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Abstract

We study the evolution of the binary black hole (BBH) mass distribution across cosmic time. The second gravitational-
wave transient catalog (GWTC-2) from LIGO/Virgo contains BBH events out to redshifts z∼ 1, with component
masses in the range ∼5–80Me. In this catalog, the biggest BBHs, with m1 45Me, are only found at the highest
redshifts, z 0.4. We ask whether the absence of high-mass observations at low redshift indicates that the mass
distribution evolves: the biggest BBHs only merge at high redshift, and cease merging at low redshift. Modeling the
BBH primary-mass spectrum as a power law with a sharp maximum mass cutoff (TRUNCATEDmodel), we find that the
cutoff increases with redshift (> 99.9% credibility). An abrupt cutoff in the mass spectrum is expected from
(pulsational) pair-instability supernova simulations; however, GWTC-2 is only consistent with a TRUNCATEDmass
model if the location of the cutoff increases from -

+ M45 5
13 at z< 0.4 to -

+ M80 13
16 at z> 0.4. Alternatively, if the

primary-mass spectrum has a break in the power law (BROKEN POWER LAW) at -
+ M38 8
15 , rather than a sharp cutoff,

the data are consistent with a nonevolving mass distribution. In this case, the overall rate of mergers, at all masses,
increases with redshift. Future observations will distinguish between a sharp mass cutoff that evolves with redshift and
a nonevolving mass distribution with a gradual taper, such as a BROKEN POWER LAW. After ∼100 BBH merger
observations, a continued absence of high-mass, low-redshift events would provide a clear signature that the mass
distribution evolves with redshift.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Gravitational wave astronomy (675);
Astrostatistics (1882); Massive stars (732); Stellar mass black holes (1611); Stellar remnants (1627)

1. Introduction

In their first three observing runs, the Advanced LIGO (LIGO
Scientific Collaboration et al. 2015) and Virgo (Acernese et al.
2015) gravitational-wave (GW) detectors observed binary black
hole (BBH) mergers out to redshifts z∼ 1 (Abbott et al. 2019a,
2020a). Observing BBH systems over a range of redshifts allows
us to probe the properties of these mergers across cosmic time and
unravel how these merging BBH systems came to be. Previous
studies (Fishbach et al. 2018; Abbott et al. 2019b, 2020b; Callister
et al. 2020; Roulet et al. 2020; Tiwari 2020) have measured
the BBH merger rate as a function of redshift, assuming that
other properties of the population, including the mass and spin
distributions, are constant throughout cosmic time. However, there
are reasons to expect that the overall BBH population properties
may themselves evolve with redshift:

1. The initial conditions of zero-age main-sequence stars
(e.g., metallicity) evolve over cosmic time, which could
affect the resultant masses and spins of black holes (BHs)
from stellar evolution (Belczynski et al. 2010; Kudritzki
& Puls 2000; Brott et al. 2011; Fryer et al. 2012; Dominik
et al. 2015; Neijssel et al. 2019; Safarzadeh & Farr 2019;
Farrell et al. 2021; Kinugawa et al. 2021; Vink et al.
2021).

2. If BBH mergers occur in dynamical environments, the
dynamical environments could evolve over cosmic time,

(dis)favoring mergers of different masses and spins
(Rodriguez & Loeb 2018; El-Badry et al. 2019; Romero-
Shaw et al. 2020; Santoliquido et al. 2020; Weatherford
et al. 2021).

3. The delay time from the inception of a BBH to its merger
may depend on the masses and spins of the component
BHs and the orbital eccentricity (Kushnir et al. 2016;
Samsing 2018; Mapelli et al. 2019).

4. Different formation channels (including a formation
channel that permits hierarchical mergers) may contribute
more or less to the overall merger rate at different times
(Rodriguez & Loeb 2018; Rodriguez et al. 2019;
Santoliquido et al. 2020; Yang et al. 2020; Zevin et al.
2021).

The combined effect of these phenomena would manifest in
the GW data as mass and/or spin distributions of merging BHs
that are different at different redshifts. For example, Figure 1 of
Rodriguez et al. (2019) shows that the mass distribution for
mergers in dense star clusters extends to higher masses when
considering mergers at all redshifts compared to mergers with
z< 1. Similarly, some population synthesis models of BBH
mergers from isolated binary evolution exhibit more support
for higher-mass mergers at higher redshifts, although this effect
is expected to be mild at the redshifts accessible to Advanced
LIGO and Advanced Virgo (e.g., Mapelli et al. 2019). With a
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growing catalog of BBH events, we can begin to empirically
measure the existence (or lack thereof) of redshift evolution out
to z∼ 1.

The second GW transient catalog (GWTC-2; Abbott et al.
2020a) contains 44 confident BBH mergers with m1>m2> 3Me
and a false-alarm rate (FAR) below 1 yr−1. While the first LIGO/
Virgo catalog release, GWTC-1, found evidence for a dearth of
systems with m1> 45Me, the updated GWTC-2 catalog contains
several systems with m1> 45Me. The presence of these high-
mass BHs leads Abbott et al. (2020b) to infer that the primary-
mass spectrum is more complicated than a power law with an
abrupt mass cutoff. Although a mass cutoff at∼ 40Me was
consistent with GWTC-1, Abbott et al. (2020b) concluded that the
GWTC-2 observations are more consistent with a break or a peak
at∼ 40Me, with the mass distribution declining more steeply at
higher masses.

Notably, all of the high-mass observations in GWTC-2 are
also at relatively high redshifts, as seen in Figure 1, with a
noticeable absence of events with m1 45Me at low redshifts.
For reference, we also overlay the expected median redshift z50
of sources distributed with a constant rate per comoving
volume10 (Chen et al. 2021; Abbott et al. 2018). The apparent
absence is not necessarily surprising, because the highest-mass
systems are also detectable at the highest redshifts, and, if these
systems are rare, we expect to detect them primarily at high
redshifts where there is more cosmological volume. However,
this also suggests an alternative explanation for the high-mass
detections in GWTC-2, also proposed by Safarzadeh & Farr
(2019): the underlying astrophysical mass distribution may

skew to higher masses at higher redshifts, implying that a
higher fraction of high-mass mergers (per comoving time-
volume) occur at higher redshifts than at low redshifts.
The remainder of the paper is structured as follows. Section 2

introduces the phenomenological models that we use to describe
the BBH population, and the statistical framework that we use to
fit the models given the GWTC-2 data. Section 3 presents our
main results regarding the evolution of the BBH mass distribution.
We carry out posterior predictive checks in Section 4, and discuss
future prospects before concluding in Section 5.

2. Methods

We first describe the parameterized population models we
assume in Section 2.1 before laying out how we use these
within the statistical framework of Section 2.2.

2.1. Population Models

We use simple phenomenological parametric models to
describe the distribution of BBH masses m1 and m2, effective
spin χeff, and redshift z, based on the models used in Abbott
et al. (2020b). We write the differential merger rate density
(number of mergers per comoving volume per source-frame
time) as:

( )
( ∣ ) ( ) ( ) ( )

c
c

c=



d m m z

dm dm d
p m m z p f z

, , ,
, , 11 2 eff

1 2 eff
0 1 2 eff

where0 is the rate density at redshift z= 0, p(m1, m2|z) is the
two-dimensional source-frame mass distribution at a given
redshift, p(χeff) is the distribution of effective spins (assumed to
be independent of z), and f (z) describes the evolution of the
overall merger rate with redshift. The probability distributions
p are normalized, so that p(m1, m2|z) integrates to unity over the
allowed m1, m2 (here taken to be 2Me<m2<m1< 100Me to
match the mass range of the simulated detections used to

Figure 1. Posterior probability distribution of the primary mass m1 and redshift z for the 34 confident BBH events announced in GWTC-2 (orange) and 10 confident
BBHs in GWTC-1 (blue). The contours enclose 90% of the posterior probability, inferred under the default parameter estimation priors used in the GWTC-1 and
GWTC-2 publications (Abbott et al. 2019a, 2020a). The shaded region denotes the redshifts for which the signal-to-noise ratio of an equal-mass BBH is less than 8 for
an optimally oriented component BH mass under the Advanced LIGO “mid-high” noise curve (Abbott et al. 2018); we do not detect low-mass, high-redshift events
because they are too quiet. As a point of reference, we overlay the curve representing z50, the expected median distance of detected mergers that are distributed with
constant rate density per comoving volume. The question of whether there are equal numbers of events above and below this z50 line motivates us to examine whether
the intrinsic BBH mass distribution evolves with redshift.

9 We use the default parameter estimation priors of Abbott et al. (2020a) for
each event in Figure 1 and therefore the quantitative details may change within
a population analysis; see Figure 2. However, the default priors suffice for this
simple visualization.
10 z50 is computed via https://users.rcc.uchicago.edu/~dholz/gwc/, an online
calculator based on Chen et al. (2021), assuming equal-mass mergers and the
“Advanced LIGO mid-high” noise curve, which can be found here: https://
dcc.ligo.org/public/0094/P1200087/019/fig1_aligo_sensitivity.txt.
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estimate searches’ sensitivities), and p(χeff) integrates to unity
over− 1< χeff< 1. The function f (z) is chosen so that
f (z= 0)= 1. Thus, integrating the differential merger rate

cd dm dm d1 2 eff over all masses and spins at a given z gives
the overall merger rate density at that redshift. The rate density
of Equation (1) can alternatively be written in terms of the
number density, defined by the relation:

( )
c c

=
d

dm dm d

dN

dm dm d dV dt
, 2

c1 2 eff 1 2 eff src

where Vc is the comoving volume element (Hogg 1999) and
tsrc is the time measured in the source frame, so that after
integrating over the observing time in the detector frame:

⎛
⎝

⎞
⎠

( )

( )

c
c

c

=
+

´


dN m m z

dm dm d dz

dV

dz

T

z

d

dm dm d

, , ,

1

,
3

c1 2 eff

1 2 eff

obs

1 2 eff

where Tobs is the total observing time and the factor of (1+ z)
converts source-frame time to detector-frame time. Integrating
the number density cdN dm dm d dz1 2 eff over all masses, spins
and redshifts up to some maximum zmax gives the total
expected number of BBH mergers in the universe out to zmax.

With the factorization of Equation (1), our model for the
joint mass–spin–redshift distribution of BBH systems consists
of a redshift-dependent mass distribution, a spin distribution,
and a rate evolution function. We introduce a parametric model
and a set of hyperparameters to describe each of these
components, listed in Tables 1 and 2. Exploring the redshift
dependence of the mass distribution is the focus of this work,
so we consider a few different parametric forms for the mass
distribution p(m1, m2|z), but fix the parametric form of the spin
distribution and rate evolution. For the rate evolution, we
assume f (z)= (1+ z)κ following Fishbach et al. (2018) and
Abbott et al. (2019b, 2020b). For the spin distribution, we
assume a truncated Gaussian distribution for the effective spin
during the inspiral χeff, described by a mean μeff and standard
deviation σeff, and truncated to the physical range [− 1, 1]
(Roulet & Zaldarriaga 2019; Abbott et al. 2020b; Miller et al.
2020). We ignore other spin degrees of freedom because only
χeff correlates noticeably with our mass and redshift inference
(Ng et al. 2018).

We use two different underlying parametric distributions for
the component masses. BROKEN POWER LAW, similar to the
model defined in Abbott et al. (2020b), models the primary
mass distribution as a power law from mmin to mmax with an
additional parameter mbreak where the power law spectral index
changes from α1 to α2:

⎧
⎨
⎩

( )
( )
( ) ( )µ

<
<

a

a

p m

m m m m m
m m m m m

if
if

0 else

. 41

1 break min 1 break

1 break break 1 max

1

2

We also modify this model to approximate the TRUNCATEDmodel
also defined in Abbott et al. (2020b) by fixing the second power-
law exponent α2=− 20, which mimics the hard cutoff of the
TRUNCATEDmodel. In our approximated TRUNCATEDmodel,
mbreak becomes the high-mass cutoff, and we fix =m M100max .
Equation (4) describes both these models, and specific prior ranges

as well as assumed functional forms of the distributions’ evolution
with redshift are given in Table 1. For simplicity, we adopt a sharp
lower bound on our mass distributions instead of the tapering
function employed in Abbott et al. (2020b), as this has no effect on
the high-mass inference on which we focus in this work.
In both of these models we describe the conditional mass-

ratio distribution with a single power law with index β:

⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ ) ( ∣ )

( )
( )b

=

=
+

- b
b

+

p q m m p m m

m m
q

1

1
. 5

1 1 2 1

min 1
1

Assumed prior ranges for β are also shown in Table 1.

2.2. Statistical Framework

We use hierarchical Bayesian inference to fit these models,
marginalizing over individual event properties and the expected
number of detections during the observing period (Loredo
2004; Mandel 2010; Mandel et al. 2019). Given data {di}
from Ndet GW events, we wish to infer the parameters
describing our chosen population distributions Λ. Using Bayes’
rule, we can write out the full hierarchical posterior distribution
as:

⎡
⎣⎢

⎤
⎦⎥

( )

( ∣{ })

( ∣ ) ( ∣ ) ( )

( )

ò c c c

L µ

L L

x- L

=

 

 



6

p d e

d m m z p m m z dm dm d dz p

,

, , , , , , , .

i
N

i

N

i

0 0

1
1 2 eff 1 2 eff 1 2 eff 0

det 0

det

Here we define the ith individual event likelihood as
( ∣ )c d m m z, , ,i 1 2 eff and ξ(Λ) as the fraction of binary sources

we would expect to successfully detect for a given population
model defined by the hyperparameters Λ:

( ) ( ∣ ) ( ∣ )
( )

òx c c

c

L = Lp m m z P m m z

dm dm d dz

, , , det , , ,

, 7

1 2 eff 1 2 eff

1 2 eff

where ( ∣ )cP m m zdet , , ,1 2 eff is the probability of detecting a
single system with parameters m1, m2, χeff, and z. Assuming a
log-uniform prior on 0, we marginalize and write the
posterior as:

( )

( ∣{ }) ( )
( )

( ∣ ) ( ∣ ) ò

x

c c c

L µ
L

L

´ L
=



8

p d
p

d m m z p m m z dm dm d dz, , , , , ,

i N

i

N

i
1

1 2 eff 1 2 eff 1 2 eff

det

det

⎛

⎝
⎜

⎞

⎠
⎟

( )
( )

( ∣ )
( )

( ) åx

c

p c
»

L
L

L
=

p

K

p m m z

m m z

1 , , ,

, , ,
, 9

N i

N

i
j

K
ij ij ij ij

ij ij ij ij1
1 2 eff

1 2 eff

i

det

det

where we approximate the integrals over single-event para-
meters via importance sampling with Ki single-event posterior
samples generated with the prior π(m1, m2, χeff, z):
{ }cm m z, , ,ij ij ij ij

1 2 eff denoting the jth sample for the ith event.
The single-event posterior samples for the 44 events used in
this analysis are taken from Abbott et al. (2021, 2020c). To
compute the sum in Equation (9), we use the same set of
samples, derived under the same priors and waveform models,
as in Abbott et al. (2020b).
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We additionally approximate ξ(Λ) via importance sampling
over sets of detected simulated events,11 marginalizing over our
uncertainty from the finite number of simulated events
available (Farr 2019).

Given this population likelihood, we sample from the
posterior on the population hyperparameters Λ using the
Monte Carlo samplers PYMC3 (Salvatier et al. 2016), EMCEE
(Foreman-Mackey et al. 2013), and STAN (Carpenter et al.
2017).

Once we have posterior samples Λ, we perform a series of
posterior predictive checks. In essence, the posterior predictive

checks are goodness-of-fit checks that compare the observed
data and synthetic events drawn from the fits to the population
models. If the models correctly account for all variation within

Table 1
Prior Ranges for Mass Models Conditioned on Redshift: p(m1, m2|z) = p(m2|m1, z)p(m1|z) Described by Equations (4) and (5)

Name Nonevolving Parameters Evolving Parameters

( ) ~ m M M2 , 10min None

=m M100max

TRUNCATED ( ) ~ m M M30 , 100break

( )a ~ - 5, 21

α2 = − 20
( )b ~ - 4, 12

( ) ( ) ( )= + - Q >m z m m m z zmin min
low

min
high

low
high

0 ( ) ~ m M M2 , 10min
low

( ) ~ m M M2 , 10min
high

BINNED =m M100max ( ) ( ) ( )= + - Q >m z m m m z zbreak break
low

break
high

break
low

0 ( ) ~ m M M30 , 100break
low

EVOLUTION α2 = − 20 ( ) ~ m M M30 , 100break
high

TRUNCATED z0 = 0.4 ( ) ( ) ( )a a a a= + - Q >z z z1 1
low

1
high

1
low

0 ( )a ~ - 5, 21
low

( )a ~ - 5, 21
high

βz(z) = βlow + (βhigh − βlow)Θ(z > z0) ( )b ~ - 4, 12low

( )b ~ - 4, 12high

( ) ~ m M M2 , 10min

EVOLVING =m M100max ( ) ( ) ( )= + -m z m m m b zbreak min max min ( )~ b 0, 10

TRUNCATED ( )a ~ - 5, 21 ( ) ( ( ) ( ))= + - -- -b z b b z1 1 exp0
1

1
1 ( )~ -b 4, 41

α2 = − 20
( )b ~ - 4, 12

( ) ~ m M M2 , 10min None
BROKEN ( ) ~ m M M65 , 100max

POWER ( ) ~ m M M20 , 65break

LAW ( )a ~ - 5, 21

( )a ~ - 12, 22

( )b ~ - 4, 12

EVOLVING ( ) ~ m M M2 , 10min

BROKEN ( ) ~ m M M65 , 100max ( ) ( ) ( )= + -m z m m m b zbreak min max min ( )~ b 0, 10

POWER ( )a ~ - 5, 21 ( ) ( ( ) ( ))= + - -- -b z b b z1 1 exp0
1

1
1 ( )~ -b 4, 41

LAW ( )a ~ - 10, 22

( )b ~ - 4, 12

ALTERNATE ( ) ~ m M M2 , 10min

EVOLVING ( ) ~ m M M65 , 100max ( )a a a= + ¢z z2 2
0

2 ( )a ~ - 10, 22
0

BROKEN ( ) ~ m M M20 , 65break ( )a¢ ~ - - 12, 122

POWER LAW ( )a ~ - 5, 21

( )b ~ - 4, 12

Note. For each model considered, we separate the parameters that do not evolve with redshift from those that do, showing the assumed functional forms of the
evolution. Θ( ·) represents the Heaviside function. All hyperparameters are drawn from uniform priors between  and  : ( )  , .

Table 2
Prior Ranges Assumed for f (z) and p(χeff)

f (z) = (1 + z)κ ( )k ~ - 6, 6

( ) [ ( ]c c m sµ - -p exp 2eff eff
2 2 ( )m ~ - 0.5, 0.5

× Θ( − 1 � χeff � 1) ( )s ~  0.02, 1

Note. Together with one of the models specified in Table 1, these distributions
form our population model for the instantaneous rate density in the source
frame cd dm dm d1 2 eff (Equation (1)). Θ( ·) represents the Heaviside
function. All hyperparameters are drawn from uniform priors between  and
 : ( )  , .

11 The simulated detection sets covering the O3a observing run can be found at
https://dcc.ligo.org/LIGO-P2000217/public. For the first two observing runs,
we use the mock injection sets used in Abbott et al. (2020b), which can be
found at https://dcc.ligo.org/LIGO-P2000434/public.
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the observations, synthetic “predicted events” drawn from the
population hyperposterior should resemble the observed
behavior of real events. The first example of such a check
(Figure 2) is introduced in the following Section 3.1.

3. Constraints on the Evolution of the Mass Distribution

We describe the consistency between the data and a series of
increasingly complex population models in what follows,
beginning with a simple nonevolving TRUNCATED power law
in Section 3.1 and then proceeding to more complicated models
that do evolve with redshift in Sections 3.2 and 3.3. We also
confirm the robustness of our conclusions to a few possible
systematics in Sections 3.4 and 3.5.

3.1. Tension with the Nonevolving TRUNCATED Model

To see if the dearth of high-mass events at low redshifts
shown in Figure 1 is statistically significant, we first present a
posterior predictive check using the nonevolving TRUNCATED
model. We use the statistical methods described above to fit the
TRUNCATED model (see Table 1) to the GWTC-2 events.
Figure 2 shows the observed primary masses and redshifts of
BBH events (orange), compared to the prediction from the
nonevolving TRUNCATED model (blue). For every hyperpos-
terior sample in the TRUNCATED model, we draw 44 synthetic
events from the predicted distribution and record their primary
masses and redshifts. We likewise draw one primary mass and
redshift sample for each of the 44 events in our catalog,
inferred under the same draw from the population hyperposter-
ior. Figure 2 shows this comparison for 10 sets of fair draws
from the population hyperposterior, each set marked with a
distinct symbol. We note that the GWTC-2 events with
m1 45Me occur at redshifts z 0.37. The model tends to
overpredict the maximum observed mass at low redshift in
order to match the maximum observed mass at high redshift.
Splitting each set of predicted and observed events at their

median redshifts to define “low” and “high” redshift events, the
TRUNCATED model overpredicts the largest mass seen at low
redshifts 91% of the time, typically overestimating the
observed maximum mass at low redshifts by -

+ M18 22
18 . On

the other hand, at high redshifts, the predicted maximum mass
typically matches the observed maximum mass for both
models, with an average difference of only∼ 2Me between
the predicted and observed maximum mass for the TRUN-
CATED model.
This baseline analysis shows that the mismatch between

predicted and observed masses and redshifts suggested by
Figure 1 also appears when we consider an overly simple
population distribution. A similar conclusion regarding the
failure of the TRUNCATED model to fit the GWTC-2 data was
found by Abbott et al. (2020b), who pointed out the tension
between the observed primary mass distribution and the
TRUNCATED model prediction. Figure 2 recasts this tension
in terms of the joint mass and redshift distribution, and
corroborates our expectation from Figure 1 that a redshift-
dependent mass distribution may be needed to accurately
describe the observed population.

3.2. Two Redshift Bins

To further explore whether the data support a different mass
distribution at high redshifts compared to low redshifts, we first
perform a change-point analysis. We fit the mass distribution in
two redshift bins (z< 0.4 and z> 0.4), which splits the events
roughly evenly between the two bins. We assume that the
TRUNCATEDmodel describes the mass distribution in both bins,
but we allow the parameters describing the mass distribution to
jump discontinuously between the bins. We refer to this model as
the BINNED EVOLUTION TRUNCATEDmodel (see Table 1 for
prior ranges). Unsurprisingly, we find a strong preference that the
maximum mass in the high-redshift bin is larger than the
maximum mass in the low-redshift bin (99.4% credibility). This
preference remains (95.2% credibility) even when we exclude the
most massive event in the high-redshift bin: GW190521 (see
Section 3.4). Including GW190521, we infer that the maximum
mass in the high-redshift bin is larger by -

+ M35 17
17 than the

maximum mass in the low-redshift bin. Without GW190521, the
high-redshift maximum mass is larger than the low-redshift
maximum mass by -

+ M16 15
12 .

Meanwhile, the other parameters describing the mass
distribution are consistent between the two bins, albeit with
large uncertainties. For example, the power-law slope of the
mass distribution in the high-redshift bin is poorly constrained,
because it is degenerate with the redshift evolution of the
merger rate. Steep (negative) m1 power-law slopes correspond
to steep (positive) redshift evolution slopes, because steeper
mass distributions with fewer high-mass events must have a
larger overall merger rate at high redshift to support the number
of high-mass events observed at large redshifts (Fishbach et al.
2018). In the following, we focus on the high-mass end of the
mass distribution and its possible evolution with redshift.

3.3. Continuous Evolution with Redshift

Motivated by the BINNED EVOLUTION TRUNCATED analysis,
we next allow the high-mass end of the mass distribution to evolve
continuously and monotonically with redshift. We parameterize the
location of the break in the power law as a function of redshift,

Figure 2. Primary masses and redshifts of the 44 confident BBH observations
(orange) compared to 44 draws from the predicted observable distribution
(blue), inferred under the nonevolving TRUNCATED model. Each marker shape
corresponds to a different set of 44 draws, where each set is inferred under a
different population model drawn from the hyperposterior. We plot 10 total
sets. The dashed lines denote z = 0.37 (the median observed redshift in the
sample) and m1 = 45 Me. The top-left corner (low masses, high redshifts)
contains no predicted or observed events because it is beyond the detection
horizon. On the other hand, the bottom right corner (high masses, low redshifts)
contains predicted events, but no observed events, showing that the model
generally overpredicts the number of high-mass (m1 > 45 Me) events at low
redshifts (z < 0.37) compared to our observations.
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allowing it to vary between  < < < <M m m m2 min break max

M100 .
We consider two scenarios for the evolving mass distribu-

tion: an EVOLVING TRUNCATED model in which the high-mass
slope is fixed to be steep (α2=− 20) to approximate a sharp
cutoff that evolves with redshift, and an EVOLVING BROKEN
POWER LAWmodel in which we fit for the high-mass slope,
considering values α2>− 10. Table 1 shows the functional
form of the models and their full prior ranges. For the
EVOLVING TRUNCATED model, mbreak(z) parameterizes the
location of the cutoff.

Figure 3 shows the rate density as a function of m1, d dm1, at
two redshifts, z= 0.1 and z= 1, inferred under the EVOLVING
TRUNCATED and EVOLVING BROKEN POWER LAWmodels
described above and the BINNED EVOLUTION TRUNCATEDmodel
of Section 3.2. Note that our models allow for an overall evolution
of the merger rate through f (z) in Equation (1), and we generally

infer different values for the total merger rate at z= 1 and z=
0.1. The EVOLVING TRUNCATED and BINNED EVOLUTION
TRUNCATEDmodels (first and third panels, respectively) both
assume that the primary mass distribution has a sharp maximum
mass cutoff; under these models, we infer that the mass
distribution extends to higher masses at z= 1 than at z= 0.1.
Meanwhile, the EVOLVING BROKEN POWER LAWmodel allows
for a consistent shape to the mass distribution at z= 1 and z= 0.1,
although evolution toward higher masses at high redshifts is also
possible.
Another way of understanding the evolution of the mass

distribution is seen in Figure 4, which shows the merger rate as a
function of redshift for systems with m1< 45Me (top panel)
compared to m1> 45Me (bottom panel). The blue bands show
the BROKEN POWER LAWmass distribution, in which the merger
rate can evolve with redshift, but the evolution is independent of
the masses. With this model, we find that the overall merger rate
likely evolves, with rate evolution parameter k = -

+2.1 1.9
2.2 (κ= 0

corresponds to a nonevolving rate). The orange bands show the
EVOLVING TRUNCATEDmodel, in which the mass distribution, as
well as the merger rate, can evolve with redshift. This model finds

Figure 3. Rate density as a function of m1 inferred under models that allow the
mass distribution and the overall rate to evolve with redshift. Solid lines denote
the median d dm1 at each m1 and shaded regions correspond to the 50% and
90% symmetric credible regions. (Top) A sharp high-mass cutoff at mbreak(z),
fixing the high-mass (m1 > mbreak) power-law slope to α2 = − 20. (Middle)
Models with variable α2 and mbreak. The top and middle panels both assume
that only mbreak evolves with redshift (see Table 1), while the other mass
distribution parameters are constant in redshift. (Bottom) The BINNED
EVOLUTION TRUNCATED model, in which a separate TRUNCATED mass
distribution is fit to systems with z < 0.4 and z > 0.4, and all mass distribution
parameters are allowed to vary between the redshift bins.

Figure 4. Rate evolution as a function of redshift for BBH systems with (top)
m1 < 45 Me and (bottom) m1 > 45 Me, in the nonevolving BROKEN POWER
LAW model (blue) and the EVOLVING TRUNCATED model (orange). If we
assume that the mass distribution does not evolve with redshift, the evolution of
the merger rate in any given mass range follows f (z) ∝ (1 + z)κ. When we
allow the mass distribution to evolve with redshift, the merger rate for BBH
systems with m1 > 45Me increases with redshift more rapidly, with a small
rate ( ) <>

- - - 10 Gpc yrm 45
2 3 1

1 at z = 0 but a similar rate to the nonevolving
mass distribution model at z  0.3. Meanwhile, for low-mass events, the
evolving mass distribution predicts a slightly smaller merger rate at high z
compared to the nonevolving mass distribution.
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that the merger rate for systems with m1> 45Me evolves
significantly (orange band, bottom panel). At low redshifts, there
are few such systems, with a merger rate 0.01 Gpc−3 yr−1 at
z= 0, but at z= 1, the merger rate of m1> 45Me systems
reaches∼ 10 Gpc−3 yr−1. Meanwhile, as seen by the slope of the
orange band in the top panel, the merger rate for systems with
m1< 45Me might not evolve at all, or may even decrease with
increasing redshift. Therefore, the EVOLVING TRUNCATEDmodel
infers less evolution in the total merger rate, finding smaller values
of k = -

+0.0 2.6
2.4, compared to the BROKEN POWER LAWmodel.

The correlation between the evolution of the total merger rate and
the evolution of the mass distribution is to be expected; see the
discussion in Section 3.2. In order to explain the number of
observations at high redshifts, we infer either that the total merger
rate must increase with redshift, or that the fraction of high-mass
events must increase while the total merger rate stays approxi-
mately constant.

For the EVOLVING TRUNCATED and EVOLVING BROKEN
POWER LAWmodels, we show the inferred 99th percentile of the
m1 distribution, m99%, as a function of redshift in Figure 5. As we
saw in Figures 3 and 4, the EVOLVING TRUNCATEDmodel finds a
strong preference for the high-mass cutoff to increase with
increasing redshift (> 99.9%). On the other hand, if the primary
mass distribution follows an EVOLVING BROKEN POWER
LAWmodel, the preference for mass evolution is much weaker.
Marginalizing over the high-mass power-law slope α2, we find that
mbreak increases with increasing redshift at 83% credibility. We
stress that even this mild preference for evolution in the EVOLVING
BROKEN POWER LAWmodel depends on the choice of α2 prior,
because of the correlation between the steepness of α2 and the
evolution of mbreak. This degeneracy between the abruptness of the
high-mass cutoff and the preference for evolution can be seen in
Figure 6, which shows the correlation between the evolution of
mbreak and α2, the power-law slope above mbreak. In the limit
of large negative α2−8, the EVOLVING BROKEN POWER
LAWmodel approaches an EVOLVING TRUNCATEDmodel, and
we find a strong preference for mbreak to evolve. Meanwhile, for
shallower values of−6α2−4, the data is consistent with
mbreak(z= 1)=mbreak(z= 0). Our final posterior, then, depends on
how much prior volume we include below α2 8.

While we have chosen to parameterize evolution in the
EVOLVING BROKEN POWER LAWmodel with a redshift-
dependent mbreak parameter, we find similar results when we
instead consider a redshift-dependent α2(z). This is the
ALTERNATE EVOLVING BROKEN POWER LAW described in
Table 1.
This alternate parameterization may approximate the sce-

nario in which the break mass mbreak represents the lower edge
of the pair-instability gap (fixed across cosmic time), so that
systems with m1>mbreak belong to a subpopulation that
contaminates the gap. In this scenario, α2 sets the rate of this
subpopulation, which can become more (less negative α2) or
less (more negative α2) dominant at different redshifts. Figure 7
shows the posterior on α2(z= 0) and α2(z= 1) under this
model, marginalizing over the other model parameters. As in
Figure 6, we infer that if the z= 0 mass distribution has a sharp
cutoff (a - 82

0 ), α2 probably becomes less negative with
increasing redshift, corresponding to a higher merger rate for
systems with m1>mbreak. However, the data remain consistent
with a mass distribution that is independent of redshift as long
as α2−6. Additionally, we recover similar results for the
99th percentile of the mass distribution as a function of
redshift.

3.4. Sensitivity to GW190521

Since GW190521 is the most massive event in our catalog,
one might suspect that our conclusions regarding the high-mass
end of the BBH population are driven by this event. To test
this, we repeat our analyses while excluding GW190521 from
the sample, and we verify that our results are robust in these
leave-one-out analyses. If we model the mass distribution with
a sharp maximum mass cutoff and exclude GW190521 from
the analysis, we recover that the location of the cutoff must

Figure 5. The 99th percentile of the primary mass distribution, m99%, as a
function of redshift. Solid lines show the median and shaded bands show
symmetric 90% credible intervals. Assuming that the BH mass distribution has
a sharp cutoff (EVOLVING TRUNCATED model), it likely increases with redshift
(> 99.9% credibility). Assuming an EVOLVING BROKEN POWER LAW model,
there is a weaker preference for the location of the break to evolve (83%
credibility).

Figure 6. Corner plot showing the correlation between the evolution of mbreak

in the EVOLVING BROKEN POWER LAW model and the high-mass power-law
slope α2. The vertical dashed line corresponds to no evolution of the mass
distribution. For a sharp cutoff α2 = 0, we find a strong preference for
evolution, but for a shallower cutoff (α2  − 6), the observed events are
consistent with no evolution.
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evolve with redshift (96.4% credibility in the EVOLVING
TRUNCATED model; 95.2% credibility in the BINNED EVOL-
UTION TRUNCATEDmodel). For the EVOLVING BROKEN
POWER LAWmodel, any preference for evolution of the mass
distribution is slightly weakened with the exclusion of
GW190521, and our conclusion remains that the data is
consistent with a nonevolving mass distribution.

3.5. Robustness to Sensitivity Estimate

As described in Section 2, when fitting the population
models to the data, we must account for GW selection effects.
For a given population model described by Λ, we estimate the
detectable fraction ξ(Λ) of Equation (7) by performing a Monte
Carlo integral over a set of injections detected by the GWTC-2
search pipelines, reweighted by the population model at Λ
(Farr 2019). To be detected, an injection must have a FAR of
less than one per year, matching the FAR threshold we use
when selecting events for our analysis. Crucially, if there were
a systematic error in the injections’ estimated FARs that was
correlated in source-frame mass and redshift, the mass
distribution inference could artificially prefer redshift evol-
ution. In particular, an apparent dearth of sources with high
mass and low redshift could be explained as an overestimation
of the sensitivity to high-mass, low-redshift systems.

As a crude test of the effect of misestimated sensitivity, we
perform multiple population inferences on O3a events with a
modified TRUNCATED primary-mass model that allows linear
evolution of the maximum mass and power-law slope with
redshift. In each run, we throw away different fractions of
found injections at high total mass (M> 100Me) and low
redshift (z< 0.4), going all the way up to throwing away 90%
of those injections. This simulates selection functions with ever
smaller low-redshift, high-mass sensitivities. We find that

tossing out injections does not eliminate the preference for
mass distribution evolution with this TRUNCATED model,
suggesting that sensitivity misestimation is likely not driving
our conclusions that the data prefer a mass distribution that
either evolves with redshift or has additional features beyond a
simple truncated power law.
Other systematic uncertainties that may lead to spurious

conclusions about the evolution of the mass distribution include
the possibility of strongly lensed GW events in the sample (Dai
et al. 2017) or deviations from the assumed cosmology (Farr et al.
2019). We do not account for these possibilities here. The
probability that our sample contains one or more strongly lensed
GW events is very small, as only ∼1/1000 events are expected to
be lensed (Li et al. 2018; Oguri 2018). For our analyses, we
assume the cosmological parameters from Planck Collaboration
et al. (2016) for consistency with Abbott et al. (2020a). In
principle the cosmological parameters can be simultaneously
inferred with the mass distribution (Farr et al. 2019).

4. Posterior Predictive Checks

We find that the data is consistent with two interpretations: a
nonevolving BROKEN POWER LAWwith a relatively shallow
high-mass slope, or an EVOLVING TRUNCATED model. In this
section, we carry out posterior predictive checks to examine the
features of the data that are most consistent with each
interpretation, and discuss how future data will distinguish
between the two scenarios.
As a first check, we revisit the feature highlighted in Figures 1

and 2: the missing high-mass, low-redshift observations in
GWTC-2. Fundamentally, consistency between observations and
our models boils down to the relative fractions of events detected
with high masses (m1 45Me) at low and high redshift. The
left panel of Figure 8 shows the uncertainty in this ratio
under the nonevolving BROKEN POWER LAW and EVOLVING
TRUNCATEDmodels. The BROKEN POWER LAWmodel generally
predicts a few low-redshift events with m1> 45Me while the
EVOLVING TRUNCATEDmodel predicts fewer, or even zero, such
events. In principle, then, we should be able to distinguish
between these two models given enough observations. That is to
say, we will prefer the nonevolving BROKEN POWER LAW if we
see more than one high-mass, low-redshift event for every ∼5
high-mass, high-redshift events. If we see fewer high-mass, low-
redshift events, the EVOLVING TRUNCATEDmodel will be
preferred.
However, Poisson uncertainty with the current limited set of

events is large enough that we do not strongly favor either
interpretation. The right panel of Figure 8 shows the distribution
of the number of detected events with m1> 45Me at low redshift
out of 44 events under each model. We find that even without
redshift evolution, the BROKEN POWER LAWmodel predicts zero
low-redshift, high-mass events out of 44 detections 15% of the
time, and� 1 such events 38% of the time. Both models, then, are
consistent with the current absence of detections.
While both evolving and nonevolving models are consistent

with our current (lack of) observations of high-mass, low-
redshift events, we additionally test the general goodness-of-fit
of the entire mass distributions. Figures 9 and 10 demonstrate
this second check.
Specifically, Figure 9 demonstrates the consistency of the

inferred population model with the observations by drawing 44
predicted events from the population hyperposterior, sorting
them, and then comparing the predicted ( ( )m1

pred ) and observed

Figure 7. Corner plot showing the correlation between α2(z= 1) and α2(z= 0)
inferred under an ALTERNATE EVOLVING BROKEN POWER LAWmodel in which
α2 evolves with redshift. The dashed black line shows α2(z = 1) = α2(z = 0),
corresponding to no redshift evolution. Similarly to the model with an evolving
mbreak, when α2(z= 0) is steep, we recover a preference for the mass distribution
to evolve.
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( ( )m1
obs ) masses as a function of ( )m1

obs . As in the earlier
posterior predictive checks, for every population hyperposterior
sample, we draw one ( )m1

obs sample per event from its
population-reweighted posterior. If the models capture the
behavior of the data well, then the difference ( ) ( )-m m1

pred
1
obs

should remain near zero for all masses, regardless of the events’
redshifts. We demonstrate this by dividing the sample into low-
and high-redshift bins. The largest deviations occur for the
nonevolving BROKEN POWER LAWmodel at low redshift (top-
left panel), where the model tends to overpredict the largest
observed m1. The EVOLVING TRUNCATED model appears to
be a better fit at low z (middle-left panel), but there may be
hints of a deviation at high z (middle-right panel) where
the model tends to systematically overpredict the masses of the
m1∼ 40Me events.
Figure 10 provides a complementary view, showing the

uncertainty in the predicted cumulative distribution functions
(CDFs) over m1, calculated from drawing sets of 44 predicted
events from the population hyperposterior, along with the
empirical cumulative distribution of observed m1, again binned
into low- and high-redshift sets. Consistency in these plots
corresponds to predicted CDF bands that encompass the black
uncertainty bars from the individual events. At low z, all of the
models shown are able to fit the events well, although, again,
the EVOLVING TRUNCATED and EVOLVING BROKEN POWER
LAWmodels better limit the maximum predicted m1 at low
redshifts to the observed value, while the BROKEN POWER
LAWmodel often overpredicts the most massive observation at
low z. At high z, we see that the EVOLVING TRUNCATED model
tends to predict a longer tail to high masses, as the predicted
CDFs are slightly shifted to the right compared to the observed
high-z events. Although the BROKEN POWER LAW, EVOLVING
TRUNCATED, and EVOLVING BROKEN POWER LAWmodels
differ in their predictions, they all provide adequate fits to the
data within the current uncertainties.

5. Conclusion and Future Prospects

We have fit the GWTC-2 events to redshift-dependent mass
models, investigating the evolution of the BBH mass distribu-
tion across cosmic time. We explored the apparent dearth of

Figure 8. (Left) Ratio of the detection rate of high-mass events (m1 > 45 Me) between high-redshift and low-redshift events (split at the median redshift). Model
predictions refer to the true detection rate and do not account for Poisson uncertainty that arises for a finite number of observations. (Right) The expected number of
low-redshift observations with m1 > 45 Me given a total of 44 events. The unfilled green histogram corresponds to the GWTC-2 events; the uncertainty reflects
measurement uncertainty in their source parameters inferred under the BROKEN POWER LAW model. Both models are consistent with GWTC-2ʼs observation of nearly
zero low-redshift, m1 > 45 Me events.

Figure 9. Difference between sorted sets of predicted ( ( )m1
pred ) and observed

( )m1
obs ) primary masses as a function of the observed primary mass for (top)

BROKEN POWER LAW, (middle) EVOLVING TRUNCATED, and (bottom)
EVOLVING BROKEN POWER LAW models. Events are separated into (left)
low-redshift and (right) high-redshift subsets. Each line represents a different
realization of predicted and observed masses drawn from the corresponding
hyperposterior.

9

The Astrophysical Journal, 912:98 (12pp), 2021 May 10 Fishbach et al.



high-mass BH mergers at low redshift, showing that it can be
explained by either a BBH mass distribution that evolves with
redshift or by a mass distribution that contains features beyond
a truncated power law. In a nonevolving mass distribution,
these beyond-power-law features must suppress the rate of
high-mass systems (m1> 45Me) by including, for example, a
break in the power law, in agreement with the conclusions of
Abbott et al. (2020b).

We additionally confirmed that our conclusions are not
driven by any particular event, showing that the results are
qualitatively unchanged when we remove the heaviest system
detected to date: GW190521. At the same time, we confirmed
that possible gross misestimation of the sensitivity of our
searches, which could systematically bias our belief about our
ability to detect high-mass, low-redshift events, could not
account for the preference for primary mass distributions with a
sharp maximum cutoff to evolve with redshift.

If a TRUNCATED power law with a sharp maximum mass
cutoff is assumed for the primary masses of BBH systems, we
find that the mass distribution must evolve between z= 0 and
z= 1 with> 99% credibility. In this case, the total merger rate
is consistent with binaries being uniformly distributed in a
comoving volume, but the types of binaries must change as a
function of redshift. If, on the other hand, the data is described
by a power law with a break rather than a sharp maximum mass
cutoff, the data are consistent with a nonevolving mass
distribution. This model prefers an overall rate density that
increases with increasing redshift, rather than being uniformly
distributed in a comoving volume. Both models fit the current
data equally well, but with additional events, we will be able to
distinguish them.
Figure 11 explores when we expect to be able to distinguish

between an evolving mass distribution with a sharp maximum
mass cutoff and a nonevolving mass distribution with a break
in the power law, rather than a cutoff. We plot the difference in
the mass scales corresponding to the percentiles of detected
events in high-redshift and low-redshift bins. As we observe
more events, we begin to resolve higher percentiles in the
observed mass distribution; out of N/2 events in each redshift
bin, we expect the most massive observed event in each bin to
be at the ( )~ -1

N

2 quantile. Since we can see more massive
events out to higher redshifts, even if the underlying mass
distribution is the same at all redshifts, the X% primary-mass
percentile in the high-redshift bin, -m X

z
1, %
high , will correspond to a

larger mass than the same percentile in the low-redshift bin,
-m X
z

1, %
low . Therefore, for a nonevolving mass distribution, or one

that favors larger masses at higher redshifts, the difference
‐ ‐-m mX
z

X
z

1, %
high

1, %
low is positive. Shaded regions correspond to the

uncertainty from different fair draws from the hyperposterior
for each model. As we start probing higher percentiles of the
observed mass distribution, if the mass distribution does not
evolve with redshift (BROKEN POWER LAWmodel, in blue), the
heaviest events observed in the low-redshift bin approach the
masses of the heaviest events in the high-redshift bin, and so
the difference decreases. However, if the mass distribution
evolves with redshift (EVOLVING TRUNCATED model, in

Figure 11. Differences in the primary-mass percentiles between detected
events at high and low redshift as a function of the percentile. Shaded regions
correspond to 90% uncertainty from the hyperposterior for the BROKEN POWER
LAW (blue) and EVOLVING TRUNCATED (orange) models. The approximate
total number of events needed to resolve each quantile is shown by the top x-
axis. The current set of events only probes up to percentiles ≈95%, and more
events will be needed in order to distinguish between the models.

Figure 10. Comparison between 90% symmetric credible regions for the
predicted cumulative distribution function (shaded bands) and the empirical
cumulative distribution (black bars) of primary masses for (top) BROKEN
POWER LAW, (middle) EVOLVING TRUNCATED, and (bottom) EVOLVING
BROKEN POWER LAW models. Both predicted and observed events are
separated into low-redshift and high-redshift bins, split at the median redshift.
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orange), the underlying astrophysical mass distribution skews
to higher masses at higher redshifts, and so the difference in
masses among the observed high- and low-redshift events is
larger than in the nonevolving case, and only increases as we
consider higher percentiles of the observed distribution. Within
current statistical uncertainties, the BROKEN POWER LAW and
EVOLVING TRUNCATED models are consistent for small
percentiles (< 95th percentile) but diverge at higher percentiles.
The current data set only probes approximately the
- »1 0.952

44
quantile, as we have N= 44 total events, or

two redshift bins that each contain 22 events. Therefore, we
cannot resolve the discrepancy between the models that only
appears at higher percentiles with the current sample size.
However, we will probe higher percentiles as we detect more
events, and may be able to confidently distinguish between
these models when we obtain a factor of 2 more events.

Future GW events will allow us to not only better resolve the
BBH mass distribution, they will also probe the BBH
population over a much higher redshift range. In addition to
the expected increases in sensitivity for current detectors
(Abbott et al. 2018), the next generation of GW detectors will
be able to probe the redshift evolution of the BBH population
out to z∼ 30 (Hall & Evans 2019), offering us a deeper look
into the formation environments of BBH systems (Vitale et al.
2019; Ng et al. 2020; Romero-Shaw et al. 2020).
Characterizing features in the BBH mass distribution, such as a

sharp cutoff, a break or a peak, and tracing their evolution with
redshift provides insights into the physics of BBH formation and
merger. Future data will allow us to distinguish between several
possible scenarios. One possibility is that the maximum core mass
for pair-instability supernovae (PISN) is highly sensitive to
metallicity, creating a redshift-dependent cutoff in the BH mass
distribution. It may also be that multiple binary formation
channels contribute differently over the age of the universe such
that higher-mass mergers are favored at earlier times. For
example, some combination of stellar evolution, PISN physics,
and/or hierarchical or stellar mergers may produce a small tail of
BBHs with primary masses 45Me, and these processes may be
more common at higher redshift. Alternatively, there may be no
redshift evolution of the mass distribution at 0< z 1, and
instead the overall rate of mergers increases with redshift
independently of the component masses. In this case, it must be
that the PISN feature in the BBH mass distribution is not a sharp
cutoff, or that the processes that contaminate the PISN mass gap
and give rise to systems above m1 45Me operate at similar
relative rates throughout the observable redshift range.

The first three observing runs of the Advanced LIGO and
Virgo interferometers have already illuminated many new
aspects of compact objects within our universe. The first
detections demonstrated what the most prevalent detectable
GW sources are: they are BBH mergers. Subsequent studies
have then asked where the biggest BHs are, motivated by the
lack of observations of massive BBH during the first two
LIGO/Virgo observing runs (Fishbach & Holz 2017). How-
ever, we can now phrase the question more precisely as when
did the largest BBH merge in the history of the universe, which
will ultimately help us determine how BHs form and why they
merge.
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