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ABSTRACT: A series of binary cocrystals involving the ditopic hydrogen- and halogen-bond (H- and X-bond, respectively) donors
resorcinol (res) and hydroquinone (hq), and 1,3- and 1,4-diiodotetrafluorobenzene (1,3- and 1,4-di-I-tFb), respectively,
cocrystallized with one of the three symmetric bipyridines trans-1,2-bis(n-pyridyl)ethylene (n,n’-bpe, where n = n’ = 2, 3, 4) is
reported. The structures of the six novel cocrystals, (1,3-di-I-tFb)-(3,3'-bpe), 4(res)-3(3,3-bpe), (1,3-di-I-tFb)-(4,4’-bpe), 3(hq)-
2(2,2"-bpe), (1,4-di-I-tFb)-(3,3'-bpe), and (hq)-(3,3’-bpe), are described. The cocrystals comprise components that assemble by
either O—H---N and O—H--O H-bonds (res and hq) or N---I X-bonds (1,3- and 1,4-di-I-tFb). The work completes a series of 18
cocrystals involving either the three dihydroxybenzenes catechol (cat), res, and hq or the three diiodotetrafluorobenzenes (1,2-,
1,3-, and 1,4-di-I-tFb) as H- or X-bond donors, respectively, with each of the three structurally isomeric symmetric bipyridines n,n’-
bpe. Our study demonstrates the significant consequences that minimally subtle variations to molecular structure of coformers can
have for stoichiometric formulations, molecular packing, and solid-state photoreactivity. The work also provides access to a
completed series of symmetrically substituted rctt-tetrakis(n-pyridyl)cyclobutanes (where: n = 2, 3, or 4).

B INTRODUCTION acceptor molecules to form an X-bond (*X---Nu®).** X-bonds
are comparable to H-bonds in both strength® and role in
directing self-assembly of individual molecules into supra-
molecular structures.’ Our group has invoked H-bond"’~'* and
X-bond"' ™" donor molecules (e.g., templates) that support the
preorganization of alkene-containing acceptor coformers into
the geometry of Schmidt'* to undergo solid-state [2 + 2]
photocycloadditions that furnish symmetrical 1,2,3,4-tetrasub-
stituted cyclobutanes. Our successes have led us to examine the
topologies of various photoreactive H- and X-bonded cocrystals
we have synthesized and motivated our attempts to generate
additional photoactive topologies in cocrystals that involve other
alkenes as substrates. Success in these endeavors would

Recent efforts by us have focused on comparisons of hydrogen-
(H-) and halogen- (X-) bonding in alkene-containing binary
cocrystals." Specifically, our interests are in bifunctional
molecules that can serve as building blocks of photoreactive
solids. Nature is replete with examples of structural effects of H-
bonding that lead to complex form and function. The field of
crystal engineering constitutes attempts of chemists to
effectively profit from Nature’s examples in the designed
construction of complex crystalline architectures sustained by
relatively weak, noncovalent bonds. While we have many
noncovalent bonds at our disposal (e.g., hydrogen-, halogen-,
dative-, ionic-, metal-coordination, metallophilic, 7---7 stack-
ing), some forces are more developed than others. By far the best
understood and likely most frequently employed is the H-bond,
with a closely related but yet less studied force being the X-
bond.> As for H-bonding, the basis for X-bonding is primarily
electrostatic, being an interaction of a Lewis-acid with a Lewis-
base. Electrophilic regions of X-bond donors recognize
complementary nucleophilic (:Nu) regions (e.g., lone pairs) of
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Scheme 1. Ditopic Components for Cocrystals
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constitute an important development in the context of crystal
engineering, as H- and X-bonding forces could then be exploited
as supramolecular synthons that enable designed topological
photodimerizations to furnish targeted cyclobutanes.

The precedent set by H-bonds - and an underlying,
comparable capacity of X-bonds - to direct self-assembly of
multicomponent systems leads chemists to inquire how
topologically similar molecules with H- and X-bonding
capabilities can influence self-assembly processes in solids. A
proverbial holy grail for crystal engineers is the ability to reliably
exploit noncovalent interactions to achieve a functional degree
of predictability in the fabrication of solids with desired
properties. In this context, the highly directional nature of X-
bonds as compared to other noncovalent forces makes them
promising candidates for such geometry-based fabrication by
design of solids with desired topologies, and—by extension—
topology-based properties (e.g., conductivity, reactivity).
Despite fundamental geometrical and electronic similarities
between H- and X-bonding, relatively few studies exist that
directly compare structural effects of the forces on molecular
packing.

Experimenta as well theoretica studies exist with
goals to compare influences of H- and X-bonding on self-
assembly. The studies can be distilled into three classes: 1)
systematic comparisons between H- and X-bonding; 2)
competition between H- and X-bonding; and 3) synergistic
cooperation of H- and X-bonding. The first class draws
comparisons of topologically similar molecules with H- and X-
bonding groups that exhibit closely related spatial arrangements.
An example is our report1 comprising a comparison between H-
and X-bonding to direct the assembly of cocrystals consisting of
structurally analogous H- and X-bond donors. The work was
inspired by reports of Metrangolo and Resnati’* involving
constitutional isomers of dibromotetrafluorobenzene with a
bifunctional alkene. The second class includes a report of
AakerGy that describes organic cocrystals wherein the X-bond
donor was varied.'” The same investigators later described'®
cocrystals that demonstrated consequences of binding-site
location on an overall balance between H- and X-bonding."”
Bosch also described competition between the two interactions

15-26 26,27
' I,
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in directing the self-assembly of homodimeric crystals of
perfluoroiodo- and perfluorobromophenylethynylpyridines.*’
Studies in the third class described cooperativity of H- and X-
bond groups. Arman et al. have, thus, reported a cocrystal
comprised of a thioamide with 1,2-di-I-tFb involving both N—
H---S H-bonds and Type II** S--1 X-bonds.”" Similarly, Uriel
demonstrated”® complementary H- and X-bonding forces in
cocrystals of para- and meta-bis(iodoethynyl)benzene with 4,4'-
bpe.

Here, we report a series of binary cocrystals involving ditopic
alkenes and structurally analogous ditopic coformers with
complementary H-bonding (dihydroxybenzenes) and X-bond-
ing (diiodotetrafluorobenzenes) capacities. The three sym-
metrical constitutional isomers of n,n’-bpe are the bifunctional
acceptors. The three symmetrical constitutional isomers of both
dihydroxybenzene and diiodotetrafluorobenzene serve as the H-
and X-bond donors, respectively (Scheme 1). Being relatively
symmetrical, rigid, conjugated, and generally planar, we
expected the cocrystal components to minimize those aspects
of encoded molecular information that are typically not
amenable to allow for predictable elements of control of crystal
packing (e.g., isomerizability, tautomerizability, conformational
flexibility, and nitrogen lone-pair inversions,” to name a few).
Our selection of diiodotetrafluorobenzenes as the X-bond
donors was informed by the well-established enhancement of X-
bond donor capability by poly fluorosubstitution of iodoben-
zenes.”’ An additional advantage of our selected coformers was
that all were commercially available with the exception of
3,3'bpe, which was synthesized via a Pd-catalyzed cross-
coupling reaction."*"** Our efforts here enable us to study a
series of 18 cocrystals that we show exhibits remarkable
structural diversity in terms of self-assembly and provide all
members of the symmetrical rctt-1,2,3,4-tetrakis(n-pyridyl)-
cyclobutanes (n,n’-tpch, where n = n’ = 2, 3, or 4).

B EXPERIMENTAL SECTION

Materials and Methods. All reagents and solvents (synthesis
grade) were purchased from commercial sources and used as received
unless otherwise stated. The cocrystal formers res, hq, 1,4-di-I-tFb and
4,4’ -bpe were purchased from Aldrich®; 2,2’-bpe was purchased from

https://dx.doi.org/10.1021/acs.cgd.0c01143
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Scheme 2. (Left) Stable Planar Rotamers for cat, res, and hq and (Right) Planar Conformers for 2,2'- and 3,3'-bpe
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Scheme 3. Photoactive Binary Cocrystals (Left to Right): Discrete, Four-Component (res)(4,4'-bpe), Discrete, Six-Component
2(cat)+(2,2'-bpe), Face to Face, #-Stacked 1D Chains (1,4-di-I-tFb)-(2,2"-bpe) (%)
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“Alkene disorder is omitted for clarity.
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TCI® 1,3-di-I-tFb was purchased from Apollo Scientific®. 3,3"-bpe
was prepared as described.”*"** All cocrystal syntheses were conducted
in screw-cap glass scintillation vials. The reported cocrystals (res)-
(2,2"-bpe),” (res)-(4,4"-bpe),” (hq)-(4,4'-bpe),** and (1,4-di-I-tFb)-
(4,4'-bpe)*® were prepared as described. We have reported the
syntheses of (1,3-di-I-tFb)-(2,2'-bpe) and (1,4-di-I-tFb)-(2,2’-
bpe)."* The cocrystals (1,3-di-I-tFb)-(3,3'-bpe), 4(res)-3(3,3’-bpe),
(1,3-di-I-tFb)-(4,4'-bpe), 3(hq)-2(2,2'-bpe), and (1,4-di-I-tFb)-
(3,3'-bpe) were prepared by thermal dissolution of equimolar amounts
of the appropriate coformers. Specifically, both cocrystal components
were combined in a vial, solvent was added portion-wise while
maintaining a saturated mixture at room temperature, and the vial was
tightly capped and heated on a hot-plate until all solids were dissolved
so as to afford a homogeneous solution with minimum amount of
solvent. The cocrystal (hq)-(3,3’-bpe) was prepared by slow
evaporation of a saturated solution of both cocrystal formers in an
equimolar ratio at ambient temperature. Photoactivities of the
cocrystals were assessed by exposing each solid to UV-radiation in an
ACE photocabinet equipped with an ACE quartz, 450 W, broadband,
medium pressure, Hg-vapor lamp for a period of 30 h. Compositions of
all single crystals were shown to be representative of bulk materials by
matching experimental powder X-ray diffraction (pXRD) patterns with
those simulated from single-crystal X-ray diffraction (scXRD) data.
Cocrystal stoichiometries were determined using scXRD and 'H NMR
spectroscopy where appropriate. pXRD data were collected at room
temperature on a Bruker D8 Advance X-ray diffractometer on samples
mounted on glass slides. Each sample was finely ground using an agate

7503

mortar-and-pestle prior to mounting. scXRD data were collected on
either a Bruker Nonius-Kappa® APEX II CCD or a Bruker Nonius-
Kappa® CCD diffractometer, each equipped with an Oxford
Cryosystems 700 series cold N, gas stream cooling system. Data were
collected at either room temperature (296.15 K) or low temperature
(150.15 K) using graphite-monochromated MoKa radiation (1 =
0.71073 A). Crystals were mounted in Paratone oil on a MiTeGen®
magnetic mount. Data collection strategies for ensuring maximum data
redundancy and completeness were calculated using the Bruker Apex II
software suite. Data collection, initial indexing, frame integration,
Lorentz-polarization corrections and final cell parameter calculations
were likewise accomplished using the Apex II software suite. Multiscan
absorption corrections were performed using SADABS.>* Structure
solution and refinement were accomplished using SHELXT>® and
SHELXL,*® respectively, within the Olex2®’ graphical user interface.
Space groups were unambiguously verified using the PLATON®®
executable. All non-hydrogen atoms were refined anisotropically. All
hydrogen atoms were attached via a riding model at calculated positions
using HFIX commands. The occupancies of major and minor positions
for disordered C=C bonds for (1,3-di-I-tFb)-(4,4’-bpe) and 3(hq)-
2(2,2"-bpe) converged to respective ratios after each was identified in
the difference map and freely refined. Figures of all structures were
rendered using the CCDC Mercury® software suite.

B RESULTS AND DISCUSSION

Considerations for Self-Assembly. The process of self-
assembly relies on geometric parameters encoded at the

https://dx.doi.org/10.1021/acs.cgd.0c01143
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Table 1. Binary Cocrystals: Donor:Acceptor Stoichiometry, Primary Assembly Description, Photoactivity, and References

H-/X-bond acceptor
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g 4 @)
|
|\ SN I\ N N SN
_N N/ N~
2,2'-bpe 3,3'-bpe 4,4'-bpe
2:1; discrete, Six-
on 1:1;  linear chains; | 1:1; polar, undulating
component  macrocycle;

photoactive; [10]

photoactive; [1] chains; photostable; [41]

H-/X-bond donor

1:1; discrete, four- | 4:3; 2D rhomboidal | 1:1; discrete, four-

HO oy | component macrocycle; | grid; photostable; this | component macrocycle;
;es photoactive; [7] work photoactive; [7]

3:2; 2D rhomboidal grid; | 1:1;  linear  chains; | 1:1; linear chains;

photostable; this work

photostable; this work | photostable; [33]

OH
OH
hq
I
|

2:1; discrete,  three- | 2:1; discrete, three-
1:1;  zig-zag  chains;
component assembly; | component  assembly;
photostable; [1]
photostable; [1] photostable; [1]
1,2-di-I-tFb
1:1; linear chains; | 1:1; zig-zag chains; | 1:1; wave-like chains;
| [
I;[ photoactive; [13] photostable; this work | photostable; this work
1,3-di-I-tFb
I 1:1; linear chains; | 1:1; wave-like chains; | 1:1; linear chains;
ji;i photoactive; [13] photostable; this work | photostable; [30]
|
1,4-di-I-tFb

molecular level. In this context, the meta- and para-
disubstitution patterns of a benzene ring provide approximate
120° and 180° angles, respectively, to direct the assembly
process (Scheme 2). In contrast to the rigid I-atoms of the X-
bond donors 1,n-di-I-tFb, the hydroxyl H-atoms of the H-bond

donors cat, res and hq are flexible. Certain rotations of the H-
atoms give rise to rotamers for the three dihydroxybenzenes.
Rotational barriers to interconversion between rotamers are
quite small (<5 kcal'mol™).*” We also note two planar
conformational isomers (conformers) each for both 2,2’- and

7504 https://dx.doi.org/10.1021/acs.cgd.0c01143
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a)

b)

face-to-face
17

Figure 1. Perspectives of (1,4-di-I-tFb)-(3,3'-bpe): a) wave-like chains; b) herringbone packing of adjacent chains highlighting nearest-neighbor
alkene separation (green dashed arrow) and face-to-face -7 forces (red oval); c) C—H:--F interactions between adjacent herringbone assemblies; d)

adjacent herringbone assemblies (space-filling).

3,3'-bpe, distinguished by the relative orientations of the N-
atoms.

The substitution patterns of the three dihydroxybenzenes and
1,n-di-I-tFb (n = 2, 3, or 4) support X- and H-bonded cocrystals
involving n,n’-bpe to form either zero- (0D) or one-dimensional
(1D) frameworks (Scheme 3). The 0D H-bonded frameworks
constitute supramolecular macrocycles with alkene C=C bonds
that conform to the criteria of Schmidt'* to undergo
topochemical photodimerization in the solid state. The
photoactive 0D frameworks have been achieved in the form of
four-component macrocycles involving res, an organic tem-
plate” as the H-bond donor, with either 2,2"-bpe or 4,4’-bpe as

7505

the H-bond acceptor alkene. We have also reported photoactive
binary cocrystals of both 2,2’-bpe'’ and 3,3'-bpe’ with cat as
the H-bond donor. The cocrystal involving 2,2 -bpe involved a
six-component, 0D supramolecular macrocycle whereas the
solid involving 3,3’-bpe involved a 1D linear framework. The
components formed face-to-face m-stacked columns with
nearest-neighbor alkenes within columns preorganized to
undergo photodimerization. We have also reported photoactive
binary cocrystals of 2,2’-bpe using 1,3- and 1,4-di-I-tFb as X-
bond donor coformers."* When cocrystallized with 2,2’-bpe, the
components formed chains with nearest-neighbor alkenes
preorganized in a geometry conducive to photodimerization.

https://dx.doi.org/10.1021/acs.cgd.0c01143
Cryst. Growth Des. 2020, 20, 7501-7515
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Table 2. Crystallographic Data for (1,4-di-I-tFb)+(3,3’-bpe), (1,3-di-I-tFb)-(4,4"-bpe), and (1,3-di-I-tFb)-(3,3’-bpe)“

compound (1,4-di-I-tFb)-(3,3'-bpe) (1,3-di-I-tFb)-(4,4'-bpe) (1,3-di-I-tFb)-(3,3'-bpe)
CCDC deposition number 1985188 1985182 1985176
empirical formula CsH,oF LN, CsH,0F4 LN, CgH,oF, LN,
formula weight/g-mol ™ 584.08 584.08 584.08
temperature/K 296.15 296.15 296.15
crystal system monoclinic monoclinic triclinic
space group P2,/c P2,/n P-1
a/A 11.1810(11) 14.9362(15) 7.9685(8)
b/A 6.2446(6) 6.1869(6) 10.4506(10)
c/A 13.6142(14) 20.619(2) 11.6746(12)
al® 90 90 96.155(5)
p/° 102.044(S) 100.286(5S) 97.299(S)
v/° 90 90 105.554(5)
volume/A3 929.63(16) 1874.8(3) 918.80(16)
Z 2 4 2
Peac/grem™ 2.087 2.069 2.111
u/mm™" 3.425 3.396 3.465
F(000) 548 1096 548

0.26 X 0.18 X 0.1
MoKa (4 = 0.71073)

crystal size/ mm?

radiation

0.32 X 0.18 X 0.08
MoKa (4 = 0.71073)

0.18 X 0.15 X 0.12
MoKa (4 = 0.71073)

20 range for data collection/®  6.12 to 50 5.544 to 50 5.752 to 50.994
index ranges —13<h<13,-7<k<7,-12L1<16 —-17<h<12,-7<k<7,-23<1<24 -9<h<9,-12<k<12,-11<I1<14
reflections collected 4724 9025 5349
independent reflections 1628 [Ryy, = 0.0236, Rygn, = 0.0223] 3290 [Ryy, = 0.0274, Ry, = 0.0264] 3407 [Ryy, = 0.0174, Ry, = 0.0322]
data/restraints/parameters 1628/0/118 3290/0/239 3407/0/235
goodness-of-fit on P 1.06 1.067 1.054
final R indices [I > 20 (I)] R1 = 0.0219 RI = 0.0254 R1 = 0.0283
wR2 = 0.0532 wR2 = 0.0618 wR2 = 0.0610
R indices (all data) R1 = 0.0268 R1 =0.0325 R1 = 0.0456
wR2 = 0.0553 wR2 = 0.0649 wR2 = 0.0658
largest diff. peak/hole/e-A-3 0.34/-0.52 0.40/-0.75 0.52/-0.81

“R1 = YIIE,| — IFJl/YIE), wR2 = [Yw(F2 — F)?]/ Y [w(F2)?*]"2

Goodness-of-fit = [ Y w(IF,| — IFJ)*/(Nyp, —

Nparameter) ] 1/2'

The reacting C=C bonds of both solids were in a criss-crossed
orientation. When subjected to UV-irradiation, all solids reacted
to generate the corresponding cyclobutane n,n’-tpcb (n=n' =2,
3, or 4) stereospecifically and quantitatively. The successes to
generate either H- or X-bonded cocrystals, coupled with the
formation of OD and 1D photoactive frameworks, inspired us to
further explore structural and photoactive properties of binary
cocrystals based on the series (Table 1). While the novel
cocrystals described here were prepared by combining both
coformers in equimolar amounts, two of the cocrystals
crystallized in 3:2 and 4:3 stoichiometries.

Halogen-Bonded Cocrystals. The components of (1,4-di-
I-tFb)-(3,3"-bpe), (1,3-di-I-tFb)-(4,4"-bpe), and (1,3-di-I-
tFb)-(3,3’-bpe) self-assemble via N---I X-bonds. The I-donor
atoms are rigid, with the spatial arrangements of the I-donor
atoms in 1,3- and 1,4-di-I-tFb being sufficiently distant such
that steric crowding can be less expected to disrupt the assembly
process versus cocrystals involving 1,2-di-I-tFb."*

Crystal Structure of (1,4-di-I-tFb)-(3,3’-bpe). The compo-
nents of (1,4-di-I-tFb)-(3,3’-bpe) crystallize in the monoclinic
space group P2,/c (Figure 1 and Table 2). The asymmetric unit
consists of one half-molecule of 1,4-di-I-tFb and one-half
molecule of 3,3'-bpe, both of which lie on crystallographic
centers of inversion. The pyridyl (pyr) rings of 3,3'-bpe adopt
an anti conformation (Figure 1a). The alkene atoms of 3,3'-bpe
lie approximately coplanar with the pyr rings (twist angle
~6.4°). The components assemble primarily via N---I X-bonds
(d(N1--11) = 2.958(3) A) to form wave-like chains (4 ~ 1.93
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nm) (Figure 1a). Adjacent chains interact via highly offset, face-
to-face 7+ forces between nearest-neighbor pyr rings (d(pyr:
pyr) ~ 5.1 A) such that adjacent chains stack in a herringbone
arrangement along the crystallographic b-axis. Nearest-neighbor
alkenes of 3,3"-bpe lie stacked parallel and offset, and separated
on the order of 5.5 A (Figure 1b). Adjacent herringbone
assemblies stack offset and interact via C—H--F forces (Figures
Ic,d).

Crystal Structure of (1,3-di-I-tFb)-(4,4'-bpe). The compo-
nents of (1,3-di-I-tFb)-(4,4"-bpe) crystallize in the monoclinic
space group P2, /n (Figure 2 and Table 2). The asymmetric unit
consists of one full molecule of 1,3-di-I-tFb and two one half-
molecules of 4,4'-bpe, with the C=C bonds of both alkenes
sitting on crystallographic centers of inversion. The alkene
atoms of each 4,4’-bpe lie almost perfectly coplanar with the pyr
rings (twist angles: ~ 5.4° [N1], ~ 1.4° [N2]). One of the
crystallographically unique alkenes (N2) lies disordered over
two sites (occupancies: 72/28). The components of (1,3-di-I-
tFb)-(4,4'-bpe) assemble via N--I X-bonds (d(N1--I1) =
2.915(3) A; d(N2--12) = 2.879(3) A) to generate wave-like
chains (4 ~ 3.97 nm, ©® ~ 130.7°) (Figure 2a). Within chains,
unique molecules of 4,4'-bpe deviate slightly (13.1°) from
coplanarity. Adjacent chains run parallel and pack in a
herringbone arrangement, interacting via a combination of
edge-to-edge C—H---F and face-to-face F---F forces to form
approximately planar sheets (Figure 2b). Nearest-neighbor
alkenes for both crystallographically unique molecules of 4,4'-
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Figure 2. Perspectives of (1,3-di-I-tFb)-(4,4’-bpe) (alkene disorder omitted for clarity): a) wave-like chains; and b) herringbone packing between
chains highlighting nearest-neighbor alkene separations (green dashed arrows) (view along c).

bpe (between adjacent chains) lie parallel, highly offset and
separated on the order of 6.2 A (Figure 2b).

Crystal Structure of (1,3-di-I-tFb)-(3,3’-bpe). The compo-
nents of (1,3-di-I-tFb)-(3,3'-bpe) crystallize in the triclinic
space group P1 (Figure 3 and Table 2). The asymmetric unit
consists of one full molecule of 1,3-di-I-tFb and two half-
molecules of 3,3"-bpe. Both alkene C=C bonds lie on
crystallographic centers of inversion. The pyr rings of both
molecules of 3,3'-bpe adopt an anti conformation (Figure 3a).
The alkene atoms of one molecule of 3,3'-bpe (N1) are
approximately coplanar with the pyr rings (twist angle ~6.2°),
while the alkene atoms of the other 3,3'-bpe (N2) are
appreciably twisted from the plane of the pyr rings (twist
angle ~12.0°). The components assemble via N--I X-bonds
(d(N1--11) =2.942(4) A; d(N2--12) = 3.009(3) A) to generate
zigzag chains (4 ~ 3.28 nm, © ~ 123.4°) (Figure 3a). Adjacent
chains interact via a combination of C—H--F forces and face-to-
face z-stacks involving the pyr and alkene carbon atoms of the
crystallographically unique, nearest-neighbor 3,3’-bpe (Figures
3b,c). Alkenes of nearest-neighbor molecules of 3,3’-bpe
(between adjacent chains) are stacked yet highly staggered
and separated on the order of 4.0 A (Figure 3b).

Hydrogen-Bonded Cocrystals. The components of (hq)-
(3,3"-bpe), 3(hq)-2(2,2"-bpe), and 4(res)-3(3,3'-bpe) self-
assemble, similar to the X-bonded cocrystals, to form extended
networks sustained primarily by O—H:--N H-bonds. Intermo-
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lecular O—H--O H-bonds are also present in 3(hq)-2(2,2'-
bpe) and 4(res)-3(3,3'-bpe).

Crystal structure of (hq)-(3,3'-bpe). The components of
(hq)-(3,3'-bpe) crystallize in the triclinic space group P1
(Figure 4 and Table 3). The asymmetric unit consists of one
half-molecule of 3,3’-bpe and one half-molecule of hq, both of
which lie on crystallographic centers of inversion. The pyr rings
of 3,3"-bpe adopt an anti conformation (Figure 4a). The
hydroxyl groups of hq adopt a trans conformation (Figure 4a).
The alkene atoms of 3,3’-bpe are almost perfectly coplanar with
the pyr rings (twist angle ~5.3°). The components assemble
primarily via O—H-N (d(O1-H1--N1) = 2.744(2) A) H-
bonds to generate linear chains (4 &~ 1.77 nm) (Figure 4a).
Adjacent chains run parallel and interact via offset, face-to-face
77 stacking between pyr rings of 3,3-bpe (d(pyr--pyr) ~ 4.61
A) to generate planar sheets (Figures 4b,c). Nearest-neighbor
alkenes of 3,3’-bpe (between adjacent chains) are parallel but
nearly coplanar, are highly offset, and are separated on the order
of 9.6 A (Figure 4b).

Crystal structure of 3(hq)-2(2,2’-bpe). The components of
3(hq)-2(2,2"-bpe) crystallize in the triclinic space group P1
(Figure S and Table 3). The asymmetric unit consists of one full
molecule and one half-molecule of hq and two half-molecules of
2,2"-bpe (Figure Sa). The one half-molecule of hq and the
alkene C=C bonds of both molecules of 2,2'-bpe lie on
crystallographic centers of inversion. The pyr rings of both
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Figure 3. Perspectives of (1,3-di-I-tFb)-(3,3'-bpe): (a) zigzag chains; (b) face-to-face -7 stacks between chains (red dashed lines); (c) interactions
between chains illustrating C—H--F contacts and highlighting nearest-neighbor alkene separation (green dashed arrow).

molecules of 2,2"-bpe adopt an anti conformation. The hydroxyl
groups of the full hq molecule (02/03) adopt a trans
conformation (Figure 5a). The alkene atoms of one 2,2’-bpe
(N1) are almost perfectly coplanar (twist angle ~2.3°), whereas
the alkene atoms of the other (N2) are appreciably twisted from
the plane of the pyr rings (twist angle ~7.4°). The alkenes of
each molecule of 2,2'-bpe are disordered over two sites
(occupancies: 88/12 (N1), 88/12 (N2)).

The components assemble via a combination of O—H--N
(d(01-H1--N1) = 2.730(2) A; d(02—H2A-N2) = 2.808(2)
A) and O-H---O (d(03—H3A---O1) = 2.783(2) A) H-bonds
(Figure 5b) to generate corrugated (4 ~ 11.6 A) (Figure 5c)
rhomboidal grids (dimensions 11.6 A X 21.3 A, ©, ~ 82.35°, @,
~ 97.65°) (Figure 5d). The rhomboidal topology is defined by
the centroids of the alkenes. The lengths of the rhomboidal
cavities are defined by a bridging alkene and two terminal hq
molecules. Each pyr group along a length participates in an O—
H-N-H bond to an hq molecule. The remaining hydroxyl
group of the hq molecule participates in an O—H---O H-bond to
the second unique hq molecules, which serve as the widths. The
hydroxyl groups of the hq molecules that comprise the width
form O—H--N H-bonds to the second unique 2,2’-bpe
molecules that serve as vertices. The length edge hq molecules
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also participate in edge-to-face C—H---x interactions with vertex
alkenes. Adjacent grids exhibit a tongue-in-groove fit (Figure
Se), stacking parallel, interacting primarily via two edge-to-face
C—H-z forces between unique molecules of hq (d(C2--
hq[02/03]) ~ 3.81 A,' d(C3 "'hq[02/03]) ~ 3.86 A)

Crystal Structure of 4(res)-3(3,3'-bpe). The components of
4(res)-3(3,3’-bpe) crystallize in the triclinic space group P1
(Figure 6 and Table 3). The asymmetric unit consists of two full
molecules of res and three half-molecules of 3,3'-bpe (Figure
6a). The alkenes of all three molecules of 3,3’-bpe sit on
crystallographic centers of inversion (Figure 6a), with the pyr
rings of each molecule adopting an anti conformation (Figure
6b). The hydroxyl groups of both res molecules adopt a syn-anti
conformation. The alkene atoms of one 3,3’-bpe (N3) lie nearly
coplanar with the pyr rings (twist angle ~2.7°), while the alkene
atoms of the other two 3,3’-bpe are appreciably twisted (twist
angles: ~8.5° (N1), ~19.0° (N2)).

The components of 4(res)-3(3,3’-bpe) assemble via O—H:-
N (d(O1-H1--N1) =2.659(2) A; d(02—H2---N2) = 2.822(2)
A; d(03—H3--N3) =2.737(2) A) and O—H---O (d(O4—H4---
01) =2.722(2) A) H-bonds, as well as C—H---O forces (Figure
6b) to generate, similarly to 3(hq)-2(2,2'-bpe), corrugated (4 =~
22.2 A) (Figure 6¢) rhomboidal grids (dimensions 13.2 A X 22.2
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Figure 4. Perspectives of (hq)-(3,3'-bpe): (a) linear chains (view along b); (b) planar sheets with offset, face-to-face 77 stacks highlighted (pink

dashed lines); (c) planar sheets (space-filling).

A, 0, ~ 59.34°, O, ~ 120.66°) (Figure 6d). The rhomboidal
topology can also be defined by the centroids of the alkenes.
Thus, a central alkene and two terminal res molecules define the
widths of cavities and, in contrast to 3(hq)-2(2,2’-bpe), the
cavity lengths are defined by bridging alkenes. The vertices are,
similarly to 3(hq)-2(2,2’-bpe), defined by an alkene that
participates in H-bonds to two res molecules (Figure 6d).
Adjacent grids exhibit a tongue-in-groove fit (Figure 6e),
interacting primarily via C—H--O forces between pyr rings of
3,3"-bpe (N2) and res (03/04) (d(C15--03) ~ 3.60 A).
Nearest-neighbor molecules of 3,3'-bpe (N2, N3) are parallel
but severely offset and are separated on the order of 6.6 A
(Figure 6b).

Self-Assembly and Photoreactivity. Our previous work
demonstrated that cocrystallizations of res with symmetrical
n,n'-bpe (n =n’ = 2, 4) generate discrete, four-component, H-
bonded macrocycles with photoactive alkenes.” Cocrystalliza-
tion of cat with symmetrical n,n’-bpe (n = n’ = 2, 3) was also
shown to generate photoactive solids comprising either 0D
discrete (2,2"-bpe)” or 1D infinite (3,3’-bpe)’ assemblies.
More recently, we described 1D infinite assemblies in X-bonded
cocrystals of 1,n-di-I-tFb (n = 3, 4) and 2,2'-bpe that are
photoactive."

The current work provides an account of all 18 binary
cocrystals involving any of the three isomers of the ditopic H-
and X-bond donors dihydroxybenzene and diiodotetrafluor-
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obenzene, respectively, with the symmetrical and ditopic H- and
X-bond acceptors n,n’-bpe (n = n’ =2, 3, 4). Extensive work by
us has shown the utility of using H-bonded macrocycles to
control the [2 + 2] photodimerization using res as a template.
Given the sensitivity of crystal packing to subtle changes to
molecular structure, it is imperative to study the crystal
landscape available for structurally analogous components to
understand the scope and assess limitations to control
organization and reactivity.

The primary interactions that sustain the components in the
18 cocrystals are either O—H--"N H-bonds or N---I X-bonds.
Intermolecular O—H:--O bonds also formed in the H-bonded
solids."””"? Six of the 18 cocrystals are photoactive, with stacked
alkene C=C bonds that generally conform to the principles of
Schmidt'** for solid-state photodimerization. Of the six
photoactive cocrystals, half involve infinite and half involve
discrete self-assembled structures. The alkene 2,2-bpe was the
most common reactive bipyridine in the series (Table 4 and
Figure 7).

Collectively, the ditopic nature of the donor and acceptor
molecules tends to support the formation of infinite assemblies,
with 13 of the 18 structures being either 1D (11 chains) or 2D
(two rhomboidal grids). All cocrystals with the para-
disubstituted H- and X-bond donors in the form of hq and
1,4-di-I-tFb, respectively, formed infinite assemblies. Secondary
interactions and steric issues involving the ortho- and meta-
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Table 3. Crystallographic Data for (hq)-(3,3"-bpe), 3(hq)-2(2,2'-bpe), and 4(res)-3(3,3'-bpe)*

(hq)-(3,3"-bpe)

3(hq)-2(2,2"-bpe) 4(res)-3(3,3'-bpe)

CCDC deposition no. 1985199 1985203 1985202
empirical formula CysH(N,O, C, HsN,O; C3H,/N;0,
formula weight/g mol ™" 292.33 347.38 493.54
temp/K 150.15 296.15 296.15
cryst syst triclinic triclinic triclinic
space group P1 P1 P1
a/A 6.1637(6) 9.0992(9) 8.3960(8)
b/A 7.1041(7) 9.9930(10) 10.9807(11)
/A 8.7870(9) 10.8409(11) 15.4072(15)
a/deg 80.619(5) 67.355(5) 109.631(S)
f/deg 77.571(S) 79.380(S) 98.380(5)
y/deg 86.851(5) 86.527(5) 94.853(S)
volume/A3 370.64(6) 894.11(16) 1309.9(2)
Z 1 2 2
Peac/g cm™ 1.31 1.29 1.251
u/mm™! 0.087 0.087 0.084
F(000) 154 366 520
crystal size/mm?® 0.155 X 0.1 X 0.09 0.3X021x02 0.36 X 0.25 X 0.06
radiation Mo Ka (4 = 0.71073) Mo Ka (4 = 0.71073) Mo Ka (4 = 0.71073)
20 range for data collection/deg  4.806—55.764 5.592—47.996 3.98—49.998
index ranges —8<h<8-9<k<9-9<I<11 -10<h<10,-11<k<11,-12<I<10 -9<h<9,-12<k<13,-15<1<18
no. of rflns collected S110 4587 7275
no. of indep rflns 1708 (R, = 0.0226, R, = 0.0245) 2782 (R, = 0.0210, R, = 0.0320) 4582 (R, = 0.0205, R, = 0.0355)
no. of data/restraints/params 1708/0/101 2782/0/245 4582/0/338
goodness of fit on F? 1.035 1.047 1.059
final R indices (I > 20(I)) RI1 = 0.0424 R1 = 0.0414 RI = 0.0436
wR2 =0.1092 wR2 = 0.1086 wR2 = 0.1023
R indices (all data) R1 = 0.0490 R1 =0.0531 R1 = 0.0669
wR2 =0.1136 wR2 = 0.1159 wR2 =0.1113
largest diff peak, hole/e A-3 0.18, —0.17 0.16, —0.14 0.20, —0.16

“R1 = YIIF,| — IEJl/YIF,|. wR2 = [ Y w(E,2 — F2)*)/ X [w(F, )% Goodness of fit = [ Y w(IF,| — IFJ)%/ (N,

- Nparameter)] 1/2-

Table 4. Photoreactive Cocrystals involving n,n’-bpe

H-/X-bond acceptor no. of photoreactive structures

2,2"-bpe 4
3,3’-bpe 1
4,4'-bpe 1

disubstitution patterns of the ditopic donor molecules
supported the formation of finite (i.e., 0D) assemblies. We are
unaware of a cocrystal that exhibits a rhomboidal topology,
although grid frameworks are known for reticular** structures
involving covalent—*>** and metal—organic*”** frameworks
(COFs and MOFs, respectively). The formation of the grids
here involves H-bonded aggregates of molecules that define
vertices of the grid structures. That aggregates, as opposed to
single molecules, define the vertices attests to the structural
versatility of the H-bonded assembly process to support an
infinite assembly process. The aggregates correspond to two of
the four cocrystals that do not exhibit a 1:1 stoichiometry
(Figure 7 and Table 5). A 1:1 stoichiometry was most common
among the solids (13 instances, 72%).

From an organic synthesis standpoint, each of the three
symmetrical cyclobutane isomers of n,n’-tpcb is made available
within the series of 18 cocrystals. A combination of cat and res
provide access to each member of the cyclobutane series. X-
bonded cocrystals based on 1,n-di-I-tFb (n = 3, 4) generate only
2,2'-tpcb. We also note that each cocrystal-based synthesis
provides a highly step economical®” (less than or equal to three
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steps) and relatively cost economical®® access to a cyclobutane
photoproduct. With the sole exception of 3,3’-bpe—which is
prepared via a one-pot, aqueous Pd-catalyzed Hiyama—Heck
cross-coupling”*"**—all cocrystal components are commer-
cially available. Moreover, each synthesis is perfectly redox
economical** and—owing to the ease of separation and recovery
of the auxiliary H-/X-bond donors following photodimeriza-
tion—also perfectly atom economical.*” The work is of
significant synthetic utility for the reliable and eflicient
generation of symmetrical rctt-1,2,3,4-tetrakis(n-pyridyl)-
cyclobutanes.

Bl CONCLUSIONS

In this contribution, we have synthesized and structurally
characterized six binary cocrystals sustained by either inter-
molecular H- or X-bonds. Each of the three isomers of the
symmetric bipyridine nn’-bpe form cocrystals with each of
three isomers of both dihydroxybenzene and diiodotetrafluor-
obenzene, which function as H- and X-bond donors,
respectively. Our work, in combination with previous reports
that span the past two decades, provides a series of 18 cocrystals
of ditopic H- and X-bonding components. Structural diversity is
represented in the series (i.e., 0D, 1D, and 2D assemblies),
providing elements of both predictability and discovery in the
outcomes of the solid-state assembly processes. An important
utility is that the cocrystals provide efficient access to a series of
cyclobutane photoproducts. We now aim to utilize the structural
and reactivity data to set a path to develop a more
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Figure S. Perspectives of 3(hq)-2(2,2"-bpe) (alkene disorder omitted for clarity): (a) asymmetric unit; (b) intermolecular forces O—H--N and O—
H--O H bonds; (c) edge-on view of corrugated sheets (space-filling); (d) sheets (space filling) consisting of rhomboidal grids (highlighted yellow)
with parameters for rhomboidal unit shown at right; (e) tongue-in-groove stacking of grids (space filling).
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Figure 6. Perspectives of 4(res)-3(3,3’-bpe): (a) asymmetric unit; (b) intermolecular forces O—H--N and O—H-+-O H bonds and edge-to-edge C—
H--H; (c) edge-on view of corrugated sheets (space filling); (d) rhomboidal grid (space filling) with parameters for the rhomboidal unit (highlighted
yellow) shown on the right; (e) tongue-in-groove stacking of grids (space filling).
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Figure 7. Histograms: (left) photoreactive cocrystals with n,n’-bpe; (right) cocrystal stoichiometries.

Table 5. Donor:Acceptor Cocrystal Stoichiometries for (Left) Ditopic H-/X-Bond Acceptors and (Right) Ditopic H-/X-Bond
Donors

donor:acceptor stoichiometric ratio donor:acceptor stoichiometric ratio
H-/X-bond acceptor 1:1 2:1 3:2 4:3 H-/X-bond donor disubstitution pattern 1:1 2:1 3:2 4:3
2,2"-bpe 3 2 1 ortho (cat, 1,2-di-I-tFb) 3 3
3,3"-bpe 4 1 1 meta (res, 1,3-di-I-tFb) S 1
4,4'-bpe 6 para (hq, 1,4-di-I-tFb) S 1
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