canopies by fire six 
months prior, but it was lower at 19% at the burned compared to 24% at 
the unburned rangelands; this unexpected result might be in part 
influenced by the confusion between shrub SFMT and black grama grass. 

When we implemented the UAV hyperspectral-LiDAR fusion classi-
fication with the input data resampled to 13 cm, the overall accuracy 
decreased to 66%, which was nearly two times more accurate than the 
species classification based on the fixed-wing multispectral-photo-
grammetry fusion in the same spatial resolution. Thus, the UAV 
hyperspectral-LiDAR fusion clearly produced the best of the tested ap-
proaches for mapping the spatial distribution of plant species and SFMT 
at the very fine (10−3–10−1 m) scale of individual plant canopies and 
inter-canopy areas in rangelands (Fig. 6). However, the spatial resolu-
tion of the UAV-based LiDAR survey data is considerably lower 
compared to the survey-grade ground-based LiDAR instrument (Fig. 6), 
and thus the latter was investigated (below) to accurately measure the 
source and sink dynamics for sediment and adsorbed nutrients when 
SFMT are exposed to enhanced erosion following disturbance by fire. 

3.4. Ground-based LiDAR: Image classification and topographic change 
detection 

The ground-based lidar data, photos, and machine learning classifi-
cation of the photos (Fig. 7A, B) highlight in the burned rangeland that 
the prescribed fire removed most of the aboveground biomass from each 
SFMT. Immediately after the fire, light-colored ash, dark-colored ash, 
and mineral soil remained on the SFMT previously covered by shrub 
vegetation, grass (herbaceous) vegetation, and bare soil (i.e., inter-
space), respectively (Fig. 7A). One-year post-fire, the plots had eroded 
on average (Table 7); grasses had reemerged on the plots not only in the 
SFMT previously covered by grass and herbs, but also in some SFMT 
previously covered by shrub vegetation or interspace soil (Fig. 7A, B). 
Small-statured shrubs had also resprouted in some but not all the shrub 
SFMT (Fig. 7A, B). Two-years post-fire, all plots had aggraded very 
slightly, though not significantly, from sediment deposition on average 
(Table 7); canopies of resprouted shrubs had grown larger, though the 
overall spatial pattern of the three SFMT types was fairly similar to the 
beginning of the study (Fig. 7A, B). 

Fig. 7C shows an example from the same burned monitoring plot 
depicted in Fig. 7A and B and illustrates that a shift in spatial patterns of 
soil erosion and deposition occurred during the two years post-fire. 
Fig. 7D and Table 7 quantify the results by SFMT for all burned plots. 
Soil erosion was more spatially widespread during the first-year post-fire 
(Fig. 7C); shrub, grass, and interspace SFMT eroded on all plots on 
average (Fig. 7D; Table 7). During the second-year post-fire, the area of 
soil deposition was more comparable in area to erosion and both 
occurred in small patches (Fig. 7C); shrub SFMT eroded on average, 
whereas grass and interspace SFMT aggraded due to soil deposition 
(Fig. 7D, Table 7). Thus, all three SFMT types clearly functioned as 
sediment sources for soil erosion in year 1, but then the grass and 
interspace SFMT shifted to function as sinks for soil deposition in year 2, 
post-fire. In comparison, on the control plots that were not burned, the 
bare soil surfaces of the interspace SFMT eroded on average during years 
1 and 2 (mean elevation changes = 0.009 and 0.002 m, respectively), 
though not significantly in year 2 (standard error of elevation changes =
0.0007 and 0.0058 m, respectively). 

Fig. 5. An octocopter UAV hyperspectral image from the burned rangeland 
displayed in false-color composite using 3 spectral bands (top panel) and a 
resulting plant species and soil fertility microsite types (SFMT) classification 
(71% overall accuracy; middle panel). The same hyperspectral image is fused 
with the octocopter UAV LiDAR data to similarly produce a plant species and 
SFMT classification shown in the bottom panel that is more accurate (87% 
overall accuracy, bottom panel). In the fusion-based approach, small differences 
in plant heights are leveraged to further separate functional cover types into 
refined patches of plant species and SFMT. 
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3.5. Rangeland soil fertility dynamics 

3.5.1. Fertility dynamics by bare soil functional cover 
Wang et al. (2019a) measured soil C and N contents of 1.04% and 

0.08% (means of N = 150 samples) respectively, in the burned range-
land near the time of our UAV image acquisitions. The fixed-wing 
multispectral-photogrammetry classification indicated that 78% of the 
burned rangeland was bare soil of all three burned, unvegetated SFMT 
types combined, and thus susceptible to erosion after the fire. The 
ground-based LiDAR surveys indicated that the burned study plots 
eroded an average of −0.0121 m in the first year after the prescribed 
fire, whereas they aggraded by an average of 0.0001 m in the second 
year after the prescribed fire (Table 7). Extrapolating these observations 
to the entire 1 ha, we estimate that the burned rangeland potentially lost 
C and N to soil erosion during the first year, but potentially gained C and 
N from soil deposition during the second year, after the prescribed fire 
(Table 8). 

3.5.2. Fertility dynamics by SFMT 
The ground-based LiDAR results indicated that the shrub SFMT 

eroded during the first and second year post-fire, whereas the grass and 
interspace SFMT eroded during the first year but aggraded during the 
second year. The UAV hyperspectral-LiDAR classification indicated that 
the burned rangeland in the image was comprised of: 19% shrub SFMT; 
38% grass SFMT, and 23% interspace SFMT. Wang et al. (2019a) 
measured SFMT C and N contents (means of approximately 50 samples 
per SFMT type from the dataset of 150 total samples described in sub-
section 3.5.1) in the burned rangeland near the time of our UAV image 
acquisitions of: 1.51% C and 0.12% N in the shrub SFMT; 1.09% C and 
0.08% N in the grass SFMT, and 0.95% C and 0.07% N in the interspace 
SFMT. Combining the UAV hyperspectral-LiDAR classification, eleva-
tion change results from the ground-based LiDAR, and Wang et al. 
(2019a) results, we estimate that the shrub SFMT within the burned 

rangeland potentially lost C and N due to soil erosion during the first and 
second years after the prescribed fire (Table 9). We estimate the grass 
and interspace SFMT also lost C and N due to soil erosion during the first 
year after the prescribed fire (Table 9). However, the grass and inter-
space SFMT aggraded during the second year post-fire, and we infer that 
the source of the sediment was the shrub SFMT which eroded during 
both years; this inference is also supported by the results of Dukes et al. 
(2018), Gonzales et al. (2018), Ravi et al. (2019), and Wang et al. 
(2019a, 2019b). Thus, we use soil C and N contents for the shrub SFMT 
type (i.e., 1.51% C and 0.12% N, Wang et al., 2019a) to estimate that 
during the second year post-fire grass and interspace SFMT potentially 
gained C and N (Table 9). 

4. Discussion 

4.1. Mapping rangeland plant species and soils with UAV data fusion 

High spatial and spectral resolution remote sensing data are required 
to track many of the key dynamics and feedbacks that shape rangeland 
ecosystems. While the fixed-wing UAV multispectral-photogrammetry 
fusion image can be used to classify rangeland plant functional groups 
(Fig. 4), both the spatial and spectral resolution of these data limit their 
utility in classifying rangeland plants at the species level. This is likely 
because several species are similar in height and spectral reflectance 
across the limited number of bands in the photogrammetry data; these 
spectral similarities can be observed in the hyperspectral spectra in 
Fig. 3. For example, black grama grass and its mix with other species and 
SFMT might have made the species classification challenging. 

The classification of rangeland functional cover types using the UAV 
multispectral-photogrammetry image does offer two important utilities. 
First, the 13 cm pixels resolve very small patches of individual shrubs, 
herbaceous plants, and bare soil (Fig. 4), although these are aggregated 
functional cover types only. Secondly, the functional cover type map is 

Fig. 6. A study plot example within the unburned rangeland that was classified by plant species and soil fertility microsite types (SFMT) using the octocopter UAV 
platform with hyperspectral and LiDAR sensors, and which was also scanned with the Riegl VZ-1000 ground-based LiDAR instrument. The example of unburned 
control plot is shown in panel A. The very high density, colored, ground-based LiDAR point cloud is depicted in panel B for comparison with the LiDAR point cloud 
acquired from the sensor onboard the UAV platform (panel C). The hyperspectral image of the plot is displayed in false-color composite using 3 spectral bands (panel 
D) for comparison with the plant and SFMT classification derived from the UAV-based hyperspectral-LiDAR fusion (panel E). 
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useful to make inferences about disturbance impacts on the spatial 
distribution of rangeland nutrients and C storage at the soil surface. For 
example, by comparing the burned and unburned rangelands, we esti-
mate 70% reduction in shrub cover six months after the prescribed fire, 
which in turn makes the small patches of nutrients and C that previously 
accumulated at the soil surface beneath the shrubs more susceptible to 
erosion processes. This type of information, especially when combined 

with the photogrammetry-derived plant height estimates, has a good 
potential for monitoring shrub-encroached rangelands (Cunliffe et al., 
2016a; Sankey et al., 2019). In the western US, woody species such as 
creosote bush, mesquite, and pinyon-juniper are encroaching across 
>10 Mha of desert grassland with relative cover increases of up to 600% 
in some cases, owing to drought, changing climate, and land use policies 
(Munson et al., 2013; Peters et al., 2012; Romme et al., 2009; Sankey 

Fig. 7. Results obtained from using ground-based LiDAR to monitor rangeland soil fertility microsite types (SFMT) to characterize the source and sink dynamics of 
sediment and adsorbed nutrients at very high resolution and spatial accuracy. (A.) Example of mosaicked digital images acquired from the calibrated LiDAR-mounted 
camera during the LiDAR scans for one of the study plots in 2016 2017, and 2018. (B.) Bare earth LiDAR point cloud colored by the machine learning SFMT 
classification and overlain by the vegetation points in each respective LiDAR point cloud for the example study plot. (C.) DODs derived from change detection of bare 
earth DEMs for 2016–2017 & 2017-2018 time series, respectively, from the example study plot. In the DODs, cool colors show locations of soil and adsorbed nutrient 
deposition and warm colors show locations of erosion caused by sediment transport associated with the disturbance of rangeland vegetation by fire and subsequent 
recovery of vegetation. Note that the same study plot is depicted in A, B and C but the vantage point differs (e.g., see the location of plot corners marked a and a’ in 
each panel.). (D.) Soil surface elevation change (m) caused by erosion or deposition of soil determined from the DODs for the first- and second-year post-fire for all the 
burned monitoring plots. Note the shift in source and sink dynamics for sediment and adsorbed nutrients with post-fire recovery of the rangeland. 

Table 7 
Elevation changes determined from the DODs among the three plots in the burned rangeland owing to soil erosion (−) or deposition (+), respectively, during the first- 
and second-years post-fire. Changes are summarized among SFMT (i.e., “Total”) and by SFMT.  

Year Total Shrub Soil SFMT Grass Soil SFMT Interspace Soil SFMT  
Mean (m) SE (m) Mean (m) SE (m) Mean (m) SE (m) Mean (m) SE (m) 

1 −0.0121 0.0013 −0.0172 0.0009 −0.0097 0.0007 −0.0094 0.0003 
2 0.0001 0.0013 −0.0026 0.0008 0.0006 0.0025 0.0023 0.0029  
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et al., 2013). Land managers interested in monitoring shrub encroach-
ment at a local scale can use UAV multispectral images and associated 
3D data to guide management decisions such as burning or thinning 
treatments (Sankey et al., 2019). 

Species-level classification and rangeland monitoring require UAV 
hyperspectral imagery (Fig. 5), which offers a unique capability to 
detect and estimate the cover and abundance of specific species of in-
terest. For example, black grama is a native grass species in many 
grasslands of the southwestern USA and is an important indicator spe-
cies of a healthy, stable rangeland (Munson et al., 2013). Land managers 
actively monitor and develop management prescriptions for this species 
in the region (Munson et al., 2013). Similarly, creosote bush is a com-
mon native shrub species across many southwestern USA rangelands 
(Grover and Musick, 1990; Munson et al., 2013, 2016), and a driver of 
shrub encroachment in grasslands, that can be identified with a high 
user’s accuracy. Land managers interested in monitoring those species at 
the level of individual plants can benefit from UAV hyperspectral images 
similar to manned airborne hyperspectral data (Asner and Heidebrecht, 
2002). Furthermore, the UAV hyperspectral image can be used to 
identify soil types that differ by levels of C storage and nutrient accu-
mulation at the surface. Six months after the prescribed fire at our 
burned rangeland, for example, up to 89% of the land surface consisted 
of the combination of the three SFMT without any overlying plant 
canopy cover. Published laboratory-based measurements indicate sig-
nificant differences in soil nutrient and C accumulation among the three 
different SFMT that we mapped with the hyperspectral image (Wang 
et al., 2019a, 2019b). 

Our second objective involved evaluating how hyperspectral-LiDAR 
fusion outperforms hyperspectral data alone in this application. As ex-
pected, the fusion approach resulted in greater overall accuracy, greater 
separation between the soil surfaces (SFMT) versus vegetation species, 
and better detection of individual species. Sankey et al. (2017b) found 
that fusion of UAV LiDAR with hyperspectral imagery increased overall 
classification accuracy by approximately 12% over hyperspectral data 
alone when classifying rangeland plant species. Here, using a similar 
approach but also incorporating classification of soil surface types, our 
gain in overall accuracy was similar but slightly more pronounced at 
16%. The improvements likely resulted from the small differences in 
plant height associated with the vegetation patches around which these 
soil surface types and associated C, N, and other nutrients accumulate 
(Dukes et al., 2018; Wang et al., 2019a, 2019b). Using the hyperspectral 
image alone, the shrub SFMT were commonly confused with black 
grama and sometimes with ephedra, both of which have relatively low 
reflectance compared to other green vegetation across the red, red edge, 
near infrared, and other spectral regions (Fig. 3). UAV hyperspectral- 
LiDAR fusion improved our ability to separate these classes. 

4.2. Quantifying soil surface fertility with ground-based LiDAR, UAV, 
and data synthesis 

The fixed-wing UAV multispectral-photogrammetry classification 
indicated that vegetation cover was, as expected, lower on the burned 
compared to unburned rangeland six months after the prescribed fire. 
Soil that lacks a protective cover of vegetation is vulnerable to erosion in 
rangelands (Breshears et al., 2003; Lee, 1991a, 1991b; Okin and Gillette, 
2001; Okin, 2008). The burned study plots eroded in the first year after 
the prescribed fire, but aggraded slightly due to soil deposition in the 
second year post-fire, during which the burned area is estimated to have 
become a net nutrient sink for 14 kg/ha of C and 1 kg/ha of N. These 
analyses quantify the nutrient source and sink dynamics over time for 
the burned area as a whole, although they obviously don’t elucidate 
dynamics between the SFMT within the burned rangeland. 

A strength of the UAV hyperspectral-LiDAR fusion is that it permitted 
the accurate classification of vegetation by species as well as bare, 
unvegetated soil by SFMT. The shrub SFMT eroded during years 1 and 2 
after the prescribed fire, whereas the grass and interspace SFMT eroded 
during year 1 but aggraded during year 2. Thus, in contrast to the shrub 
SFMT, the grass and interspace SFMT shifted from functioning as net 
sources to net sinks for sediment and adsorbed nutrients during the 
second-year post-fire. The total nutrient sink due to soil deposition on 
grass and interspace SFMT during the second year post-fire was 
approximately 1.5 times greater than the C and N lost from erosion on 
the shrub SFMT during the second year after the fire, and equivalent to 
approximately 1/5 of the C and N lost from shrub SFMT during the entire 
two-year experiment (Table 9). These C and N source and sink estimates 
are scaled to the entire 1 ha burned rangeland in our study. In a global 
context, prescribed and wildfires burn an estimated 423 Mha every year 
(Giglio et al., 2018) largely in desert grasslands of all continents espe-
cially Africa, Australia, and Central Asia (Abreu et al., 2017; Andela 
et al., 2019; Scholes and Archer, 1997). Post-fire erosion can potentially 
degrade rangelands (Sankey et al., 2009; Sankey et al., 2012b). How-
ever, in shrub-encroached rangelands, fire might also help redistribute 
soil nutrients in spatial patterns that concentrate the resources near 
grasses providing them a competitive advantage relative to shrubs 
(Dukes et al., 2018; Gonzales et al., 2018; Wang et al., 2019a, 2019b). 
Spatially explicit quantification of these processes and management ef-
fects was achieved in our study owing to the very high spatial and 
spectral resolution UAV data. 

4.3. Current limitations and future research 

It can be challenging to accurately classify species that cover a small 
portion of the total landscape. The “common forb” and “other grasses”, 
which were classes that comprised a small portion of the landscape, 
were not detected or well classified (Table 6), although the shrub species 
of ephedra and four-wing saltbush were well classified in the UAV 
hyperspectral image despite their combined low abundance. Detecting 
rare cover types often leads to high omission errors and subsequent 
overestimation of the areas covered by the target species, as well as 
underestimation of other more abundant cover types (Elkind et al., 
2019; Sankey et al., 2014). Further testing and detection methods 
development are still necessary for the small herbaceous species at low 
abundance, even with the high spectral and spatial resolution UAV 

Table 8 
Estimated soil, soil C, and soil N lost (−) or gained (+) by the burned rangeland 
owing to soil erosion or deposition, respectively, during the first- and second- 
years post-fire.  

Year Soil (kg/ha) C (kg/ha) N (kg/ha) 
1 −141,298 −1474 −113 
2 1339 14 1  

Table 9 
Estimated soil, soil C, and soil N lost (−) or gained (+) by SFMT within the burned rangeland owing to soil erosion or deposition, respectively, during the first- and 
second-years post-fire.  

Year Shrub Soil SFMT Grass Soil SFMT Interspace Soil SFMT  
Soil kg/ha C kg/ha N kg/ha Soil kg/ha C 

kg/ha 
N kg/ha Soil kg/ha C 

kg/ha 
N kg/ha 

1 −48,881 −739 −59 −55,032 −602 −46 −32,514 −308 −23 
2 −7386 −112 −9 3548 54 4 7978 121 10  
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hyperspectral data. One possible improvement that needs to be tested is 
the intentionally disproportionate increase in the field-based training 
samples for the rare species. Our study includes a relatively propor-
tionate distribution of field-based training samples, where rare species 
are represented by fewer samples, whereas the dominant species are 
represented by more samples. In contrast, previous studies with coarse 
resolution satellite images disproportionately oversampled the rare 
cover types to improve detection accuracies of such classes (Congalton 
and Green, 2002; Massey et al., 2018; Sankey et al., 2018). Such a 
strategy would require greater numbers of field-based samples (Foody, 
2002; Olofsson et al., 2014), which would also require much greater 
image extent covered by the UAV platform. 

Another consideration for future work is to leverage the strengths of 
UAV hyperspectral data to complement satellite-based remote sensing of 
rangelands. Our UAV hyperspectral image classification included 11 
spectral bands that overlap with spectral ranges available in some sat-
ellite sensors including WorldView-2, WorldView-3, and Sentinel-2. The 
11 bands used in the model span the entire spectral range of the 272 
total available bands. However, the UAV hyperspectral bands are also 
very narrow, and thus the set of 11 bands included four specific wave-
lengths in the blue region (402 nm, 408 nm, 428 nm, and 502 nm) and 
another four in the green spectral region (506 nm, 513 nm, 531 nm, and 
546 nm). Although satellite sensors similarly include the blue and green 
spectral regions, each of these regions are covered by a single wide 
spectral band in satellite data and, therefore, cannot leverage the 
nuanced reflectance changes from one band to another within each re-
gion. The many narrow spectral bands in the hyperspectral data provide 
unique opportunities to detect individual plant species and SFMT, while 
spanning similar overall spectral range as satellite images. The fine 
spatial resolution in the UAV hyperspectral data was similarly critical in 
detecting the small vegetation and bare soil patches common in range-
lands, which are not detectable in coarser resolution satellite images 
with <10 m pixels. 

Finally, we highlight several strengths of UAV hyperspectral-LiDAR 
fusion for imaging short, small, sparse plant canopies, which we 
believe warrant further evaluation in rangelands. Notably, detection of 
the less common forb and grass species in the hyperspectral-LiDAR 
fusion was substantially higher, but the low density of those species 
might have resulted in reflectance values that were mixed with the 
underlying soil surface throughout the hyperspectral data spectrum 
(Fig. 3). When combined with the plant height information, the small 
patches were effectively detected. The fusion of hyperspectral data with 
LiDAR data also increased producer’s accuracies for common shrub 
species. Mapping woody rangeland plants is important for accurate es-
timates of the increased C storage, decreases in evapotranspiration and 
albedo, and increases in runoff, which are projected to occur in the 
future based on current estimates of shrub encroachment rates, and are 
projected to provide feedbacks to the regional climate (Browning et al., 
2008; Huenneke et al., 2002; Knapp et al., 2008; Scholes and Archer, 
1997). 

5. Conclusions 

UAV multispectral-photogrammetry fusion can accurately map plant 
and soil functional cover types, whereas UAV hyperspectral-LiDAR 
fusion can accurately detect plant species and SFMT in rangelands 
degraded by shrub encroachment and disturbed by fire. Synthesis of 
UAV datasets with ground-based LiDAR surveys and laboratory char-
acterization of soils quantitatively explains how prescribed fire in a 
shrub-encroached grassland can be used to alter the spatial patterning of 
nutrients at the soil surface and thus counter ecosystem effects of 
encroachment that degrade grassland habitat. Plant-soil-nutrient dy-
namics in rangelands and other ecosystems with small patches of low 
stature vegetation can be monitored at fine spatial scales via these UAV 
and ground-based LiDAR remote sensing data fusion approaches. The 
UAV and ground-based LiDAR data cover small spatial extents that are 

relevant to rangeland managers, and they provide detailed information 
that can be leveraged in more accurate accounting of C and nutrient 
fluxes that commonly occur at the soil surface in rangeland ecosystems. 
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