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Abstract Drylands contain a third of the organic

carbon stored in global soils; however, the long-term

dynamics of soil organic carbon in drylands remain

poorly understood relative to dynamics of the vege-

tation carbon pool. We examined long-term patterns in

soil organic matter (SOM) against both climate and

prescribed fire in a Chihuahuan Desert grassland in

central New Mexico, USA. SOM concentration was

estimated by loss-on-ignition from soils at 0–20 cm

depth each spring and fall for 25 years (1989–2014) in

unburned desert grassland and from 2003 to 2014

following a prescribed fire. SOM concentration did not

have a long-term trend but fluctuated seasonally at

both burned and unburned sites, ranging from a

minimum of 0.9% to a maximum of 3.3%. SOM

concentration declined nonlinearly in wet seasons and

peaked in dry seasons. These long-term results con-

trast not only with the positive relationships between

aboveground net primary production and precipitation

for this region, but also with previous reports that

wetter sites have more SOM across drylands globally,

suggesting that space is not a good substitute for time

in predicting dryland SOM dynamics. We suggest that

declines in SOM in wet periods are caused by

increased soil respiration, runoff, leaching, and/or soil

erosion. In addition to tracking natural variability in

climate, SOM concentration also decreased 14%

following prescribed fire, a response that magnified

over time and has persisted for nearly a decade due to

the slow recovery of primary production. Our results

document the surprisingly dynamic nature of soil

organic matter and its high sensitivity to climate and

fire in a dry grassland ecosystem characteristic of the

southwestern USA.
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Introduction

Carbon storage in dryland ecosystems have important

effects on the global carbon (C) cycle and future

climate change (Lal 2019; Plaza et al. 2018b).
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Drylands comprise one of the largest terrestrial biomes

on Earth, currently covering * 45% of land surface

and are projected to expand by 5–11% by the end of

this century (Huang et al. 2016; Lal 2019; Prăvălie

et al. 2019; Schimel 2010). Given the large area (* 67

million km2), dryland soils store about 470 Pg organic

C in the top meter of soil (Plaza et al. 2018b), which

accounts for up to a third of the global soil organic

carbon (SOC) pool in the top meter (Ciais et al. 2013;

Friedlingstein et al. 2019; Jackson et al. 2017; Plaza

et al. 2018b). This pool size is comparable to that of

the atmosphere C pool before industrialization (589

Pg; Ciais et al. 2013). Recent studies suggest that

ecosystem processes in drylands are highly dynamic

(de Graaff et al. 2006; Li et al. 2015; Plaza et al.

2018a), and thus, they play a critical role in determin-

ing the trend and variability of the global C cycle

(Ahlström et al. 2015; Poulter et al. 2014). However,

most studies have focused on the dynamics of the

relatively small vegetation C pool in drylands (65–170

Pg; Lal 2019), with much less attention paid to SOC or

soil organic matter (SOM) (Lal 2019; Luo et al. 2017).

Our understanding of dryland carbon dynamics can

be improved with better knowledge of long-term

dynamics in SOM and its responsiveness to environ-

mental factors, such as climate change and fire. Many

studies have examined the sensitivity of the dryland C

cycle (e.g., primary production and soil respiration) to

climate (e.g., precipitation) (Ahlström et al. 2015;

Biederman et al. 2017; Knapp and Smith 2001;Maurer

et al. 2020; Poulter et al. 2014; Xu et al. 2004). These

studies suggest that the dryland C cycle is accelerated

by high precipitation and temperature but slowed by

drought. Additional evidence suggests positive rela-

tionships between SOC and climate across drylands

(Burke et al. 1989; Gaitán et al. 2019). Spatial

relationships, however, may be poor predictors of

SOC responses to climate within a site over time

because spatial relationships confound climate with

ecosystem state (e.g., vegetation type and soil phys-

iochemical properties). Although vegetation change

within a site can be relatively rapid in response to

climate and fire (e.g., Collins et al. 2020), soil physical

properties will not change appreciably within a site

over the timescale of decades (Knapp et al. 2017). As a

consequence, temporal patterns, which are strongly

influenced by climate variability and vegetation

change, but much less by changes in ecosystem state,

should be more useful than spatial relationships for

predicting SOM storage and dynamics under future

climate scenarios. (Knapp et al. 2017; Rudgers et al.

2018). However, temporal relationships between

SOM and climate have rarely been explored in

drylands, nor in many other terrestrial biomes,

primarily due to a lack of long-term (i.e. decades or

longer) observations.

During the past two decades, ecological processes,

such as primary production, have been increasing

recognized to respond not only to the climate mean but

also to climate variance (Gherardi and Sala 2019;

Haverd et al. 2017; Hsu et al. 2012; Knapp et al. 2017;

Maurer et al. 2020; Rudgers et al. 2018; Vázquez et al.

2017). The effect of climate variance on an ecological

variable can be predicted from the relationship with

climate over time via ‘‘climate sensitivity functions’’

(Rudgers et al. 2018). A linear sensitivity function

indicates a response of the ecological variable to a

change in mean, whereas nonlinear functions indicate

responsiveness to both mean and variance (Rudgers

et al. 2018; Vázquez et al. 2017). This approach has

been used to explore the effect of climate variability

on primary production (Gherardi and Sala 2019;

Rudgers et al. 2018) but has not yet been applied to

long-term data on SOM pools. Given projected

increase in climate variability in the future (IPCC

2012; Pendergrass et al. 2017), it is vital to explore

whether and how future changes in climate variability

will affect SOM in drylands.

Environmental change includes shifting distur-

bance regimes in addition to changes in climate

(Collins et al. 2017; IPCC 2012). Fire is an increas-

ingly important disturbance in dryland ecosystems

because the probability of fire increases during periods

of drought (Collins et al. 2017; van der Werf et al.

2017; Westerling et al. 2006). Burning releases on

average 2.2 Pg C year-1 from global terrestrial

ecosystems (Pellegrini et al. 2018; van der Werf

et al. 2017), offsetting two-thirds of the annual land C

sink (i.e. 3.2 Pg year-1; Friedlingstein et al. 2019).

Fire consumes plant live biomass as well as litter and

thus often decreases organic inputs to soils (Pellegrini

et al. 2018). Postfire recovery of dominant species may

take more than a decade in drylands (Ladwig et al.

2014; Parmenter 2008). Therefore, fire may have long-

term effects on drylands SOC (Pellegrini et al. 2018),

but the dynamics of SOC recovery following fire are

not yet well understood (Alexis et al. 2012; Sawyer

et al. 2018). In addition, previous studies suggest that
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fire interacts with climate to influence plant commu-

nity structure and primary production in drylands

(Collins et al. 2017). Whether or not fire interacts with

climate to affect long-term SOM dynamics in dry-

lands, however, remains unknown.

In this study, we examined patterns of SOM

concentration and their relationship to climate and

fire in a Chihuahuan Desert grassland, using a long-

term dataset (1989–2014, prescribed fire occurred in

2003). Based on the known responses of primary

production to climate at this site (Rudgers et al. 2018)

and the previously reported positive relationship

between SOC and precipitation across drylands

(Burke et al. 1989; Gaitán et al. 2019), we hypothe-

sized that SOM would track current season climate

and therefore would be positively and nonlinearly

related to precipitation and negatively nonlinearly

related to aridity (Hypothesis Ia). Alternatively, we

hypothesized that SOMwould not track current season

climate (Hypothesis Ib) due to the slow turnover of

SOM and legacy effects of primary production

(Friedlingstein et al. 2019; Luo et al. 2019; Sala

et al. 2012). Second, we hypothesized that prescribed

fire would decrease SOM and the effect size would

increase with the level of drought (Hypothesis II),

because postfire recovery of plant growth is slower in

dry years than in wet years (Collins et al. 2017;

Ladwig et al. 2014). Third, we hypothesized that effect

size of prescribed fire on SOM would increase with

time (Hypothesis III), because postfire declines in

plant growth can last for more than a decade

(Parmenter 2008). To test these hypotheses, we used

long-term data from a Chihuahuan Desert grassland

and climate sensitivity function theory to quantify

long-term patterns in SOM dynamics in response to

fire and climate variability.

Materials and methods

Study site

This study was conducted in a Chihuahuan Desert

grassland in the Sevilleta National Wildlife Refuge

(SNWR, latitude: 34� 200 N, longitude: 106� 430 W),

located in Socorro County, central New Mexico,

United States. The grassland had been grazed exten-

sively for decades (Collins et al. 2017), but has been

protected from grazing since the SNWR was

established in 1973. The grassland was co-dominated

by Bouteloua eriopoda and B. gracilis. Other common

species include shrubs or subshrubs (e.g., Yucca

glauca and Ephedra torreyana) and a mixture of

subdominant grasses (e.g., Pleuraphis jamesii) and

forbs (e.g., Cryptantha crassicarpa) (Mulhouse et al.

2017). Vegetation covers about 75% of the soil surface

area. Soils are Typic Haplargids derived from pied-

mont alluvium, with 70% sand, 9% silt, and 21% clay

in the upper 20 cm (Buxbaum and Vanderbilt 2007),

where the largest root biomass occurs (Kurc and Small

2004).

The site has a mean annual precipitation of

234 mm, more than half of which (* 150 mm)

occurs during the convective storms of the summer

monsoon (Anderson-Teixeira et al. 2011; Gosz et al.

1995). Mean annual temperature at the site is * 13 �

C, with mean monthly maximum/minimum tempera-

tures ranging from 36/15 �C in June to 11/- 9.5 �C in

January during 1989–2013 (Collins et al. 2017).

Dataset description

The main data set used in this study includes long-term

measurements of SOM concentration at 0–20 cm

mineral depth in desert grassland, which together with

the metadata are available asWhite andMoore (2016).

SOM concentration was measured twice per year

(May/June and September/October) in most years (37

times) in an unburned grassland starting in April 1989

through May 2014, and 23 times in an adjacent burned

grassland from June 2003 through May 2014. In each

measurement period, three to 12 (mostly 10) compos-

ite soil samples at 0–20 cm mineral depth were

collected using a soil core (4 cm or 4.2 cm diameter

by 20 cm long) from permanently located quadrats

within three to five (depending on year) 30 9 30 m

areas. In the burned grassland, soils were collected

from two quadrats in each of five 30 9 30 m burned

plots starting in June, 2003. In total, 613 composite

soil samples were collected for measuring SOM

concentration.

All composite soil samples were placed into an ice

chest and transported to the University of New

Mexico, where they were sieved (2 mm) to remove

obvious live roots, then stored at 5 �C. Gravimetric

soil moisture content of each fresh sample was

determined by mass loss upon heating at 105 �C for

24 h. SOM concentration was determined by loss-on-
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ignition (LOI) from oven-dried samples placed in a

muffle furnace and brought to 500 �C for 2 h. Water

holding capacity was determined by saturat-

ing * 50 g sieved soil in a funnel with deionized

water for 30 min, and then allowing the sample to

drain by gravity for 30 min. The drained soil was

transferred to pre-weighed soil tins and dried in an

oven at 105 �C for 24 h. The water lost upon drying

was the water-holding capacity of the soil sample.

To explore whether temporal patterns in SOM

tracked temporal patterns of primary production, we

used long-term (2000–2014) observations of above-

ground net primary production (ANPP) in nearby

desert grassland (Rudgers et al. 2018) and another

long-term (2004–2014) ANPP data set in burned and

unburned grassland that was established to monitor

grassland recovery following the prescribed fire in

2003. ANPP was recorded by species as peak biomass

in each year (i.e. September) in 22–106 permanently

located 1-m2 plots. Biomass was calculated allomet-

rically via linear regression models with intercepts

through the origin (see Rudgers et al. 2019 for details).

All data and R code are freely accessible via Rudgers

et al. (2020).

Climate variables

To explore climate relationships with SOM and

primary production, we used both precipitation and

the Standardized Precipitation Evapotranspiration

Index (SPEI), a metric that explicitly incorporates

temperature via potential evapotranspiration (Vicente-

Serrano et al. 2010). Positive SPEI values indicate

much wetter (more humid) conditions. To pair with

the SOM measurements, SPEI was calculated for

spring (December–May) and fall (May–October)

based on the prior 6 month period (Rudgers et al.

2018) with meteorological data measured at the site.

Precipitation in spring and fall were calculated as the

cumulative precipitation amount during February–

May and June–October, respectively.

Statistical analyses

Before statistical analyses, we checked for possible

outliers in the SOM dataset. We excluded one

extremely high value (i.e. 5.8% vs. 0.5–4.2% of the

rest) from further analyses. Long-term patterns in

SOM and primary production and their relationships to

climate variables and responses to prescribed fire were

examined via model selection procedures with linear

mixed-effects models, generally according to Rudgers

et al. (2018) and Zuur et al. (2009).

Specifically, we first constructed a linear mixed-

effects model where the fixed component contained all

explanatory variables and as many interactions as

possible, which yields the beyond optimal model

(Zuur et al. 2009). To examine long-term pattern in

SOM, sampling time was used as the only fixed

variable. A linear model was used because we wanted

to detect unidirectional trends (i.e. increase or

decrease) in SOM over the studied period. To test

Hypotheses Ia and Ib about the relationship between

SOM and climate, climate factor (i.e., SPEI or

precipitation) and its cubic form were used as the

fixed component. To test Hypotheses II and III about

the interactive control of climate (or time) and fire on

SOM, a climate factor (or time) and its cubic form,

site, as well as their interactions were used as the fixed

components.

Second, we used the beyond optimal model to

identify the optimal structure of the random compo-

nent using the Akaike’s Information Criterion for

small sample sizes (AICc) in package ‘‘MuMIn’’

version 1.43.17 (Barton 2020) in R version 3.6.1 (R

Core Team 2017). The optimal random component

was a best combination of sampling location (quadrat

nested in plot), sampling year, and first-order autore-

gressive correlation structure (i.e. with smallest AICc).

Sampling location was used to account for the possible

non-independence of repeated measurements within a

quadrat in a plot. Sampling year was considered as a

random factor to account for the possible non-

independence of repeated measurements within a year

(Rudgers et al. 2018). First-order autoregressive

correlation was used to account for temporal autocor-

relation in the repeated measurements (Rudgers et al.

2018; Zuur et al. 2009).

Once the optimal random structure was determined,

we then determined the optimal fixed structure. We

used the ‘‘dredge’’ function in R package ‘‘MuMIn’’

version 1.43.17 (Barton 2020) to generate all possible

combinations of fixed variables from the global model.

Among the combinations of fixed variables, we

selected the combination of fixed variables with the

minimum AICc value as our optimal fixed structure.

Finally, we presented the optimal models using REML

estimation (Zuur et al. 2009). All linear mixed model
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analyses were performed with the R package ‘‘nlme’’

version 3.1.148 (Pinheiro et al. 2017). Fits of linear

mixed models to observations were visualized using

the R packages ‘‘visreg’’ version 2.7.0 (Breheny and

Burchett 2017) and ‘‘lme400 version 1.1.23 (Bates et al.

2014).

We also examined differences in soil measurements

between two adjacent sampling times and between the

unburned and burned sites at each sampling time using

the ‘‘emmeans’’ package (Lenth et al. 2018) in

R. Relationships among climate variables, SOM, and

soil water were explored using Pearson correlation.

Finally, we examined the relationship between SOM

(dependent variable) and the current or previous

season’s ANPP (independent variable) via regression

analyses applied to the mean values for each sampling

time because vegetation and SOM data were not

derived from the same quadrats. We compared model

fit using the second order Akaike Information Crite-

rion (AICc).

Results

Temporal patterns in climate

Annual precipitation varied between 107.3 mm and

348.7 mm (mean 232.0 mm). Precipitation varied

between 2.2 mm and 86.6 mm (mean 37.2 mm) in

spring and between 44.0 mm and 244.6 mm (mean

139.9 mm) in fall (Fig. 1a). Precipitation did not show

a long-term trend on an annual scale (P = 0.75), in

spring (P = 0.39), or in fall (P = 0.87) (Fig. 1a).

Similar temporal patterns were observed for SPEI

(Fig. 1a) due to the significant positive correlation

between SPEI and precipitation (r = 0.54, P\ 0.001;

Fig. S1).

Temporal patterns in SOM and soil water

measurements

SOM varied significantly across seasons from 1.0 to

3.3% (mean 1.7%) in the unburned grassland and from

0.9 to 2.0% (mean 1.6%) in the burned grassland

(Fig. 1b; Table 1). However, there was no long term,

unidirectional change in SOM either in the unburned

grassland (phi = 0.16, P = 0.67) or in the burned

grassland (phi = 0.15, P = 0.10) (Fig. 1b). In the

unburned grassland, SOM was considerably greater

in July 1996 (i.e. 3.31%) than in other times

(0.98–2.39%) (Fig. 1b; Table 1). However, after these

high values were removed, there was still no temporal

trend in SOM under unburned conditions (P = 0.40).

Soil water holding capacity and water content also

varied considerably with time (Fig. S2). Neither

measure of soil water significantly correlated with

SOM in either grassland (Fig. S1), except for a weakly

positive correlation between SOM and water holding

capacity in the burned grassland (r = 0.25, P\ 0.001;

Fig. S1).

Relationships between SOM, ANPP, and climate

In the unburned grassland, SOM declined nonlinearly

in seasons with greater precipitation, with no apparent

change when precipitation was less than * 160 mm

but a sharp decrease when precipitation crossed this

threshold (marginal R2 = 0.23, P\ 0.001, AICc =

168.1; Fig. 2a). This pattern was opposite to the

positive relationship between ANPP and precipitation,

which had a concave shape during dry periods and a

convex shape during wet periods (marginal R2 = 0.25,

P\ 0.001, AICc = 10472.2, Fig. 2c). In comparison

to precipitation, SPEI explained slightly more of the

variation in both SOM (marginal R2 = 0.27, AICc =

195.1) and ANPP (marginal R2 = 0.30, AICc =

10364.4) in the unburned grassland (P\ 0.001;

Fig. 2b, d), likely because of the additional effects of

heat on soil moisture that are not captured by

precipitation alone. SOM declined at greater SPEI

values, with the most SOM during hot/dry periods, the

least SOM during cool/wet periods, and little fluctu-

ation in SOM during normal climate periods (Fig. 2b).

In contrast, ANPP increased with cool/wet conditions

at high values of SPEI, but additionally had a convex

relationship with SPEI during dry periods, which is

indicative of benefits to ANPP of increasing interan-

nual variance in SPEI, and a concave shape during wet

periods, which signals declines in ANPP under

increasing interannual variance in SPEI (Fig. 2d).

Fire effects on SOM along temporal and climate

gradients

Fire reduced SOM by 14% on average, but fire effects

varied from - 15 to 46% relative to unburned

conditions over time (Fig. 3; Table 1). However, fire

effects on SOM increased over time, as indicated by a
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significant interaction between the prescribed fire and

time (Figs. 1b and 4a). Fire also significantly reduced

ANPP, but in contrast to SOM trends, the effect size

for ANPP declined significantly with time as ANPP

recovered to unburned levels 9 years after the pre-

scribed fire (Fig. 4b). SOM was negatively correlated

with ANPP (Unburned: r = - 0.78, P = 0.013;

Burned: r = - 0.81, P = 0.004; Fig. 5). SOM did

not significantly relate to the previous year’s ANPP

(P[ 0.05, Fig. S3) or any other lag period (not

shown), indicating no legacy effects of primary

production on SOM. Despite strong effects of fire on

SOM, the prescribed burn did not alter the relation-

ships between SOM and climate variables, as there

were no significant interactions between the pre-

scribed fire and the climate factors (Fig. 3).

Discussion

With a unique long-term dataset of SOM, we revealed

dynamic change in SOM and provided new insights

into how climate and prescribed fire influence SOM in

dry grasslands. SOM did not have a long-term trend

but fluctuated significantly with seasons and years,

capturing the dynamic nature of SOM in this Chi-

huahuan Desert grassland ecosystem. Surprisingly,

SOM was negatively and nonlinearly related to

precipitation and the SPEI aridity index, and the

climate sensitivities of SOM did not track those of

aboveground primary production. As expected, SOM

was reduced by the prescribed fire, especially in the

long-term (i.e., a decade). The dynamic nature of SOM

together with its low concentration and a variable

climate foretells the possibility of dramatic responses

of SOM to future climate change in desert grasslands.

Fig. 1 Long-term patterns of climate and soil organic matter

concentration in a desert grassland. a Long-term patterns of the

Standardized Precipitation Evapotranspiration Index (SPEI,

gray bar) and precipitation (blue line) in spring and fall.

b Long-term pattern of soil organic matter concentration as

affected by a prescribed fire on 19 June 2003. In (b) soil

sampling time is shown on X axis in the format of 2-digit

year/month. For each sampling time, the thick horizontal line

represents the median of the distribution, the box includes 50%

of the data, and the whiskers reach the highest and lowest value

within 95% of the distribution. Points represent single values

outside 95% of the distribution. Number under box indicates

sample size at sampling time
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Table 1 Comparison of soil organic matter concentration between sampling times and sites

Date Unburned grassland Burned grassland Difference

Mean (%) SD (%) CV (%) Season P Mean (%) SD (%) CV (%) Season P P value

89/04 0.98 0.06 5.6 NA

90/04 1.50 0.16 10.9 0.112

90/10 1.65 0.26 15.9 1.000

93/10 1.48 0.25 17.0 0.997

94/06 1.85 0.18 9.9 0.030

94/10 2.39 0.27 11.4 < 0.001

95/07 1.48 0.25 16.8 < 0.001

95/11 1.86 0.32 17.2 0.015

96/07 3.31 0.45 13.5 < 0.001

96/10 1.92 0.25 13.2 < 0.001

97/10 1.29 0.17 13.1 < 0.001

98/07 1.39 0.24 17.1 1.000

02/06 1.65 0.10 5.8 0.181

03/06 1.34 0.14 10.2 0.034 1.49 0.16 10.6 NA 0.046

03/10 1.53 0.20 12.8 0.945 1.52 0.19 12.3 1.000 0.941

04/04 1.71 0.25 14.4 0.993 1.66 0.19 11.2 1.000 0.760

04/10 1.93 0.27 13.8 0.887 1.84 0.25 13.5 0.991 0.487

05/04 1.81 0.16 8.7 1.000 1.65 0.11 6.5 0.979 0.141

05/10 1.67 0.20 12.2 1.000 1.47 0.18 12.5 0.990 0.050

06/05 2.10 0.28 13.3 0.005 1.88 0.17 9.2 0.004 0.037

06/10 1.10 0.13 11.8 < 0.001 1.06 0.11 10.3 < 0.001 0.807

07/05 1.66 0.19 11.5 < 0.001 1.44 0.19 13.1 0.012 0.040

07/10 1.83 0.25 13.8 0.997 1.55 0.21 13.6 1.000 0.006

08/05 1.81 0.22 12.0 1.000 1.71 0.24 14.3 0.998 0.363

08/09 1.65 0.14 8.8 0.997 1.66 0.24 14.6 1.000 0.789

09/05 1.68 0.22 13.3 1.000 1.42 0.21 14.6 0.736 0.010

09/10 1.95 0.26 13.4 0.528 1.61 0.22 13.7 0.974 0.001

10/05 1.65 0.17 10.5 0.275 1.70 0.22 12.9 1.000 0.544

10/10 1.43 0.20 14.1 0.853 1.40 0.12 8.6 0.282 0.928

11/05 1.73 0.17 9.9 0.248 1.56 0.24 15.4 0.999 0.120

11/10 2.15 0.26 12.2 0.002 1.68 0.31 18.3 1.000 < 0.001

12/05 2.12 0.18 8.5 1.000 2.00 0.45 22.3 0.134 0.287

12/10 1.85 0.17 9.4 0.419 1.55 0.31 20.2 < 0.001 0.004

13/04 1.55 0.15 9.7 0.228 1.42 0.17 11.8 1.000 0.274

13/10 1.02 0.07 6.5 < 0.001 0.89 0.12 13.3 < 0.001 0.216

14/05 1.76 0.24 13.5 < 0.001 1.55 0.19 12.3 < 0.001 0.043

Overall 1.71 0.46 26.9 1.55 0.31 20.0 0.007

Soil organic matter concentration at one sampling time was compared with the values at the last sampling time in each grassland, as

indicated by Season P value. Difference between the unburned grassland and the unburned grassland at each sampling time was

tested, as indicated by the P value in the Difference column. SD indicates standard deviation and CV indicates coefficient of variance.

Date are shown in the format of 2-digit year/month

NA indicates not available. P values\ 0.05 are in bold

123

Biogeochemistry



Fig. 2 Soil organic matter concentration and aboveground net

primary production (ANPP) showed contrasting relationships

with climate. a Soil organic matter concentration vs. seasonal

precipitation (AICc = 168.1). b Soil organic matter concentra-

tion vs. standardized precipitation evapotranspiration index

(SPEI) (AICc = 195.1). c ANPP vs. monsoon precipitation

(AICc = 10472.2). d ANPP vs. SPEI (AICc = 10364.4). Each

point represents a single observation. Nonlinear models best fit

the data and the prediction from the best model is shown with

95% confidence intervals in gray. c and d were redrawn from

Rudgers et al. (2018) from a nearby site that used different

meteorological data, therefore climate variable values in c and

d were different from those in a and b

Fig. 3 Relationships between soil organic matter concentration

and climate factors were similar between unburned and burned

grasslands. Soil organic matter concentration vs. seasonal

precipitation (a) and the standardized precipitation

evapotranspiration index (SPEI, b). Nonlinear models best fit

the data and the prediction from the best model is shown with

95% confidence intervals in blue and red in the unburned and

burned grasslands, respectively
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Temporal change in SOM

Temporal change in SOM is usually hard to detect in

the field by repeated soil sampling due to slow

turnover, large inherent spatial variability, and limited

time spans (\ 10 years) (Allen et al. 2010; Chen et al.

2015; Hoffmann et al. 2017; Schrumpf et al. 2011;

Smith 2004; Smith et al. 2020; Wuest 2014). These

challenges were overcome in the present study with

SOM measurements spanning 25 years, taken at high

frequency (twice a year in most years), and measured

with a considerable number of replicates (10 for most

sampling times). With these efforts, a long-term trend

in SOM, if present, should be detectable. As our

analysis revealed no long-term trend in SOM, we

suggest that SOM dynamics in this desert grassland

were at a quasi-equilibrium state during the study

period. This result is reasonable given that the site had

been protected from extensive grazing since 1973

(Collins et al. 2020), with 16 years of recovery before

the first soil sampling in our study, which began in

1989. Our results highlight the value of long-term data

Fig. 4 Effects of prescribed fire on soil organic matter

concentration and aboveground net primary production (ANPP)

changed with time. a Effect of prescribed fire on soil organic

matter concentration increased significantly with time. b Effect

of prescribed fire on ANPP decreased significantly with time.

Points and error bars indicate means and standard errors

Fig. 5 Relationships between soil organic matter concentration

and aboveground net primary production (ANPP). Vertical and

horizontal error bars indicate the standard errors of soil organic

matter concentration and ANPP, respectively
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for understanding temporal trends in SOM. Had our

study spanned smaller time intervals, we would have

reached very different conclusions, including that

SOM was declining in the ecosystem from 3.31 to

1.34% (1996–2003), that SOM was increasing from

1.34 to 2.10% (2003–2006), or that SOM was

stable (1.65–1.95%; 2007–2010) (Fig. 1b; Table 1).

Despite the lack of long-term trend, SOMfluctuated

significantly among seasons and years. This finding

may be unexpected, if we view change in SOM as a

very slow process, as suggested by many previous

studies (Friedlingstein et al. 2019; Li et al. 2015; Lu

et al. 2018; Luo et al. 2019). The finding is, however,

reasonable for drylands with low baseline levels of

SOM (* 1.5%), given the large variability in both

climate and primary production across seasons

(Fig. 1; Rudgers et al. 2018). In addition, our result

is consistent with the finding of a synthesis study, in

which yearly variation in SOM was considerable and

exceeded the long-term change in SOM by far in eight

widely distributed terrestrial ecosystems (Schrumpf

et al. 2011). Similarly, a recent synthesis suggested

that year effects on ecological dynamics (e.g. plant

community composition) are pervasive and could be

profound (Werner et al. 2020).

Significant changes in SOM or SOC within seasons

and years were also reported in some other studies

(Burke et al. 2019; Pandher et al. 2019; Turner et al.

2015; Wuest 2014). For example, Burke et al. (2019)

reported that SOC content at 0–15 cm depth increased

significantly from 6 Mg/ha in spring to 17 Mg/ha in

summer and reduced back to 6 Mg/ha in the next

spring over 1 year in a semi-arid cropland with sandy

soils. Turner et al. (2015) observed a significant

increase in SOC concentration at 0–10 cm depth from

4.0% in the dry season to 4.7% in the wet season over

1 year in a lowland tropical rain forest. Together, our

results and these prior studies suggest that SOM can be

dynamic in some ecosystems, which is contrary to the

paradigm that SOM changes little within seasons or

among years (Schmidt et al. 2011; Torn et al. 1997).

Indeed, SOM turnover time can vary[ 100 fold

across ecosystems and even[ 10 fold across biomes

in both topsoils (0.3–111 years in 0–20 cm soils; Chen

et al. 2013) and subsoils (from\ 10 years to more

than 6000 years in 30–100 cm soils; Luo et al. 2019).

SOM turnover rate in the biome of our study site (i.e.

desert grassland) appears to have the shortest SOM

turnover among global biomes documented so far

(Chen et al. 2013; Lu et al. 2018; Luo et al. 2019).

Like most repeated soil sampling studies (Chen

et al. 2015; Hoffmann et al. 2017), repeated sampling

in our study may be spatially biased. One sign of the

spatial bias may be the significantly greater SOM in

July 1996 than at other sampling times (Fig. 1b). To

minimize spatial bias in statistical analyses, we used

mixed-effect models that accounted for the lack of

independence associated with the location of each plot

and quadrat and with the random effect of sampling

year.

Sensitivity of SOM to climate

In contrast to our original hypotheses (Ia–b), SOM

decreased significantly and nonlinearly with precipi-

tation and the aridity index (SPEI). Given the opposite

responses of SOM and ANPP to precipitation, SOM

was negatively, rather than positively, correlated to

ANPP (Fig. 5). These findings are novel and suggest

the possibility of incorrect predictions on SOM under

future climate scenarios if positive relationships

between SOM and precipitation are assumed (e.g.,

Gaitán et al. 2019) or if positive correlations between

SOM and ANPP are assumed (Luo et al. 2017). SOM

depends on both the rate of organic inputs (mainly via

litter input and rhizodeposition) and rates of removal

caused by decomposition, runoff, leaching, and ero-

sion, all of which are sensitive to climate (Lal 2019; Li

et al. 2015; Plaza et al. 2018a; Turner et al. 2015;

Vicca et al. 2014). Possible explanations for the

negative relationship between SOM and precipitation

found here include (i) a decrease in organic matter

input (ii) an increase in the rate of soil organic matter

decomposition (i.e. soil heterotrophic respiration), (iii)

increases in losses of SOM via runoff, leaching, or

erosion, and (iv) methodological problems of the SOM

measurements. We therefore examined support for

each mechanism.

Organic inputs into soil via rhizodeposition are

expected to increase rather than decrease with more

precipitation, because of the positive relationship

between primary production and precipitation

(Fig. 2c; Pausch and Kuzyakov 2018). However,

stimulation of primary production by high precipita-

tion may only boost litter input in the next sea-

son(s) rather than in the same season, a phenomenon

known as a ‘‘legacy-effect’’ (Sala et al. 2012; Shen
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et al. 2016). We detected no evidence for legacy

effects of ANPP on SOM (Fig. S3). Therefore,

possible lag effects of organic inputs across seasons

were unlikely to account for the decrease in SOM in

very wet seasons. However, we have not incorporated

data on belowground plant biomass or photodegrada-

tion of litter (Austin and Vivanco 2006; Brandt et al.

2010); if this were decoupled from the dynamics of

plants aboveground, then a decrease in organic matter

input may contribute to our results.

Rain-enhanced soil respiration likely accounted for

at least part of the observed decrease in SOM in very

wet seasons. Soil respiration in drylands is limited by

soil water availability and thus can be stimulated by

large rains (Vargas et al. 2012), especially after a

drought period, due to the accumulation of labile

carbon and nitrogen during drought (Kieft et al. 1998;

Noy-Meir 1973; White et al. 2004; Xu and Baldocchi

2004). For example, Xu and Baldocchi (2004)

reported that the peak rate of ecosystem respiration

(largely comprised of soil respiration) after big rains

were 60–80 times greater than baseline ecosystem

respiration rates in a dry grassland in California, USA.

Ecosystem respiration after a rain of 61 mm can be up

to 70 g C m-2, equivalent to almost 10% of annual

gross primary production (Xu and Baldocchi 2004).

These results support soil respiration as a mechanism

underlying the climate sensitivity function for SOM in

our study.

Large rains may also reduce SOM via runoff and

leaching of dissolved SOM (Plaza et al. 2018a), given

the low vegetation cover (* 75%) and the coarse-

textured topsoils at our site (Buxbaum and Vanderbilt

2007). Some of the dissolved organic matter in

topsoils may also transfer to the subsoils via water

infiltration and be retained there, given that subsoils

have higher clay contents than topsoils in our ecosys-

tem (Buxbaum and Vanderbilt 2007). Future work to

sample subsoils, which were not included in our study,

would help to address this potential mechanism.

Moreover, large rains may reduce SOM by disrupting

soil aggregates and thus accelerating soil erosion

either alone or together with winds (Brazier et al.

2014; Plaza et al. 2018a). Short-term studies of runoff

that captured SOM losses suggested that SOM loss by

water erosion in this region is important and is driven

mainly by large rain events during wet periods

(Brazier et al. 2014; Cunliffe et al. 2016; Turnbull

et al. 2010).

Finally, the observed decrease in SOM in very wet

seasons may result from problems with the LOI

method in determining organic matter concentration

of carbonate soils (Nelson and Sommers 1996;

Westman et al. 2006). Carbonates, whose concentra-

tion in 0–20 cm soil is high at the study site (about 6%

CaCO3 equivalents; Kieft et al. 1998), were not

removed before our determination of SOM using the

LOI method. The majority of carbonates (e.g., calcite

and dolomite) cannot be lost, but some soluble or

volatile carbonates may be lost, on ignition at 500 �C

(Kasozi et al. 2009; Nelson and Sommers 1996;

Westman et al. 2006). If some carbonates were lost

during these ignitions, our LOI measurements would

reflect dynamics of organic matter plus some carbon-

ates. Our observed decline in LOI in very wet seasons

may then be partly because of carbonate losses driven

by large rainfall events through runoff or infiltration

into subsoils. Future work analyzing soils with and

without carbonates removed are needed to assess this

potential mechanism.

The concave relationship between SOM and pre-

cipitation suggests that SOM will respond negatively

to increasing interannual variability in precipitation in

the future. The result provides the first evidence, to our

knowledge, that SOM can be influenced by precipi-

tation variability. Moreover, the apparent decline in

SOM at seasonal precipitation exceeding 160 mm

supports the idea that slow variables in drylands

possess thresholds that, if crossed, cause the system to

move into a new state or condition (Knapp et al. 2017;

Luo et al. 2017; Reynolds et al. 2007; Rudgers et al.

2018). The precipitation threshold created the nonlin-

ear relationship that generated the prediction of

sensitivity of SOM to variability in precipitation. In

our region, changes in the precipitation regime include

smaller, more frequent individual rain events (Petrie

et al. 2014), a long-term decline in the SPEI during the

monsoon season (i.e., fall 6-month SPEI), and a strong

increase in the interannual variability in monsoon

SPEI over the last century (Maurer et al. 2020;

Rudgers et al. 2018).

In comparison to precipitation, SPEI explained

slightly more of the variation in SOM because the

highest levels of SOM occurred at the lowest values of

SPEI, but not at the lowest values of precipitation.

SOM increased during the hot/dry periods (i.e. low

values of SPEI) perhaps because high temperatures

exceeded optima for decomposer activity (Anderson-
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Teixeira et al. 2011; Liu et al. 2018). An alternative

mechanism is that organic inputs decreased (Fig. 2d;

Rudgers et al. 2018) and photodegradation of litter

continues (Austin &Vivanco 2006; Brandt et al. 2010)

during the drought periods. Similar to precipitation,

the nonlinear relationship between SOM and SPEI

(Fig. 3) suggested consequences of increasing climate

variability on SOM. However, for SPEI, increasing

variability was predicted to have weak to positive

effects on SOM under dry conditions but negative

effects, similar to precipitation, under wet conditions.

This result was supported by the cubic climate

sensitivity function (Fig. 3), which signals an interac-

tion between the mean climate and the variance in

climate (Rudgers et al. 2018). If variability in SPEI

increases under a hotter/drier climate, then the func-

tion predicts future increases in SOM.

Effect of prescribed fire on SOM

As hypothesized, the prescribed fire significantly

decreased SOM, and the effect size increased signif-

icantly with time up to a decade (Fig. 4a). Fire usually

does not directly consume SOM but affects SOM

indirectly by changing organic inputs to soil, and

postfire recovery of organic inputs could be slow

(Collins et al. 2017; Parmenter 2008; Pellegrini et al.

2018). In this study, ANPP in the burned grassland did

not recover to the level of the unburned grassland until

9 years after the fire (Fig. 4b), which was consistent

with the finding of a previous study in the same

ecosystem (Parmenter 2008). The long-lasting nega-

tive effect of fire on ANPP probably explained why the

declines in SOM following fire expanded over time.

Since ANPP recovered a decade after the fire, we

may expect a postfire recovery of SOM. The recovery

may, however, take another decade or longer, unless

the long-term ([ 10 years) effect of fire on ANPP is

positive. Fire did not affect belowground net primary

production at the study site (Burnett et al. 2012) but

may affect soil microbial activity and nutrient avail-

ability (Butler et al. 2018; Neary et al. 1999; Pellegrini

et al. 2018), which are less well studied but could be

important in mediating fire effects on SOM and

postfire recovery of SOM. Moreover, fire can reduce

SOM and retard postfire recovery of SOM by accel-

erating wind erosion (Dukes et al. 2018). Furthermore,

fire may interact with climate to influence SOM via

their interactive effects on plant community structure

and soil erosion (Collins et al. 2017; D’Odorico et al.

2013; Dukes et al. 2018). Although the interaction

between fire and climate on SOM was not statistically

significant in the present study, it could be ecologi-

cally significant in the future given projected climate

change and increases in fire intensity and frequency

(IPCC 2012; Pendergrass et al. 2017). Overall, our

results suggest that fire has a significant and long-

lasting effect on SOM in this desert grassland.

Conclusion

Long-term soil sampling in a northern Chihuahuan

Desert grassland detected no long-term trend in SOM

but uncovered strong seasonal and yearly fluctuations

that tracked both precipitation and dryness. Unexpect-

edly, SOM declined nonlinearly with greater seasonal

precipitation or reduced aridity (SPEI). These rela-

tionships contrast with the increases in ANPP under

greater precipitation or less aridity, and challenge the

common assumption that SOM increases with wetness

globally. As predicted, fire reduced SOM, but long-

term monitoring revealed increasingly amplified

reductions in SOM up to a decade following the fire,

probably due to the slow recovery of primary produc-

tion. Together, our results demonstrate that SOM in

desert grassland can be very sensitive to climate,

climate variance and fire, which has important impli-

cations for predicting soil organic C storage in desert

grasslands under future increases in precipitation

variability, temperature, and fire risk.
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Robertson E, Rödenbeck C, Séférian R, Schwinger J, Smith

N, Tans PP, Tian H, Tilbrook B, Tubiello FN, van derWerf

GR, Wiltshire AJ, Zaehle S (2019) Global carbon budget

2019. Earth Syst Sci Data 11(4):1783–1838

Gaitán JJ, Maestre FT, Bran DE, Buono GG, Dougill AJ, Garcı́a

Martı́nez G, Ferrante D, Guuroh RT, Linstädter A, Massara
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Wollenberg E, Álvaro-Fuentes J, Sanz-Cobena A, Klumpp

K (2020) How to measure, report and verify soil carbon

change to realize the potential of soil carbon sequestration

for atmospheric greenhouse gas removal. Glob Change

Biol 26(1):219–241

Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hen-

dricks DM (1997) Mineral control of soil organic carbon

storage and turnover. Nature 389(6647):170–173

Turnbull L, Wainwright J, Brazier RE (2010) Changes in

hydrology and erosion over a transition from grassland to

shrubland. Hydrol Process 24(4):393–414

Turner BL, Yavitt JB, Harms KE, Garcia MN, Wright SJ (2015)

Seasonal changes in soil organic matter after a decade of

nutrient addition in a lowland tropical forest. Biogeo-

chemistry 123(1):221–235

van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT,

Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC,

Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire

emissions estimates during 1997–2016. Earth Syst Sci Data

9(2):697–720

Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF,

Natvig DO, Friggens MT (2012) Precipitation variability

and fire influence the temporal dynamics of soil CO2 efflux

in an arid grassland. Glob Change Biol 18(4):1401–1411

Vázquez DP, Gianoli E, Morris WF, Bozinovic F (2017) Eco-

logical and evolutionary impacts of changing climatic

variability. Biol Rev 92(1):22–42

Vicca S, BahnM, Estiarte M, van Loon EE, Vargas R, Alberti G,

Ambus P, Arain MA, Beier C, Bentley LP, Borken W,

Buchmann N, Collins SL, de Dato G, Dukes JS, Escolar C,

Fay P, Guidolotti G, Hanson PJ, Kahmen A, Kröel-Dulay
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