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Los Andes, Venezuela The molecular structure of trans-bis(pyridin-3-yl)ethylene (3,3'-bpe), C;,H;(N,,

as determined by single-crystal X-ray diffraction is reported. The molecule self-

assembles into two dimensional arrays by a combination of C—H- - -N hydrogen

bonds and edge-to-face C—H- .- interactions that stack in a herringbone

arrangement perpendicular to the crystallographic c-axis. The supramolecular

forces that direct the packing of 3,3'-bpe as well as its packing assembly within
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Supporting information: this article has the crystal are also compared to those observed within the structures of the
supporting information at journals.iucr.org/e other symmetrical isomers trans-1,2-bis(n-pyridyl)ethylene (n,n’-bpe, where n =
n' =2 or4).

1. Chemical context

Bis(pyridyl)ethylenes have arisen as somewhat of a natural
extension of cinnamic acid as a series of molecules capable of
undergoing [2+2] photodimerization in the solid state to
generate cyclobutanes. Foundational work by Schmidt and
coworkers on frans-cinnamic acids led to the formation of the
‘Topochemical Postulate’, which dictated that olefins within
42 A of one another are capable of undergoing the photo-
dimerization process. Unlike cinnamic acid, which crystallizes
in such a way that the olefins are rendered photoactive (olefins
within 4.2 A of one another), the native crystalline forms of
bis(pyridyl)-

ethylenes are photostable (olefins separated by distances
> 42 A in the crystal). To achieve photoreactivity of these
olefins, it often becomes necessary to use a ‘molecular
template’ that can interact with the olefin-containing bi-
pyridine via supramolecular interactions such as hydrogen
bonding, halogen bonding, argento- and aurophilic inter-
actions, and dative N— B interactions. Analyses of the crystal
P s structures of symmetric bis(pyridyl)ethylenes derivatives such
(” % M” % "S:» as the trans-bis(n-pyridyl)ethylenes series of isomers (n = 2, 3
o e or 4) is necessary to understand the forces that govern their
crystallization, why they are photostable, and why use
templates to achieve photoreactivity (Campillo-Alvarado et
al., 2019; Chanthapally et al., 2014; MacGillivray et al., 2008;

Pahari ef al., 2019; Sezer et al., 2017; Volodin et al., 2018).
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Table 1
Structural features of the n,n’-bpe series of constitutional isomers.

The twist angle is defined as the angle between the plane defined by the four alkene atoms and the plane defined by either pyridine ring.

Compound 2,2'-bpe

3,3'-bpe 4,4 -bpe

Twist angle ¢ (°) 7.43

Solid-state packing assembly corrugated chains
Assembly forces i edge-to-face C—H- - -
Nearest-neighbor alkene separation (A) 6.09

5.17 9.14

approximately planar sheets planar sheets

edge-to-face C—H- - -, C—H---N C—H- - N, face-to-face m—m
5.50 5.72

2. Structural commentary

The alkene 3,3'-bpe crystallizes in the centrosymmetric
monoclinic space group P2,/n (Fig. 1). The asymmetric unit
consists of one-half molecule of 3,3'-bpe with the C=C bond
sitting on a crystallographic center of inversion. The pyridyl
rings adopt an anti-conformation with respect to each other

(Fig. 1).

3. Supramolecular features

Adjacent 3,3'-bpe molecules interact primarily via edge-to-
face C—H- - -[d(C6- - -pyr) 3.58 A; ©(C6—H6- - -pyr) 131.8°]
forces between pyridyl rings (Fig. 2). Those rings also parti-
cipate in C—H---N [d(C4---N1) 3.59 A; ®(C4—H4- - -N1)
139.5°] hydrogen bonds (Fig. 2). The forces generate nearly

Figure 1
Single crystal structure for trans-bis(pyridin-3-yl)ethylene (3,3'-bpe) with
anisotropic displacement ellipsoids at 50% probability.

Figure 2
C—H- - -N and edge-to-face C—H- - -7 intermolecular interactions (both
yellow dotted lines) highlighting nearest-neighbor alkene separations
(red dashed arrow) (view along a).

planar sheets (Fig. 3), which aggregate into a herringbone
arrangement of adjacent sheets (Fig. 4). Nearest-neighbor
alkene C=C bonds of 3,3’-bpe between adjacent sheets
reveals a parallel, but offset orientation of the neighboring
alkenes relative to one another at a distance of 5.50 A. The
distance exceeds the inter-alkene separation of Schmidt for
photodimerizarion and suggests that 3,3’-bpe is photostable
(Schmidt, 1971).

4. Database survey

For the n,n’-bpe (where: n=n' =2, 3, or 4) series of symmetric
alkenes, all three adopt nearly planar conformations (Table 1),
with the pyridyl rings of 3,3'-bpe and 2,2’-bpe adopting anti-
conformations with respect to each other. The packings of the
symmetric alkenes are defined by combinations of C—H. - -
and/or C—H---N hydrogen bonds (Table 1) to form either
one-dimensional chain (2,2'-bpe, Fig. 5) or two-dimensional
sheet (3,3'-bpe and 4,4'-bpe) structures (Fig. 6). Similar to 3,3'-
bpe, the alkene C=C bonds of 2,2'-bpe (6.09 A Vansant et al.,

Figure 3

Edge-on view of sheets encompassing neighboring molecules of 3,3'-bpe
supported by C—H:- - -N and C—H. - -7 intermolecular interactions.

Figure 4
Herringbone arrangement of neighboring sheets of 3,3'-bpe molecules.
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Figure 6
Planar, two-dimensional sheets of 4,4'-bpe.
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Figure 5
Corrugated, one-dimensional chains of 2,2’-bpe.

1980) and 4,4"-bpe (5.72 A; Tinnemans et al., 2018) (Table 1)
are beyond the separation distance of Schmidt (1971).

5. Synthesis and crystallization

The alkene 3,3’-bpe was prepared as described (Quentin ef al.,
2020; Gordillo et al., 2007, 2013) via a one-pot, aqueous Pd-
catalyzed Hiyama-Heck cross-coupling between 3-bromo-
pyridine and triethoxyvinylsilane (2:1 molar ratio) (Fig. 7).
Flash chromatography (SiO,, 10% MeOH/CH,Cl,) furnished
3,3'-bpe as yellow crystals: 222.3 mg (23%). A portion of 3,3'-
bpe was dissolved in CHCl; and allowed to slowly evaporate at
room temperature. Single crystals in the form of colorless
plates suitable for single crystal X-ray diffraction formed
within seven days.

Pd(OAc), (0.95 mol%), N
N 0.50 M NaOHjg), dark |
PN A =
(Et0);Si7 + 2 JI/\J N
B N\F 140 °C, 3 h, 23% |
-
N
3,3"-bpe

. single diastereomer
Figure 7

Synthesis of 3,3'-bpe via Pd-catalyzed Hiyama-Heck cross-coupling.

Table 2
Experimental details.

Crystal data
Chemical formula
M,

Crystal system, space group
Temperature (K)
a, b, c(A)

B()

V (A%

V4

Radiation type

p (mm™")

Crystal size (mm)

Data collection
Diffractometer
Absorption correction

Tnins Trnax

No. of measured, independent and
observed [I > 20([)] reflections

Rint

Refinement

R[F? > 20(F?)], wR(F?), S
No. of reflections

No. of parameters

H-atom treatment

Apmaxa Apmin (e A73)

CioHjoN2

182.22
Monoclinic, P2,/n
296

7.4591 (7), 5.5045 (6), 11.7803 (12)
99.638 (5)

476.86 (8)

2

Mo Ka

0.08

0.18 x 0.12 x 0.06

Bruker Nonius KappaCCD

Multi-scan (SADABS; Krause et
al., 2015)

0.989, 0.995

2410, 836, 587

0.034

0.050, 0.137, 1.07

836

84

All H-atom parameters refined
0.13, —0.16

Computer programs: COLLECT (Nonius, 1988), HKL DENZO and SCALEPACK
(Otwinowski & Minor, 1997), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b)
and OLEX2 (Dolomanov et al., 2009).

6. Refinement

Crystal data, data collection and structure refinement details
for 3,3-bpe are summarized in Table 2. All non-hydrogen
atoms were refined anisotropically. Hydrogen atoms were
located in the difference-Fourier map and freely refined with
0.93 < C—H < 0.99 A. Refinement of the hydrogen atoms led
to a data-to-parameter ratio of ~10. The single-crystal data
were collected at room temperature to best reflect conditions
under which photochemical reactions are typically conducted.
Room-temperature data can also lead to fewer reflections and/
or scaling anomalies.
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Computing details

Data collection: HKL SCALEPACK (Otwinowski & Minor, 1997); cell refinement: COLLECT (Nonius, 1998); data
reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: ShelXT
(Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2
(Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-1,2-Bis(pyridin-3-yl)ethene

Crystal data

CIZHIONZ
M,.=182.22
Monoclinic, P2/n
a=74591(7)A
b=5.5045 (6) A
c=11.7803 (12) A
£=99.638 (5)°
V=476.86 (8) A3
Z=2

Data collection

Bruker Nonius KappaCCD
diffractometer

Radiation source: fine-focus sealed tube

CCD phi and w scans

Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Tnin = 0.989, Thnax = 0.995

2410 measured reflections

Refinement

Refinement on F?
Least-squares matrix: full
R[F?> 20(F?)] = 0.050
wR(F?) =0.137

S§=1.07

836 reflections

84 parameters

0 restraints

F(000) =192

Dy=1.269 Mg m™

Mo Ka radiation, 1 =0.71073 A

Cell parameters from 1169 reflections
6=1.0-26.7°

4 =0.08 mm™!

T=296K

Plate, colourless

0.18 x 0.12 x 0.06 mm

836 independent reflections
587 reflections with 7> 20()
Rix=0.034

Omax = 25.0°, Oumin = 3.0°
h=-8-8

k=-6—6

[=-13—>13

Primary atom site location: dual
Hydrogen site location: difference Fourier map
All H-atom parameters refined
w = 1/[6(F?) + (0.0703P)* + 0.056P]
where P = (F,2 + 2F2)/3
(A/6)max < 0.001
Apmax =0.13 e A7
Apmin=—0.16 ¢ A
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Special details

Geometry. All esds (except the esd in the dihedral angle between two L.s. planes) are estimated using the full covariance
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles;
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (42)

X y z Usiso®/Ueq
N1 0.5400 (2) 0.7577 (3) 0.63093 (15) 0.0609 (6)
C2 0.2479 (2) 0.5639 (3) 0.57302 (15) 0.0459 (5)
C3 0.3752 (3) 0.7464 (4) 0.56601 (17) 0.0537 (6)
Cé6 0.2998 (3) 0.3821 (4) 0.65272 (17) 0.0529 (6)
C4 0.5835 (3) 0.5788 (4) 0.70678 (19) 0.0564 (6)
Cl 0.0695 (3) 0.5737 (4) 0.49890 (16) 0.0509 (6)
C5 0.4688 (3) 0.3894 (4) 0.71993 (19) 0.0556 (6)
H4 0.705 (3) 0.590 (3) 0.7528 (19) 0.062 (6)*
H3 0.345 (3) 0.875 (4) 0.507 (2) 0.068 (6)*
H5 0.504 (3) 0.265 (4) 0.7803 (18) 0.063 (6)*
H6 0.215 (3) 0.250 (4) 0.6607 (17) 0.066 (6)*
H1 0.051 (3) 0.706 (4) 0.4498 (19) 0.071 (7)*

Atomic displacement parameters (4°)

Ull []22 U33 U12 U13 L]23

N1 0.0566 (11) 0.0569 (11) 0.0674 (11) ~0.0077 (8) 0.0048 (9) 0.0012 (9)
2 0.0493 (11) 0.0476 (11) 0.0416 (10) ~0.0010 (9) 0.0103 (8) ~0.0024 (8)
c3 0.0562 (13) 0.0522 (13) 0.0519 (12) ~0.0045 (9) 0.0068 (10) 0.0027 (10)
C6 0.0491 (12) 0.0522 (13) 0.0585 (13) ~0.0029 (9) 0.0120 (10) 0.0048 (10)
C4 0.0465 (12) 0.0671 (14) 0.0551 (12) 0.0010 (10) 0.0069 (10) ~0.0019 (11)
Cl 0.0553 (12) 0.0526 (12) 0.0448 (11) ~0.0034 (8) 0.0085 (9) 0.0020 (10)
cs 0.0517 (12) 0.0591 (13) 0.0570 (12) 0.0067 (9) 0.0117 (10) 0.0095 (10)

Geometric parameters (A, °)

N1—C3 1.336 3) C6—H6 0.98 (2)
N1—C4 1.333 (3) C4—C5 1.374 (3)
C2—C3 1.395 (3) C4—H4 0.98 (2)
C2—C6 1.382 (3) Cl—Cl' 1.320 (4)
c2—Cl1 1.465 (3) Cl—HI 0.93 (2)
C3—H3 0.99 (2) C5—HS 0.99 (2)
C6—C5 1372 (3)

C4—N1—C3 116.54 (18) N1—C4—C5 123.4 (2)
C3—C2—Cl 119.85 (19) N1—C4—H4 115.2 (11)
C6—C2—C3 116.44 (19) C5—C4—H4 121.4 (11)
C6—C2—Cl 123.71 (18) C2—Cl1—H1 115.3 (13)
N1—C3—C2 124.8 (2) Cli—Cl1—C2 127.1 (3)
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N1—C3—H3
C2—C3—H3
C2—C6—H6
C5—Co6—C2
C5—C6—H6

N1—C4—C5—C6
C2—C6—C5—C4
C3—N1—C4—C5
C3—C2—C6—C5
C3—C2—Cl1—Cl!

116.6 (12)
118.6 (12)
119.4 (12)
119.80 (19)
120.8 (12)

-0.5(3)
0.2(3)
0.1 (3)
0.3 (3)
~174.6 (2)

Cl—Cl1—H1
Co—C5—C4
C6—C5—HS5
C4—C5—H5

C6—C2—C3—NI1
C6—C2—Cl1—Cl!
C4—N1—C3—C2
C1—C2—C3—N1
Cl1—C2—C6—C5

117.4 (13)
119.1 (2)

120.0 (11)
120.8 (11)

~0.7 (3)
4.7 (4)
0.5(3)
178.62 (17)
~178.96 (17)

Symmetry code: (i) —x, —y+1, —z+1.
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